blob: 0880d1073d6f2db4858ae11e0001d6dc234583c5 [file] [log] [blame]
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
Douglas Gregor94b1dd22008-10-24 04:54:22 +000015#include "SemaInherit.h"
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000016#include "clang/Basic/Diagnostic.h"
Douglas Gregoreb8f3062008-11-12 17:17:38 +000017#include "clang/Lex/Preprocessor.h"
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000018#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
Douglas Gregorf9eb9052008-11-19 21:05:33 +000020#include "clang/AST/ExprCXX.h"
Douglas Gregoreb8f3062008-11-12 17:17:38 +000021#include "clang/AST/TypeOrdering.h"
Douglas Gregorbf3af052008-11-13 20:12:29 +000022#include "llvm/ADT/SmallPtrSet.h"
Douglas Gregor3fc749d2008-12-23 00:26:44 +000023#include "llvm/ADT/STLExtras.h"
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000024#include "llvm/Support/Compiler.h"
25#include <algorithm>
26
27namespace clang {
28
29/// GetConversionCategory - Retrieve the implicit conversion
30/// category corresponding to the given implicit conversion kind.
31ImplicitConversionCategory
32GetConversionCategory(ImplicitConversionKind Kind) {
33 static const ImplicitConversionCategory
34 Category[(int)ICK_Num_Conversion_Kinds] = {
35 ICC_Identity,
36 ICC_Lvalue_Transformation,
37 ICC_Lvalue_Transformation,
38 ICC_Lvalue_Transformation,
39 ICC_Qualification_Adjustment,
40 ICC_Promotion,
41 ICC_Promotion,
Douglas Gregor5cdf8212009-02-12 00:15:05 +000042 ICC_Promotion,
43 ICC_Conversion,
44 ICC_Conversion,
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000045 ICC_Conversion,
46 ICC_Conversion,
47 ICC_Conversion,
48 ICC_Conversion,
49 ICC_Conversion,
Douglas Gregor15da57e2008-10-29 02:00:59 +000050 ICC_Conversion,
Douglas Gregorf9201e02009-02-11 23:02:49 +000051 ICC_Conversion,
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000052 ICC_Conversion
53 };
54 return Category[(int)Kind];
55}
56
57/// GetConversionRank - Retrieve the implicit conversion rank
58/// corresponding to the given implicit conversion kind.
59ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
60 static const ImplicitConversionRank
61 Rank[(int)ICK_Num_Conversion_Kinds] = {
62 ICR_Exact_Match,
63 ICR_Exact_Match,
64 ICR_Exact_Match,
65 ICR_Exact_Match,
66 ICR_Exact_Match,
67 ICR_Promotion,
68 ICR_Promotion,
Douglas Gregor5cdf8212009-02-12 00:15:05 +000069 ICR_Promotion,
70 ICR_Conversion,
71 ICR_Conversion,
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000072 ICR_Conversion,
73 ICR_Conversion,
74 ICR_Conversion,
75 ICR_Conversion,
76 ICR_Conversion,
Douglas Gregor15da57e2008-10-29 02:00:59 +000077 ICR_Conversion,
Douglas Gregorf9201e02009-02-11 23:02:49 +000078 ICR_Conversion,
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000079 ICR_Conversion
80 };
81 return Rank[(int)Kind];
82}
83
84/// GetImplicitConversionName - Return the name of this kind of
85/// implicit conversion.
86const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
87 static const char* Name[(int)ICK_Num_Conversion_Kinds] = {
88 "No conversion",
89 "Lvalue-to-rvalue",
90 "Array-to-pointer",
91 "Function-to-pointer",
92 "Qualification",
93 "Integral promotion",
94 "Floating point promotion",
Douglas Gregor5cdf8212009-02-12 00:15:05 +000095 "Complex promotion",
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000096 "Integral conversion",
97 "Floating conversion",
Douglas Gregor5cdf8212009-02-12 00:15:05 +000098 "Complex conversion",
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000099 "Floating-integral conversion",
Douglas Gregor5cdf8212009-02-12 00:15:05 +0000100 "Complex-real conversion",
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000101 "Pointer conversion",
102 "Pointer-to-member conversion",
Douglas Gregor15da57e2008-10-29 02:00:59 +0000103 "Boolean conversion",
Douglas Gregorf9201e02009-02-11 23:02:49 +0000104 "Compatible-types conversion",
Douglas Gregor15da57e2008-10-29 02:00:59 +0000105 "Derived-to-base conversion"
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000106 };
107 return Name[Kind];
108}
109
Douglas Gregor60d62c22008-10-31 16:23:19 +0000110/// StandardConversionSequence - Set the standard conversion
111/// sequence to the identity conversion.
112void StandardConversionSequence::setAsIdentityConversion() {
113 First = ICK_Identity;
114 Second = ICK_Identity;
115 Third = ICK_Identity;
116 Deprecated = false;
117 ReferenceBinding = false;
118 DirectBinding = false;
Sebastian Redl85002392009-03-29 22:46:24 +0000119 RRefBinding = false;
Douglas Gregor225c41e2008-11-03 19:09:14 +0000120 CopyConstructor = 0;
Douglas Gregor60d62c22008-10-31 16:23:19 +0000121}
122
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000123/// getRank - Retrieve the rank of this standard conversion sequence
124/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
125/// implicit conversions.
126ImplicitConversionRank StandardConversionSequence::getRank() const {
127 ImplicitConversionRank Rank = ICR_Exact_Match;
128 if (GetConversionRank(First) > Rank)
129 Rank = GetConversionRank(First);
130 if (GetConversionRank(Second) > Rank)
131 Rank = GetConversionRank(Second);
132 if (GetConversionRank(Third) > Rank)
133 Rank = GetConversionRank(Third);
134 return Rank;
135}
136
137/// isPointerConversionToBool - Determines whether this conversion is
138/// a conversion of a pointer or pointer-to-member to bool. This is
139/// used as part of the ranking of standard conversion sequences
140/// (C++ 13.3.3.2p4).
141bool StandardConversionSequence::isPointerConversionToBool() const
142{
143 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
144 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
145
146 // Note that FromType has not necessarily been transformed by the
147 // array-to-pointer or function-to-pointer implicit conversions, so
148 // check for their presence as well as checking whether FromType is
149 // a pointer.
150 if (ToType->isBooleanType() &&
Douglas Gregor2a7e58d2008-12-23 00:53:59 +0000151 (FromType->isPointerType() || FromType->isBlockPointerType() ||
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000152 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
153 return true;
154
155 return false;
156}
157
Douglas Gregorbc0805a2008-10-23 00:40:37 +0000158/// isPointerConversionToVoidPointer - Determines whether this
159/// conversion is a conversion of a pointer to a void pointer. This is
160/// used as part of the ranking of standard conversion sequences (C++
161/// 13.3.3.2p4).
162bool
163StandardConversionSequence::
164isPointerConversionToVoidPointer(ASTContext& Context) const
165{
166 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
167 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
168
169 // Note that FromType has not necessarily been transformed by the
170 // array-to-pointer implicit conversion, so check for its presence
171 // and redo the conversion to get a pointer.
172 if (First == ICK_Array_To_Pointer)
173 FromType = Context.getArrayDecayedType(FromType);
174
175 if (Second == ICK_Pointer_Conversion)
Ted Kremenek6217b802009-07-29 21:53:49 +0000176 if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
Douglas Gregorbc0805a2008-10-23 00:40:37 +0000177 return ToPtrType->getPointeeType()->isVoidType();
178
179 return false;
180}
181
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000182/// DebugPrint - Print this standard conversion sequence to standard
183/// error. Useful for debugging overloading issues.
184void StandardConversionSequence::DebugPrint() const {
185 bool PrintedSomething = false;
186 if (First != ICK_Identity) {
187 fprintf(stderr, "%s", GetImplicitConversionName(First));
188 PrintedSomething = true;
189 }
190
191 if (Second != ICK_Identity) {
192 if (PrintedSomething) {
193 fprintf(stderr, " -> ");
194 }
195 fprintf(stderr, "%s", GetImplicitConversionName(Second));
Douglas Gregor225c41e2008-11-03 19:09:14 +0000196
197 if (CopyConstructor) {
198 fprintf(stderr, " (by copy constructor)");
199 } else if (DirectBinding) {
200 fprintf(stderr, " (direct reference binding)");
201 } else if (ReferenceBinding) {
202 fprintf(stderr, " (reference binding)");
203 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000204 PrintedSomething = true;
205 }
206
207 if (Third != ICK_Identity) {
208 if (PrintedSomething) {
209 fprintf(stderr, " -> ");
210 }
211 fprintf(stderr, "%s", GetImplicitConversionName(Third));
212 PrintedSomething = true;
213 }
214
215 if (!PrintedSomething) {
216 fprintf(stderr, "No conversions required");
217 }
218}
219
220/// DebugPrint - Print this user-defined conversion sequence to standard
221/// error. Useful for debugging overloading issues.
222void UserDefinedConversionSequence::DebugPrint() const {
223 if (Before.First || Before.Second || Before.Third) {
224 Before.DebugPrint();
225 fprintf(stderr, " -> ");
226 }
Chris Lattnerd9d22dd2008-11-24 05:29:24 +0000227 fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str());
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000228 if (After.First || After.Second || After.Third) {
229 fprintf(stderr, " -> ");
230 After.DebugPrint();
231 }
232}
233
234/// DebugPrint - Print this implicit conversion sequence to standard
235/// error. Useful for debugging overloading issues.
236void ImplicitConversionSequence::DebugPrint() const {
237 switch (ConversionKind) {
238 case StandardConversion:
239 fprintf(stderr, "Standard conversion: ");
240 Standard.DebugPrint();
241 break;
242 case UserDefinedConversion:
243 fprintf(stderr, "User-defined conversion: ");
244 UserDefined.DebugPrint();
245 break;
246 case EllipsisConversion:
247 fprintf(stderr, "Ellipsis conversion");
248 break;
249 case BadConversion:
250 fprintf(stderr, "Bad conversion");
251 break;
252 }
253
254 fprintf(stderr, "\n");
255}
256
257// IsOverload - Determine whether the given New declaration is an
258// overload of the Old declaration. This routine returns false if New
259// and Old cannot be overloaded, e.g., if they are functions with the
260// same signature (C++ 1.3.10) or if the Old declaration isn't a
261// function (or overload set). When it does return false and Old is an
262// OverloadedFunctionDecl, MatchedDecl will be set to point to the
263// FunctionDecl that New cannot be overloaded with.
264//
265// Example: Given the following input:
266//
267// void f(int, float); // #1
268// void f(int, int); // #2
269// int f(int, int); // #3
270//
271// When we process #1, there is no previous declaration of "f",
272// so IsOverload will not be used.
273//
274// When we process #2, Old is a FunctionDecl for #1. By comparing the
275// parameter types, we see that #1 and #2 are overloaded (since they
276// have different signatures), so this routine returns false;
277// MatchedDecl is unchanged.
278//
279// When we process #3, Old is an OverloadedFunctionDecl containing #1
280// and #2. We compare the signatures of #3 to #1 (they're overloaded,
281// so we do nothing) and then #3 to #2. Since the signatures of #3 and
282// #2 are identical (return types of functions are not part of the
283// signature), IsOverload returns false and MatchedDecl will be set to
284// point to the FunctionDecl for #2.
285bool
286Sema::IsOverload(FunctionDecl *New, Decl* OldD,
287 OverloadedFunctionDecl::function_iterator& MatchedDecl)
288{
289 if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) {
290 // Is this new function an overload of every function in the
291 // overload set?
292 OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
293 FuncEnd = Ovl->function_end();
294 for (; Func != FuncEnd; ++Func) {
295 if (!IsOverload(New, *Func, MatchedDecl)) {
296 MatchedDecl = Func;
297 return false;
298 }
299 }
300
301 // This function overloads every function in the overload set.
302 return true;
Douglas Gregore53060f2009-06-25 22:08:12 +0000303 } else if (FunctionTemplateDecl *Old = dyn_cast<FunctionTemplateDecl>(OldD))
304 return IsOverload(New, Old->getTemplatedDecl(), MatchedDecl);
305 else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) {
Douglas Gregor34d1dc92009-06-24 16:50:40 +0000306 FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
307 FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
308
309 // C++ [temp.fct]p2:
310 // A function template can be overloaded with other function templates
311 // and with normal (non-template) functions.
312 if ((OldTemplate == 0) != (NewTemplate == 0))
313 return true;
314
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000315 // Is the function New an overload of the function Old?
316 QualType OldQType = Context.getCanonicalType(Old->getType());
317 QualType NewQType = Context.getCanonicalType(New->getType());
318
319 // Compare the signatures (C++ 1.3.10) of the two functions to
320 // determine whether they are overloads. If we find any mismatch
321 // in the signature, they are overloads.
322
323 // If either of these functions is a K&R-style function (no
324 // prototype), then we consider them to have matching signatures.
Douglas Gregor72564e72009-02-26 23:50:07 +0000325 if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
326 isa<FunctionNoProtoType>(NewQType.getTypePtr()))
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000327 return false;
328
Douglas Gregor34d1dc92009-06-24 16:50:40 +0000329 FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
330 FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000331
332 // The signature of a function includes the types of its
333 // parameters (C++ 1.3.10), which includes the presence or absence
334 // of the ellipsis; see C++ DR 357).
335 if (OldQType != NewQType &&
336 (OldType->getNumArgs() != NewType->getNumArgs() ||
337 OldType->isVariadic() != NewType->isVariadic() ||
338 !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
339 NewType->arg_type_begin())))
340 return true;
341
Douglas Gregor34d1dc92009-06-24 16:50:40 +0000342 // C++ [temp.over.link]p4:
343 // The signature of a function template consists of its function
344 // signature, its return type and its template parameter list. The names
345 // of the template parameters are significant only for establishing the
346 // relationship between the template parameters and the rest of the
347 // signature.
348 //
349 // We check the return type and template parameter lists for function
350 // templates first; the remaining checks follow.
351 if (NewTemplate &&
352 (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
353 OldTemplate->getTemplateParameters(),
354 false, false, SourceLocation()) ||
355 OldType->getResultType() != NewType->getResultType()))
356 return true;
357
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000358 // If the function is a class member, its signature includes the
359 // cv-qualifiers (if any) on the function itself.
360 //
361 // As part of this, also check whether one of the member functions
362 // is static, in which case they are not overloads (C++
363 // 13.1p2). While not part of the definition of the signature,
364 // this check is important to determine whether these functions
365 // can be overloaded.
366 CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
367 CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
368 if (OldMethod && NewMethod &&
369 !OldMethod->isStatic() && !NewMethod->isStatic() &&
Douglas Gregor1ca50c32008-11-21 15:36:28 +0000370 OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000371 return true;
372
373 // The signatures match; this is not an overload.
374 return false;
375 } else {
376 // (C++ 13p1):
377 // Only function declarations can be overloaded; object and type
378 // declarations cannot be overloaded.
379 return false;
380 }
381}
382
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000383/// TryImplicitConversion - Attempt to perform an implicit conversion
384/// from the given expression (Expr) to the given type (ToType). This
385/// function returns an implicit conversion sequence that can be used
386/// to perform the initialization. Given
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000387///
388/// void f(float f);
389/// void g(int i) { f(i); }
390///
391/// this routine would produce an implicit conversion sequence to
392/// describe the initialization of f from i, which will be a standard
393/// conversion sequence containing an lvalue-to-rvalue conversion (C++
394/// 4.1) followed by a floating-integral conversion (C++ 4.9).
395//
396/// Note that this routine only determines how the conversion can be
397/// performed; it does not actually perform the conversion. As such,
398/// it will not produce any diagnostics if no conversion is available,
399/// but will instead return an implicit conversion sequence of kind
400/// "BadConversion".
Douglas Gregor225c41e2008-11-03 19:09:14 +0000401///
402/// If @p SuppressUserConversions, then user-defined conversions are
403/// not permitted.
Douglas Gregor09f41cf2009-01-14 15:45:31 +0000404/// If @p AllowExplicit, then explicit user-defined conversions are
405/// permitted.
Sebastian Redle2b68332009-04-12 17:16:29 +0000406/// If @p ForceRValue, then overloading is performed as if From was an rvalue,
407/// no matter its actual lvalueness.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000408ImplicitConversionSequence
Douglas Gregor225c41e2008-11-03 19:09:14 +0000409Sema::TryImplicitConversion(Expr* From, QualType ToType,
Douglas Gregor09f41cf2009-01-14 15:45:31 +0000410 bool SuppressUserConversions,
Sebastian Redle2b68332009-04-12 17:16:29 +0000411 bool AllowExplicit, bool ForceRValue)
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000412{
413 ImplicitConversionSequence ICS;
Douglas Gregor60d62c22008-10-31 16:23:19 +0000414 if (IsStandardConversion(From, ToType, ICS.Standard))
415 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
Douglas Gregorf9201e02009-02-11 23:02:49 +0000416 else if (getLangOptions().CPlusPlus &&
417 IsUserDefinedConversion(From, ToType, ICS.UserDefined,
Sebastian Redle2b68332009-04-12 17:16:29 +0000418 !SuppressUserConversions, AllowExplicit,
419 ForceRValue)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000420 ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
Douglas Gregor396b7cd2008-11-03 17:51:48 +0000421 // C++ [over.ics.user]p4:
422 // A conversion of an expression of class type to the same class
423 // type is given Exact Match rank, and a conversion of an
424 // expression of class type to a base class of that type is
425 // given Conversion rank, in spite of the fact that a copy
426 // constructor (i.e., a user-defined conversion function) is
427 // called for those cases.
428 if (CXXConstructorDecl *Constructor
429 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
Douglas Gregor2b1e0032009-02-02 22:11:10 +0000430 QualType FromCanon
431 = Context.getCanonicalType(From->getType().getUnqualifiedType());
432 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
433 if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
Douglas Gregor225c41e2008-11-03 19:09:14 +0000434 // Turn this into a "standard" conversion sequence, so that it
435 // gets ranked with standard conversion sequences.
Douglas Gregor396b7cd2008-11-03 17:51:48 +0000436 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
437 ICS.Standard.setAsIdentityConversion();
438 ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr();
439 ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
Douglas Gregor225c41e2008-11-03 19:09:14 +0000440 ICS.Standard.CopyConstructor = Constructor;
Douglas Gregor2b1e0032009-02-02 22:11:10 +0000441 if (ToCanon != FromCanon)
Douglas Gregor396b7cd2008-11-03 17:51:48 +0000442 ICS.Standard.Second = ICK_Derived_To_Base;
443 }
Douglas Gregor60d62c22008-10-31 16:23:19 +0000444 }
Douglas Gregor734d9862009-01-30 23:27:23 +0000445
446 // C++ [over.best.ics]p4:
447 // However, when considering the argument of a user-defined
448 // conversion function that is a candidate by 13.3.1.3 when
449 // invoked for the copying of the temporary in the second step
450 // of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
451 // 13.3.1.6 in all cases, only standard conversion sequences and
452 // ellipsis conversion sequences are allowed.
453 if (SuppressUserConversions &&
454 ICS.ConversionKind == ImplicitConversionSequence::UserDefinedConversion)
455 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
Douglas Gregor396b7cd2008-11-03 17:51:48 +0000456 } else
Douglas Gregor60d62c22008-10-31 16:23:19 +0000457 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
Douglas Gregor60d62c22008-10-31 16:23:19 +0000458
459 return ICS;
460}
461
462/// IsStandardConversion - Determines whether there is a standard
463/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
464/// expression From to the type ToType. Standard conversion sequences
465/// only consider non-class types; for conversions that involve class
466/// types, use TryImplicitConversion. If a conversion exists, SCS will
467/// contain the standard conversion sequence required to perform this
468/// conversion and this routine will return true. Otherwise, this
469/// routine will return false and the value of SCS is unspecified.
470bool
471Sema::IsStandardConversion(Expr* From, QualType ToType,
472 StandardConversionSequence &SCS)
473{
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000474 QualType FromType = From->getType();
475
Douglas Gregor60d62c22008-10-31 16:23:19 +0000476 // Standard conversions (C++ [conv])
Douglas Gregoreb8f3062008-11-12 17:17:38 +0000477 SCS.setAsIdentityConversion();
Douglas Gregor60d62c22008-10-31 16:23:19 +0000478 SCS.Deprecated = false;
Douglas Gregor45920e82008-12-19 17:40:08 +0000479 SCS.IncompatibleObjC = false;
Douglas Gregor60d62c22008-10-31 16:23:19 +0000480 SCS.FromTypePtr = FromType.getAsOpaquePtr();
Douglas Gregor225c41e2008-11-03 19:09:14 +0000481 SCS.CopyConstructor = 0;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000482
Douglas Gregorf9201e02009-02-11 23:02:49 +0000483 // There are no standard conversions for class types in C++, so
484 // abort early. When overloading in C, however, we do permit
485 if (FromType->isRecordType() || ToType->isRecordType()) {
486 if (getLangOptions().CPlusPlus)
487 return false;
488
489 // When we're overloading in C, we allow, as standard conversions,
490 }
491
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000492 // The first conversion can be an lvalue-to-rvalue conversion,
493 // array-to-pointer conversion, or function-to-pointer conversion
494 // (C++ 4p1).
495
496 // Lvalue-to-rvalue conversion (C++ 4.1):
497 // An lvalue (3.10) of a non-function, non-array type T can be
498 // converted to an rvalue.
499 Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
500 if (argIsLvalue == Expr::LV_Valid &&
Douglas Gregor904eed32008-11-10 20:40:00 +0000501 !FromType->isFunctionType() && !FromType->isArrayType() &&
Douglas Gregor063daf62009-03-13 18:40:31 +0000502 Context.getCanonicalType(FromType) != Context.OverloadTy) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000503 SCS.First = ICK_Lvalue_To_Rvalue;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000504
505 // If T is a non-class type, the type of the rvalue is the
506 // cv-unqualified version of T. Otherwise, the type of the rvalue
Douglas Gregorf9201e02009-02-11 23:02:49 +0000507 // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
508 // just strip the qualifiers because they don't matter.
509
510 // FIXME: Doesn't see through to qualifiers behind a typedef!
Douglas Gregor60d62c22008-10-31 16:23:19 +0000511 FromType = FromType.getUnqualifiedType();
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000512 }
513 // Array-to-pointer conversion (C++ 4.2)
514 else if (FromType->isArrayType()) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000515 SCS.First = ICK_Array_To_Pointer;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000516
517 // An lvalue or rvalue of type "array of N T" or "array of unknown
518 // bound of T" can be converted to an rvalue of type "pointer to
519 // T" (C++ 4.2p1).
520 FromType = Context.getArrayDecayedType(FromType);
521
522 if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
523 // This conversion is deprecated. (C++ D.4).
Douglas Gregor60d62c22008-10-31 16:23:19 +0000524 SCS.Deprecated = true;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000525
526 // For the purpose of ranking in overload resolution
527 // (13.3.3.1.1), this conversion is considered an
528 // array-to-pointer conversion followed by a qualification
529 // conversion (4.4). (C++ 4.2p2)
Douglas Gregor60d62c22008-10-31 16:23:19 +0000530 SCS.Second = ICK_Identity;
531 SCS.Third = ICK_Qualification;
532 SCS.ToTypePtr = ToType.getAsOpaquePtr();
533 return true;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000534 }
535 }
536 // Function-to-pointer conversion (C++ 4.3).
537 else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000538 SCS.First = ICK_Function_To_Pointer;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000539
540 // An lvalue of function type T can be converted to an rvalue of
541 // type "pointer to T." The result is a pointer to the
542 // function. (C++ 4.3p1).
543 FromType = Context.getPointerType(FromType);
Sebastian Redl33b399a2009-02-04 21:23:32 +0000544 }
Douglas Gregor904eed32008-11-10 20:40:00 +0000545 // Address of overloaded function (C++ [over.over]).
546 else if (FunctionDecl *Fn
547 = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
548 SCS.First = ICK_Function_To_Pointer;
549
550 // We were able to resolve the address of the overloaded function,
551 // so we can convert to the type of that function.
552 FromType = Fn->getType();
Sebastian Redl7c80bd62009-03-16 23:22:08 +0000553 if (ToType->isLValueReferenceType())
554 FromType = Context.getLValueReferenceType(FromType);
555 else if (ToType->isRValueReferenceType())
556 FromType = Context.getRValueReferenceType(FromType);
Sebastian Redl33b399a2009-02-04 21:23:32 +0000557 else if (ToType->isMemberPointerType()) {
558 // Resolve address only succeeds if both sides are member pointers,
559 // but it doesn't have to be the same class. See DR 247.
560 // Note that this means that the type of &Derived::fn can be
561 // Ret (Base::*)(Args) if the fn overload actually found is from the
562 // base class, even if it was brought into the derived class via a
563 // using declaration. The standard isn't clear on this issue at all.
564 CXXMethodDecl *M = cast<CXXMethodDecl>(Fn);
565 FromType = Context.getMemberPointerType(FromType,
566 Context.getTypeDeclType(M->getParent()).getTypePtr());
567 } else
Douglas Gregor904eed32008-11-10 20:40:00 +0000568 FromType = Context.getPointerType(FromType);
569 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000570 // We don't require any conversions for the first step.
571 else {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000572 SCS.First = ICK_Identity;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000573 }
574
575 // The second conversion can be an integral promotion, floating
576 // point promotion, integral conversion, floating point conversion,
577 // floating-integral conversion, pointer conversion,
578 // pointer-to-member conversion, or boolean conversion (C++ 4p1).
Douglas Gregorf9201e02009-02-11 23:02:49 +0000579 // For overloading in C, this can also be a "compatible-type"
580 // conversion.
Douglas Gregor45920e82008-12-19 17:40:08 +0000581 bool IncompatibleObjC = false;
Douglas Gregorf9201e02009-02-11 23:02:49 +0000582 if (Context.hasSameUnqualifiedType(FromType, ToType)) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000583 // The unqualified versions of the types are the same: there's no
584 // conversion to do.
Douglas Gregor60d62c22008-10-31 16:23:19 +0000585 SCS.Second = ICK_Identity;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000586 }
587 // Integral promotion (C++ 4.5).
588 else if (IsIntegralPromotion(From, FromType, ToType)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000589 SCS.Second = ICK_Integral_Promotion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000590 FromType = ToType.getUnqualifiedType();
591 }
592 // Floating point promotion (C++ 4.6).
593 else if (IsFloatingPointPromotion(FromType, ToType)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000594 SCS.Second = ICK_Floating_Promotion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000595 FromType = ToType.getUnqualifiedType();
596 }
Douglas Gregor5cdf8212009-02-12 00:15:05 +0000597 // Complex promotion (Clang extension)
598 else if (IsComplexPromotion(FromType, ToType)) {
599 SCS.Second = ICK_Complex_Promotion;
600 FromType = ToType.getUnqualifiedType();
601 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000602 // Integral conversions (C++ 4.7).
Sebastian Redl07779722008-10-31 14:43:28 +0000603 // FIXME: isIntegralType shouldn't be true for enums in C++.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000604 else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
Sebastian Redl07779722008-10-31 14:43:28 +0000605 (ToType->isIntegralType() && !ToType->isEnumeralType())) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000606 SCS.Second = ICK_Integral_Conversion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000607 FromType = ToType.getUnqualifiedType();
608 }
609 // Floating point conversions (C++ 4.8).
610 else if (FromType->isFloatingType() && ToType->isFloatingType()) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000611 SCS.Second = ICK_Floating_Conversion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000612 FromType = ToType.getUnqualifiedType();
613 }
Douglas Gregor5cdf8212009-02-12 00:15:05 +0000614 // Complex conversions (C99 6.3.1.6)
615 else if (FromType->isComplexType() && ToType->isComplexType()) {
616 SCS.Second = ICK_Complex_Conversion;
617 FromType = ToType.getUnqualifiedType();
618 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000619 // Floating-integral conversions (C++ 4.9).
Sebastian Redl07779722008-10-31 14:43:28 +0000620 // FIXME: isIntegralType shouldn't be true for enums in C++.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000621 else if ((FromType->isFloatingType() &&
Sebastian Redl07779722008-10-31 14:43:28 +0000622 ToType->isIntegralType() && !ToType->isBooleanType() &&
623 !ToType->isEnumeralType()) ||
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000624 ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
625 ToType->isFloatingType())) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000626 SCS.Second = ICK_Floating_Integral;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000627 FromType = ToType.getUnqualifiedType();
628 }
Douglas Gregor5cdf8212009-02-12 00:15:05 +0000629 // Complex-real conversions (C99 6.3.1.7)
630 else if ((FromType->isComplexType() && ToType->isArithmeticType()) ||
631 (ToType->isComplexType() && FromType->isArithmeticType())) {
632 SCS.Second = ICK_Complex_Real;
633 FromType = ToType.getUnqualifiedType();
634 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000635 // Pointer conversions (C++ 4.10).
