Guy Benyei | 736104a | 2012-12-18 12:30:03 +0000 | [diff] [blame^] | 1 | //===--- MicrosoftMangle.cpp - Microsoft Visual C++ Name Mangling ---------===//
|
| 2 | //
|
| 3 | // The LLVM Compiler Infrastructure
|
| 4 | //
|
| 5 | // This file is distributed under the University of Illinois Open Source
|
| 6 | // License. See LICENSE.TXT for details.
|
| 7 | //
|
| 8 | //===----------------------------------------------------------------------===//
|
| 9 | //
|
| 10 | // This provides C++ name mangling targeting the Microsoft Visual C++ ABI.
|
| 11 | //
|
| 12 | //===----------------------------------------------------------------------===//
|
| 13 |
|
| 14 | #include "clang/AST/Mangle.h"
|
| 15 | #include "clang/AST/ASTContext.h"
|
| 16 | #include "clang/AST/Attr.h"
|
| 17 | #include "clang/AST/CharUnits.h"
|
| 18 | #include "clang/AST/Decl.h"
|
| 19 | #include "clang/AST/DeclCXX.h"
|
| 20 | #include "clang/AST/DeclObjC.h"
|
| 21 | #include "clang/AST/DeclTemplate.h"
|
| 22 | #include "clang/AST/ExprCXX.h"
|
| 23 | #include "clang/Basic/ABI.h"
|
| 24 | #include "clang/Basic/DiagnosticOptions.h"
|
| 25 | #include <map>
|
| 26 |
|
| 27 | using namespace clang;
|
| 28 |
|
| 29 | namespace {
|
| 30 |
|
| 31 | /// MicrosoftCXXNameMangler - Manage the mangling of a single name for the
|
| 32 | /// Microsoft Visual C++ ABI.
|
| 33 | class MicrosoftCXXNameMangler {
|
| 34 | MangleContext &Context;
|
| 35 | raw_ostream &Out;
|
| 36 |
|
| 37 | // FIXME: audit the performance of BackRefMap as it might do way too many
|
| 38 | // copying of strings.
|
| 39 | typedef std::map<std::string, unsigned> BackRefMap;
|
| 40 | BackRefMap NameBackReferences;
|
| 41 | bool UseNameBackReferences;
|
| 42 |
|
| 43 | typedef llvm::DenseMap<void*, unsigned> ArgBackRefMap;
|
| 44 | ArgBackRefMap TypeBackReferences;
|
| 45 |
|
| 46 | ASTContext &getASTContext() const { return Context.getASTContext(); }
|
| 47 |
|
| 48 | public:
|
| 49 | MicrosoftCXXNameMangler(MangleContext &C, raw_ostream &Out_)
|
| 50 | : Context(C), Out(Out_), UseNameBackReferences(true) { }
|
| 51 |
|
| 52 | raw_ostream &getStream() const { return Out; }
|
| 53 |
|