Douglas Gregor45920e82008-12-19 17:40:08 +0000636 else if (IsPointerConversion(From, FromType, ToType, FromType,
637 IncompatibleObjC)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000638 SCS.Second = ICK_Pointer_Conversion;
Douglas Gregor45920e82008-12-19 17:40:08 +0000639 SCS.IncompatibleObjC = IncompatibleObjC;
Sebastian Redl07779722008-10-31 14:43:28 +0000640 }
Sebastian Redl4433aaf2009-01-25 19:43:20 +0000641 // Pointer to member conversions (4.11).
642 else if (IsMemberPointerConversion(From, FromType, ToType, FromType)) {
643 SCS.Second = ICK_Pointer_Member;
644 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000645 // Boolean conversions (C++ 4.12).
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000646 else if (ToType->isBooleanType() &&
647 (FromType->isArithmeticType() ||
648 FromType->isEnumeralType() ||
Douglas Gregor2a7e58d2008-12-23 00:53:59 +0000649 FromType->isPointerType() ||
Sebastian Redl4433aaf2009-01-25 19:43:20 +0000650 FromType->isBlockPointerType() ||
Sebastian Redl6e8ed162009-05-10 18:38:11 +0000651 FromType->isMemberPointerType() ||
652 FromType->isNullPtrType())) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000653 SCS.Second = ICK_Boolean_Conversion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000654 FromType = Context.BoolTy;
Douglas Gregorf9201e02009-02-11 23:02:49 +0000655 }
656 // Compatible conversions (Clang extension for C function overloading)
657 else if (!getLangOptions().CPlusPlus &&
658 Context.typesAreCompatible(ToType, FromType)) {
659 SCS.Second = ICK_Compatible_Conversion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000660 } else {
661 // No second conversion required.
Douglas Gregor60d62c22008-10-31 16:23:19 +0000662 SCS.Second = ICK_Identity;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000663 }
664
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000665 QualType CanonFrom;
666 QualType CanonTo;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000667 // The third conversion can be a qualification conversion (C++ 4p1).
Douglas Gregor98cd5992008-10-21 23:43:52 +0000668 if (IsQualificationConversion(FromType, ToType)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000669 SCS.Third = ICK_Qualification;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000670 FromType = ToType;
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000671 CanonFrom = Context.getCanonicalType(FromType);
672 CanonTo = Context.getCanonicalType(ToType);
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000673 } else {
674 // No conversion required
Douglas Gregor60d62c22008-10-31 16:23:19 +0000675 SCS.Third = ICK_Identity;
676
677 // C++ [over.best.ics]p6:
678 // [...] Any difference in top-level cv-qualification is
679 // subsumed by the initialization itself and does not constitute
680 // a conversion. [...]
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000681 CanonFrom = Context.getCanonicalType(FromType);
682 CanonTo = Context.getCanonicalType(ToType);
Douglas Gregor60d62c22008-10-31 16:23:19 +0000683 if (CanonFrom.getUnqualifiedType() == CanonTo.getUnqualifiedType() &&
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000684 CanonFrom.getCVRQualifiers() != CanonTo.getCVRQualifiers()) {
685 FromType = ToType;
686 CanonFrom = CanonTo;
687 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000688 }
689
690 // If we have not converted the argument type to the parameter type,
691 // this is a bad conversion sequence.
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000692 if (CanonFrom != CanonTo)
Douglas Gregor60d62c22008-10-31 16:23:19 +0000693 return false;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000694
Douglas Gregor60d62c22008-10-31 16:23:19 +0000695 SCS.ToTypePtr = FromType.getAsOpaquePtr();
696 return true;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000697}
698
699/// IsIntegralPromotion - Determines whether the conversion from the
700/// expression From (whose potentially-adjusted type is FromType) to
701/// ToType is an integral promotion (C++ 4.5). If so, returns true and
702/// sets PromotedType to the promoted type.
703bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType)
704{
705 const BuiltinType *To = ToType->getAsBuiltinType();
Sebastian Redlf7be9442008-11-04 15:59:10 +0000706 // All integers are built-in.
Sebastian Redl07779722008-10-31 14:43:28 +0000707 if (!To) {
708 return false;
709 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000710
711 // An rvalue of type char, signed char, unsigned char, short int, or
712 // unsigned short int can be converted to an rvalue of type int if
713 // int can represent all the values of the source type; otherwise,
714 // the source rvalue can be converted to an rvalue of type unsigned
715 // int (C++ 4.5p1).
Sebastian Redl07779722008-10-31 14:43:28 +0000716 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000717 if (// We can promote any signed, promotable integer type to an int
718 (FromType->isSignedIntegerType() ||
719 // We can promote any unsigned integer type whose size is
720 // less than int to an int.
721 (!FromType->isSignedIntegerType() &&
Sebastian Redl07779722008-10-31 14:43:28 +0000722 Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000723 return To->getKind() == BuiltinType::Int;
Sebastian Redl07779722008-10-31 14:43:28 +0000724 }
725
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000726 return To->getKind() == BuiltinType::UInt;
727 }
728
729 // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
730 // can be converted to an rvalue of the first of the following types
731 // that can represent all the values of its underlying type: int,
732 // unsigned int, long, or unsigned long (C++ 4.5p2).
733 if ((FromType->isEnumeralType() || FromType->isWideCharType())
734 && ToType->isIntegerType()) {
735 // Determine whether the type we're converting from is signed or
736 // unsigned.
737 bool FromIsSigned;
738 uint64_t FromSize = Context.getTypeSize(FromType);
739 if (const EnumType *FromEnumType = FromType->getAsEnumType()) {
740 QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType();
741 FromIsSigned = UnderlyingType->isSignedIntegerType();
742 } else {
743 // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
744 FromIsSigned = true;
745 }
746
747 // The types we'll try to promote to, in the appropriate
748 // order. Try each of these types.
Douglas Gregorc9467cf2008-12-12 02:00:36 +0000749 QualType PromoteTypes[6] = {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000750 Context.IntTy, Context.UnsignedIntTy,
Douglas Gregorc9467cf2008-12-12 02:00:36 +0000751 Context.LongTy, Context.UnsignedLongTy ,
752 Context.LongLongTy, Context.UnsignedLongLongTy
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000753 };
Douglas Gregorc9467cf2008-12-12 02:00:36 +0000754 for (int Idx = 0; Idx < 6; ++Idx) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000755 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
756 if (FromSize < ToSize ||
757 (FromSize == ToSize &&
758 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
759 // We found the type that we can promote to. If this is the
760 // type we wanted, we have a promotion. Otherwise, no
761 // promotion.
Sebastian Redl07779722008-10-31 14:43:28 +0000762 return Context.getCanonicalType(ToType).getUnqualifiedType()
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000763 == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType();
764 }
765 }
766 }
767
768 // An rvalue for an integral bit-field (9.6) can be converted to an
769 // rvalue of type int if int can represent all the values of the
770 // bit-field; otherwise, it can be converted to unsigned int if
771 // unsigned int can represent all the values of the bit-field. If
772 // the bit-field is larger yet, no integral promotion applies to
773 // it. If the bit-field has an enumerated type, it is treated as any
774 // other value of that type for promotion purposes (C++ 4.5p3).
Mike Stump390b4cc2009-05-16 07:39:55 +0000775 // FIXME: We should delay checking of bit-fields until we actually perform the
776 // conversion.
Douglas Gregor33bbbc52009-05-02 02:18:30 +0000777 using llvm::APSInt;
778 if (From)
779 if (FieldDecl *MemberDecl = From->getBitField()) {
Douglas Gregor86f19402008-12-20 23:49:58 +0000780 APSInt BitWidth;
Douglas Gregor33bbbc52009-05-02 02:18:30 +0000781 if (FromType->isIntegralType() && !FromType->isEnumeralType() &&
782 MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
783 APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
784 ToSize = Context.getTypeSize(ToType);
Douglas Gregor86f19402008-12-20 23:49:58 +0000785
786 // Are we promoting to an int from a bitfield that fits in an int?
787 if (BitWidth < ToSize ||
788 (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
789 return To->getKind() == BuiltinType::Int;
790 }
791
792 // Are we promoting to an unsigned int from an unsigned bitfield
793 // that fits into an unsigned int?
794 if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
795 return To->getKind() == BuiltinType::UInt;
796 }
797
798 return false;
Sebastian Redl07779722008-10-31 14:43:28 +0000799 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000800 }
Douglas Gregor33bbbc52009-05-02 02:18:30 +0000801
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000802 // An rvalue of type bool can be converted to an rvalue of type int,
803 // with false becoming zero and true becoming one (C++ 4.5p4).
Sebastian Redl07779722008-10-31 14:43:28 +0000804 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000805 return true;
Sebastian Redl07779722008-10-31 14:43:28 +0000806 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000807
808 return false;
809}
810
811/// IsFloatingPointPromotion - Determines whether the conversion from
812/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
813/// returns true and sets PromotedType to the promoted type.
814bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType)
815{
816 /// An rvalue of type float can be converted to an rvalue of type
817 /// double. (C++ 4.6p1).
818 if (const BuiltinType *FromBuiltin = FromType->getAsBuiltinType())
Douglas Gregor5cdf8212009-02-12 00:15:05 +0000819 if (const BuiltinType *ToBuiltin = ToType->getAsBuiltinType()) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000820 if (FromBuiltin->getKind() == BuiltinType::Float &&
821 ToBuiltin->getKind() == BuiltinType::Double)
822 return true;
823
Douglas Gregor5cdf8212009-02-12 00:15:05 +0000824 // C99 6.3.1.5p1:
825 // When a float is promoted to double or long double, or a
826 // double is promoted to long double [...].
827 if (!getLangOptions().CPlusPlus &&
828 (FromBuiltin->getKind() == BuiltinType::Float ||
829 FromBuiltin->getKind() == BuiltinType::Double) &&
830 (ToBuiltin->getKind() == BuiltinType::LongDouble))
831 return true;
832 }
833
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000834 return false;
835}
836
Douglas Gregor5cdf8212009-02-12 00:15:05 +0000837/// \brief Determine if a conversion is a complex promotion.
838///
839/// A complex promotion is defined as a complex -> complex conversion
840/// where the conversion between the underlying real types is a
Douglas Gregorb7b5d132009-02-12 00:26:06 +0000841/// floating-point or integral promotion.
Douglas Gregor5cdf8212009-02-12 00:15:05 +0000842bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
843 const ComplexType *FromComplex = FromType->getAsComplexType();
844 if (!FromComplex)
845 return false;
846
847 const ComplexType *ToComplex = ToType->getAsComplexType();
848 if (!ToComplex)
849 return false;
850
851 return IsFloatingPointPromotion(FromComplex->getElementType(),
Douglas Gregorb7b5d132009-02-12 00:26:06 +0000852 ToComplex->getElementType()) ||
853 IsIntegralPromotion(0, FromComplex->getElementType(),
854 ToComplex->getElementType());
Douglas Gregor5cdf8212009-02-12 00:15:05 +0000855}
856
Douglas Gregorcb7de522008-11-26 23:31:11 +0000857/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
858/// the pointer type FromPtr to a pointer to type ToPointee, with the
859/// same type qualifiers as FromPtr has on its pointee type. ToType,
860/// if non-empty, will be a pointer to ToType that may or may not have
861/// the right set of qualifiers on its pointee.
862static QualType
863BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
864 QualType ToPointee, QualType ToType,
865 ASTContext &Context) {
866 QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
867 QualType CanonToPointee = Context.getCanonicalType(ToPointee);
868 unsigned Quals = CanonFromPointee.getCVRQualifiers();
869
870 // Exact qualifier match -> return the pointer type we're converting to.
871 if (CanonToPointee.getCVRQualifiers() == Quals) {
872 // ToType is exactly what we need. Return it.
873 if (ToType.getTypePtr())
874 return ToType;
875
876 // Build a pointer to ToPointee. It has the right qualifiers
877 // already.
878 return Context.getPointerType(ToPointee);
879 }
880
881 // Just build a canonical type that has the right qualifiers.
882 return Context.getPointerType(CanonToPointee.getQualifiedType(Quals));
883}
884
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000885/// IsPointerConversion - Determines whether the conversion of the
886/// expression From, which has the (possibly adjusted) type FromType,
887/// can be converted to the type ToType via a pointer conversion (C++
888/// 4.10). If so, returns true and places the converted type (that
889/// might differ from ToType in its cv-qualifiers at some level) into
890/// ConvertedType.
Douglas Gregor071f2ae2008-11-27 00:15:41 +0000891///
Douglas Gregor7ca09762008-11-27 01:19:21 +0000892/// This routine also supports conversions to and from block pointers
893/// and conversions with Objective-C's 'id', 'id<protocols...>', and
894/// pointers to interfaces. FIXME: Once we've determined the
895/// appropriate overloading rules for Objective-C, we may want to
896/// split the Objective-C checks into a different routine; however,
897/// GCC seems to consider all of these conversions to be pointer
Douglas Gregor45920e82008-12-19 17:40:08 +0000898/// conversions, so for now they live here. IncompatibleObjC will be
899/// set if the conversion is an allowed Objective-C conversion that
900/// should result in a warning.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000901bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
Douglas Gregor45920e82008-12-19 17:40:08 +0000902 QualType& ConvertedType,
903 bool &IncompatibleObjC)
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000904{
Douglas Gregor45920e82008-12-19 17:40:08 +0000905 IncompatibleObjC = false;
Douglas Gregorc7887512008-12-19 19:13:09 +0000906 if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
907 return true;
Douglas Gregor45920e82008-12-19 17:40:08 +0000908
Douglas Gregor27b09ac2008-12-22 20:51:52 +0000909 // Conversion from a null pointer constant to any Objective-C pointer type.
Steve Narofff4954562009-07-16 15:41:00 +0000910 if (ToType->isObjCObjectPointerType() &&
Douglas Gregor27b09ac2008-12-22 20:51:52 +0000911 From->isNullPointerConstant(Context)) {
912 ConvertedType = ToType;
913 return true;
914 }
915
Douglas Gregor071f2ae2008-11-27 00:15:41 +0000916 // Blocks: Block pointers can be converted to void*.
917 if (FromType->isBlockPointerType() && ToType->isPointerType() &&
Ted Kremenek6217b802009-07-29 21:53:49 +0000918 ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
Douglas Gregor071f2ae2008-11-27 00:15:41 +0000919 ConvertedType = ToType;
920 return true;
921 }
922 // Blocks: A null pointer constant can be converted to a block
923 // pointer type.
924 if (ToType->isBlockPointerType() && From->isNullPointerConstant(Context)) {
925 ConvertedType = ToType;
926 return true;
927 }
928
Sebastian Redl6e8ed162009-05-10 18:38:11 +0000929 // If the left-hand-side is nullptr_t, the right side can be a null
930 // pointer constant.
931 if (ToType->isNullPtrType() && From->isNullPointerConstant(Context)) {
932 ConvertedType = ToType;
933 return true;
934 }
935
Ted Kremenek6217b802009-07-29 21:53:49 +0000936 const PointerType* ToTypePtr = ToType->getAs<PointerType>();
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000937 if (!ToTypePtr)
938 return false;
939
940 // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
941 if (From->isNullPointerConstant(Context)) {
942 ConvertedType = ToType;
943 return true;
944 }
Sebastian Redl07779722008-10-31 14:43:28 +0000945
Douglas Gregorcb7de522008-11-26 23:31:11 +0000946 // Beyond this point, both types need to be pointers.
Ted Kremenek6217b802009-07-29 21:53:49 +0000947 const PointerType *FromTypePtr = FromType->getAs<PointerType>();
Douglas Gregorcb7de522008-11-26 23:31:11 +0000948 if (!FromTypePtr)
949 return false;
950
951 QualType FromPointeeType = FromTypePtr->getPointeeType();
952 QualType ToPointeeType = ToTypePtr->getPointeeType();
953
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000954 // An rvalue of type "pointer to cv T," where T is an object type,
955 // can be converted to an rvalue of type "pointer to cv void" (C++
956 // 4.10p2).
Douglas Gregorbad0e652009-03-24 20:32:41 +0000957 if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) {
Douglas Gregorbf408182008-11-27 00:52:49 +0000958 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
959 ToPointeeType,
Douglas Gregorcb7de522008-11-26 23:31:11 +0000960 ToType, Context);
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000961 return true;
962 }
963
Douglas Gregorf9201e02009-02-11 23:02:49 +0000964 // When we're overloading in C, we allow a special kind of pointer
965 // conversion for compatible-but-not-identical pointee types.
966 if (!getLangOptions().CPlusPlus &&
967 Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
968 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
969 ToPointeeType,
970 ToType, Context);
971 return true;
972 }
973
Douglas Gregorbc0805a2008-10-23 00:40:37 +0000974 // C++ [conv.ptr]p3:
975 //
976 // An rvalue of type "pointer to cv D," where D is a class type,
977 // can be converted to an rvalue of type "pointer to cv B," where
978 // B is a base class (clause 10) of D. If B is an inaccessible
979 // (clause 11) or ambiguous (10.2) base class of D, a program that
980 // necessitates this conversion is ill-formed. The result of the
981 // conversion is a pointer to the base class sub-object of the
982 // derived class object. The null pointer value is converted to
983 // the null pointer value of the destination type.
984 //
Douglas Gregor94b1dd22008-10-24 04:54:22 +0000985 // Note that we do not check for ambiguity or inaccessibility
986 // here. That is handled by CheckPointerConversion.
Douglas Gregorf9201e02009-02-11 23:02:49 +0000987 if (getLangOptions().CPlusPlus &&
988 FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
Douglas Gregorcb7de522008-11-26 23:31:11 +0000989 IsDerivedFrom(FromPointeeType, ToPointeeType)) {
Douglas Gregorbf408182008-11-27 00:52:49 +0000990 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
991 ToPointeeType,
Douglas Gregorcb7de522008-11-26 23:31:11 +0000992 ToType, Context);
993 return true;
994 }
Douglas Gregorbc0805a2008-10-23 00:40:37 +0000995
Douglas Gregorc7887512008-12-19 19:13:09 +0000996 return false;
997}
998
999/// isObjCPointerConversion - Determines whether this is an
1000/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
1001/// with the same arguments and return values.
1002bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
1003 QualType& ConvertedType,
1004 bool &IncompatibleObjC) {
1005 if (!getLangOptions().ObjC1)
1006 return false;
1007
Steve Naroff14108da2009-07-10 23:34:53 +00001008 // First, we handle all conversions on ObjC object pointer types.
1009 const ObjCObjectPointerType* ToObjCPtr = ToType->getAsObjCObjectPointerType();
1010 const ObjCObjectPointerType *FromObjCPtr =
1011 FromType->getAsObjCObjectPointerType();
Douglas Gregorc7887512008-12-19 19:13:09 +00001012
Steve Naroff14108da2009-07-10 23:34:53 +00001013 if (ToObjCPtr && FromObjCPtr) {
Steve Naroffde2e22d2009-07-15 18:40:39 +00001014 // Objective C++: We're able to convert between "id" or "Class" and a
Steve Naroff14108da2009-07-10 23:34:53 +00001015 // pointer to any interface (in both directions).
Steve Naroffde2e22d2009-07-15 18:40:39 +00001016 if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
Steve Naroff14108da2009-07-10 23:34:53 +00001017 ConvertedType = ToType;
1018 return true;
1019 }
1020 // Conversions with Objective-C's id<...>.
1021 if ((FromObjCPtr->isObjCQualifiedIdType() ||
1022 ToObjCPtr->isObjCQualifiedIdType()) &&
Steve Naroff4084c302009-07-23 01:01:38 +00001023 Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
1024 /*compare=*/false)) {
Steve Naroff14108da2009-07-10 23:34:53 +00001025 ConvertedType = ToType;
1026 return true;
1027 }
1028 // Objective C++: We're able to convert from a pointer to an
1029 // interface to a pointer to a different interface.
1030 if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
1031 ConvertedType = ToType;
1032 return true;
1033 }
1034
1035 if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
1036 // Okay: this is some kind of implicit downcast of Objective-C
1037 // interfaces, which is permitted. However, we're going to
1038 // complain about it.
1039 IncompatibleObjC = true;
1040 ConvertedType = FromType;
1041 return true;
1042 }
1043 }
1044 // Beyond this point, both types need to be C pointers or block pointers.
Douglas Gregor2a7e58d2008-12-23 00:53:59 +00001045 QualType ToPointeeType;
Ted Kremenek6217b802009-07-29 21:53:49 +00001046 if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
Steve Naroff14108da2009-07-10 23:34:53 +00001047 ToPointeeType = ToCPtr->getPointeeType();
Ted Kremenek6217b802009-07-29 21:53:49 +00001048 else if (const BlockPointerType *ToBlockPtr = ToType->getAs<BlockPointerType>())
Douglas Gregor2a7e58d2008-12-23 00:53:59 +00001049 ToPointeeType = ToBlockPtr->getPointeeType();
1050 else
Douglas Gregorc7887512008-12-19 19:13:09 +00001051 return false;
1052
Douglas Gregor2a7e58d2008-12-23 00:53:59 +00001053 QualType FromPointeeType;
Ted Kremenek6217b802009-07-29 21:53:49 +00001054 if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
Steve Naroff14108da2009-07-10 23:34:53 +00001055 FromPointeeType = FromCPtr->getPointeeType();
Ted Kremenek6217b802009-07-29 21:53:49 +00001056 else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>())
Douglas Gregor2a7e58d2008-12-23 00:53:59 +00001057 FromPointeeType = FromBlockPtr->getPointeeType();
1058 else
Douglas Gregorc7887512008-12-19 19:13:09 +00001059 return false;
1060
Douglas Gregorc7887512008-12-19 19:13:09 +00001061 // If we have pointers to pointers, recursively check whether this
1062 // is an Objective-C conversion.
1063 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1064 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1065 IncompatibleObjC)) {
1066 // We always complain about this conversion.
1067 IncompatibleObjC = true;
1068 ConvertedType = ToType;
1069 return true;
1070 }
Douglas Gregor2a7e58d2008-12-23 00:53:59 +00001071 // If we have pointers to functions or blocks, check whether the only
Douglas Gregorc7887512008-12-19 19:13:09 +00001072 // differences in the argument and result types are in Objective-C
1073 // pointer conversions. If so, we permit the conversion (but
1074 // complain about it).
Douglas Gregor72564e72009-02-26 23:50:07 +00001075 const FunctionProtoType *FromFunctionType
1076 = FromPointeeType->getAsFunctionProtoType();
1077 const FunctionProtoType *ToFunctionType
1078 = ToPointeeType->getAsFunctionProtoType();
Douglas Gregorc7887512008-12-19 19:13:09 +00001079 if (FromFunctionType && ToFunctionType) {
1080 // If the function types are exactly the same, this isn't an
1081 // Objective-C pointer conversion.
1082 if (Context.getCanonicalType(FromPointeeType)
1083 == Context.getCanonicalType(ToPointeeType))
1084 return false;
1085
1086 // Perform the quick checks that will tell us whether these
1087 // function types are obviously different.
1088 if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1089 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1090 FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1091 return false;
1092
1093 bool HasObjCConversion = false;
1094 if (Context.getCanonicalType(FromFunctionType->getResultType())
1095 == Context.getCanonicalType(ToFunctionType->getResultType())) {
1096 // Okay, the types match exactly. Nothing to do.
1097 } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1098 ToFunctionType->getResultType(),
1099 ConvertedType, IncompatibleObjC)) {
1100 // Okay, we have an Objective-C pointer conversion.
1101 HasObjCConversion = true;
1102 } else {
1103 // Function types are too different. Abort.
1104 return false;
1105 }
1106
1107 // Check argument types.
1108 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1109 ArgIdx != NumArgs; ++ArgIdx) {
1110 QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1111 QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1112 if (Context.getCanonicalType(FromArgType)
1113 == Context.getCanonicalType(ToArgType)) {
1114 // Okay, the types match exactly. Nothing to do.
1115 } else if (isObjCPointerConversion(FromArgType, ToArgType,
1116 ConvertedType, IncompatibleObjC)) {
1117 // Okay, we have an Objective-C pointer conversion.
1118 HasObjCConversion = true;
1119 } else {
1120 // Argument types are too different. Abort.
1121 return false;
1122 }
1123 }
1124
1125 if (HasObjCConversion) {
1126 // We had an Objective-C conversion. Allow this pointer
1127 // conversion, but complain about it.
1128 ConvertedType = ToType;
1129 IncompatibleObjC = true;
1130 return true;
1131 }
1132 }
1133
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001134 return false;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001135}
1136
Douglas Gregor94b1dd22008-10-24 04:54:22 +00001137/// CheckPointerConversion - Check the pointer conversion from the
1138/// expression From to the type ToType. This routine checks for
Sebastian Redl9cc11e72009-07-25 15:41:38 +00001139/// ambiguous or inaccessible derived-to-base pointer
Douglas Gregor94b1dd22008-10-24 04:54:22 +00001140/// conversions for which IsPointerConversion has already returned
1141/// true. It returns true and produces a diagnostic if there was an
1142/// error, or returns false otherwise.
1143bool Sema::CheckPointerConversion(Expr *From, QualType ToType) {
1144 QualType FromType = From->getType();
1145
Ted Kremenek6217b802009-07-29 21:53:49 +00001146 if (const PointerType *FromPtrType = FromType->getAs<PointerType>())
1147 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
Douglas Gregor94b1dd22008-10-24 04:54:22 +00001148 QualType FromPointeeType = FromPtrType->getPointeeType(),
1149 ToPointeeType = ToPtrType->getPointeeType();
Douglas Gregordda78892008-12-18 23:43:31 +00001150
Douglas Gregor94b1dd22008-10-24 04:54:22 +00001151 if (FromPointeeType->isRecordType() &&
1152 ToPointeeType->isRecordType()) {
1153 // We must have a derived-to-base conversion. Check an
1154 // ambiguous or inaccessible conversion.
Douglas Gregor0575d4a2008-10-24 16:17:19 +00001155 return CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1156 From->getExprLoc(),
1157 From->getSourceRange());
Douglas Gregor94b1dd22008-10-24 04:54:22 +00001158 }
1159 }
Steve Naroff14108da2009-07-10 23:34:53 +00001160 if (const ObjCObjectPointerType *FromPtrType =
1161 FromType->getAsObjCObjectPointerType())
1162 if (const ObjCObjectPointerType *ToPtrType =
1163 ToType->getAsObjCObjectPointerType()) {
1164 // Objective-C++ conversions are always okay.
1165 // FIXME: We should have a different class of conversions for the
1166 // Objective-C++ implicit conversions.
Steve Naroffde2e22d2009-07-15 18:40:39 +00001167 if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
Steve Naroff14108da2009-07-10 23:34:53 +00001168 return false;
Douglas Gregor94b1dd22008-10-24 04:54:22 +00001169
Steve Naroff14108da2009-07-10 23:34:53 +00001170 }
Douglas Gregor94b1dd22008-10-24 04:54:22 +00001171 return false;
1172}
1173
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001174/// IsMemberPointerConversion - Determines whether the conversion of the
1175/// expression From, which has the (possibly adjusted) type FromType, can be
1176/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1177/// If so, returns true and places the converted type (that might differ from
1178/// ToType in its cv-qualifiers at some level) into ConvertedType.
1179bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1180 QualType ToType, QualType &ConvertedType)
1181{
Ted Kremenek6217b802009-07-29 21:53:49 +00001182 const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001183 if (!ToTypePtr)
1184 return false;
1185
1186 // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1187 if (From->isNullPointerConstant(Context)) {
1188 ConvertedType = ToType;
1189 return true;
1190 }
1191
1192 // Otherwise, both types have to be member pointers.
Ted Kremenek6217b802009-07-29 21:53:49 +00001193 const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001194 if (!FromTypePtr)
1195 return false;
1196
1197 // A pointer to member of B can be converted to a pointer to member of D,
1198 // where D is derived from B (C++ 4.11p2).
1199 QualType FromClass(FromTypePtr->getClass(), 0);
1200 QualType ToClass(ToTypePtr->getClass(), 0);
1201 // FIXME: What happens when these are dependent? Is this function even called?
1202
1203 if (IsDerivedFrom(ToClass, FromClass)) {
1204 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1205 ToClass.getTypePtr());
1206 return true;
1207 }
1208
1209 return false;
1210}
1211
1212/// CheckMemberPointerConversion - Check the member pointer conversion from the
1213/// expression From to the type ToType. This routine checks for ambiguous or
1214/// virtual (FIXME: or inaccessible) base-to-derived member pointer conversions
1215/// for which IsMemberPointerConversion has already returned true. It returns
1216/// true and produces a diagnostic if there was an error, or returns false
1217/// otherwise.
1218bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType) {
1219 QualType FromType = From->getType();
Ted Kremenek6217b802009-07-29 21:53:49 +00001220 const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
Sebastian Redl21593ac2009-01-28 18:33:18 +00001221 if (!FromPtrType)
1222 return false;
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001223
Ted Kremenek6217b802009-07-29 21:53:49 +00001224 const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
Sebastian Redl21593ac2009-01-28 18:33:18 +00001225 assert(ToPtrType && "No member pointer cast has a target type "
1226 "that is not a member pointer.");
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001227
Sebastian Redl21593ac2009-01-28 18:33:18 +00001228 QualType FromClass = QualType(FromPtrType->getClass(), 0);
1229 QualType ToClass = QualType(ToPtrType->getClass(), 0);
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001230
Sebastian Redl21593ac2009-01-28 18:33:18 +00001231 // FIXME: What about dependent types?
1232 assert(FromClass->isRecordType() && "Pointer into non-class.");
1233 assert(ToClass->isRecordType() && "Pointer into non-class.");
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001234
Sebastian Redl21593ac2009-01-28 18:33:18 +00001235 BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
1236 /*DetectVirtual=*/true);
1237 bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1238 assert(DerivationOkay &&
1239 "Should not have been called if derivation isn't OK.");
1240 (void)DerivationOkay;
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001241
Sebastian Redl21593ac2009-01-28 18:33:18 +00001242 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1243 getUnqualifiedType())) {
1244 // Derivation is ambiguous. Redo the check to find the exact paths.
1245 Paths.clear();
1246 Paths.setRecordingPaths(true);
1247 bool StillOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1248 assert(StillOkay && "Derivation changed due to quantum fluctuation.");
1249 (void)StillOkay;
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001250
Sebastian Redl21593ac2009-01-28 18:33:18 +00001251 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1252 Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1253 << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1254 return true;
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001255 }
Sebastian Redl21593ac2009-01-28 18:33:18 +00001256
Douglas Gregorc1efaec2009-02-28 01:32:25 +00001257 if (const RecordType *VBase = Paths.getDetectedVirtual()) {
Sebastian Redl21593ac2009-01-28 18:33:18 +00001258 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1259 << FromClass << ToClass << QualType(VBase, 0)
1260 << From->getSourceRange();
1261 return true;
1262 }
1263
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001264 return false;
1265}
1266
Douglas Gregor98cd5992008-10-21 23:43:52 +00001267/// IsQualificationConversion - Determines whether the conversion from
1268/// an rvalue of type FromType to ToType is a qualification conversion
1269/// (C++ 4.4).
1270bool
1271Sema::IsQualificationConversion(QualType FromType, QualType ToType)
1272{
1273 FromType = Context.getCanonicalType(FromType);
1274 ToType = Context.getCanonicalType(ToType);
1275
1276 // If FromType and ToType are the same type, this is not a
1277 // qualification conversion.
1278 if (FromType == ToType)
1279 return false;
Sebastian Redl21593ac2009-01-28 18:33:18 +00001280
Douglas Gregor98cd5992008-10-21 23:43:52 +00001281 // (C++ 4.4p4):
1282 // A conversion can add cv-qualifiers at levels other than the first
1283 // in multi-level pointers, subject to the following rules: [...]
1284 bool PreviousToQualsIncludeConst = true;
Douglas Gregor98cd5992008-10-21 23:43:52 +00001285 bool UnwrappedAnyPointer = false;
Douglas Gregor57373262008-10-22 14:17:15 +00001286 while (UnwrapSimilarPointerTypes(FromType, ToType)) {
Douglas Gregor98cd5992008-10-21 23:43:52 +00001287 // Within each iteration of the loop, we check the qualifiers to
1288 // determine if this still looks like a qualification
1289 // conversion. Then, if all is well, we unwrap one more level of
Douglas Gregorf8268ae2008-10-22 17:49:05 +00001290 // pointers or pointers-to-members and do it all again
Douglas Gregor98cd5992008-10-21 23:43:52 +00001291 // until there are no more pointers or pointers-to-members left to
1292 // unwrap.
Douglas Gregor57373262008-10-22 14:17:15 +00001293 UnwrappedAnyPointer = true;
Douglas Gregor98cd5992008-10-21 23:43:52 +00001294
1295 // -- for every j > 0, if const is in cv 1,j then const is in cv
1296 // 2,j, and similarly for volatile.
Douglas Gregor9b6e2d22008-10-22 00:38:21 +00001297 if (!ToType.isAtLeastAsQualifiedAs(FromType))
Douglas Gregor98cd5992008-10-21 23:43:52 +00001298 return false;
Douglas Gregor57373262008-10-22 14:17:15 +00001299
Douglas Gregor98cd5992008-10-21 23:43:52 +00001300 // -- if the cv 1,j and cv 2,j are different, then const is in
1301 // every cv for 0 < k < j.
1302 if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
Douglas Gregor57373262008-10-22 14:17:15 +00001303 && !PreviousToQualsIncludeConst)
Douglas Gregor98cd5992008-10-21 23:43:52 +00001304 return false;
Douglas Gregor57373262008-10-22 14:17:15 +00001305
Douglas Gregor98cd5992008-10-21 23:43:52 +00001306 // Keep track of whether all prior cv-qualifiers in the "to" type
1307 // include const.
1308 PreviousToQualsIncludeConst
1309 = PreviousToQualsIncludeConst && ToType.isConstQualified();
Douglas Gregor57373262008-10-22 14:17:15 +00001310 }
Douglas Gregor98cd5992008-10-21 23:43:52 +00001311
1312 // We are left with FromType and ToType being the pointee types
1313 // after unwrapping the original FromType and ToType the same number
1314 // of types. If we unwrapped any pointers, and if FromType and
1315 // ToType have the same unqualified type (since we checked
1316 // qualifiers above), then this is a qualification conversion.
1317 return UnwrappedAnyPointer &&
1318 FromType.getUnqualifiedType() == ToType.getUnqualifiedType();
1319}
1320
Douglas Gregor734d9862009-01-30 23:27:23 +00001321/// Determines whether there is a user-defined conversion sequence
1322/// (C++ [over.ics.user]) that converts expression From to the type
1323/// ToType. If such a conversion exists, User will contain the
1324/// user-defined conversion sequence that performs such a conversion
1325/// and this routine will return true. Otherwise, this routine returns
1326/// false and User is unspecified.
1327///
1328/// \param AllowConversionFunctions true if the conversion should
1329/// consider conversion functions at all. If false, only constructors
1330/// will be considered.
1331///
1332/// \param AllowExplicit true if the conversion should consider C++0x
1333/// "explicit" conversion functions as well as non-explicit conversion
1334/// functions (C++0x [class.conv.fct]p2).
Sebastian Redle2b68332009-04-12 17:16:29 +00001335///
1336/// \param ForceRValue true if the expression should be treated as an rvalue
1337/// for overload resolution.
Douglas Gregor60d62c22008-10-31 16:23:19 +00001338bool Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
Douglas Gregor09f41cf2009-01-14 15:45:31 +00001339 UserDefinedConversionSequence& User,
Douglas Gregor734d9862009-01-30 23:27:23 +00001340 bool AllowConversionFunctions,
Sebastian Redle2b68332009-04-12 17:16:29 +00001341 bool AllowExplicit, bool ForceRValue)
Douglas Gregor60d62c22008-10-31 16:23:19 +00001342{
1343 OverloadCandidateSet CandidateSet;
Ted Kremenek6217b802009-07-29 21:53:49 +00001344 if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
Douglas Gregorc1efaec2009-02-28 01:32:25 +00001345 if (CXXRecordDecl *ToRecordDecl
1346 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
1347 // C++ [over.match.ctor]p1:
1348 // When objects of class type are direct-initialized (8.5), or
1349 // copy-initialized from an expression of the same or a
1350 // derived class type (8.5), overload resolution selects the
1351 // constructor. [...] For copy-initialization, the candidate
1352 // functions are all the converting constructors (12.3.1) of
1353 // that class. The argument list is the expression-list within
1354 // the parentheses of the initializer.
1355 DeclarationName ConstructorName
1356 = Context.DeclarationNames.getCXXConstructorName(
1357 Context.getCanonicalType(ToType).getUnqualifiedType());
1358 DeclContext::lookup_iterator Con, ConEnd;
Douglas Gregor6ab35242009-04-09 21:40:53 +00001359 for (llvm::tie(Con, ConEnd)
Argyrios Kyrtzidis17945a02009-06-30 02:36:12 +00001360 = ToRecordDecl->lookup(ConstructorName);
Douglas Gregorc1efaec2009-02-28 01:32:25 +00001361 Con != ConEnd; ++Con) {
1362 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
1363 if (Constructor->isConvertingConstructor())
1364 AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
Sebastian Redle2b68332009-04-12 17:16:29 +00001365 /*SuppressUserConversions=*/true, ForceRValue);
Douglas Gregorc1efaec2009-02-28 01:32:25 +00001366 }
Douglas Gregor60d62c22008-10-31 16:23:19 +00001367 }
1368 }
1369
Douglas Gregor734d9862009-01-30 23:27:23 +00001370 if (!AllowConversionFunctions) {
1371 // Don't allow any conversion functions to enter the overload set.
Douglas Gregorc1efaec2009-02-28 01:32:25 +00001372 } else if (const RecordType *FromRecordType
Ted Kremenek6217b802009-07-29 21:53:49 +00001373 = From->getType()->getAs<RecordType>()) {
Douglas Gregorc1efaec2009-02-28 01:32:25 +00001374 if (CXXRecordDecl *FromRecordDecl
1375 = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
1376 // Add all of the conversion functions as candidates.
1377 // FIXME: Look for conversions in base classes!
1378 OverloadedFunctionDecl *Conversions
1379 = FromRecordDecl->getConversionFunctions();
1380 for (OverloadedFunctionDecl::function_iterator Func
1381 = Conversions->function_begin();
1382 Func != Conversions->function_end(); ++Func) {
1383 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
1384 if (AllowExplicit || !Conv->isExplicit())
1385 AddConversionCandidate(Conv, From, ToType, CandidateSet);
1386 }
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001387 }
1388 }
Douglas Gregor60d62c22008-10-31 16:23:19 +00001389
1390 OverloadCandidateSet::iterator Best;
Douglas Gregore0762c92009-06-19 23:52:42 +00001391 switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +00001392 case OR_Success:
1393 // Record the standard conversion we used and the conversion function.
Douglas Gregor60d62c22008-10-31 16:23:19 +00001394 if (CXXConstructorDecl *Constructor
1395 = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1396 // C++ [over.ics.user]p1:
1397 // If the user-defined conversion is specified by a
1398 // constructor (12.3.1), the initial standard conversion
1399 // sequence converts the source type to the type required by
1400 // the argument of the constructor.
1401 //
1402 // FIXME: What about ellipsis conversions?
1403 QualType ThisType = Constructor->getThisType(Context);
1404 User.Before = Best->Conversions[0].Standard;
1405 User.ConversionFunction = Constructor;
1406 User.After.setAsIdentityConversion();
1407 User.After.FromTypePtr
Ted Kremenek6217b802009-07-29 21:53:49 +00001408 = ThisType->getAs<PointerType>()->getPointeeType().getAsOpaquePtr();
Douglas Gregor60d62c22008-10-31 16:23:19 +00001409 User.After.ToTypePtr = ToType.getAsOpaquePtr();
1410 return true;
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001411 } else if (CXXConversionDecl *Conversion
1412 = dyn_cast<CXXConversionDecl>(Best->Function)) {
1413 // C++ [over.ics.user]p1:
1414 //
1415 // [...] If the user-defined conversion is specified by a
1416 // conversion function (12.3.2), the initial standard
1417 // conversion sequence converts the source type to the
1418 // implicit object parameter of the conversion function.
1419 User.Before = Best->Conversions[0].Standard;
1420 User.ConversionFunction = Conversion;
1421
1422 // C++ [over.ics.user]p2:
1423 // The second standard conversion sequence converts the
1424 // result of the user-defined conversion to the target type
1425 // for the sequence. Since an implicit conversion sequence
1426 // is an initialization, the special rules for
1427 // initialization by user-defined conversion apply when
1428 // selecting the best user-defined conversion for a
1429 // user-defined conversion sequence (see 13.3.3 and
1430 // 13.3.3.1).
1431 User.After = Best->FinalConversion;
1432 return true;
Douglas Gregor60d62c22008-10-31 16:23:19 +00001433 } else {
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001434 assert(false && "Not a constructor or conversion function?");
Douglas Gregor60d62c22008-10-31 16:23:19 +00001435 return false;
1436 }
1437
1438 case OR_No_Viable_Function:
Douglas Gregor48f3bb92009-02-18 21:56:37 +00001439 case OR_Deleted:
Douglas Gregor60d62c22008-10-31 16:23:19 +00001440 // No conversion here! We're done.
1441 return false;
1442
1443 case OR_Ambiguous:
1444 // FIXME: See C++ [over.best.ics]p10 for the handling of
1445 // ambiguous conversion sequences.
1446 return false;
1447 }
1448
1449 return false;
1450}
1451
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001452/// CompareImplicitConversionSequences - Compare two implicit
1453/// conversion sequences to determine whether one is better than the
1454/// other or if they are indistinguishable (C++ 13.3.3.2).
1455ImplicitConversionSequence::CompareKind
1456Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1457 const ImplicitConversionSequence& ICS2)
1458{
1459 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1460 // conversion sequences (as defined in 13.3.3.1)
1461 // -- a standard conversion sequence (13.3.3.1.1) is a better
1462 // conversion sequence than a user-defined conversion sequence or
1463 // an ellipsis conversion sequence, and
1464 // -- a user-defined conversion sequence (13.3.3.1.2) is a better
1465 // conversion sequence than an ellipsis conversion sequence
1466 // (13.3.3.1.3).
1467 //
1468 if (ICS1.ConversionKind < ICS2.ConversionKind)
1469 return ImplicitConversionSequence::Better;
1470 else if (ICS2.ConversionKind < ICS1.ConversionKind)
1471 return ImplicitConversionSequence::Worse;
1472
1473 // Two implicit conversion sequences of the same form are
1474 // indistinguishable conversion sequences unless one of the
1475 // following rules apply: (C++ 13.3.3.2p3):
1476 if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion)
1477 return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1478 else if (ICS1.ConversionKind ==
1479 ImplicitConversionSequence::UserDefinedConversion) {
1480 // User-defined conversion sequence U1 is a better conversion
1481 // sequence than another user-defined conversion sequence U2 if
1482 // they contain the same user-defined conversion function or
1483 // constructor and if the second standard conversion sequence of
1484 // U1 is better than the second standard conversion sequence of
1485 // U2 (C++ 13.3.3.2p3).
1486 if (ICS1.UserDefined.ConversionFunction ==
1487 ICS2.UserDefined.ConversionFunction)
1488 return CompareStandardConversionSequences(ICS1.UserDefined.After,
1489 ICS2.UserDefined.After);
1490 }
1491
1492 return ImplicitConversionSequence::Indistinguishable;
1493}
1494
1495/// CompareStandardConversionSequences - Compare two standard
1496/// conversion sequences to determine whether one is better than the
1497/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1498ImplicitConversionSequence::CompareKind
1499Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1500 const StandardConversionSequence& SCS2)
1501{
1502 // Standard conversion sequence S1 is a better conversion sequence
1503 // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1504
1505 // -- S1 is a proper subsequence of S2 (comparing the conversion
1506 // sequences in the canonical form defined by 13.3.3.1.1,
1507 // excluding any Lvalue Transformation; the identity conversion
1508 // sequence is considered to be a subsequence of any
1509 // non-identity conversion sequence) or, if not that,
1510 if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
1511 // Neither is a proper subsequence of the other. Do nothing.
1512 ;
1513 else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
1514 (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
1515 (SCS1.Second == ICK_Identity &&
1516 SCS1.Third == ICK_Identity))
1517 // SCS1 is a proper subsequence of SCS2.
1518 return ImplicitConversionSequence::Better;
1519 else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
1520 (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
1521 (SCS2.Second == ICK_Identity &&
1522 SCS2.Third == ICK_Identity))
1523 // SCS2 is a proper subsequence of SCS1.
1524 return ImplicitConversionSequence::Worse;
1525
1526 // -- the rank of S1 is better than the rank of S2 (by the rules
1527 // defined below), or, if not that,
1528 ImplicitConversionRank Rank1 = SCS1.getRank();
1529 ImplicitConversionRank Rank2 = SCS2.getRank();
1530 if (Rank1 < Rank2)
1531 return ImplicitConversionSequence::Better;
1532 else if (Rank2 < Rank1)
1533 return ImplicitConversionSequence::Worse;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001534
Douglas Gregor57373262008-10-22 14:17:15 +00001535 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1536 // are indistinguishable unless one of the following rules
1537 // applies:
1538
1539 // A conversion that is not a conversion of a pointer, or
1540 // pointer to member, to bool is better than another conversion
1541 // that is such a conversion.
1542 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1543 return SCS2.isPointerConversionToBool()
1544 ? ImplicitConversionSequence::Better
1545 : ImplicitConversionSequence::Worse;
1546
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001547 // C++ [over.ics.rank]p4b2:
1548 //
1549 // If class B is derived directly or indirectly from class A,
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001550 // conversion of B* to A* is better than conversion of B* to
1551 // void*, and conversion of A* to void* is better than conversion
1552 // of B* to void*.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001553 bool SCS1ConvertsToVoid
1554 = SCS1.isPointerConversionToVoidPointer(Context);
1555 bool SCS2ConvertsToVoid
1556 = SCS2.isPointerConversionToVoidPointer(Context);
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001557 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1558 // Exactly one of the conversion sequences is a conversion to
1559 // a void pointer; it's the worse conversion.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001560 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1561 : ImplicitConversionSequence::Worse;
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001562 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1563 // Neither conversion sequence converts to a void pointer; compare
1564 // their derived-to-base conversions.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001565 if (ImplicitConversionSequence::CompareKind DerivedCK
1566 = CompareDerivedToBaseConversions(SCS1, SCS2))
1567 return DerivedCK;
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001568 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1569 // Both conversion sequences are conversions to void
1570 // pointers. Compare the source types to determine if there's an
1571 // inheritance relationship in their sources.
1572 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1573 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1574
1575 // Adjust the types we're converting from via the array-to-pointer
1576 // conversion, if we need to.
1577 if (SCS1.First == ICK_Array_To_Pointer)
1578 FromType1 = Context.getArrayDecayedType(FromType1);
1579 if (SCS2.First == ICK_Array_To_Pointer)
1580 FromType2 = Context.getArrayDecayedType(FromType2);
1581
1582 QualType FromPointee1
Ted Kremenek6217b802009-07-29 21:53:49 +00001583 = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001584 QualType FromPointee2
Ted Kremenek6217b802009-07-29 21:53:49 +00001585 = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001586
1587 if (IsDerivedFrom(FromPointee2, FromPointee1))
1588 return ImplicitConversionSequence::Better;
1589 else if (IsDerivedFrom(FromPointee1, FromPointee2))
1590 return ImplicitConversionSequence::Worse;
Douglas Gregorcb7de522008-11-26 23:31:11 +00001591
1592 // Objective-C++: If one interface is more specific than the
1593 // other, it is the better one.
1594 const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1595 const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1596 if (FromIface1 && FromIface1) {
1597 if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1598 return ImplicitConversionSequence::Better;
1599 else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1600 return ImplicitConversionSequence::Worse;
1601 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001602 }
Douglas Gregor57373262008-10-22 14:17:15 +00001603
1604 // Compare based on qualification conversions (C++ 13.3.3.2p3,
1605 // bullet 3).
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001606 if (ImplicitConversionSequence::CompareKind QualCK
Douglas Gregor57373262008-10-22 14:17:15 +00001607 = CompareQualificationConversions(SCS1, SCS2))
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001608 return QualCK;
Douglas Gregor57373262008-10-22 14:17:15 +00001609
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001610 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
Sebastian Redlf2e21e52009-03-22 23:49:27 +00001611 // C++0x [over.ics.rank]p3b4:
1612 // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
1613 // implicit object parameter of a non-static member function declared
1614 // without a ref-qualifier, and S1 binds an rvalue reference to an
1615 // rvalue and S2 binds an lvalue reference.
Sebastian Redla9845802009-03-29 15:27:50 +00001616 // FIXME: We don't know if we're dealing with the implicit object parameter,
1617 // or if the member function in this case has a ref qualifier.
1618 // (Of course, we don't have ref qualifiers yet.)
1619 if (SCS1.RRefBinding != SCS2.RRefBinding)
1620 return SCS1.RRefBinding ? ImplicitConversionSequence::Better
1621 : ImplicitConversionSequence::Worse;
Sebastian Redlf2e21e52009-03-22 23:49:27 +00001622
1623 // C++ [over.ics.rank]p3b4:
1624 // -- S1 and S2 are reference bindings (8.5.3), and the types to
1625 // which the references refer are the same type except for
1626 // top-level cv-qualifiers, and the type to which the reference
1627 // initialized by S2 refers is more cv-qualified than the type
1628 // to which the reference initialized by S1 refers.
Sebastian Redla9845802009-03-29 15:27:50 +00001629 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1630 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001631 T1 = Context.getCanonicalType(T1);
1632 T2 = Context.getCanonicalType(T2);
1633 if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) {
1634 if (T2.isMoreQualifiedThan(T1))
1635 return ImplicitConversionSequence::Better;
1636 else if (T1.isMoreQualifiedThan(T2))
1637 return ImplicitConversionSequence::Worse;
1638 }
1639 }
Douglas Gregor57373262008-10-22 14:17:15 +00001640
1641 return ImplicitConversionSequence::Indistinguishable;
1642}
1643
1644/// CompareQualificationConversions - Compares two standard conversion
1645/// sequences to determine whether they can be ranked based on their
1646/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1647ImplicitConversionSequence::CompareKind
1648Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1649 const StandardConversionSequence& SCS2)
1650{
Douglas Gregorba7e2102008-10-22 15:04:37 +00001651 // C++ 13.3.3.2p3:
Douglas Gregor57373262008-10-22 14:17:15 +00001652 // -- S1 and S2 differ only in their qualification conversion and
1653 // yield similar types T1 and T2 (C++ 4.4), respectively, and the
1654 // cv-qualification signature of type T1 is a proper subset of
1655 // the cv-qualification signature of type T2, and S1 is not the
1656 // deprecated string literal array-to-pointer conversion (4.2).
1657 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1658 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1659 return ImplicitConversionSequence::Indistinguishable;
1660
1661 // FIXME: the example in the standard doesn't use a qualification
1662 // conversion (!)
1663 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1664 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1665 T1 = Context.getCanonicalType(T1);
1666 T2 = Context.getCanonicalType(T2);
1667
1668 // If the types are the same, we won't learn anything by unwrapped
1669 // them.
1670 if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1671 return ImplicitConversionSequence::Indistinguishable;
1672
1673 ImplicitConversionSequence::CompareKind Result
1674 = ImplicitConversionSequence::Indistinguishable;
1675 while (UnwrapSimilarPointerTypes(T1, T2)) {
1676 // Within each iteration of the loop, we check the qualifiers to
1677 // determine if this still looks like a qualification
1678 // conversion. Then, if all is well, we unwrap one more level of
Douglas Gregorf8268ae2008-10-22 17:49:05 +00001679 // pointers or pointers-to-members and do it all again
Douglas Gregor57373262008-10-22 14:17:15 +00001680 // until there are no more pointers or pointers-to-members left
1681 // to unwrap. This essentially mimics what
1682 // IsQualificationConversion does, but here we're checking for a
1683 // strict subset of qualifiers.
1684 if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1685 // The qualifiers are the same, so this doesn't tell us anything
1686 // about how the sequences rank.
1687 ;
1688 else if (T2.isMoreQualifiedThan(T1)) {
1689 // T1 has fewer qualifiers, so it could be the better sequence.
1690 if (Result == ImplicitConversionSequence::Worse)
1691 // Neither has qualifiers that are a subset of the other's
1692 // qualifiers.
1693 return ImplicitConversionSequence::Indistinguishable;
1694
1695 Result = ImplicitConversionSequence::Better;
1696 } else if (T1.isMoreQualifiedThan(T2)) {
1697 // T2 has fewer qualifiers, so it could be the better sequence.
1698 if (Result == ImplicitConversionSequence::Better)
1699 // Neither has qualifiers that are a subset of the other's
1700 // qualifiers.
1701 return ImplicitConversionSequence::Indistinguishable;
1702
1703 Result = ImplicitConversionSequence::Worse;
1704 } else {
1705 // Qualifiers are disjoint.
1706 return ImplicitConversionSequence::Indistinguishable;
1707 }
1708
1709 // If the types after this point are equivalent, we're done.
1710 if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1711 break;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001712 }
1713
Douglas Gregor57373262008-10-22 14:17:15 +00001714 // Check that the winning standard conversion sequence isn't using
1715 // the deprecated string literal array to pointer conversion.
1716 switch (Result) {
1717 case ImplicitConversionSequence::Better:
1718 if (SCS1.Deprecated)
1719 Result = ImplicitConversionSequence::Indistinguishable;
1720 break;
1721
1722 case ImplicitConversionSequence::Indistinguishable:
1723 break;
1724
1725 case ImplicitConversionSequence::Worse:
1726 if (SCS2.Deprecated)
1727 Result = ImplicitConversionSequence::Indistinguishable;
1728 break;
1729 }
1730
1731 return Result;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001732}
1733
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001734/// CompareDerivedToBaseConversions - Compares two standard conversion
1735/// sequences to determine whether they can be ranked based on their
Douglas Gregorcb7de522008-11-26 23:31:11 +00001736/// various kinds of derived-to-base conversions (C++
1737/// [over.ics.rank]p4b3). As part of these checks, we also look at
1738/// conversions between Objective-C interface types.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001739ImplicitConversionSequence::CompareKind
1740Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
1741 const StandardConversionSequence& SCS2) {
1742 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1743 QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1744 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1745 QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1746
1747 // Adjust the types we're converting from via the array-to-pointer
1748 // conversion, if we need to.
1749 if (SCS1.First == ICK_Array_To_Pointer)
1750 FromType1 = Context.getArrayDecayedType(FromType1);
1751 if (SCS2.First == ICK_Array_To_Pointer)
1752 FromType2 = Context.getArrayDecayedType(FromType2);
1753
1754 // Canonicalize all of the types.
1755 FromType1 = Context.getCanonicalType(FromType1);
1756 ToType1 = Context.getCanonicalType(ToType1);
1757 FromType2 = Context.getCanonicalType(FromType2);
1758 ToType2 = Context.getCanonicalType(ToType2);
1759
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001760 // C++ [over.ics.rank]p4b3:
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001761 //
1762 // If class B is derived directly or indirectly from class A and
1763 // class C is derived directly or indirectly from B,
Douglas Gregorcb7de522008-11-26 23:31:11 +00001764 //
1765 // For Objective-C, we let A, B, and C also be Objective-C
1766 // interfaces.
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001767
1768 // Compare based on pointer conversions.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001769 if (SCS1.Second == ICK_Pointer_Conversion &&
Douglas Gregor7ca09762008-11-27 01:19:21 +00001770 SCS2.Second == ICK_Pointer_Conversion &&
1771 /*FIXME: Remove if Objective-C id conversions get their own rank*/
1772 FromType1->isPointerType() && FromType2->isPointerType() &&
1773 ToType1->isPointerType() && ToType2->isPointerType()) {
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001774 QualType FromPointee1
Ted Kremenek6217b802009-07-29 21:53:49 +00001775 = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001776 QualType ToPointee1
Ted Kremenek6217b802009-07-29 21:53:49 +00001777 = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001778 QualType FromPointee2
Ted Kremenek6217b802009-07-29 21:53:49 +00001779 = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001780 QualType ToPointee2
Ted Kremenek6217b802009-07-29 21:53:49 +00001781 = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
Douglas Gregorcb7de522008-11-26 23:31:11 +00001782
1783 const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1784 const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1785 const ObjCInterfaceType* ToIface1 = ToPointee1->getAsObjCInterfaceType();
1786 const ObjCInterfaceType* ToIface2 = ToPointee2->getAsObjCInterfaceType();
1787
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001788 // -- conversion of C* to B* is better than conversion of C* to A*,
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001789 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
1790 if (IsDerivedFrom(ToPointee1, ToPointee2))
1791 return ImplicitConversionSequence::Better;
1792 else if (IsDerivedFrom(ToPointee2, ToPointee1))
1793 return ImplicitConversionSequence::Worse;
Douglas Gregorcb7de522008-11-26 23:31:11 +00001794
1795 if (ToIface1 && ToIface2) {
1796 if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
1797 return ImplicitConversionSequence::Better;
1798 else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
1799 return ImplicitConversionSequence::Worse;
1800 }
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001801 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001802
1803 // -- conversion of B* to A* is better than conversion of C* to A*,
1804 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
1805 if (IsDerivedFrom(FromPointee2, FromPointee1))
1806 return ImplicitConversionSequence::Better;
1807 else if (IsDerivedFrom(FromPointee1, FromPointee2))
1808 return ImplicitConversionSequence::Worse;
Douglas Gregorcb7de522008-11-26 23:31:11 +00001809
1810 if (FromIface1 && FromIface2) {
1811 if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1812 return ImplicitConversionSequence::Better;
1813 else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1814 return ImplicitConversionSequence::Worse;
1815 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001816 }
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001817 }
1818
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001819 // Compare based on reference bindings.
1820 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding &&
1821 SCS1.Second == ICK_Derived_To_Base) {
1822 // -- binding of an expression of type C to a reference of type
1823 // B& is better than binding an expression of type C to a
1824 // reference of type A&,
1825 if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1826 ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1827 if (IsDerivedFrom(ToType1, ToType2))
1828 return ImplicitConversionSequence::Better;
1829 else if (IsDerivedFrom(ToType2, ToType1))
1830 return ImplicitConversionSequence::Worse;
1831 }
1832
Douglas Gregor225c41e2008-11-03 19:09:14 +00001833 // -- binding of an expression of type B to a reference of type
1834 // A& is better than binding an expression of type C to a
1835 // reference of type A&,
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001836 if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1837 ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1838 if (IsDerivedFrom(FromType2, FromType1))
1839 return ImplicitConversionSequence::Better;
1840 else if (IsDerivedFrom(FromType1, FromType2))
1841 return ImplicitConversionSequence::Worse;
1842 }
1843 }
1844
1845
1846 // FIXME: conversion of A::* to B::* is better than conversion of
1847 // A::* to C::*,
1848
1849 // FIXME: conversion of B::* to C::* is better than conversion of
1850 // A::* to C::*, and
1851
Douglas Gregor225c41e2008-11-03 19:09:14 +00001852 if (SCS1.CopyConstructor && SCS2.CopyConstructor &&
1853 SCS1.Second == ICK_Derived_To_Base) {
1854 // -- conversion of C to B is better than conversion of C to A,
1855 if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1856 ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1857 if (IsDerivedFrom(ToType1, ToType2))
1858 return ImplicitConversionSequence::Better;
1859 else if (IsDerivedFrom(ToType2, ToType1))
1860 return ImplicitConversionSequence::Worse;
1861 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001862
Douglas Gregor225c41e2008-11-03 19:09:14 +00001863 // -- conversion of B to A is better than conversion of C to A.
1864 if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1865 ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1866 if (IsDerivedFrom(FromType2, FromType1))
1867 return ImplicitConversionSequence::Better;
1868 else if (IsDerivedFrom(FromType1, FromType2))
1869 return ImplicitConversionSequence::Worse;
1870 }
1871 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001872
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001873 return ImplicitConversionSequence::Indistinguishable;
1874}
1875
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001876/// TryCopyInitialization - Try to copy-initialize a value of type
1877/// ToType from the expression From. Return the implicit conversion
1878/// sequence required to pass this argument, which may be a bad
1879/// conversion sequence (meaning that the argument cannot be passed to
Douglas Gregor225c41e2008-11-03 19:09:14 +00001880/// a parameter of this type). If @p SuppressUserConversions, then we
Sebastian Redle2b68332009-04-12 17:16:29 +00001881/// do not permit any user-defined conversion sequences. If @p ForceRValue,
1882/// then we treat @p From as an rvalue, even if it is an lvalue.
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001883ImplicitConversionSequence
Douglas Gregor225c41e2008-11-03 19:09:14 +00001884Sema::TryCopyInitialization(Expr *From, QualType ToType,
Sebastian Redle2b68332009-04-12 17:16:29 +00001885 bool SuppressUserConversions, bool ForceRValue) {
Douglas Gregorf9201e02009-02-11 23:02:49 +00001886 if (ToType->isReferenceType()) {
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001887 ImplicitConversionSequence ICS;
Sebastian Redle2b68332009-04-12 17:16:29 +00001888 CheckReferenceInit(From, ToType, &ICS, SuppressUserConversions,
1889 /*AllowExplicit=*/false, ForceRValue);
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001890 return ICS;
1891 } else {
Sebastian Redle2b68332009-04-12 17:16:29 +00001892 return TryImplicitConversion(From, ToType, SuppressUserConversions,
1893 ForceRValue);
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001894 }
1895}
1896
Sebastian Redle2b68332009-04-12 17:16:29 +00001897/// PerformCopyInitialization - Copy-initialize an object of type @p ToType with
1898/// the expression @p From. Returns true (and emits a diagnostic) if there was
1899/// an error, returns false if the initialization succeeded. Elidable should
1900/// be true when the copy may be elided (C++ 12.8p15). Overload resolution works
1901/// differently in C++0x for this case.
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001902bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
Sebastian Redle2b68332009-04-12 17:16:29 +00001903 const char* Flavor, bool Elidable) {
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001904 if (!getLangOptions().CPlusPlus) {
1905 // In C, argument passing is the same as performing an assignment.
1906 QualType FromType = From->getType();
Douglas Gregor0c74e8a2009-04-29 22:16:16 +00001907
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001908 AssignConvertType ConvTy =
1909 CheckSingleAssignmentConstraints(ToType, From);
Douglas Gregor0c74e8a2009-04-29 22:16:16 +00001910 if (ConvTy != Compatible &&
1911 CheckTransparentUnionArgumentConstraints(ToType, From) == Compatible)
1912 ConvTy = Compatible;
1913
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001914 return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
1915 FromType, From, Flavor);
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001916 }
Sebastian Redle2b68332009-04-12 17:16:29 +00001917
Chris Lattnerd9d22dd2008-11-24 05:29:24 +00001918 if (ToType->isReferenceType())
1919 return CheckReferenceInit(From, ToType);
1920
Sebastian Redle2b68332009-04-12 17:16:29 +00001921 if (!PerformImplicitConversion(From, ToType, Flavor,
1922 /*AllowExplicit=*/false, Elidable))
Chris Lattnerd9d22dd2008-11-24 05:29:24 +00001923 return false;
Sebastian Redle2b68332009-04-12 17:16:29 +00001924
Chris Lattnerd9d22dd2008-11-24 05:29:24 +00001925 return Diag(From->getSourceRange().getBegin(),
1926 diag::err_typecheck_convert_incompatible)
1927 << ToType << From->getType() << Flavor << From->getSourceRange();
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001928}
1929
Douglas Gregor96176b32008-11-18 23:14:02 +00001930/// TryObjectArgumentInitialization - Try to initialize the object
1931/// parameter of the given member function (@c Method) from the
1932/// expression @p From.
1933ImplicitConversionSequence
1934Sema::TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method) {
1935 QualType ClassType = Context.getTypeDeclType(Method->getParent());
1936 unsigned MethodQuals = Method->getTypeQualifiers();
1937 QualType ImplicitParamType = ClassType.getQualifiedType(MethodQuals);
1938
1939 // Set up the conversion sequence as a "bad" conversion, to allow us
1940 // to exit early.
1941 ImplicitConversionSequence ICS;
1942 ICS.Standard.setAsIdentityConversion();
1943 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
1944
1945 // We need to have an object of class type.
1946 QualType FromType = From->getType();
Ted Kremenek6217b802009-07-29 21:53:49 +00001947 if (const PointerType *PT = FromType->getAs<PointerType>())
Anders Carlssona552f7c2009-05-01 18:34:30 +00001948 FromType = PT->getPointeeType();
1949
1950 assert(FromType->isRecordType());
Douglas Gregor96176b32008-11-18 23:14:02 +00001951
1952 // The implicit object parmeter is has the type "reference to cv X",
1953 // where X is the class of which the function is a member
1954 // (C++ [over.match.funcs]p4). However, when finding an implicit
1955 // conversion sequence for the argument, we are not allowed to
1956 // create temporaries or perform user-defined conversions
1957 // (C++ [over.match.funcs]p5). We perform a simplified version of
1958 // reference binding here, that allows class rvalues to bind to
1959 // non-constant references.
1960
1961 // First check the qualifiers. We don't care about lvalue-vs-rvalue
1962 // with the implicit object parameter (C++ [over.match.funcs]p5).
1963 QualType FromTypeCanon = Context.getCanonicalType(FromType);
1964 if (ImplicitParamType.getCVRQualifiers() != FromType.getCVRQualifiers() &&
1965 !ImplicitParamType.isAtLeastAsQualifiedAs(FromType))
1966 return ICS;
1967
1968 // Check that we have either the same type or a derived type. It
1969 // affects the conversion rank.
1970 QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
1971 if (ClassTypeCanon == FromTypeCanon.getUnqualifiedType())
1972 ICS.Standard.Second = ICK_Identity;
1973 else if (IsDerivedFrom(FromType, ClassType))
1974 ICS.Standard.Second = ICK_Derived_To_Base;
1975 else
1976 return ICS;
1977
1978 // Success. Mark this as a reference binding.
1979 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
1980 ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr();
1981 ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr();
1982 ICS.Standard.ReferenceBinding = true;
1983 ICS.Standard.DirectBinding = true;
Sebastian Redl85002392009-03-29 22:46:24 +00001984 ICS.Standard.RRefBinding = false;
Douglas Gregor96176b32008-11-18 23:14:02 +00001985 return ICS;
1986}
1987
1988/// PerformObjectArgumentInitialization - Perform initialization of
1989/// the implicit object parameter for the given Method with the given
1990/// expression.
1991bool
1992Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) {
Anders Carlssona552f7c2009-05-01 18:34:30 +00001993 QualType FromRecordType, DestType;
1994 QualType ImplicitParamRecordType =
Ted Kremenek6217b802009-07-29 21:53:49 +00001995 Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
Anders Carlssona552f7c2009-05-01 18:34:30 +00001996
Ted Kremenek6217b802009-07-29 21:53:49 +00001997 if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
Anders Carlssona552f7c2009-05-01 18:34:30 +00001998 FromRecordType = PT->getPointeeType();
1999 DestType = Method->getThisType(Context);
2000 } else {
2001 FromRecordType = From->getType();
2002 DestType = ImplicitParamRecordType;
2003 }
2004
Douglas Gregor96176b32008-11-18 23:14:02 +00002005 ImplicitConversionSequence ICS
2006 = TryObjectArgumentInitialization(From, Method);
2007 if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion)
2008 return Diag(From->getSourceRange().getBegin(),
Chris Lattnerfa25bbb2008-11-19 05:08:23 +00002009 diag::err_implicit_object_parameter_init)
Anders Carlssona552f7c2009-05-01 18:34:30 +00002010 << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
2011
Douglas Gregor96176b32008-11-18 23:14:02 +00002012 if (ICS.Standard.Second == ICK_Derived_To_Base &&
Anders Carlssona552f7c2009-05-01 18:34:30 +00002013 CheckDerivedToBaseConversion(FromRecordType,
2014 ImplicitParamRecordType,
Douglas Gregor96176b32008-11-18 23:14:02 +00002015 From->getSourceRange().getBegin(),
2016 From->getSourceRange()))
2017 return true;
2018
Anders Carlsson3503d042009-07-31 01:23:52 +00002019 ImpCastExprToType(From, DestType, CastExpr::CK_Unknown, /*isLvalue=*/true);
Douglas Gregor96176b32008-11-18 23:14:02 +00002020 return false;
2021}
2022
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002023/// TryContextuallyConvertToBool - Attempt to contextually convert the
2024/// expression From to bool (C++0x [conv]p3).
2025ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
2026 return TryImplicitConversion(From, Context.BoolTy, false, true);
2027}
2028
2029/// PerformContextuallyConvertToBool - Perform a contextual conversion
2030/// of the expression From to bool (C++0x [conv]p3).
2031bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
2032 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
2033 if (!PerformImplicitConversion(From, Context.BoolTy, ICS, "converting"))
2034 return false;
2035
2036 return Diag(From->getSourceRange().getBegin(),
2037 diag::err_typecheck_bool_condition)
2038 << From->getType() << From->getSourceRange();
2039}
2040
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002041/// AddOverloadCandidate - Adds the given function to the set of
Douglas Gregor225c41e2008-11-03 19:09:14 +00002042/// candidate functions, using the given function call arguments. If
2043/// @p SuppressUserConversions, then don't allow user-defined
2044/// conversions via constructors or conversion operators.
Sebastian Redle2b68332009-04-12 17:16:29 +00002045/// If @p ForceRValue, treat all arguments as rvalues. This is a slightly
2046/// hacky way to implement the overloading rules for elidable copy
2047/// initialization in C++0x (C++0x 12.8p15).
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002048void
2049Sema::AddOverloadCandidate(FunctionDecl *Function,
2050 Expr **Args, unsigned NumArgs,
Douglas Gregor225c41e2008-11-03 19:09:14 +00002051 OverloadCandidateSet& CandidateSet,
Sebastian Redle2b68332009-04-12 17:16:29 +00002052 bool SuppressUserConversions,
2053 bool ForceRValue)
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002054{
Douglas Gregor72564e72009-02-26 23:50:07 +00002055 const FunctionProtoType* Proto
2056 = dyn_cast<FunctionProtoType>(Function->getType()->getAsFunctionType());
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002057 assert(Proto && "Functions without a prototype cannot be overloaded");
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002058 assert(!isa<CXXConversionDecl>(Function) &&
2059 "Use AddConversionCandidate for conversion functions");
Douglas Gregore53060f2009-06-25 22:08:12 +00002060 assert(!Function->getDescribedFunctionTemplate() &&
2061 "Use AddTemplateOverloadCandidate for function templates");
2062
Douglas Gregor88a35142008-12-22 05:46:06 +00002063 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
Sebastian Redl3201f6b2009-04-16 17:51:27 +00002064 if (!isa<CXXConstructorDecl>(Method)) {
2065 // If we get here, it's because we're calling a member function
2066 // that is named without a member access expression (e.g.,
2067 // "this->f") that was either written explicitly or created
2068 // implicitly. This can happen with a qualified call to a member
2069 // function, e.g., X::f(). We use a NULL object as the implied
2070 // object argument (C++ [over.call.func]p3).
2071 AddMethodCandidate(Method, 0, Args, NumArgs, CandidateSet,
2072 SuppressUserConversions, ForceRValue);
2073 return;
2074 }
2075 // We treat a constructor like a non-member function, since its object
2076 // argument doesn't participate in overload resolution.
Douglas Gregor88a35142008-12-22 05:46:06 +00002077 }
2078
2079
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002080 // Add this candidate
2081 CandidateSet.push_back(OverloadCandidate());
2082 OverloadCandidate& Candidate = CandidateSet.back();
2083 Candidate.Function = Function;
Douglas Gregor88a35142008-12-22 05:46:06 +00002084 Candidate.Viable = true;
Douglas Gregor106c6eb2008-11-19 22:57:39 +00002085 Candidate.IsSurrogate = false;
Douglas Gregor88a35142008-12-22 05:46:06 +00002086 Candidate.IgnoreObjectArgument = false;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002087
2088 unsigned NumArgsInProto = Proto->getNumArgs();
2089
2090 // (C++ 13.3.2p2): A candidate function having fewer than m
2091 // parameters is viable only if it has an ellipsis in its parameter
2092 // list (8.3.5).
2093 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2094 Candidate.Viable = false;
2095 return;
2096 }
2097
2098 // (C++ 13.3.2p2): A candidate function having more than m parameters
2099 // is viable only if the (m+1)st parameter has a default argument
2100 // (8.3.6). For the purposes of overload resolution, the
2101 // parameter list is truncated on the right, so that there are
2102 // exactly m parameters.
2103 unsigned MinRequiredArgs = Function->getMinRequiredArguments();
2104 if (NumArgs < MinRequiredArgs) {
2105 // Not enough arguments.
2106 Candidate.Viable = false;
2107 return;
2108 }
2109
2110 // Determine the implicit conversion sequences for each of the
2111 // arguments.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002112 Candidate.Conversions.resize(NumArgs);
2113 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2114 if (ArgIdx < NumArgsInProto) {
2115 // (C++ 13.3.2p3): for F to be a viable function, there shall
2116 // exist for each argument an implicit conversion sequence
2117 // (13.3.3.1) that converts that argument to the corresponding
2118 // parameter of F.
2119 QualType ParamType = Proto->getArgType(ArgIdx);
2120 Candidate.Conversions[ArgIdx]
Douglas Gregor225c41e2008-11-03 19:09:14 +00002121 = TryCopyInitialization(Args[ArgIdx], ParamType,
Sebastian Redle2b68332009-04-12 17:16:29 +00002122 SuppressUserConversions, ForceRValue);
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002123 if (Candidate.Conversions[ArgIdx].ConversionKind
Douglas Gregor96176b32008-11-18 23:14:02 +00002124 == ImplicitConversionSequence::BadConversion) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002125 Candidate.Viable = false;
Douglas Gregor96176b32008-11-18 23:14:02 +00002126 break;
2127 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002128 } else {
2129 // (C++ 13.3.2p2): For the purposes of overload resolution, any
2130 // argument for which there is no corresponding parameter is
2131 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2132 Candidate.Conversions[ArgIdx].ConversionKind
2133 = ImplicitConversionSequence::EllipsisConversion;
2134 }
2135 }
2136}
2137
Douglas Gregor063daf62009-03-13 18:40:31 +00002138/// \brief Add all of the function declarations in the given function set to
2139/// the overload canddiate set.
2140void Sema::AddFunctionCandidates(const FunctionSet &Functions,
2141 Expr **Args, unsigned NumArgs,
2142 OverloadCandidateSet& CandidateSet,
2143 bool SuppressUserConversions) {
2144 for (FunctionSet::const_iterator F = Functions.begin(),
2145 FEnd = Functions.end();
Douglas Gregor364e0212009-06-27 21:05:07 +00002146 F != FEnd; ++F) {
2147 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*F))
2148 AddOverloadCandidate(FD, Args, NumArgs, CandidateSet,
2149 SuppressUserConversions);
2150 else
Douglas Gregor6db8ed42009-06-30 23:57:56 +00002151 AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*F),
2152 /*FIXME: explicit args */false, 0, 0,
2153 Args, NumArgs, CandidateSet,
Douglas Gregor364e0212009-06-27 21:05:07 +00002154 SuppressUserConversions);
2155 }
Douglas Gregor063daf62009-03-13 18:40:31 +00002156}
2157
Douglas Gregor96176b32008-11-18 23:14:02 +00002158/// AddMethodCandidate - Adds the given C++ member function to the set
2159/// of candidate functions, using the given function call arguments
2160/// and the object argument (@c Object). For example, in a call
2161/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
2162/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
2163/// allow user-defined conversions via constructors or conversion
Sebastian Redle2b68332009-04-12 17:16:29 +00002164/// operators. If @p ForceRValue, treat all arguments as rvalues. This is
2165/// a slightly hacky way to implement the overloading rules for elidable copy
2166/// initialization in C++0x (C++0x 12.8p15).
Douglas Gregor96176b32008-11-18 23:14:02 +00002167void
2168Sema::AddMethodCandidate(CXXMethodDecl *Method, Expr *Object,
2169 Expr **Args, unsigned NumArgs,
2170 OverloadCandidateSet& CandidateSet,
Sebastian Redle2b68332009-04-12 17:16:29 +00002171 bool SuppressUserConversions, bool ForceRValue)
Douglas Gregor96176b32008-11-18 23:14:02 +00002172{
Douglas Gregor72564e72009-02-26 23:50:07 +00002173 const FunctionProtoType* Proto
2174 = dyn_cast<FunctionProtoType>(Method->getType()->getAsFunctionType());
Douglas Gregor96176b32008-11-18 23:14:02 +00002175 assert(Proto && "Methods without a prototype cannot be overloaded");
Sebastian Redl3201f6b2009-04-16 17:51:27 +00002176 assert(!isa<CXXConversionDecl>(Method) &&
Douglas Gregor96176b32008-11-18 23:14:02 +00002177 "Use AddConversionCandidate for conversion functions");
Sebastian Redl3201f6b2009-04-16 17:51:27 +00002178 assert(!isa<CXXConstructorDecl>(Method) &&
2179 "Use AddOverloadCandidate for constructors");
Douglas Gregor96176b32008-11-18 23:14:02 +00002180
2181 // Add this candidate
2182 CandidateSet.push_back(OverloadCandidate());
2183 OverloadCandidate& Candidate = CandidateSet.back();
2184 Candidate.Function = Method;
Douglas Gregor106c6eb2008-11-19 22:57:39 +00002185 Candidate.IsSurrogate = false;
Douglas Gregor88a35142008-12-22 05:46:06 +00002186 Candidate.IgnoreObjectArgument = false;
Douglas Gregor96176b32008-11-18 23:14:02 +00002187
2188 unsigned NumArgsInProto = Proto->getNumArgs();
2189
2190 // (C++ 13.3.2p2): A candidate function having fewer than m
2191 // parameters is viable only if it has an ellipsis in its parameter
2192 // list (8.3.5).
2193 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2194 Candidate.Viable = false;
2195 return;
2196 }
2197
2198 // (C++ 13.3.2p2): A candidate function having more than m parameters
2199 // is viable only if the (m+1)st parameter has a default argument
2200 // (8.3.6). For the purposes of overload resolution, the
2201 // parameter list is truncated on the right, so that there are
2202 // exactly m parameters.
2203 unsigned MinRequiredArgs = Method->getMinRequiredArguments();
2204 if (NumArgs < MinRequiredArgs) {
2205 // Not enough arguments.
2206 Candidate.Viable = false;
2207 return;
2208 }
2209
2210 Candidate.Viable = true;
2211 Candidate.Conversions.resize(NumArgs + 1);
2212
Douglas Gregor88a35142008-12-22 05:46:06 +00002213 if (Method->isStatic() || !Object)
2214 // The implicit object argument is ignored.
2215 Candidate.IgnoreObjectArgument = true;
2216 else {
2217 // Determine the implicit conversion sequence for the object
2218 // parameter.
2219 Candidate.Conversions[0] = TryObjectArgumentInitialization(Object, Method);
2220 if (Candidate.Conversions[0].ConversionKind
2221 == ImplicitConversionSequence::BadConversion) {
2222 Candidate.Viable = false;
2223 return;
2224 }
Douglas Gregor96176b32008-11-18 23:14:02 +00002225 }
2226
2227 // Determine the implicit conversion sequences for each of the
2228 // arguments.
2229 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2230 if (ArgIdx < NumArgsInProto) {
2231 // (C++ 13.3.2p3): for F to be a viable function, there shall
2232 // exist for each argument an implicit conversion sequence
2233 // (13.3.3.1) that converts that argument to the corresponding
2234 // parameter of F.
2235 QualType ParamType = Proto->getArgType(ArgIdx);
2236 Candidate.Conversions[ArgIdx + 1]
2237 = TryCopyInitialization(Args[ArgIdx], ParamType,
Sebastian Redle2b68332009-04-12 17:16:29 +00002238 SuppressUserConversions, ForceRValue);
Douglas Gregor96176b32008-11-18 23:14:02 +00002239 if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2240 == ImplicitConversionSequence::BadConversion) {
2241 Candidate.Viable = false;
2242 break;
2243 }
2244 } else {
2245 // (C++ 13.3.2p2): For the purposes of overload resolution, any
2246 // argument for which there is no corresponding parameter is
2247 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2248 Candidate.Conversions[ArgIdx + 1].ConversionKind
2249 = ImplicitConversionSequence::EllipsisConversion;
2250 }
2251 }
2252}
2253
Douglas Gregore53060f2009-06-25 22:08:12 +00002254/// \brief Add a C++ function template as a candidate in the candidate set,
2255/// using template argument deduction to produce an appropriate function
2256/// template specialization.
2257void
2258Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
Douglas Gregor6db8ed42009-06-30 23:57:56 +00002259 bool HasExplicitTemplateArgs,
2260 const TemplateArgument *ExplicitTemplateArgs,
2261 unsigned NumExplicitTemplateArgs,
Douglas Gregore53060f2009-06-25 22:08:12 +00002262 Expr **Args, unsigned NumArgs,
2263 OverloadCandidateSet& CandidateSet,
2264 bool SuppressUserConversions,
2265 bool ForceRValue) {
2266 // C++ [over.match.funcs]p7:
2267 // In each case where a candidate is a function template, candidate
2268 // function template specializations are generated using template argument
2269 // deduction (14.8.3, 14.8.2). Those candidates are then handled as
2270 // candidate functions in the usual way.113) A given name can refer to one
2271 // or more function templates and also to a set of overloaded non-template
2272 // functions. In such a case, the candidate functions generated from each
2273 // function template are combined with the set of non-template candidate
2274 // functions.
2275 TemplateDeductionInfo Info(Context);
2276 FunctionDecl *Specialization = 0;
2277 if (TemplateDeductionResult Result
Douglas Gregor6db8ed42009-06-30 23:57:56 +00002278 = DeduceTemplateArguments(FunctionTemplate, HasExplicitTemplateArgs,
2279 ExplicitTemplateArgs, NumExplicitTemplateArgs,
2280 Args, NumArgs, Specialization, Info)) {
Douglas Gregore53060f2009-06-25 22:08:12 +00002281 // FIXME: Record what happened with template argument deduction, so
2282 // that we can give the user a beautiful diagnostic.
2283 (void)Result;
2284 return;
2285 }
2286
2287 // Add the function template specialization produced by template argument
2288 // deduction as a candidate.
2289 assert(Specialization && "Missing function template specialization?");
2290 AddOverloadCandidate(Specialization, Args, NumArgs, CandidateSet,
2291 SuppressUserConversions, ForceRValue);
2292}
2293
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002294/// AddConversionCandidate - Add a C++ conversion function as a
2295/// candidate in the candidate set (C++ [over.match.conv],
2296/// C++ [over.match.copy]). From is the expression we're converting from,
2297/// and ToType is the type that we're eventually trying to convert to
2298/// (which may or may not be the same type as the type that the
2299/// conversion function produces).
2300void
2301Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
2302 Expr *From, QualType ToType,
2303 OverloadCandidateSet& CandidateSet) {
2304 // Add this candidate
2305 CandidateSet.push_back(OverloadCandidate());
2306 OverloadCandidate& Candidate = CandidateSet.back();
2307 Candidate.Function = Conversion;
Douglas Gregor106c6eb2008-11-19 22:57:39 +00002308 Candidate.IsSurrogate = false;
Douglas Gregor88a35142008-12-22 05:46:06 +00002309 Candidate.IgnoreObjectArgument = false;
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002310 Candidate.FinalConversion.setAsIdentityConversion();
2311 Candidate.FinalConversion.FromTypePtr
2312 = Conversion->getConversionType().getAsOpaquePtr();
2313 Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr();
2314
Douglas Gregor96176b32008-11-18 23:14:02 +00002315 // Determine the implicit conversion sequence for the implicit
2316 // object parameter.
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002317 Candidate.Viable = true;
2318 Candidate.Conversions.resize(1);
Douglas Gregor96176b32008-11-18 23:14:02 +00002319 Candidate.Conversions[0] = TryObjectArgumentInitialization(From, Conversion);
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002320
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002321 if (Candidate.Conversions[0].ConversionKind
2322 == ImplicitConversionSequence::BadConversion) {
2323 Candidate.Viable = false;
2324 return;
2325 }
2326
2327 // To determine what the conversion from the result of calling the
2328 // conversion function to the type we're eventually trying to
2329 // convert to (ToType), we need to synthesize a call to the
2330 // conversion function and attempt copy initialization from it. This
2331 // makes sure that we get the right semantics with respect to
2332 // lvalues/rvalues and the type. Fortunately, we can allocate this
2333 // call on the stack and we don't need its arguments to be
2334 // well-formed.
2335 DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
2336 SourceLocation());
2337 ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
Anders Carlssoncdef2b72009-07-31 00:48:10 +00002338 CastExpr::CK_Unknown,
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002339 &ConversionRef, false);
Ted Kremenek668bf912009-02-09 20:51:47 +00002340
2341 // Note that it is safe to allocate CallExpr on the stack here because
2342 // there are 0 arguments (i.e., nothing is allocated using ASTContext's
2343 // allocator).
2344 CallExpr Call(Context, &ConversionFn, 0, 0,
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002345 Conversion->getConversionType().getNonReferenceType(),
2346 SourceLocation());
2347 ImplicitConversionSequence ICS = TryCopyInitialization(&Call, ToType, true);
2348 switch (ICS.ConversionKind) {
2349 case ImplicitConversionSequence::StandardConversion:
2350 Candidate.FinalConversion = ICS.Standard;
2351 break;
2352
2353 case ImplicitConversionSequence::BadConversion:
2354 Candidate.Viable = false;
2355 break;
2356
2357 default:
2358 assert(false &&
2359 "Can only end up with a standard conversion sequence or failure");
2360 }
2361}
2362
Douglas Gregor106c6eb2008-11-19 22:57:39 +00002363/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
2364/// converts the given @c Object to a function pointer via the
2365/// conversion function @c Conversion, and then attempts to call it
2366/// with the given arguments (C++ [over.call.object]p2-4). Proto is
2367/// the type of function that we'll eventually be calling.
2368void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
Douglas Gregor72564e72009-02-26 23:50:07 +00002369 const FunctionProtoType *Proto,
Douglas Gregor106c6eb2008-11-19 22:57:39 +00002370 Expr *Object, Expr **Args, unsigned NumArgs,
2371 OverloadCandidateSet& CandidateSet) {
2372 CandidateSet.push_back(OverloadCandidate());
2373 OverloadCandidate& Candidate = CandidateSet.back();
2374 Candidate.Function = 0;
2375 Candidate.Surrogate = Conversion;
2376 Candidate.Viable = true;
2377 Candidate.IsSurrogate = true;
Douglas Gregor88a35142008-12-22 05:46:06 +00002378 Candidate.IgnoreObjectArgument = false;
Douglas Gregor106c6eb2008-11-19 22:57:39 +00002379 Candidate.Conversions.resize(NumArgs + 1);
2380
2381 // Determine the implicit conversion sequence for the implicit
2382 // object parameter.
2383 ImplicitConversionSequence ObjectInit
2384 = TryObjectArgumentInitialization(Object, Conversion);
2385 if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) {
2386 Candidate.Viable = false;
2387 return;
2388 }
2389
2390 // The first conversion is actually a user-defined conversion whose
2391 // first conversion is ObjectInit's standard conversion (which is
2392 // effectively a reference binding). Record it as such.
2393 Candidate.Conversions[0].ConversionKind
2394 = ImplicitConversionSequence::UserDefinedConversion;
2395 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
2396 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
2397 Candidate.Conversions[0].UserDefined.After
2398 = Candidate.Conversions[0].UserDefined.Before;
2399 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
2400
2401 // Find the
2402 unsigned NumArgsInProto = Proto->getNumArgs();
2403
2404 // (C++ 13.3.2p2): A candidate function having fewer than m
2405 // parameters is viable only if it has an ellipsis in its parameter
2406 // list (8.3.5).
2407 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2408 Candidate.Viable = false;
2409 return;
2410 }
2411
2412 // Function types don't have any default arguments, so just check if
2413 // we have enough arguments.
2414 if (NumArgs < NumArgsInProto) {
2415 // Not enough arguments.
2416 Candidate.Viable = false;
2417 return;
2418 }
2419
2420 // Determine the implicit conversion sequences for each of the
2421 // arguments.
2422 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2423 if (ArgIdx < NumArgsInProto) {
2424 // (C++ 13.3.2p3): for F to be a viable function, there shall
2425 // exist for each argument an implicit conversion sequence
2426 // (13.3.3.1) that converts that argument to the corresponding
2427 // parameter of F.
2428 QualType ParamType = Proto->getArgType(ArgIdx);
2429 Candidate.Conversions[ArgIdx + 1]
2430 = TryCopyInitialization(Args[ArgIdx], ParamType,
2431 /*SuppressUserConversions=*/false);
2432 if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2433 == ImplicitConversionSequence::BadConversion) {
2434 Candidate.Viable = false;
2435 break;
2436 }
2437 } else {
2438 // (C++ 13.3.2p2): For the purposes of overload resolution, any
2439 // argument for which there is no corresponding parameter is
2440 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2441 Candidate.Conversions[ArgIdx + 1].ConversionKind
2442 = ImplicitConversionSequence::EllipsisConversion;
2443 }
2444 }
2445}
2446
Mike Stump390b4cc2009-05-16 07:39:55 +00002447// FIXME: This will eventually be removed, once we've migrated all of the
2448// operator overloading logic over to the scheme used by binary operators, which
2449// works for template instantiation.
Douglas Gregor063daf62009-03-13 18:40:31 +00002450void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
Douglas Gregorf680a0f2009-02-04 16:44:47 +00002451 SourceLocation OpLoc,
Douglas Gregor96176b32008-11-18 23:14:02 +00002452 Expr **Args, unsigned NumArgs,
Douglas Gregorf680a0f2009-02-04 16:44:47 +00002453 OverloadCandidateSet& CandidateSet,
2454 SourceRange OpRange) {
Douglas Gregor063daf62009-03-13 18:40:31 +00002455
2456 FunctionSet Functions;
2457
2458 QualType T1 = Args[0]->getType();
2459 QualType T2;
2460 if (NumArgs > 1)
2461 T2 = Args[1]->getType();
2462
2463 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
Douglas Gregor3384c9c2009-05-19 00:01:19 +00002464 if (S)
2465 LookupOverloadedOperatorName(Op, S, T1, T2, Functions);
Douglas Gregor063daf62009-03-13 18:40:31 +00002466 ArgumentDependentLookup(OpName, Args, NumArgs, Functions);
2467 AddFunctionCandidates(Functions, Args, NumArgs, CandidateSet);
2468 AddMemberOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet, OpRange);
2469 AddBuiltinOperatorCandidates(Op, Args, NumArgs, CandidateSet);
2470}
2471
2472/// \brief Add overload candidates for overloaded operators that are
2473/// member functions.
2474///
2475/// Add the overloaded operator candidates that are member functions
2476/// for the operator Op that was used in an operator expression such
2477/// as "x Op y". , Args/NumArgs provides the operator arguments, and
2478/// CandidateSet will store the added overload candidates. (C++
2479/// [over.match.oper]).
2480void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
2481 SourceLocation OpLoc,
2482 Expr **Args, unsigned NumArgs,
2483 OverloadCandidateSet& CandidateSet,
2484 SourceRange OpRange) {
Douglas Gregor96176b32008-11-18 23:14:02 +00002485 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2486
2487 // C++ [over.match.oper]p3:
2488 // For a unary operator @ with an operand of a type whose
2489 // cv-unqualified version is T1, and for a binary operator @ with
2490 // a left operand of a type whose cv-unqualified version is T1 and
2491 // a right operand of a type whose cv-unqualified version is T2,
2492 // three sets of candidate functions, designated member
2493 // candidates, non-member candidates and built-in candidates, are
2494 // constructed as follows:
2495 QualType T1 = Args[0]->getType();
2496 QualType T2;
2497 if (NumArgs > 1)
2498 T2 = Args[1]->getType();
2499
2500 // -- If T1 is a class type, the set of member candidates is the
2501 // result of the qualified lookup of T1::operator@
2502 // (13.3.1.1.1); otherwise, the set of member candidates is
2503 // empty.
Douglas Gregor063daf62009-03-13 18:40:31 +00002504 // FIXME: Lookup in base classes, too!
Ted Kremenek6217b802009-07-29 21:53:49 +00002505 if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
Douglas Gregor3fc749d2008-12-23 00:26:44 +00002506 DeclContext::lookup_const_iterator Oper, OperEnd;
Argyrios Kyrtzidis17945a02009-06-30 02:36:12 +00002507 for (llvm::tie(Oper, OperEnd) = T1Rec->getDecl()->lookup(OpName);
Douglas Gregor3fc749d2008-12-23 00:26:44 +00002508 Oper != OperEnd; ++Oper)
2509 AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Args[0],
2510 Args+1, NumArgs - 1, CandidateSet,
Douglas Gregor96176b32008-11-18 23:14:02 +00002511 /*SuppressUserConversions=*/false);
Douglas Gregor96176b32008-11-18 23:14:02 +00002512 }
Douglas Gregor96176b32008-11-18 23:14:02 +00002513}
2514
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002515/// AddBuiltinCandidate - Add a candidate for a built-in
2516/// operator. ResultTy and ParamTys are the result and parameter types
2517/// of the built-in candidate, respectively. Args and NumArgs are the
Douglas Gregor88b4bf22009-01-13 00:52:54 +00002518/// arguments being passed to the candidate. IsAssignmentOperator
2519/// should be true when this built-in candidate is an assignment
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002520/// operator. NumContextualBoolArguments is the number of arguments
2521/// (at the beginning of the argument list) that will be contextually
2522/// converted to bool.
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002523void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
2524 Expr **Args, unsigned NumArgs,
Douglas Gregor88b4bf22009-01-13 00:52:54 +00002525 OverloadCandidateSet& CandidateSet,
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002526 bool IsAssignmentOperator,
2527 unsigned NumContextualBoolArguments) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002528 // Add this candidate
2529 CandidateSet.push_back(OverloadCandidate());
2530 OverloadCandidate& Candidate = CandidateSet.back();
2531 Candidate.Function = 0;
Douglas Gregorc9467cf2008-12-12 02:00:36 +00002532 Candidate.IsSurrogate = false;
Douglas Gregor88a35142008-12-22 05:46:06 +00002533 Candidate.IgnoreObjectArgument = false;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002534 Candidate.BuiltinTypes.ResultTy = ResultTy;
2535 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2536 Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
2537
2538 // Determine the implicit conversion sequences for each of the
2539 // arguments.
2540 Candidate.Viable = true;
2541 Candidate.Conversions.resize(NumArgs);
2542 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
Douglas Gregor88b4bf22009-01-13 00:52:54 +00002543 // C++ [over.match.oper]p4:
2544 // For the built-in assignment operators, conversions of the
2545 // left operand are restricted as follows:
2546 // -- no temporaries are introduced to hold the left operand, and
2547 // -- no user-defined conversions are applied to the left
2548 // operand to achieve a type match with the left-most
2549 // parameter of a built-in candidate.
2550 //
2551 // We block these conversions by turning off user-defined
2552 // conversions, since that is the only way that initialization of
2553 // a reference to a non-class type can occur from something that
2554 // is not of the same type.
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002555 if (ArgIdx < NumContextualBoolArguments) {
2556 assert(ParamTys[ArgIdx] == Context.BoolTy &&
2557 "Contextual conversion to bool requires bool type");
2558 Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
2559 } else {
2560 Candidate.Conversions[ArgIdx]
2561 = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx],
2562 ArgIdx == 0 && IsAssignmentOperator);
2563 }
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002564 if (Candidate.Conversions[ArgIdx].ConversionKind
Douglas Gregor96176b32008-11-18 23:14:02 +00002565 == ImplicitConversionSequence::BadConversion) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002566 Candidate.Viable = false;
Douglas Gregor96176b32008-11-18 23:14:02 +00002567 break;
2568 }
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002569 }
2570}
2571
2572/// BuiltinCandidateTypeSet - A set of types that will be used for the
2573/// candidate operator functions for built-in operators (C++
2574/// [over.built]). The types are separated into pointer types and
2575/// enumeration types.
2576class BuiltinCandidateTypeSet {
2577 /// TypeSet - A set of types.
Chris Lattnere37b94c2009-03-29 00:04:01 +00002578 typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002579
2580 /// PointerTypes - The set of pointer types that will be used in the
2581 /// built-in candidates.
2582 TypeSet PointerTypes;
2583
Sebastian Redl78eb8742009-04-19 21:53:20 +00002584 /// MemberPointerTypes - The set of member pointer types that will be
2585 /// used in the built-in candidates.
2586 TypeSet MemberPointerTypes;
2587
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002588 /// EnumerationTypes - The set of enumeration types that will be
2589 /// used in the built-in candidates.
2590 TypeSet EnumerationTypes;
2591
2592 /// Context - The AST context in which we will build the type sets.
2593 ASTContext &Context;
2594
Sebastian Redl78eb8742009-04-19 21:53:20 +00002595 bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty);
2596 bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002597
2598public:
2599 /// iterator - Iterates through the types that are part of the set.
Chris Lattnere37b94c2009-03-29 00:04:01 +00002600 typedef TypeSet::iterator iterator;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002601
2602 BuiltinCandidateTypeSet(ASTContext &Context) : Context(Context) { }
2603
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002604 void AddTypesConvertedFrom(QualType Ty, bool AllowUserConversions,
2605 bool AllowExplicitConversions);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002606
2607 /// pointer_begin - First pointer type found;
2608 iterator pointer_begin() { return PointerTypes.begin(); }
2609
Sebastian Redl78eb8742009-04-19 21:53:20 +00002610 /// pointer_end - Past the last pointer type found;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002611 iterator pointer_end() { return PointerTypes.end(); }
2612
Sebastian Redl78eb8742009-04-19 21:53:20 +00002613 /// member_pointer_begin - First member pointer type found;
2614 iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
2615
2616 /// member_pointer_end - Past the last member pointer type found;
2617 iterator member_pointer_end() { return MemberPointerTypes.end(); }
2618
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002619 /// enumeration_begin - First enumeration type found;
2620 iterator enumeration_begin() { return EnumerationTypes.begin(); }
2621
Sebastian Redl78eb8742009-04-19 21:53:20 +00002622 /// enumeration_end - Past the last enumeration type found;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002623 iterator enumeration_end() { return EnumerationTypes.end(); }
2624};
2625
Sebastian Redl78eb8742009-04-19 21:53:20 +00002626/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002627/// the set of pointer types along with any more-qualified variants of
2628/// that type. For example, if @p Ty is "int const *", this routine
2629/// will add "int const *", "int const volatile *", "int const
2630/// restrict *", and "int const volatile restrict *" to the set of
2631/// pointer types. Returns true if the add of @p Ty itself succeeded,
2632/// false otherwise.
Sebastian Redl78eb8742009-04-19 21:53:20 +00002633bool
2634BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002635 // Insert this type.
Chris Lattnere37b94c2009-03-29 00:04:01 +00002636 if (!PointerTypes.insert(Ty))
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002637 return false;
2638
Ted Kremenek6217b802009-07-29 21:53:49 +00002639 if (const PointerType *PointerTy = Ty->getAs<PointerType>()) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002640 QualType PointeeTy = PointerTy->getPointeeType();
2641 // FIXME: Optimize this so that we don't keep trying to add the same types.
2642
Mike Stump390b4cc2009-05-16 07:39:55 +00002643 // FIXME: Do we have to add CVR qualifiers at *all* levels to deal with all
2644 // pointer conversions that don't cast away constness?
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002645 if (!PointeeTy.isConstQualified())
Sebastian Redl78eb8742009-04-19 21:53:20 +00002646 AddPointerWithMoreQualifiedTypeVariants
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002647 (Context.getPointerType(PointeeTy.withConst()));
2648 if (!PointeeTy.isVolatileQualified())
Sebastian Redl78eb8742009-04-19 21:53:20 +00002649 AddPointerWithMoreQualifiedTypeVariants
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002650 (Context.getPointerType(PointeeTy.withVolatile()));
2651 if (!PointeeTy.isRestrictQualified())
Sebastian Redl78eb8742009-04-19 21:53:20 +00002652 AddPointerWithMoreQualifiedTypeVariants
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002653 (Context.getPointerType(PointeeTy.withRestrict()));
2654 }
2655
2656 return true;
2657}
2658
Sebastian Redl78eb8742009-04-19 21:53:20 +00002659/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
2660/// to the set of pointer types along with any more-qualified variants of
2661/// that type. For example, if @p Ty is "int const *", this routine
2662/// will add "int const *", "int const volatile *", "int const
2663/// restrict *", and "int const volatile restrict *" to the set of
2664/// pointer types. Returns true if the add of @p Ty itself succeeded,
2665/// false otherwise.
2666bool
2667BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
2668 QualType Ty) {
2669 // Insert this type.
2670 if (!MemberPointerTypes.insert(Ty))
2671 return false;
2672
Ted Kremenek6217b802009-07-29 21:53:49 +00002673 if (const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>()) {
Sebastian Redl78eb8742009-04-19 21:53:20 +00002674 QualType PointeeTy = PointerTy->getPointeeType();
2675 const Type *ClassTy = PointerTy->getClass();
2676 // FIXME: Optimize this so that we don't keep trying to add the same types.
2677
2678 if (!PointeeTy.isConstQualified())
2679 AddMemberPointerWithMoreQualifiedTypeVariants
2680 (Context.getMemberPointerType(PointeeTy.withConst(), ClassTy));
2681 if (!PointeeTy.isVolatileQualified())
2682 AddMemberPointerWithMoreQualifiedTypeVariants
2683 (Context.getMemberPointerType(PointeeTy.withVolatile(), ClassTy));
2684 if (!PointeeTy.isRestrictQualified())
2685 AddMemberPointerWithMoreQualifiedTypeVariants
2686 (Context.getMemberPointerType(PointeeTy.withRestrict(), ClassTy));
2687 }
2688
2689 return true;
2690}
2691
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002692/// AddTypesConvertedFrom - Add each of the types to which the type @p
2693/// Ty can be implicit converted to the given set of @p Types. We're
Sebastian Redl78eb8742009-04-19 21:53:20 +00002694/// primarily interested in pointer types and enumeration types. We also
2695/// take member pointer types, for the conditional operator.
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002696/// AllowUserConversions is true if we should look at the conversion
2697/// functions of a class type, and AllowExplicitConversions if we
2698/// should also include the explicit conversion functions of a class
2699/// type.
2700void
2701BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
2702 bool AllowUserConversions,
2703 bool AllowExplicitConversions) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002704 // Only deal with canonical types.
2705 Ty = Context.getCanonicalType(Ty);
2706
2707 // Look through reference types; they aren't part of the type of an
2708 // expression for the purposes of conversions.
Ted Kremenek6217b802009-07-29 21:53:49 +00002709 if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002710 Ty = RefTy->getPointeeType();
2711
2712 // We don't care about qualifiers on the type.
2713 Ty = Ty.getUnqualifiedType();
2714
Ted Kremenek6217b802009-07-29 21:53:49 +00002715 if (const PointerType *PointerTy = Ty->getAs<PointerType>()) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002716 QualType PointeeTy = PointerTy->getPointeeType();
2717
2718 // Insert our type, and its more-qualified variants, into the set
2719 // of types.
Sebastian Redl78eb8742009-04-19 21:53:20 +00002720 if (!AddPointerWithMoreQualifiedTypeVariants(Ty))
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002721 return;
2722
2723 // Add 'cv void*' to our set of types.
2724 if (!Ty->isVoidType()) {
2725 QualType QualVoid
2726 = Context.VoidTy.getQualifiedType(PointeeTy.getCVRQualifiers());
Sebastian Redl78eb8742009-04-19 21:53:20 +00002727 AddPointerWithMoreQualifiedTypeVariants(Context.getPointerType(QualVoid));
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002728 }
2729
2730 // If this is a pointer to a class type, add pointers to its bases
2731 // (with the same level of cv-qualification as the original
2732 // derived class, of course).
Ted Kremenek6217b802009-07-29 21:53:49 +00002733 if (const RecordType *PointeeRec = PointeeTy->getAs<RecordType>()) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002734 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(PointeeRec->getDecl());
2735 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2736 Base != ClassDecl->bases_end(); ++Base) {
2737 QualType BaseTy = Context.getCanonicalType(Base->getType());
2738 BaseTy = BaseTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2739
2740 // Add the pointer type, recursively, so that we get all of
2741 // the indirect base classes, too.
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002742 AddTypesConvertedFrom(Context.getPointerType(BaseTy), false, false);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002743 }
2744 }
Sebastian Redl78eb8742009-04-19 21:53:20 +00002745 } else if (Ty->isMemberPointerType()) {
2746 // Member pointers are far easier, since the pointee can't be converted.
2747 if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
2748 return;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002749 } else if (Ty->isEnumeralType()) {
Chris Lattnere37b94c2009-03-29 00:04:01 +00002750 EnumerationTypes.insert(Ty);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002751 } else if (AllowUserConversions) {
Ted Kremenek6217b802009-07-29 21:53:49 +00002752 if (const RecordType *TyRec = Ty->getAs<RecordType>()) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002753 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
2754 // FIXME: Visit conversion functions in the base classes, too.
2755 OverloadedFunctionDecl *Conversions
2756 = ClassDecl->getConversionFunctions();
2757 for (OverloadedFunctionDecl::function_iterator Func
2758 = Conversions->function_begin();
2759 Func != Conversions->function_end(); ++Func) {
2760 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002761 if (AllowExplicitConversions || !Conv->isExplicit())
2762 AddTypesConvertedFrom(Conv->getConversionType(), false, false);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002763 }
2764 }
2765 }
2766}
2767
Douglas Gregor74253732008-11-19 15:42:04 +00002768/// AddBuiltinOperatorCandidates - Add the appropriate built-in
2769/// operator overloads to the candidate set (C++ [over.built]), based
2770/// on the operator @p Op and the arguments given. For example, if the
2771/// operator is a binary '+', this routine might add "int
2772/// operator+(int, int)" to cover integer addition.
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002773void
Douglas Gregor74253732008-11-19 15:42:04 +00002774Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
2775 Expr **Args, unsigned NumArgs,
2776 OverloadCandidateSet& CandidateSet) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002777 // The set of "promoted arithmetic types", which are the arithmetic
2778 // types are that preserved by promotion (C++ [over.built]p2). Note
2779 // that the first few of these types are the promoted integral
2780 // types; these types need to be first.
2781 // FIXME: What about complex?
2782 const unsigned FirstIntegralType = 0;
2783 const unsigned LastIntegralType = 13;
2784 const unsigned FirstPromotedIntegralType = 7,
2785 LastPromotedIntegralType = 13;
2786 const unsigned FirstPromotedArithmeticType = 7,
2787 LastPromotedArithmeticType = 16;
2788 const unsigned NumArithmeticTypes = 16;
2789 QualType ArithmeticTypes[NumArithmeticTypes] = {
Alisdair Meredithf5c209d2009-07-14 06:30:34 +00002790 Context.BoolTy, Context.CharTy, Context.WCharTy,
2791// Context.Char16Ty, Context.Char32Ty,
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002792 Context.SignedCharTy, Context.ShortTy,
2793 Context.UnsignedCharTy, Context.UnsignedShortTy,
2794 Context.IntTy, Context.LongTy, Context.LongLongTy,
2795 Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
2796 Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
2797 };
2798
2799 // Find all of the types that the arguments can convert to, but only
2800 // if the operator we're looking at has built-in operator candidates
2801 // that make use of these types.
2802 BuiltinCandidateTypeSet CandidateTypes(Context);
2803 if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
2804 Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
Douglas Gregor74253732008-11-19 15:42:04 +00002805 Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002806 Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
Douglas Gregor74253732008-11-19 15:42:04 +00002807 Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
Sebastian Redl3201f6b2009-04-16 17:51:27 +00002808 (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) {
Douglas Gregor74253732008-11-19 15:42:04 +00002809 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002810 CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
2811 true,
2812 (Op == OO_Exclaim ||
2813 Op == OO_AmpAmp ||
2814 Op == OO_PipePipe));
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002815 }
2816
2817 bool isComparison = false;
2818 switch (Op) {
2819 case OO_None:
2820 case NUM_OVERLOADED_OPERATORS:
2821 assert(false && "Expected an overloaded operator");
2822 break;
2823
Douglas Gregor74253732008-11-19 15:42:04 +00002824 case OO_Star: // '*' is either unary or binary
2825 if (NumArgs == 1)
2826 goto UnaryStar;
2827 else
2828 goto BinaryStar;
2829 break;
2830
2831 case OO_Plus: // '+' is either unary or binary
2832 if (NumArgs == 1)
2833 goto UnaryPlus;
2834 else
2835 goto BinaryPlus;
2836 break;
2837
2838 case OO_Minus: // '-' is either unary or binary
2839 if (NumArgs == 1)
2840 goto UnaryMinus;
2841 else
2842 goto BinaryMinus;
2843 break;
2844
2845 case OO_Amp: // '&' is either unary or binary
2846 if (NumArgs == 1)
2847 goto UnaryAmp;
2848 else
2849 goto BinaryAmp;
2850
2851 case OO_PlusPlus:
2852 case OO_MinusMinus:
2853 // C++ [over.built]p3:
2854 //
2855 // For every pair (T, VQ), where T is an arithmetic type, and VQ
2856 // is either volatile or empty, there exist candidate operator
2857 // functions of the form
2858 //
2859 // VQ T& operator++(VQ T&);
2860 // T operator++(VQ T&, int);
2861 //
2862 // C++ [over.built]p4:
2863 //
2864 // For every pair (T, VQ), where T is an arithmetic type other
2865 // than bool, and VQ is either volatile or empty, there exist
2866 // candidate operator functions of the form
2867 //
2868 // VQ T& operator--(VQ T&);
2869 // T operator--(VQ T&, int);
2870 for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
2871 Arith < NumArithmeticTypes; ++Arith) {
2872 QualType ArithTy = ArithmeticTypes[Arith];
2873 QualType ParamTypes[2]
Sebastian Redl7c80bd62009-03-16 23:22:08 +00002874 = { Context.getLValueReferenceType(ArithTy), Context.IntTy };
Douglas Gregor74253732008-11-19 15:42:04 +00002875
2876 // Non-volatile version.
2877 if (NumArgs == 1)
2878 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2879 else
2880 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2881
2882 // Volatile version
Sebastian Redl7c80bd62009-03-16 23:22:08 +00002883 ParamTypes[0] = Context.getLValueReferenceType(ArithTy.withVolatile());
Douglas Gregor74253732008-11-19 15:42:04 +00002884 if (NumArgs == 1)
2885 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2886 else
2887 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2888 }
2889
2890 // C++ [over.built]p5:
2891 //
2892 // For every pair (T, VQ), where T is a cv-qualified or
2893 // cv-unqualified object type, and VQ is either volatile or
2894 // empty, there exist candidate operator functions of the form
2895 //
2896 // T*VQ& operator++(T*VQ&);
2897 // T*VQ& operator--(T*VQ&);
2898 // T* operator++(T*VQ&, int);
2899 // T* operator--(T*VQ&, int);
2900 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2901 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2902 // Skip pointer types that aren't pointers to object types.
Ted Kremenek6217b802009-07-29 21:53:49 +00002903 if (!(*Ptr)->getAs<PointerType>()->getPointeeType()->isObjectType())
Douglas Gregor74253732008-11-19 15:42:04 +00002904 continue;
2905
2906 QualType ParamTypes[2] = {
Sebastian Redl7c80bd62009-03-16 23:22:08 +00002907 Context.getLValueReferenceType(*Ptr), Context.IntTy
Douglas Gregor74253732008-11-19 15:42:04 +00002908 };
2909
2910 // Without volatile
2911 if (NumArgs == 1)
2912 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2913 else
2914 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2915
2916 if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
2917 // With volatile
Sebastian Redl7c80bd62009-03-16 23:22:08 +00002918 ParamTypes[0] = Context.getLValueReferenceType((*Ptr).withVolatile());
Douglas Gregor74253732008-11-19 15:42:04 +00002919 if (NumArgs == 1)
2920 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2921 else
2922 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2923 }
2924 }
2925 break;
2926
2927 UnaryStar:
2928 // C++ [over.built]p6:
2929 // For every cv-qualified or cv-unqualified object type T, there
2930 // exist candidate operator functions of the form
2931 //
2932 // T& operator*(T*);
2933 //
2934 // C++ [over.built]p7:
2935 // For every function type T, there exist candidate operator
2936 // functions of the form
2937 // T& operator*(T*);
2938 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2939 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2940 QualType ParamTy = *Ptr;
Ted Kremenek6217b802009-07-29 21:53:49 +00002941 QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType();
Sebastian Redl7c80bd62009-03-16 23:22:08 +00002942 AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy),
Douglas Gregor74253732008-11-19 15:42:04 +00002943 &ParamTy, Args, 1, CandidateSet);
2944 }
2945 break;
2946
2947 UnaryPlus:
2948 // C++ [over.built]p8:
2949 // For every type T, there exist candidate operator functions of
2950 // the form
2951 //
2952 // T* operator+(T*);
2953 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2954 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2955 QualType ParamTy = *Ptr;
2956 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
2957 }
2958
2959 // Fall through
2960
2961 UnaryMinus:
2962 // C++ [over.built]p9:
2963 // For every promoted arithmetic type T, there exist candidate
2964 // operator functions of the form
2965 //
2966 // T operator+(T);
2967 // T operator-(T);
2968 for (unsigned Arith = FirstPromotedArithmeticType;
2969 Arith < LastPromotedArithmeticType; ++Arith) {
2970 QualType ArithTy = ArithmeticTypes[Arith];
2971 AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
2972 }
2973 break;
2974
2975 case OO_Tilde:
2976 // C++ [over.built]p10:
2977 // For every promoted integral type T, there exist candidate
2978 // operator functions of the form
2979 //
2980 // T operator~(T);
2981 for (unsigned Int = FirstPromotedIntegralType;
2982 Int < LastPromotedIntegralType; ++Int) {
2983 QualType IntTy = ArithmeticTypes[Int];
2984 AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
2985 }
2986 break;
2987
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002988 case OO_New:
2989 case OO_Delete:
2990 case OO_Array_New:
2991 case OO_Array_Delete:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002992 case OO_Call:
Douglas Gregor74253732008-11-19 15:42:04 +00002993 assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002994 break;
2995
2996 case OO_Comma:
Douglas Gregor74253732008-11-19 15:42:04 +00002997 UnaryAmp:
2998 case OO_Arrow:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002999 // C++ [over.match.oper]p3:
3000 // -- For the operator ',', the unary operator '&', or the
3001 // operator '->', the built-in candidates set is empty.
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003002 break;
3003
3004 case OO_Less:
3005 case OO_Greater:
3006 case OO_LessEqual:
3007 case OO_GreaterEqual:
3008 case OO_EqualEqual:
3009 case OO_ExclaimEqual:
3010 // C++ [over.built]p15:
3011 //
3012 // For every pointer or enumeration type T, there exist
3013 // candidate operator functions of the form
3014 //
3015 // bool operator<(T, T);
3016 // bool operator>(T, T);
3017 // bool operator<=(T, T);
3018 // bool operator>=(T, T);
3019 // bool operator==(T, T);
3020 // bool operator!=(T, T);
3021 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3022 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3023 QualType ParamTypes[2] = { *Ptr, *Ptr };
3024 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3025 }
3026 for (BuiltinCandidateTypeSet::iterator Enum
3027 = CandidateTypes.enumeration_begin();
3028 Enum != CandidateTypes.enumeration_end(); ++Enum) {
3029 QualType ParamTypes[2] = { *Enum, *Enum };
3030 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3031 }
3032
3033 // Fall through.
3034 isComparison = true;
3035
Douglas Gregor74253732008-11-19 15:42:04 +00003036 BinaryPlus:
3037 BinaryMinus:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003038 if (!isComparison) {
3039 // We didn't fall through, so we must have OO_Plus or OO_Minus.
3040
3041 // C++ [over.built]p13:
3042 //
3043 // For every cv-qualified or cv-unqualified object type T
3044 // there exist candidate operator functions of the form
3045 //
3046 // T* operator+(T*, ptrdiff_t);
3047 // T& operator[](T*, ptrdiff_t); [BELOW]
3048 // T* operator-(T*, ptrdiff_t);
3049 // T* operator+(ptrdiff_t, T*);
3050 // T& operator[](ptrdiff_t, T*); [BELOW]
3051 //
3052 // C++ [over.built]p14:
3053 //
3054 // For every T, where T is a pointer to object type, there
3055 // exist candidate operator functions of the form
3056 //
3057 // ptrdiff_t operator-(T, T);
3058 for (BuiltinCandidateTypeSet::iterator Ptr
3059 = CandidateTypes.pointer_begin();
3060 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3061 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3062
3063 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
3064 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3065
3066 if (Op == OO_Plus) {
3067 // T* operator+(ptrdiff_t, T*);
3068 ParamTypes[0] = ParamTypes[1];
3069 ParamTypes[1] = *Ptr;
3070 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3071 } else {
3072 // ptrdiff_t operator-(T, T);
3073 ParamTypes[1] = *Ptr;
3074 AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
3075 Args, 2, CandidateSet);
3076 }
3077 }
3078 }
3079 // Fall through
3080
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003081 case OO_Slash:
Douglas Gregor74253732008-11-19 15:42:04 +00003082 BinaryStar:
Sebastian Redl3201f6b2009-04-16 17:51:27 +00003083 Conditional:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003084 // C++ [over.built]p12:
3085 //
3086 // For every pair of promoted arithmetic types L and R, there
3087 // exist candidate operator functions of the form
3088 //
3089 // LR operator*(L, R);
3090 // LR operator/(L, R);
3091 // LR operator+(L, R);
3092 // LR operator-(L, R);
3093 // bool operator<(L, R);
3094 // bool operator>(L, R);
3095 // bool operator<=(L, R);
3096 // bool operator>=(L, R);
3097 // bool operator==(L, R);
3098 // bool operator!=(L, R);
3099 //
3100 // where LR is the result of the usual arithmetic conversions
3101 // between types L and R.
Sebastian Redl3201f6b2009-04-16 17:51:27 +00003102 //
3103 // C++ [over.built]p24:
3104 //
3105 // For every pair of promoted arithmetic types L and R, there exist
3106 // candidate operator functions of the form
3107 //
3108 // LR operator?(bool, L, R);
3109 //
3110 // where LR is the result of the usual arithmetic conversions
3111 // between types L and R.
3112 // Our candidates ignore the first parameter.
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003113 for (unsigned Left = FirstPromotedArithmeticType;
3114 Left < LastPromotedArithmeticType; ++Left) {
3115 for (unsigned Right = FirstPromotedArithmeticType;
3116 Right < LastPromotedArithmeticType; ++Right) {
3117 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3118 QualType Result
3119 = isComparison? Context.BoolTy
3120 : UsualArithmeticConversionsType(LandR[0], LandR[1]);
3121 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3122 }
3123 }
3124 break;
3125
3126 case OO_Percent:
Douglas Gregor74253732008-11-19 15:42:04 +00003127 BinaryAmp:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003128 case OO_Caret:
3129 case OO_Pipe:
3130 case OO_LessLess:
3131 case OO_GreaterGreater:
3132 // C++ [over.built]p17:
3133 //
3134 // For every pair of promoted integral types L and R, there
3135 // exist candidate operator functions of the form
3136 //
3137 // LR operator%(L, R);
3138 // LR operator&(L, R);
3139 // LR operator^(L, R);
3140 // LR operator|(L, R);
3141 // L operator<<(L, R);
3142 // L operator>>(L, R);
3143 //
3144 // where LR is the result of the usual arithmetic conversions
3145 // between types L and R.
3146 for (unsigned Left = FirstPromotedIntegralType;
3147 Left < LastPromotedIntegralType; ++Left) {
3148 for (unsigned Right = FirstPromotedIntegralType;
3149 Right < LastPromotedIntegralType; ++Right) {
3150 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3151 QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
3152 ? LandR[0]
3153 : UsualArithmeticConversionsType(LandR[0], LandR[1]);
3154 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3155 }
3156 }
3157 break;
3158
3159 case OO_Equal:
3160 // C++ [over.built]p20:
3161 //
3162 // For every pair (T, VQ), where T is an enumeration or
3163 // (FIXME:) pointer to member type and VQ is either volatile or
3164 // empty, there exist candidate operator functions of the form
3165 //
3166 // VQ T& operator=(VQ T&, T);
3167 for (BuiltinCandidateTypeSet::iterator Enum
3168 = CandidateTypes.enumeration_begin();
3169 Enum != CandidateTypes.enumeration_end(); ++Enum) {
3170 QualType ParamTypes[2];
3171
3172 // T& operator=(T&, T)
Sebastian Redl7c80bd62009-03-16 23:22:08 +00003173 ParamTypes[0] = Context.getLValueReferenceType(*Enum);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003174 ParamTypes[1] = *Enum;
Douglas Gregor88b4bf22009-01-13 00:52:54 +00003175 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
Douglas Gregor09f41cf2009-01-14 15:45:31 +00003176 /*IsAssignmentOperator=*/false);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003177
Douglas Gregor74253732008-11-19 15:42:04 +00003178 if (!Context.getCanonicalType(*Enum).isVolatileQualified()) {
3179 // volatile T& operator=(volatile T&, T)
Sebastian Redl7c80bd62009-03-16 23:22:08 +00003180 ParamTypes[0] = Context.getLValueReferenceType((*Enum).withVolatile());
Douglas Gregor74253732008-11-19 15:42:04 +00003181 ParamTypes[1] = *Enum;
Douglas Gregor88b4bf22009-01-13 00:52:54 +00003182 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
Douglas Gregor09f41cf2009-01-14 15:45:31 +00003183 /*IsAssignmentOperator=*/false);
Douglas Gregor74253732008-11-19 15:42:04 +00003184 }
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003185 }
3186 // Fall through.
3187
3188 case OO_PlusEqual:
3189 case OO_MinusEqual:
3190 // C++ [over.built]p19:
3191 //
3192 // For every pair (T, VQ), where T is any type and VQ is either
3193 // volatile or empty, there exist candidate operator functions
3194 // of the form
3195 //
3196 // T*VQ& operator=(T*VQ&, T*);
3197 //
3198 // C++ [over.built]p21:
3199 //
3200 // For every pair (T, VQ), where T is a cv-qualified or
3201 // cv-unqualified object type and VQ is either volatile or
3202 // empty, there exist candidate operator functions of the form
3203 //
3204 // T*VQ& operator+=(T*VQ&, ptrdiff_t);
3205 // T*VQ& operator-=(T*VQ&, ptrdiff_t);
3206 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3207 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3208 QualType ParamTypes[2];
3209 ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
3210
3211 // non-volatile version
Sebastian Redl7c80bd62009-03-16 23:22:08 +00003212 ParamTypes[0] = Context.getLValueReferenceType(*Ptr);
Douglas Gregor88b4bf22009-01-13 00:52:54 +00003213 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3214 /*IsAssigmentOperator=*/Op == OO_Equal);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003215
Douglas Gregor74253732008-11-19 15:42:04 +00003216 if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
3217 // volatile version
Sebastian Redl7c80bd62009-03-16 23:22:08 +00003218 ParamTypes[0] = Context.getLValueReferenceType((*Ptr).withVolatile());
Douglas Gregor88b4bf22009-01-13 00:52:54 +00003219 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3220 /*IsAssigmentOperator=*/Op == OO_Equal);
Douglas Gregor74253732008-11-19 15:42:04 +00003221 }
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003222 }
3223 // Fall through.
3224
3225 case OO_StarEqual:
3226 case OO_SlashEqual:
3227 // C++ [over.built]p18:
3228 //
3229 // For every triple (L, VQ, R), where L is an arithmetic type,
3230 // VQ is either volatile or empty, and R is a promoted
3231 // arithmetic type, there exist candidate operator functions of
3232 // the form
3233 //
3234 // VQ L& operator=(VQ L&, R);
3235 // VQ L& operator*=(VQ L&, R);
3236 // VQ L& operator/=(VQ L&, R);
3237 // VQ L& operator+=(VQ L&, R);
3238 // VQ L& operator-=(VQ L&, R);
3239 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
3240 for (unsigned Right = FirstPromotedArithmeticType;
3241 Right < LastPromotedArithmeticType; ++Right) {
3242 QualType ParamTypes[2];
3243 ParamTypes[1] = ArithmeticTypes[Right];
3244
3245 // Add this built-in operator as a candidate (VQ is empty).
Sebastian Redl7c80bd62009-03-16 23:22:08 +00003246 ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
Douglas Gregor88b4bf22009-01-13 00:52:54 +00003247 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3248 /*IsAssigmentOperator=*/Op == OO_Equal);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003249
3250 // Add this built-in operator as a candidate (VQ is 'volatile').
3251 ParamTypes[0] = ArithmeticTypes[Left].withVolatile();
Sebastian Redl7c80bd62009-03-16 23:22:08 +00003252 ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
Douglas Gregor88b4bf22009-01-13 00:52:54 +00003253 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3254 /*IsAssigmentOperator=*/Op == OO_Equal);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003255 }
3256 }
3257 break;
3258
3259 case OO_PercentEqual:
3260 case OO_LessLessEqual:
3261 case OO_GreaterGreaterEqual:
3262 case OO_AmpEqual:
3263 case OO_CaretEqual:
3264 case OO_PipeEqual:
3265 // C++ [over.built]p22:
3266 //
3267 // For every triple (L, VQ, R), where L is an integral type, VQ
3268 // is either volatile or empty, and R is a promoted integral
3269 // type, there exist candidate operator functions of the form
3270 //
3271 // VQ L& operator%=(VQ L&, R);
3272 // VQ L& operator<<=(VQ L&, R);
3273 // VQ L& operator>>=(VQ L&, R);
3274 // VQ L& operator&=(VQ L&, R);
3275 // VQ L& operator^=(VQ L&, R);
3276 // VQ L& operator|=(VQ L&, R);
3277 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
3278 for (unsigned Right = FirstPromotedIntegralType;
3279 Right < LastPromotedIntegralType; ++Right) {
3280 QualType ParamTypes[2];
3281 ParamTypes[1] = ArithmeticTypes[Right];
3282
3283 // Add this built-in operator as a candidate (VQ is empty).
Sebastian Redl7c80bd62009-03-16 23:22:08 +00003284 ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003285 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3286
3287 // Add this built-in operator as a candidate (VQ is 'volatile').
3288 ParamTypes[0] = ArithmeticTypes[Left];
3289 ParamTypes[0].addVolatile();
Sebastian Redl7c80bd62009-03-16 23:22:08 +00003290 ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003291 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3292 }
3293 }
3294 break;
3295
Douglas Gregor74253732008-11-19 15:42:04 +00003296 case OO_Exclaim: {
3297 // C++ [over.operator]p23:
3298 //
3299 // There also exist candidate operator functions of the form
3300 //
3301 // bool operator!(bool);
3302 // bool operator&&(bool, bool); [BELOW]
3303 // bool operator||(bool, bool); [BELOW]
3304 QualType ParamTy = Context.BoolTy;
Douglas Gregor09f41cf2009-01-14 15:45:31 +00003305 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
3306 /*IsAssignmentOperator=*/false,
3307 /*NumContextualBoolArguments=*/1);
Douglas Gregor74253732008-11-19 15:42:04 +00003308 break;
3309 }
3310
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003311 case OO_AmpAmp:
3312 case OO_PipePipe: {
3313 // C++ [over.operator]p23:
3314 //
3315 // There also exist candidate operator functions of the form
3316 //
Douglas Gregor74253732008-11-19 15:42:04 +00003317 // bool operator!(bool); [ABOVE]
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003318 // bool operator&&(bool, bool);
3319 // bool operator||(bool, bool);
3320 QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
Douglas Gregor09f41cf2009-01-14 15:45:31 +00003321 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
3322 /*IsAssignmentOperator=*/false,
3323 /*NumContextualBoolArguments=*/2);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003324 break;
3325 }
3326
3327 case OO_Subscript:
3328 // C++ [over.built]p13:
3329 //
3330 // For every cv-qualified or cv-unqualified object type T there
3331 // exist candidate operator functions of the form
3332 //
3333 // T* operator+(T*, ptrdiff_t); [ABOVE]
3334 // T& operator[](T*, ptrdiff_t);
3335 // T* operator-(T*, ptrdiff_t); [ABOVE]
3336 // T* operator+(ptrdiff_t, T*); [ABOVE]
3337 // T& operator[](ptrdiff_t, T*);
3338 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3339 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3340 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
Ted Kremenek6217b802009-07-29 21:53:49 +00003341 QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType();
Sebastian Redl7c80bd62009-03-16 23:22:08 +00003342 QualType ResultTy = Context.getLValueReferenceType(PointeeType);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003343
3344 // T& operator[](T*, ptrdiff_t)
3345 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3346
3347 // T& operator[](ptrdiff_t, T*);
3348 ParamTypes[0] = ParamTypes[1];
3349 ParamTypes[1] = *Ptr;
3350 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3351 }
3352 break;
3353
3354 case OO_ArrowStar:
3355 // FIXME: No support for pointer-to-members yet.
3356 break;
Sebastian Redl3201f6b2009-04-16 17:51:27 +00003357
3358 case OO_Conditional:
3359 // Note that we don't consider the first argument, since it has been
3360 // contextually converted to bool long ago. The candidates below are
3361 // therefore added as binary.
3362 //
3363 // C++ [over.built]p24:
3364 // For every type T, where T is a pointer or pointer-to-member type,
3365 // there exist candidate operator functions of the form
3366 //
3367 // T operator?(bool, T, T);
3368 //
Sebastian Redl3201f6b2009-04-16 17:51:27 +00003369 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(),
3370 E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) {
3371 QualType ParamTypes[2] = { *Ptr, *Ptr };
3372 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3373 }
Sebastian Redl78eb8742009-04-19 21:53:20 +00003374 for (BuiltinCandidateTypeSet::iterator Ptr =
3375 CandidateTypes.member_pointer_begin(),
3376 E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) {
3377 QualType ParamTypes[2] = { *Ptr, *Ptr };
3378 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3379 }
Sebastian Redl3201f6b2009-04-16 17:51:27 +00003380 goto Conditional;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003381 }
3382}
3383
Douglas Gregorfa047642009-02-04 00:32:51 +00003384/// \brief Add function candidates found via argument-dependent lookup
3385/// to the set of overloading candidates.
3386///
3387/// This routine performs argument-dependent name lookup based on the
3388/// given function name (which may also be an operator name) and adds
3389/// all of the overload candidates found by ADL to the overload
3390/// candidate set (C++ [basic.lookup.argdep]).
3391void
3392Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
3393 Expr **Args, unsigned NumArgs,
3394 OverloadCandidateSet& CandidateSet) {
Douglas Gregor3fd95ce2009-03-13 00:33:25 +00003395 FunctionSet Functions;
Douglas Gregorfa047642009-02-04 00:32:51 +00003396
Douglas Gregor3fd95ce2009-03-13 00:33:25 +00003397 // Record all of the function candidates that we've already
3398 // added to the overload set, so that we don't add those same
3399 // candidates a second time.
3400 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3401 CandEnd = CandidateSet.end();
3402 Cand != CandEnd; ++Cand)
Douglas Gregor364e0212009-06-27 21:05:07 +00003403 if (Cand->Function) {
Douglas Gregor3fd95ce2009-03-13 00:33:25 +00003404 Functions.insert(Cand->Function);
Douglas Gregor364e0212009-06-27 21:05:07 +00003405 if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
3406 Functions.insert(FunTmpl);
3407 }
Douglas Gregorfa047642009-02-04 00:32:51 +00003408
Douglas Gregor3fd95ce2009-03-13 00:33:25 +00003409 ArgumentDependentLookup(Name, Args, NumArgs, Functions);
Douglas Gregorfa047642009-02-04 00:32:51 +00003410
Douglas Gregor3fd95ce2009-03-13 00:33:25 +00003411 // Erase all of the candidates we already knew about.
3412 // FIXME: This is suboptimal. Is there a better way?
3413 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3414 CandEnd = CandidateSet.end();
3415 Cand != CandEnd; ++Cand)
Douglas Gregor364e0212009-06-27 21:05:07 +00003416 if (Cand->Function) {
Douglas Gregor3fd95ce2009-03-13 00:33:25 +00003417 Functions.erase(Cand->Function);
Douglas Gregor364e0212009-06-27 21:05:07 +00003418 if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
3419 Functions.erase(FunTmpl);
3420 }
Douglas Gregor3fd95ce2009-03-13 00:33:25 +00003421
3422 // For each of the ADL candidates we found, add it to the overload
3423 // set.
3424 for (FunctionSet::iterator Func = Functions.begin(),
3425 FuncEnd = Functions.end();
Douglas Gregor364e0212009-06-27 21:05:07 +00003426 Func != FuncEnd; ++Func) {
3427 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
3428 AddOverloadCandidate(FD, Args, NumArgs, CandidateSet);
3429 else
Douglas Gregor6db8ed42009-06-30 23:57:56 +00003430 AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*Func),
3431 /*FIXME: explicit args */false, 0, 0,
3432 Args, NumArgs, CandidateSet);
Douglas Gregor364e0212009-06-27 21:05:07 +00003433 }
Douglas Gregorfa047642009-02-04 00:32:51 +00003434}
3435
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003436/// isBetterOverloadCandidate - Determines whether the first overload
3437/// candidate is a better candidate than the second (C++ 13.3.3p1).
3438bool
3439Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
3440 const OverloadCandidate& Cand2)
3441{
3442 // Define viable functions to be better candidates than non-viable
3443 // functions.
3444 if (!Cand2.Viable)
3445 return Cand1.Viable;
3446 else if (!Cand1.Viable)
3447 return false;
3448
Douglas Gregor88a35142008-12-22 05:46:06 +00003449 // C++ [over.match.best]p1:
3450 //
3451 // -- if F is a static member function, ICS1(F) is defined such
3452 // that ICS1(F) is neither better nor worse than ICS1(G) for
3453 // any function G, and, symmetrically, ICS1(G) is neither
3454 // better nor worse than ICS1(F).
3455 unsigned StartArg = 0;
3456 if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
3457 StartArg = 1;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003458
Douglas Gregor3e15cc32009-07-07 23:38:56 +00003459 // C++ [over.match.best]p1:
3460 // A viable function F1 is defined to be a better function than another
3461 // viable function F2 if for all arguments i, ICSi(F1) is not a worse
3462 // conversion sequence than ICSi(F2), and then...
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003463 unsigned NumArgs = Cand1.Conversions.size();
3464 assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
3465 bool HasBetterConversion = false;
Douglas Gregor88a35142008-12-22 05:46:06 +00003466 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003467 switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
3468 Cand2.Conversions[ArgIdx])) {
3469 case ImplicitConversionSequence::Better:
3470 // Cand1 has a better conversion sequence.
3471 HasBetterConversion = true;
3472 break;
3473
3474 case ImplicitConversionSequence::Worse:
3475 // Cand1 can't be better than Cand2.
3476 return false;
3477
3478 case ImplicitConversionSequence::Indistinguishable:
3479 // Do nothing.
3480 break;
3481 }
3482 }
3483
Douglas Gregor3e15cc32009-07-07 23:38:56 +00003484 // -- for some argument j, ICSj(F1) is a better conversion sequence than
3485 // ICSj(F2), or, if not that,
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003486 if (HasBetterConversion)
3487 return true;
3488
Douglas Gregor3e15cc32009-07-07 23:38:56 +00003489 // - F1 is a non-template function and F2 is a function template
3490 // specialization, or, if not that,
3491 if (Cand1.Function && !Cand1.Function->getPrimaryTemplate() &&
3492 Cand2.Function && Cand2.Function->getPrimaryTemplate())
3493 return true;
3494
3495 // -- F1 and F2 are function template specializations, and the function
3496 // template for F1 is more specialized than the template for F2
3497 // according to the partial ordering rules described in 14.5.5.2, or,
3498 // if not that,
3499
3500 // FIXME: Implement partial ordering of function templates.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003501
Douglas Gregorf1991ea2008-11-07 22:36:19 +00003502 // -- the context is an initialization by user-defined conversion
3503 // (see 8.5, 13.3.1.5) and the standard conversion sequence
3504 // from the return type of F1 to the destination type (i.e.,
3505 // the type of the entity being initialized) is a better
3506 // conversion sequence than the standard conversion sequence
3507 // from the return type of F2 to the destination type.
Douglas Gregor447b69e2008-11-19 03:25:36 +00003508 if (Cand1.Function && Cand2.Function &&
3509 isa<CXXConversionDecl>(Cand1.Function) &&
Douglas Gregorf1991ea2008-11-07 22:36:19 +00003510 isa<CXXConversionDecl>(Cand2.Function)) {
3511 switch (CompareStandardConversionSequences(Cand1.FinalConversion,
3512 Cand2.FinalConversion)) {
3513 case ImplicitConversionSequence::Better:
3514 // Cand1 has a better conversion sequence.
3515 return true;
3516
3517 case ImplicitConversionSequence::Worse:
3518 // Cand1 can't be better than Cand2.
3519 return false;
3520
3521 case ImplicitConversionSequence::Indistinguishable:
3522 // Do nothing
3523 break;
3524 }
3525 }
3526
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003527 return false;
3528}
3529
Douglas Gregore0762c92009-06-19 23:52:42 +00003530/// \brief Computes the best viable function (C++ 13.3.3)
3531/// within an overload candidate set.
3532///
3533/// \param CandidateSet the set of candidate functions.
3534///
3535/// \param Loc the location of the function name (or operator symbol) for
3536/// which overload resolution occurs.
3537///
3538/// \param Best f overload resolution was successful or found a deleted
3539/// function, Best points to the candidate function found.
3540///
3541/// \returns The result of overload resolution.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003542Sema::OverloadingResult
3543Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
Douglas Gregore0762c92009-06-19 23:52:42 +00003544 SourceLocation Loc,
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003545 OverloadCandidateSet::iterator& Best)
3546{
3547 // Find the best viable function.
3548 Best = CandidateSet.end();
3549 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3550 Cand != CandidateSet.end(); ++Cand) {
3551 if (Cand->Viable) {
3552 if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
3553 Best = Cand;
3554 }
3555 }
3556
3557 // If we didn't find any viable functions, abort.
3558 if (Best == CandidateSet.end())
3559 return OR_No_Viable_Function;
3560
3561 // Make sure that this function is better than every other viable
3562 // function. If not, we have an ambiguity.
3563 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3564 Cand != CandidateSet.end(); ++Cand) {
3565 if (Cand->Viable &&
3566 Cand != Best &&
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003567 !isBetterOverloadCandidate(*Best, *Cand)) {
3568 Best = CandidateSet.end();
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003569 return OR_Ambiguous;
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003570 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003571 }
3572
3573 // Best is the best viable function.
Douglas Gregor48f3bb92009-02-18 21:56:37 +00003574 if (Best->Function &&
3575 (Best->Function->isDeleted() ||
Argyrios Kyrtzidis40b598e2009-06-30 02:34:44 +00003576 Best->Function->getAttr<UnavailableAttr>()))
Douglas Gregor48f3bb92009-02-18 21:56:37 +00003577 return OR_Deleted;
3578
Douglas Gregore0762c92009-06-19 23:52:42 +00003579 // C++ [basic.def.odr]p2:
3580 // An overloaded function is used if it is selected by overload resolution
3581 // when referred to from a potentially-evaluated expression. [Note: this
3582 // covers calls to named functions (5.2.2), operator overloading
3583 // (clause 13), user-defined conversions (12.3.2), allocation function for
3584 // placement new (5.3.4), as well as non-default initialization (8.5).
3585 if (Best->Function)
3586 MarkDeclarationReferenced(Loc, Best->Function);
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003587 return OR_Success;
3588}
3589
3590/// PrintOverloadCandidates - When overload resolution fails, prints
3591/// diagnostic messages containing the candidates in the candidate
3592/// set. If OnlyViable is true, only viable candidates will be printed.
3593void
3594Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
3595 bool OnlyViable)
3596{
3597 OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3598 LastCand = CandidateSet.end();
3599 for (; Cand != LastCand; ++Cand) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003600 if (Cand->Viable || !OnlyViable) {
3601 if (Cand->Function) {
Douglas Gregor48f3bb92009-02-18 21:56:37 +00003602 if (Cand->Function->isDeleted() ||
Argyrios Kyrtzidis40b598e2009-06-30 02:34:44 +00003603 Cand->Function->getAttr<UnavailableAttr>()) {
Douglas Gregor48f3bb92009-02-18 21:56:37 +00003604 // Deleted or "unavailable" function.
3605 Diag(Cand->Function->getLocation(), diag::err_ovl_candidate_deleted)
3606 << Cand->Function->isDeleted();
3607 } else {
3608 // Normal function
3609 // FIXME: Give a better reason!
3610 Diag(Cand->Function->getLocation(), diag::err_ovl_candidate);
3611 }
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003612 } else if (Cand->IsSurrogate) {
Douglas Gregor621b3932008-11-21 02:54:28 +00003613 // Desugar the type of the surrogate down to a function type,
3614 // retaining as many typedefs as possible while still showing
3615 // the function type (and, therefore, its parameter types).
3616 QualType FnType = Cand->Surrogate->getConversionType();
Sebastian Redl7c80bd62009-03-16 23:22:08 +00003617 bool isLValueReference = false;
3618 bool isRValueReference = false;
Douglas Gregor621b3932008-11-21 02:54:28 +00003619 bool isPointer = false;
Sebastian Redl7c80bd62009-03-16 23:22:08 +00003620 if (const LValueReferenceType *FnTypeRef =
Ted Kremenek6217b802009-07-29 21:53:49 +00003621 FnType->getAs<LValueReferenceType>()) {
Douglas Gregor621b3932008-11-21 02:54:28 +00003622 FnType = FnTypeRef->getPointeeType();
Sebastian Redl7c80bd62009-03-16 23:22:08 +00003623 isLValueReference = true;
3624 } else if (const RValueReferenceType *FnTypeRef =
Ted Kremenek6217b802009-07-29 21:53:49 +00003625 FnType->getAs<RValueReferenceType>()) {
Sebastian Redl7c80bd62009-03-16 23:22:08 +00003626 FnType = FnTypeRef->getPointeeType();
3627 isRValueReference = true;
Douglas Gregor621b3932008-11-21 02:54:28 +00003628 }
Ted Kremenek6217b802009-07-29 21:53:49 +00003629 if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
Douglas Gregor621b3932008-11-21 02:54:28 +00003630 FnType = FnTypePtr->getPointeeType();
3631 isPointer = true;
3632 }
3633 // Desugar down to a function type.
3634 FnType = QualType(FnType->getAsFunctionType(), 0);
3635 // Reconstruct the pointer/reference as appropriate.
3636 if (isPointer) FnType = Context.getPointerType(FnType);
Sebastian Redl7c80bd62009-03-16 23:22:08 +00003637 if (isRValueReference) FnType = Context.getRValueReferenceType(FnType);
3638 if (isLValueReference) FnType = Context.getLValueReferenceType(FnType);
Douglas Gregor621b3932008-11-21 02:54:28 +00003639
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003640 Diag(Cand->Surrogate->getLocation(), diag::err_ovl_surrogate_cand)
Chris Lattnerd1625842008-11-24 06:25:27 +00003641 << FnType;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003642 } else {
3643 // FIXME: We need to get the identifier in here
Mike Stump390b4cc2009-05-16 07:39:55 +00003644 // FIXME: Do we want the error message to point at the operator?
3645 // (built-ins won't have a location)
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003646 QualType FnType
3647 = Context.getFunctionType(Cand->BuiltinTypes.ResultTy,
3648 Cand->BuiltinTypes.ParamTypes,
3649 Cand->Conversions.size(),
3650 false, 0);
3651
Chris Lattnerd1625842008-11-24 06:25:27 +00003652 Diag(SourceLocation(), diag::err_ovl_builtin_candidate) << FnType;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003653 }
3654 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003655 }
3656}
3657
Douglas Gregor904eed32008-11-10 20:40:00 +00003658/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
3659/// an overloaded function (C++ [over.over]), where @p From is an
3660/// expression with overloaded function type and @p ToType is the type
3661/// we're trying to resolve to. For example:
3662///
3663/// @code
3664/// int f(double);
3665/// int f(int);
3666///
3667/// int (*pfd)(double) = f; // selects f(double)
3668/// @endcode
3669///
3670/// This routine returns the resulting FunctionDecl if it could be
3671/// resolved, and NULL otherwise. When @p Complain is true, this
3672/// routine will emit diagnostics if there is an error.
3673FunctionDecl *
Sebastian Redl33b399a2009-02-04 21:23:32 +00003674Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
Douglas Gregor904eed32008-11-10 20:40:00 +00003675 bool Complain) {
3676 QualType FunctionType = ToType;
Sebastian Redl33b399a2009-02-04 21:23:32 +00003677 bool IsMember = false;
Ted Kremenek6217b802009-07-29 21:53:49 +00003678 if (const PointerType *ToTypePtr = ToType->getAs<PointerType>())
Douglas Gregor904eed32008-11-10 20:40:00 +00003679 FunctionType = ToTypePtr->getPointeeType();
Ted Kremenek6217b802009-07-29 21:53:49 +00003680 else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>())
Daniel Dunbarbb710012009-02-26 19:13:44 +00003681 FunctionType = ToTypeRef->getPointeeType();
Sebastian Redl33b399a2009-02-04 21:23:32 +00003682 else if (const MemberPointerType *MemTypePtr =
Ted Kremenek6217b802009-07-29 21:53:49 +00003683 ToType->getAs<MemberPointerType>()) {
Sebastian Redl33b399a2009-02-04 21:23:32 +00003684 FunctionType = MemTypePtr->getPointeeType();
3685 IsMember = true;
3686 }
Douglas Gregor904eed32008-11-10 20:40:00 +00003687
3688 // We only look at pointers or references to functions.
Douglas Gregor72e771f2009-07-09 17:16:51 +00003689 FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType();
Douglas Gregor83314aa2009-07-08 20:55:45 +00003690 if (!FunctionType->isFunctionType())
Douglas Gregor904eed32008-11-10 20:40:00 +00003691 return 0;
3692
3693 // Find the actual overloaded function declaration.
3694 OverloadedFunctionDecl *Ovl = 0;
3695
3696 // C++ [over.over]p1:
3697 // [...] [Note: any redundant set of parentheses surrounding the
3698 // overloaded function name is ignored (5.1). ]
3699 Expr *OvlExpr = From->IgnoreParens();
3700
3701 // C++ [over.over]p1:
3702 // [...] The overloaded function name can be preceded by the &
3703 // operator.
3704 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) {
3705 if (UnOp->getOpcode() == UnaryOperator::AddrOf)
3706 OvlExpr = UnOp->getSubExpr()->IgnoreParens();
3707 }
3708
3709 // Try to dig out the overloaded function.
Douglas Gregor83314aa2009-07-08 20:55:45 +00003710 FunctionTemplateDecl *FunctionTemplate = 0;
3711 if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(OvlExpr)) {
Douglas Gregor904eed32008-11-10 20:40:00 +00003712 Ovl = dyn_cast<OverloadedFunctionDecl>(DR->getDecl());
Douglas Gregor83314aa2009-07-08 20:55:45 +00003713 FunctionTemplate = dyn_cast<FunctionTemplateDecl>(DR->getDecl());
3714 }
Douglas Gregor904eed32008-11-10 20:40:00 +00003715
Douglas Gregor83314aa2009-07-08 20:55:45 +00003716 // If there's no overloaded function declaration or function template,
3717 // we're done.
3718 if (!Ovl && !FunctionTemplate)
Douglas Gregor904eed32008-11-10 20:40:00 +00003719 return 0;
3720
Douglas Gregor83314aa2009-07-08 20:55:45 +00003721 OverloadIterator Fun;
3722 if (Ovl)
3723 Fun = Ovl;
3724 else
3725 Fun = FunctionTemplate;
3726
Douglas Gregor904eed32008-11-10 20:40:00 +00003727 // Look through all of the overloaded functions, searching for one
3728 // whose type matches exactly.
Douglas Gregor00aeb522009-07-08 23:33:52 +00003729 llvm::SmallPtrSet<FunctionDecl *, 4> Matches;
3730
3731 bool FoundNonTemplateFunction = false;
Douglas Gregor83314aa2009-07-08 20:55:45 +00003732 for (OverloadIterator FunEnd; Fun != FunEnd; ++Fun) {
Douglas Gregor904eed32008-11-10 20:40:00 +00003733 // C++ [over.over]p3:
3734 // Non-member functions and static member functions match
Sebastian Redl0defd762009-02-05 12:33:33 +00003735 // targets of type "pointer-to-function" or "reference-to-function."
3736 // Nonstatic member functions match targets of
Sebastian Redl33b399a2009-02-04 21:23:32 +00003737 // type "pointer-to-member-function."
3738 // Note that according to DR 247, the containing class does not matter.
Douglas Gregor83314aa2009-07-08 20:55:45 +00003739
3740 if (FunctionTemplateDecl *FunctionTemplate
3741 = dyn_cast<FunctionTemplateDecl>(*Fun)) {
Douglas Gregor00aeb522009-07-08 23:33:52 +00003742 if (CXXMethodDecl *Method
3743 = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
3744 // Skip non-static function templates when converting to pointer, and
3745 // static when converting to member pointer.
3746 if (Method->isStatic() == IsMember)
3747 continue;
3748 } else if (IsMember)
3749 continue;
3750
3751 // C++ [over.over]p2:
3752 // If the name is a function template, template argument deduction is
3753 // done (14.8.2.2), and if the argument deduction succeeds, the
3754 // resulting template argument list is used to generate a single
3755 // function template specialization, which is added to the set of
3756 // overloaded functions considered.
Douglas Gregor83314aa2009-07-08 20:55:45 +00003757 FunctionDecl *Specialization = 0;
3758 TemplateDeductionInfo Info(Context);
3759 if (TemplateDeductionResult Result
3760 = DeduceTemplateArguments(FunctionTemplate, /*FIXME*/false,
3761 /*FIXME:*/0, /*FIXME:*/0,
3762 FunctionType, Specialization, Info)) {
3763 // FIXME: make a note of the failed deduction for diagnostics.
3764 (void)Result;
3765 } else {
3766 assert(FunctionType
3767 == Context.getCanonicalType(Specialization->getType()));
Douglas Gregor00aeb522009-07-08 23:33:52 +00003768 Matches.insert(
Argyrios Kyrtzidis97fbaa22009-07-18 00:34:25 +00003769 cast<FunctionDecl>(Specialization->getCanonicalDecl()));
Douglas Gregor83314aa2009-07-08 20:55:45 +00003770 }
3771 }
3772
Sebastian Redl33b399a2009-02-04 21:23:32 +00003773 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Fun)) {
3774 // Skip non-static functions when converting to pointer, and static
3775 // when converting to member pointer.
3776 if (Method->isStatic() == IsMember)
Douglas Gregor904eed32008-11-10 20:40:00 +00003777 continue;
Douglas Gregor00aeb522009-07-08 23:33:52 +00003778 } else if (IsMember)
Sebastian Redl33b399a2009-02-04 21:23:32 +00003779 continue;
Douglas Gregor904eed32008-11-10 20:40:00 +00003780
Douglas Gregore53060f2009-06-25 22:08:12 +00003781 if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(*Fun)) {
Douglas Gregor00aeb522009-07-08 23:33:52 +00003782 if (FunctionType == Context.getCanonicalType(FunDecl->getType())) {
Argyrios Kyrtzidis97fbaa22009-07-18 00:34:25 +00003783 Matches.insert(cast<FunctionDecl>(Fun->getCanonicalDecl()));
Douglas Gregor00aeb522009-07-08 23:33:52 +00003784 FoundNonTemplateFunction = true;
3785 }
Douglas Gregor83314aa2009-07-08 20:55:45 +00003786 }
Douglas Gregor904eed32008-11-10 20:40:00 +00003787 }
3788
Douglas Gregor00aeb522009-07-08 23:33:52 +00003789 // If there were 0 or 1 matches, we're done.
3790 if (Matches.empty())
3791 return 0;
3792 else if (Matches.size() == 1)
3793 return *Matches.begin();
3794
3795 // C++ [over.over]p4:
3796 // If more than one function is selected, [...]
3797 llvm::SmallVector<FunctionDecl *, 4> RemainingMatches;
3798 if (FoundNonTemplateFunction) {
3799 // [...] any function template specializations in the set are eliminated
3800 // if the set also contains a non-template function, [...]
3801 for (llvm::SmallPtrSet<FunctionDecl *, 4>::iterator M = Matches.begin(),
3802 MEnd = Matches.end();
3803 M != MEnd; ++M)
3804 if ((*M)->getPrimaryTemplate() == 0)
3805 RemainingMatches.push_back(*M);
3806 } else {
3807 // [...] and any given function template specialization F1 is eliminated
3808 // if the set contains a second function template specialization whose
3809 // function template is more specialized than the function template of F1
3810 // according to the partial ordering rules of 14.5.5.2.
3811 // FIXME: Implement this!
3812 RemainingMatches.append(Matches.begin(), Matches.end());
3813 }
3814
3815 // [...] After such eliminations, if any, there shall remain exactly one
3816 // selected function.
3817 if (RemainingMatches.size() == 1)
3818 return RemainingMatches.front();
3819
3820 // FIXME: We should probably return the same thing that BestViableFunction
3821 // returns (even if we issue the diagnostics here).
3822 Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous)
3823 << RemainingMatches[0]->getDeclName();
3824 for (unsigned I = 0, N = RemainingMatches.size(); I != N; ++I)
3825 Diag(RemainingMatches[I]->getLocation(), diag::err_ovl_candidate);
Douglas Gregor904eed32008-11-10 20:40:00 +00003826 return 0;
3827}
3828
Douglas Gregorf6b89692008-11-26 05:54:23 +00003829/// ResolveOverloadedCallFn - Given the call expression that calls Fn
Douglas Gregorfa047642009-02-04 00:32:51 +00003830/// (which eventually refers to the declaration Func) and the call
3831/// arguments Args/NumArgs, attempt to resolve the function call down
3832/// to a specific function. If overload resolution succeeds, returns
3833/// the function declaration produced by overload
Douglas Gregor0a396682008-11-26 06:01:48 +00003834/// resolution. Otherwise, emits diagnostics, deletes all of the
Douglas Gregorf6b89692008-11-26 05:54:23 +00003835/// arguments and Fn, and returns NULL.
Douglas Gregorfa047642009-02-04 00:32:51 +00003836FunctionDecl *Sema::ResolveOverloadedCallFn(Expr *Fn, NamedDecl *Callee,
Douglas Gregor17330012009-02-04 15:01:18 +00003837 DeclarationName UnqualifiedName,
Douglas Gregor6db8ed42009-06-30 23:57:56 +00003838 bool HasExplicitTemplateArgs,
3839 const TemplateArgument *ExplicitTemplateArgs,
3840 unsigned NumExplicitTemplateArgs,
Douglas Gregor0a396682008-11-26 06:01:48 +00003841 SourceLocation LParenLoc,
3842 Expr **Args, unsigned NumArgs,
3843 SourceLocation *CommaLocs,
Douglas Gregorfa047642009-02-04 00:32:51 +00003844 SourceLocation RParenLoc,
Douglas Gregor17330012009-02-04 15:01:18 +00003845 bool &ArgumentDependentLookup) {
Douglas Gregorf6b89692008-11-26 05:54:23 +00003846 OverloadCandidateSet CandidateSet;
Douglas Gregor17330012009-02-04 15:01:18 +00003847
3848 // Add the functions denoted by Callee to the set of candidate
3849 // functions. While we're doing so, track whether argument-dependent
3850 // lookup still applies, per:
3851 //
3852 // C++0x [basic.lookup.argdep]p3:
3853 // Let X be the lookup set produced by unqualified lookup (3.4.1)
3854 // and let Y be the lookup set produced by argument dependent
3855 // lookup (defined as follows). If X contains
3856 //
3857 // -- a declaration of a class member, or
3858 //
3859 // -- a block-scope function declaration that is not a
3860 // using-declaration, or
3861 //
3862 // -- a declaration that is neither a function or a function
3863 // template
3864 //
3865 // then Y is empty.
Douglas Gregorfa047642009-02-04 00:32:51 +00003866 if (OverloadedFunctionDecl *Ovl
Douglas Gregor17330012009-02-04 15:01:18 +00003867 = dyn_cast_or_null<OverloadedFunctionDecl>(Callee)) {
3868 for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
3869 FuncEnd = Ovl->function_end();
3870 Func != FuncEnd; ++Func) {
Douglas Gregore53060f2009-06-25 22:08:12 +00003871 DeclContext *Ctx = 0;
3872 if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(*Func)) {
Douglas Gregor6db8ed42009-06-30 23:57:56 +00003873 if (HasExplicitTemplateArgs)
3874 continue;
3875
Douglas Gregore53060f2009-06-25 22:08:12 +00003876 AddOverloadCandidate(FunDecl, Args, NumArgs, CandidateSet);
3877 Ctx = FunDecl->getDeclContext();
3878 } else {
3879 FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(*Func);
Douglas Gregor6db8ed42009-06-30 23:57:56 +00003880 AddTemplateOverloadCandidate(FunTmpl, HasExplicitTemplateArgs,
3881 ExplicitTemplateArgs,
3882 NumExplicitTemplateArgs,
3883 Args, NumArgs, CandidateSet);
Douglas Gregore53060f2009-06-25 22:08:12 +00003884 Ctx = FunTmpl->getDeclContext();
3885 }
Douglas Gregor17330012009-02-04 15:01:18 +00003886
Douglas Gregore53060f2009-06-25 22:08:12 +00003887
3888 if (Ctx->isRecord() || Ctx->isFunctionOrMethod())
Douglas Gregor17330012009-02-04 15:01:18 +00003889 ArgumentDependentLookup = false;
3890 }
3891 } else if (FunctionDecl *Func = dyn_cast_or_null<FunctionDecl>(Callee)) {
Douglas Gregor6db8ed42009-06-30 23:57:56 +00003892 assert(!HasExplicitTemplateArgs && "Explicit template arguments?");
Douglas Gregor17330012009-02-04 15:01:18 +00003893 AddOverloadCandidate(Func, Args, NumArgs, CandidateSet);
3894
3895 if (Func->getDeclContext()->isRecord() ||
3896 Func->getDeclContext()->isFunctionOrMethod())
3897 ArgumentDependentLookup = false;
Douglas Gregore53060f2009-06-25 22:08:12 +00003898 } else if (FunctionTemplateDecl *FuncTemplate
3899 = dyn_cast_or_null<FunctionTemplateDecl>(Callee)) {
Douglas Gregor6db8ed42009-06-30 23:57:56 +00003900 AddTemplateOverloadCandidate(FuncTemplate, HasExplicitTemplateArgs,
3901 ExplicitTemplateArgs,
3902 NumExplicitTemplateArgs,
3903 Args, NumArgs, CandidateSet);
Douglas Gregore53060f2009-06-25 22:08:12 +00003904
3905 if (FuncTemplate->getDeclContext()->isRecord())
3906 ArgumentDependentLookup = false;
3907 }
Douglas Gregor17330012009-02-04 15:01:18 +00003908
3909 if (Callee)
3910 UnqualifiedName = Callee->getDeclName();
3911
Douglas Gregor6db8ed42009-06-30 23:57:56 +00003912 // FIXME: Pass explicit template arguments through for ADL
Douglas Gregorfa047642009-02-04 00:32:51 +00003913 if (ArgumentDependentLookup)
Douglas Gregor17330012009-02-04 15:01:18 +00003914 AddArgumentDependentLookupCandidates(UnqualifiedName, Args, NumArgs,
Douglas Gregorfa047642009-02-04 00:32:51 +00003915 CandidateSet);
3916
Douglas Gregorf6b89692008-11-26 05:54:23 +00003917 OverloadCandidateSet::iterator Best;
Douglas Gregore0762c92009-06-19 23:52:42 +00003918 switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) {
Douglas Gregor0a396682008-11-26 06:01:48 +00003919 case OR_Success:
3920 return Best->Function;
Douglas Gregorf6b89692008-11-26 05:54:23 +00003921
3922 case OR_No_Viable_Function:
Chris Lattner4330d652009-02-17 07:29:20 +00003923 Diag(Fn->getSourceRange().getBegin(),
Douglas Gregorf6b89692008-11-26 05:54:23 +00003924 diag::err_ovl_no_viable_function_in_call)
Chris Lattner4330d652009-02-17 07:29:20 +00003925 << UnqualifiedName << Fn->getSourceRange();
Douglas Gregorf6b89692008-11-26 05:54:23 +00003926 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3927 break;
3928
3929 case OR_Ambiguous:
3930 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
Douglas Gregor17330012009-02-04 15:01:18 +00003931 << UnqualifiedName << Fn->getSourceRange();
Douglas Gregorf6b89692008-11-26 05:54:23 +00003932 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3933 break;
Douglas Gregor48f3bb92009-02-18 21:56:37 +00003934
3935 case OR_Deleted:
3936 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
3937 << Best->Function->isDeleted()
3938 << UnqualifiedName
3939 << Fn->getSourceRange();
3940 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3941 break;
Douglas Gregorf6b89692008-11-26 05:54:23 +00003942 }
3943
3944 // Overload resolution failed. Destroy all of the subexpressions and
3945 // return NULL.
3946 Fn->Destroy(Context);
3947 for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
3948 Args[Arg]->Destroy(Context);
3949 return 0;
3950}
3951
Douglas Gregorbc736fc2009-03-13 23:49:33 +00003952/// \brief Create a unary operation that may resolve to an overloaded
3953/// operator.
3954///
3955/// \param OpLoc The location of the operator itself (e.g., '*').
3956///
3957/// \param OpcIn The UnaryOperator::Opcode that describes this
3958/// operator.
3959///
3960/// \param Functions The set of non-member functions that will be
3961/// considered by overload resolution. The caller needs to build this
3962/// set based on the context using, e.g.,
3963/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
3964/// set should not contain any member functions; those will be added
3965/// by CreateOverloadedUnaryOp().
3966///
3967/// \param input The input argument.
3968Sema::OwningExprResult Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc,
3969 unsigned OpcIn,
3970 FunctionSet &Functions,
3971 ExprArg input) {
3972 UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
3973 Expr *Input = (Expr *)input.get();
3974
3975 OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
3976 assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
3977 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3978
3979 Expr *Args[2] = { Input, 0 };
3980 unsigned NumArgs = 1;
3981
3982 // For post-increment and post-decrement, add the implicit '0' as
3983 // the second argument, so that we know this is a post-increment or
3984 // post-decrement.
3985 if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) {
3986 llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
3987 Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy,
3988 SourceLocation());
3989 NumArgs = 2;
3990 }
3991
3992 if (Input->isTypeDependent()) {
3993 OverloadedFunctionDecl *Overloads
3994 = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
3995 for (FunctionSet::iterator Func = Functions.begin(),
3996 FuncEnd = Functions.end();
3997 Func != FuncEnd; ++Func)
3998 Overloads->addOverload(*Func);
3999
4000 DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
4001 OpLoc, false, false);
4002
4003 input.release();
4004 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
4005 &Args[0], NumArgs,
4006 Context.DependentTy,
4007 OpLoc));
4008 }
4009
4010 // Build an empty overload set.
4011 OverloadCandidateSet CandidateSet;
4012
4013 // Add the candidates from the given function set.
4014 AddFunctionCandidates(Functions, &Args[0], NumArgs, CandidateSet, false);
4015
4016 // Add operator candidates that are member functions.
4017 AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
4018
4019 // Add builtin operator candidates.
4020 AddBuiltinOperatorCandidates(Op, &Args[0], NumArgs, CandidateSet);
4021
4022 // Perform overload resolution.
4023 OverloadCandidateSet::iterator Best;
Douglas Gregore0762c92009-06-19 23:52:42 +00004024 switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
Douglas Gregorbc736fc2009-03-13 23:49:33 +00004025 case OR_Success: {
4026 // We found a built-in operator or an overloaded operator.
4027 FunctionDecl *FnDecl = Best->Function;
4028
4029 if (FnDecl) {
4030 // We matched an overloaded operator. Build a call to that
4031 // operator.
4032
4033 // Convert the arguments.
4034 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
4035 if (PerformObjectArgumentInitialization(Input, Method))
4036 return ExprError();
4037 } else {
4038 // Convert the arguments.
4039 if (PerformCopyInitialization(Input,
4040 FnDecl->getParamDecl(0)->getType(),
4041 "passing"))
4042 return ExprError();
4043 }
4044
4045 // Determine the result type
4046 QualType ResultTy
4047 = FnDecl->getType()->getAsFunctionType()->getResultType();
4048 ResultTy = ResultTy.getNonReferenceType();
4049
4050 // Build the actual expression node.
4051 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
4052 SourceLocation());
4053 UsualUnaryConversions(FnExpr);
4054
4055 input.release();
4056 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
4057 &Input, 1, ResultTy,
4058 OpLoc));
4059 } else {
4060 // We matched a built-in operator. Convert the arguments, then
4061 // break out so that we will build the appropriate built-in
4062 // operator node.
4063 if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
4064 Best->Conversions[0], "passing"))
4065 return ExprError();
4066
4067 break;
4068 }
4069 }
4070
4071 case OR_No_Viable_Function:
4072 // No viable function; fall through to handling this as a
4073 // built-in operator, which will produce an error message for us.
4074 break;
4075
4076 case OR_Ambiguous:
4077 Diag(OpLoc, diag::err_ovl_ambiguous_oper)
4078 << UnaryOperator::getOpcodeStr(Opc)
4079 << Input->getSourceRange();
4080 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4081 return ExprError();
4082
4083 case OR_Deleted:
4084 Diag(OpLoc, diag::err_ovl_deleted_oper)
4085 << Best->Function->isDeleted()
4086 << UnaryOperator::getOpcodeStr(Opc)
4087 << Input->getSourceRange();
4088 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4089 return ExprError();
4090 }
4091
4092 // Either we found no viable overloaded operator or we matched a
4093 // built-in operator. In either case, fall through to trying to
4094 // build a built-in operation.
4095 input.release();
4096 return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input));
4097}
4098
Douglas Gregor063daf62009-03-13 18:40:31 +00004099/// \brief Create a binary operation that may resolve to an overloaded
4100/// operator.
4101///
4102/// \param OpLoc The location of the operator itself (e.g., '+').
4103///
4104/// \param OpcIn The BinaryOperator::Opcode that describes this
4105/// operator.
4106///
4107/// \param Functions The set of non-member functions that will be
4108/// considered by overload resolution. The caller needs to build this
4109/// set based on the context using, e.g.,
4110/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
4111/// set should not contain any member functions; those will be added
4112/// by CreateOverloadedBinOp().
4113///
4114/// \param LHS Left-hand argument.
4115/// \param RHS Right-hand argument.
4116Sema::OwningExprResult
4117Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
4118 unsigned OpcIn,
4119 FunctionSet &Functions,
4120 Expr *LHS, Expr *RHS) {
Douglas Gregor063daf62009-03-13 18:40:31 +00004121 Expr *Args[2] = { LHS, RHS };
4122
4123 BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
4124 OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
4125 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
4126
4127 // If either side is type-dependent, create an appropriate dependent
4128 // expression.
4129 if (LHS->isTypeDependent() || RHS->isTypeDependent()) {
4130 // .* cannot be overloaded.
4131 if (Opc == BinaryOperator::PtrMemD)
4132 return Owned(new (Context) BinaryOperator(LHS, RHS, Opc,
4133 Context.DependentTy, OpLoc));
4134
4135 OverloadedFunctionDecl *Overloads
4136 = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
4137 for (FunctionSet::iterator Func = Functions.begin(),
4138 FuncEnd = Functions.end();
4139 Func != FuncEnd; ++Func)
4140 Overloads->addOverload(*Func);
4141
4142 DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
4143 OpLoc, false, false);
4144
4145 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
4146 Args, 2,
4147 Context.DependentTy,
4148 OpLoc));
4149 }
4150
4151 // If this is the .* operator, which is not overloadable, just
4152 // create a built-in binary operator.
4153 if (Opc == BinaryOperator::PtrMemD)
4154 return CreateBuiltinBinOp(OpLoc, Opc, LHS, RHS);
4155
4156 // If this is one of the assignment operators, we only perform
4157 // overload resolution if the left-hand side is a class or
4158 // enumeration type (C++ [expr.ass]p3).
4159 if (Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign &&
4160 !LHS->getType()->isOverloadableType())
4161 return CreateBuiltinBinOp(OpLoc, Opc, LHS, RHS);
4162
Douglas Gregorbc736fc2009-03-13 23:49:33 +00004163 // Build an empty overload set.
4164 OverloadCandidateSet CandidateSet;
Douglas Gregor063daf62009-03-13 18:40:31 +00004165
4166 // Add the candidates from the given function set.
4167 AddFunctionCandidates(Functions, Args, 2, CandidateSet, false);
4168
4169 // Add operator candidates that are member functions.
4170 AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
4171
4172 // Add builtin operator candidates.
4173 AddBuiltinOperatorCandidates(Op, Args, 2, CandidateSet);
4174
4175 // Perform overload resolution.
4176 OverloadCandidateSet::iterator Best;
Douglas Gregore0762c92009-06-19 23:52:42 +00004177 switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
Sebastian Redl3201f6b2009-04-16 17:51:27 +00004178 case OR_Success: {
Douglas Gregor063daf62009-03-13 18:40:31 +00004179 // We found a built-in operator or an overloaded operator.
4180 FunctionDecl *FnDecl = Best->Function;
4181
4182 if (FnDecl) {
4183 // We matched an overloaded operator. Build a call to that
4184 // operator.
4185
4186 // Convert the arguments.
4187 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
4188 if (PerformObjectArgumentInitialization(LHS, Method) ||
4189 PerformCopyInitialization(RHS, FnDecl->getParamDecl(0)->getType(),
4190 "passing"))
4191 return ExprError();
4192 } else {
4193 // Convert the arguments.
4194 if (PerformCopyInitialization(LHS, FnDecl->getParamDecl(0)->getType(),
4195 "passing") ||
4196 PerformCopyInitialization(RHS, FnDecl->getParamDecl(1)->getType(),
4197 "passing"))
4198 return ExprError();
4199 }
4200
4201 // Determine the result type
4202 QualType ResultTy
4203 = FnDecl->getType()->getAsFunctionType()->getResultType();
4204 ResultTy = ResultTy.getNonReferenceType();
4205
4206 // Build the actual expression node.
4207 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
Argyrios Kyrtzidis81273092009-07-14 03:19:38 +00004208 OpLoc);
Douglas Gregor063daf62009-03-13 18:40:31 +00004209 UsualUnaryConversions(FnExpr);
4210
4211 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
4212 Args, 2, ResultTy,
4213 OpLoc));
4214 } else {
4215 // We matched a built-in operator. Convert the arguments, then
4216 // break out so that we will build the appropriate built-in
4217 // operator node.
4218 if (PerformImplicitConversion(LHS, Best->BuiltinTypes.ParamTypes[0],
4219 Best->Conversions[0], "passing") ||
4220 PerformImplicitConversion(RHS, Best->BuiltinTypes.ParamTypes[1],
4221 Best->Conversions[1], "passing"))
4222 return ExprError();
4223
4224 break;
4225 }
4226 }
4227
4228 case OR_No_Viable_Function:
Sebastian Redl8593c782009-05-21 11:50:50 +00004229 // For class as left operand for assignment or compound assigment operator
4230 // do not fall through to handling in built-in, but report that no overloaded
4231 // assignment operator found
4232 if (LHS->getType()->isRecordType() && Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) {
4233 Diag(OpLoc, diag::err_ovl_no_viable_oper)
4234 << BinaryOperator::getOpcodeStr(Opc)
4235 << LHS->getSourceRange() << RHS->getSourceRange();
4236 return ExprError();
4237 }
Douglas Gregor063daf62009-03-13 18:40:31 +00004238 // No viable function; fall through to handling this as a
4239 // built-in operator, which will produce an error message for us.
4240 break;
4241
4242 case OR_Ambiguous:
4243 Diag(OpLoc, diag::err_ovl_ambiguous_oper)
4244 << BinaryOperator::getOpcodeStr(Opc)
4245 << LHS->getSourceRange() << RHS->getSourceRange();
4246 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4247 return ExprError();
4248
4249 case OR_Deleted:
4250 Diag(OpLoc, diag::err_ovl_deleted_oper)
4251 << Best->Function->isDeleted()
4252 << BinaryOperator::getOpcodeStr(Opc)
4253 << LHS->getSourceRange() << RHS->getSourceRange();
4254 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4255 return ExprError();
4256 }
4257
4258 // Either we found no viable overloaded operator or we matched a
4259 // built-in operator. In either case, try to build a built-in
4260 // operation.
4261 return CreateBuiltinBinOp(OpLoc, Opc, LHS, RHS);
4262}
4263
Douglas Gregor88a35142008-12-22 05:46:06 +00004264/// BuildCallToMemberFunction - Build a call to a member
4265/// function. MemExpr is the expression that refers to the member
4266/// function (and includes the object parameter), Args/NumArgs are the
4267/// arguments to the function call (not including the object
4268/// parameter). The caller needs to validate that the member
4269/// expression refers to a member function or an overloaded member
4270/// function.
4271Sema::ExprResult
4272Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
4273 SourceLocation LParenLoc, Expr **Args,
4274 unsigned NumArgs, SourceLocation *CommaLocs,
4275 SourceLocation RParenLoc) {
4276 // Dig out the member expression. This holds both the object
4277 // argument and the member function we're referring to.
4278 MemberExpr *MemExpr = 0;
4279 if (ParenExpr *ParenE = dyn_cast<ParenExpr>(MemExprE))
4280 MemExpr = dyn_cast<MemberExpr>(ParenE->getSubExpr());
4281 else
4282 MemExpr = dyn_cast<MemberExpr>(MemExprE);
4283 assert(MemExpr && "Building member call without member expression");
4284
4285 // Extract the object argument.
4286 Expr *ObjectArg = MemExpr->getBase();
Anders Carlssona552f7c2009-05-01 18:34:30 +00004287
Douglas Gregor88a35142008-12-22 05:46:06 +00004288 CXXMethodDecl *Method = 0;
4289 if (OverloadedFunctionDecl *Ovl
4290 = dyn_cast<OverloadedFunctionDecl>(MemExpr->getMemberDecl())) {
4291 // Add overload candidates
4292 OverloadCandidateSet CandidateSet;
4293 for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
4294 FuncEnd = Ovl->function_end();
4295 Func != FuncEnd; ++Func) {
4296 assert(isa<CXXMethodDecl>(*Func) && "Function is not a method");
4297 Method = cast<CXXMethodDecl>(*Func);
4298 AddMethodCandidate(Method, ObjectArg, Args, NumArgs, CandidateSet,
4299 /*SuppressUserConversions=*/false);
4300 }
4301
4302 OverloadCandidateSet::iterator Best;
Douglas Gregore0762c92009-06-19 23:52:42 +00004303 switch (BestViableFunction(CandidateSet, MemExpr->getLocStart(), Best)) {
Douglas Gregor88a35142008-12-22 05:46:06 +00004304 case OR_Success:
4305 Method = cast<CXXMethodDecl>(Best->Function);
4306 break;
4307
4308 case OR_No_Viable_Function:
4309 Diag(MemExpr->getSourceRange().getBegin(),
4310 diag::err_ovl_no_viable_member_function_in_call)
Chris Lattner4330d652009-02-17 07:29:20 +00004311 << Ovl->getDeclName() << MemExprE->getSourceRange();
Douglas Gregor88a35142008-12-22 05:46:06 +00004312 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4313 // FIXME: Leaking incoming expressions!
4314 return true;
4315
4316 case OR_Ambiguous:
4317 Diag(MemExpr->getSourceRange().getBegin(),
4318 diag::err_ovl_ambiguous_member_call)
4319 << Ovl->getDeclName() << MemExprE->getSourceRange();
4320 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4321 // FIXME: Leaking incoming expressions!
4322 return true;
Douglas Gregor48f3bb92009-02-18 21:56:37 +00004323
4324 case OR_Deleted:
4325 Diag(MemExpr->getSourceRange().getBegin(),
4326 diag::err_ovl_deleted_member_call)
4327 << Best->Function->isDeleted()
4328 << Ovl->getDeclName() << MemExprE->getSourceRange();
4329 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4330 // FIXME: Leaking incoming expressions!
4331 return true;
Douglas Gregor88a35142008-12-22 05:46:06 +00004332 }
4333
4334 FixOverloadedFunctionReference(MemExpr, Method);
4335 } else {
4336 Method = dyn_cast<CXXMethodDecl>(MemExpr->getMemberDecl());
4337 }
4338
4339 assert(Method && "Member call to something that isn't a method?");
Ted Kremenek8189cde2009-02-07 01:47:29 +00004340 ExprOwningPtr<CXXMemberCallExpr>
Ted Kremenek668bf912009-02-09 20:51:47 +00004341 TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExpr, Args,
4342 NumArgs,
Douglas Gregor88a35142008-12-22 05:46:06 +00004343 Method->getResultType().getNonReferenceType(),
4344 RParenLoc));
4345
4346 // Convert the object argument (for a non-static member function call).
4347 if (!Method->isStatic() &&
4348 PerformObjectArgumentInitialization(ObjectArg, Method))
4349 return true;
4350 MemExpr->setBase(ObjectArg);
4351
4352 // Convert the rest of the arguments
Douglas Gregor72564e72009-02-26 23:50:07 +00004353 const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType());
Douglas Gregor88a35142008-12-22 05:46:06 +00004354 if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
4355 RParenLoc))
4356 return true;
4357
Sebastian Redl0eb23302009-01-19 00:08:26 +00004358 return CheckFunctionCall(Method, TheCall.take()).release();
Douglas Gregor88a35142008-12-22 05:46:06 +00004359}
4360
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004361/// BuildCallToObjectOfClassType - Build a call to an object of class
4362/// type (C++ [over.call.object]), which can end up invoking an
4363/// overloaded function call operator (@c operator()) or performing a
4364/// user-defined conversion on the object argument.
Douglas Gregor88a35142008-12-22 05:46:06 +00004365Sema::ExprResult
Douglas Gregor5c37de72008-12-06 00:22:45 +00004366Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
4367 SourceLocation LParenLoc,
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004368 Expr **Args, unsigned NumArgs,
4369 SourceLocation *CommaLocs,
4370 SourceLocation RParenLoc) {
4371 assert(Object->getType()->isRecordType() && "Requires object type argument");
Ted Kremenek6217b802009-07-29 21:53:49 +00004372 const RecordType *Record = Object->getType()->getAs<RecordType>();
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004373
4374 // C++ [over.call.object]p1:
4375 // If the primary-expression E in the function call syntax
4376 // evaluates to a class object of type “cv T”, then the set of
4377 // candidate functions includes at least the function call
4378 // operators of T. The function call operators of T are obtained by
4379 // ordinary lookup of the name operator() in the context of
4380 // (E).operator().
4381 OverloadCandidateSet CandidateSet;
Douglas Gregor44b43212008-12-11 16:49:14 +00004382 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
Douglas Gregor3fc749d2008-12-23 00:26:44 +00004383 DeclContext::lookup_const_iterator Oper, OperEnd;
Argyrios Kyrtzidis17945a02009-06-30 02:36:12 +00004384 for (llvm::tie(Oper, OperEnd) = Record->getDecl()->lookup(OpName);
Douglas Gregor3fc749d2008-12-23 00:26:44 +00004385 Oper != OperEnd; ++Oper)
4386 AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Object, Args, NumArgs,
4387 CandidateSet, /*SuppressUserConversions=*/false);
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004388
Douglas Gregor106c6eb2008-11-19 22:57:39 +00004389 // C++ [over.call.object]p2:
4390 // In addition, for each conversion function declared in T of the
4391 // form
4392 //
4393 // operator conversion-type-id () cv-qualifier;
4394 //
4395 // where cv-qualifier is the same cv-qualification as, or a
4396 // greater cv-qualification than, cv, and where conversion-type-id
Douglas Gregora967a6f2008-11-20 13:33:37 +00004397 // denotes the type "pointer to function of (P1,...,Pn) returning
4398 // R", or the type "reference to pointer to function of
4399 // (P1,...,Pn) returning R", or the type "reference to function
4400 // of (P1,...,Pn) returning R", a surrogate call function [...]
Douglas Gregor106c6eb2008-11-19 22:57:39 +00004401 // is also considered as a candidate function. Similarly,
4402 // surrogate call functions are added to the set of candidate
4403 // functions for each conversion function declared in an
4404 // accessible base class provided the function is not hidden
4405 // within T by another intervening declaration.
4406 //
4407 // FIXME: Look in base classes for more conversion operators!
4408 OverloadedFunctionDecl *Conversions
4409 = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions();
Douglas Gregor621b3932008-11-21 02:54:28 +00004410 for (OverloadedFunctionDecl::function_iterator
4411 Func = Conversions->function_begin(),
4412 FuncEnd = Conversions->function_end();
4413 Func != FuncEnd; ++Func) {
Douglas Gregor106c6eb2008-11-19 22:57:39 +00004414 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
4415
4416 // Strip the reference type (if any) and then the pointer type (if
4417 // any) to get down to what might be a function type.
4418 QualType ConvType = Conv->getConversionType().getNonReferenceType();
Ted Kremenek6217b802009-07-29 21:53:49 +00004419 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
Douglas Gregor106c6eb2008-11-19 22:57:39 +00004420 ConvType = ConvPtrType->getPointeeType();
4421
Douglas Gregor72564e72009-02-26 23:50:07 +00004422 if (const FunctionProtoType *Proto = ConvType->getAsFunctionProtoType())
Douglas Gregor106c6eb2008-11-19 22:57:39 +00004423 AddSurrogateCandidate(Conv, Proto, Object, Args, NumArgs, CandidateSet);
4424 }
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004425
4426 // Perform overload resolution.
4427 OverloadCandidateSet::iterator Best;
Douglas Gregore0762c92009-06-19 23:52:42 +00004428 switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) {
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004429 case OR_Success:
Douglas Gregor106c6eb2008-11-19 22:57:39 +00004430 // Overload resolution succeeded; we'll build the appropriate call
4431 // below.
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004432 break;
4433
4434 case OR_No_Viable_Function:
Sebastian Redle4c452c2008-11-22 13:44:36 +00004435 Diag(Object->getSourceRange().getBegin(),
4436 diag::err_ovl_no_viable_object_call)
Chris Lattner4330d652009-02-17 07:29:20 +00004437 << Object->getType() << Object->getSourceRange();
Sebastian Redle4c452c2008-11-22 13:44:36 +00004438 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004439 break;
4440
4441 case OR_Ambiguous:
4442 Diag(Object->getSourceRange().getBegin(),
4443 diag::err_ovl_ambiguous_object_call)
Chris Lattnerd1625842008-11-24 06:25:27 +00004444 << Object->getType() << Object->getSourceRange();
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004445 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4446 break;
Douglas Gregor48f3bb92009-02-18 21:56:37 +00004447
4448 case OR_Deleted:
4449 Diag(Object->getSourceRange().getBegin(),
4450 diag::err_ovl_deleted_object_call)
4451 << Best->Function->isDeleted()
4452 << Object->getType() << Object->getSourceRange();
4453 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4454 break;
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004455 }
4456
Douglas Gregor106c6eb2008-11-19 22:57:39 +00004457 if (Best == CandidateSet.end()) {
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004458 // We had an error; delete all of the subexpressions and return
4459 // the error.
Ted Kremenek8189cde2009-02-07 01:47:29 +00004460 Object->Destroy(Context);
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004461 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
Ted Kremenek8189cde2009-02-07 01:47:29 +00004462 Args[ArgIdx]->Destroy(Context);
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004463 return true;
4464 }
4465
Douglas Gregor106c6eb2008-11-19 22:57:39 +00004466 if (Best->Function == 0) {
4467 // Since there is no function declaration, this is one of the
4468 // surrogate candidates. Dig out the conversion function.
4469 CXXConversionDecl *Conv
4470 = cast<CXXConversionDecl>(
4471 Best->Conversions[0].UserDefined.ConversionFunction);
4472
4473 // We selected one of the surrogate functions that converts the
4474 // object parameter to a function pointer. Perform the conversion
4475 // on the object argument, then let ActOnCallExpr finish the job.
4476 // FIXME: Represent the user-defined conversion in the AST!
Sebastian Redl0eb23302009-01-19 00:08:26 +00004477 ImpCastExprToType(Object,
Douglas Gregor106c6eb2008-11-19 22:57:39 +00004478 Conv->getConversionType().getNonReferenceType(),
Anders Carlsson3503d042009-07-31 01:23:52 +00004479 CastExpr::CK_Unknown,
Sebastian Redl7c80bd62009-03-16 23:22:08 +00004480 Conv->getConversionType()->isLValueReferenceType());
Sebastian Redl0eb23302009-01-19 00:08:26 +00004481 return ActOnCallExpr(S, ExprArg(*this, Object), LParenLoc,
4482 MultiExprArg(*this, (ExprTy**)Args, NumArgs),
4483 CommaLocs, RParenLoc).release();
Douglas Gregor106c6eb2008-11-19 22:57:39 +00004484 }
4485
4486 // We found an overloaded operator(). Build a CXXOperatorCallExpr
4487 // that calls this method, using Object for the implicit object
4488 // parameter and passing along the remaining arguments.
4489 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
Douglas Gregor72564e72009-02-26 23:50:07 +00004490 const FunctionProtoType *Proto = Method->getType()->getAsFunctionProtoType();
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004491
4492 unsigned NumArgsInProto = Proto->getNumArgs();
4493 unsigned NumArgsToCheck = NumArgs;
4494
4495 // Build the full argument list for the method call (the
4496 // implicit object parameter is placed at the beginning of the
4497 // list).
4498 Expr **MethodArgs;
4499 if (NumArgs < NumArgsInProto) {
4500 NumArgsToCheck = NumArgsInProto;
4501 MethodArgs = new Expr*[NumArgsInProto + 1];
4502 } else {
4503 MethodArgs = new Expr*[NumArgs + 1];
4504 }
4505 MethodArgs[0] = Object;
4506 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
4507 MethodArgs[ArgIdx + 1] = Args[ArgIdx];
4508
Ted Kremenek8189cde2009-02-07 01:47:29 +00004509 Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
4510 SourceLocation());
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004511 UsualUnaryConversions(NewFn);
4512
4513 // Once we've built TheCall, all of the expressions are properly
4514 // owned.
4515 QualType ResultTy = Method->getResultType().getNonReferenceType();
Ted Kremenek8189cde2009-02-07 01:47:29 +00004516 ExprOwningPtr<CXXOperatorCallExpr>
Douglas Gregor063daf62009-03-13 18:40:31 +00004517 TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
4518 MethodArgs, NumArgs + 1,
Ted Kremenek8189cde2009-02-07 01:47:29 +00004519 ResultTy, RParenLoc));
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004520 delete [] MethodArgs;
4521
Douglas Gregor518fda12009-01-13 05:10:00 +00004522 // We may have default arguments. If so, we need to allocate more
4523 // slots in the call for them.
4524 if (NumArgs < NumArgsInProto)
Ted Kremenek8189cde2009-02-07 01:47:29 +00004525 TheCall->setNumArgs(Context, NumArgsInProto + 1);
Douglas Gregor518fda12009-01-13 05:10:00 +00004526 else if (NumArgs > NumArgsInProto)
4527 NumArgsToCheck = NumArgsInProto;
4528
Chris Lattner312531a2009-04-12 08:11:20 +00004529 bool IsError = false;
4530
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004531 // Initialize the implicit object parameter.
Chris Lattner312531a2009-04-12 08:11:20 +00004532 IsError |= PerformObjectArgumentInitialization(Object, Method);
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004533 TheCall->setArg(0, Object);
4534
Chris Lattner312531a2009-04-12 08:11:20 +00004535
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004536 // Check the argument types.
4537 for (unsigned i = 0; i != NumArgsToCheck; i++) {
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004538 Expr *Arg;
Douglas Gregor518fda12009-01-13 05:10:00 +00004539 if (i < NumArgs) {
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004540 Arg = Args[i];
Douglas Gregor518fda12009-01-13 05:10:00 +00004541
4542 // Pass the argument.
4543 QualType ProtoArgType = Proto->getArgType(i);
Chris Lattner312531a2009-04-12 08:11:20 +00004544 IsError |= PerformCopyInitialization(Arg, ProtoArgType, "passing");
Douglas Gregor518fda12009-01-13 05:10:00 +00004545 } else {
Ted Kremenek8189cde2009-02-07 01:47:29 +00004546 Arg = new (Context) CXXDefaultArgExpr(Method->getParamDecl(i));
Douglas Gregor518fda12009-01-13 05:10:00 +00004547 }
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004548
4549 TheCall->setArg(i + 1, Arg);
4550 }
4551
4552 // If this is a variadic call, handle args passed through "...".
4553 if (Proto->isVariadic()) {
4554 // Promote the arguments (C99 6.5.2.2p7).
4555 for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
4556 Expr *Arg = Args[i];
Chris Lattner312531a2009-04-12 08:11:20 +00004557 IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod);
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004558 TheCall->setArg(i + 1, Arg);
4559 }
4560 }
4561
Chris Lattner312531a2009-04-12 08:11:20 +00004562 if (IsError) return true;
4563
Sebastian Redl0eb23302009-01-19 00:08:26 +00004564 return CheckFunctionCall(Method, TheCall.take()).release();
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004565}
4566
Douglas Gregor8ba10742008-11-20 16:27:02 +00004567/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
4568/// (if one exists), where @c Base is an expression of class type and
4569/// @c Member is the name of the member we're trying to find.
4570Action::ExprResult
Douglas Gregor3fc749d2008-12-23 00:26:44 +00004571Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc,
Douglas Gregor8ba10742008-11-20 16:27:02 +00004572 SourceLocation MemberLoc,
4573 IdentifierInfo &Member) {
4574 assert(Base->getType()->isRecordType() && "left-hand side must have class type");
4575
4576 // C++ [over.ref]p1:
4577 //
4578 // [...] An expression x->m is interpreted as (x.operator->())->m
4579 // for a class object x of type T if T::operator->() exists and if
4580 // the operator is selected as the best match function by the
4581 // overload resolution mechanism (13.3).
4582 // FIXME: look in base classes.
4583 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
4584 OverloadCandidateSet CandidateSet;
Ted Kremenek6217b802009-07-29 21:53:49 +00004585 const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
Douglas Gregor3fc749d2008-12-23 00:26:44 +00004586
4587 DeclContext::lookup_const_iterator Oper, OperEnd;
Douglas Gregor6ab35242009-04-09 21:40:53 +00004588 for (llvm::tie(Oper, OperEnd)
Argyrios Kyrtzidis17945a02009-06-30 02:36:12 +00004589 = BaseRecord->getDecl()->lookup(OpName); Oper != OperEnd; ++Oper)
Douglas Gregor3fc749d2008-12-23 00:26:44 +00004590 AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Base, 0, 0, CandidateSet,
Douglas Gregor8ba10742008-11-20 16:27:02 +00004591 /*SuppressUserConversions=*/false);
Douglas Gregor8ba10742008-11-20 16:27:02 +00004592
Ted Kremenek8189cde2009-02-07 01:47:29 +00004593 ExprOwningPtr<Expr> BasePtr(this, Base);
Douglas Gregorfc195ef2008-11-21 03:04:22 +00004594
Douglas Gregor8ba10742008-11-20 16:27:02 +00004595 // Perform overload resolution.
4596 OverloadCandidateSet::iterator Best;
Douglas Gregore0762c92009-06-19 23:52:42 +00004597 switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
Douglas Gregor8ba10742008-11-20 16:27:02 +00004598 case OR_Success:
4599 // Overload resolution succeeded; we'll build the call below.
4600 break;
4601
4602 case OR_No_Viable_Function:
4603 if (CandidateSet.empty())
4604 Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
Chris Lattnerd1625842008-11-24 06:25:27 +00004605 << BasePtr->getType() << BasePtr->getSourceRange();
Douglas Gregor8ba10742008-11-20 16:27:02 +00004606 else
4607 Diag(OpLoc, diag::err_ovl_no_viable_oper)
Chris Lattner4330d652009-02-17 07:29:20 +00004608 << "operator->" << BasePtr->getSourceRange();
Douglas Gregor8ba10742008-11-20 16:27:02 +00004609 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
Douglas Gregor8ba10742008-11-20 16:27:02 +00004610 return true;
4611
4612 case OR_Ambiguous:
4613 Diag(OpLoc, diag::err_ovl_ambiguous_oper)
Chris Lattnerd1625842008-11-24 06:25:27 +00004614 << "operator->" << BasePtr->getSourceRange();
Douglas Gregor8ba10742008-11-20 16:27:02 +00004615 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
Douglas Gregor8ba10742008-11-20 16:27:02 +00004616 return true;
Douglas Gregor48f3bb92009-02-18 21:56:37 +00004617
4618 case OR_Deleted:
4619 Diag(OpLoc, diag::err_ovl_deleted_oper)
4620 << Best->Function->isDeleted()
4621 << "operator->" << BasePtr->getSourceRange();
4622 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4623 return true;
Douglas Gregor8ba10742008-11-20 16:27:02 +00004624 }
4625
4626 // Convert the object parameter.
4627 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
Douglas Gregorfc195ef2008-11-21 03:04:22 +00004628 if (PerformObjectArgumentInitialization(Base, Method))
Douglas Gregor8ba10742008-11-20 16:27:02 +00004629 return true;
Douglas Gregorfc195ef2008-11-21 03:04:22 +00004630
4631 // No concerns about early exits now.
4632 BasePtr.take();
Douglas Gregor8ba10742008-11-20 16:27:02 +00004633
4634 // Build the operator call.
Ted Kremenek8189cde2009-02-07 01:47:29 +00004635 Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
4636 SourceLocation());
Douglas Gregor8ba10742008-11-20 16:27:02 +00004637 UsualUnaryConversions(FnExpr);
Douglas Gregor063daf62009-03-13 18:40:31 +00004638 Base = new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr, &Base, 1,
Douglas Gregor8ba10742008-11-20 16:27:02 +00004639 Method->getResultType().getNonReferenceType(),
4640 OpLoc);
Sebastian Redl0eb23302009-01-19 00:08:26 +00004641 return ActOnMemberReferenceExpr(S, ExprArg(*this, Base), OpLoc, tok::arrow,
Chris Lattnerb28317a2009-03-28 19:18:32 +00004642 MemberLoc, Member, DeclPtrTy()).release();
Douglas Gregor8ba10742008-11-20 16:27:02 +00004643}
4644
Douglas Gregor904eed32008-11-10 20:40:00 +00004645/// FixOverloadedFunctionReference - E is an expression that refers to
4646/// a C++ overloaded function (possibly with some parentheses and
4647/// perhaps a '&' around it). We have resolved the overloaded function
4648/// to the function declaration Fn, so patch up the expression E to
4649/// refer (possibly indirectly) to Fn.
4650void Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
4651 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
4652 FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
4653 E->setType(PE->getSubExpr()->getType());
4654 } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
4655 assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
4656 "Can only take the address of an overloaded function");
Douglas Gregorb86b0572009-02-11 01:18:59 +00004657 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
4658 if (Method->isStatic()) {
4659 // Do nothing: static member functions aren't any different
4660 // from non-member functions.
4661 }
4662 else if (QualifiedDeclRefExpr *DRE
4663 = dyn_cast<QualifiedDeclRefExpr>(UnOp->getSubExpr())) {
4664 // We have taken the address of a pointer to member
4665 // function. Perform the computation here so that we get the
4666 // appropriate pointer to member type.
4667 DRE->setDecl(Fn);
4668 DRE->setType(Fn->getType());
4669 QualType ClassType
4670 = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
4671 E->setType(Context.getMemberPointerType(Fn->getType(),
4672 ClassType.getTypePtr()));
4673 return;
4674 }
4675 }
Douglas Gregor904eed32008-11-10 20:40:00 +00004676 FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
Douglas Gregora35284b2009-02-11 00:19:33 +00004677 E->setType(Context.getPointerType(UnOp->getSubExpr()->getType()));
Douglas Gregor904eed32008-11-10 20:40:00 +00004678 } else if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
Douglas Gregor83314aa2009-07-08 20:55:45 +00004679 assert((isa<OverloadedFunctionDecl>(DR->getDecl()) ||
4680 isa<FunctionTemplateDecl>(DR->getDecl())) &&
4681 "Expected overloaded function or function template");
Douglas Gregor904eed32008-11-10 20:40:00 +00004682 DR->setDecl(Fn);
4683 E->setType(Fn->getType());
Douglas Gregor88a35142008-12-22 05:46:06 +00004684 } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(E)) {
4685 MemExpr->setMemberDecl(Fn);
4686 E->setType(Fn->getType());
Douglas Gregor904eed32008-11-10 20:40:00 +00004687 } else {
4688 assert(false && "Invalid reference to overloaded function");
4689 }
4690}
4691
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00004692} // end namespace clang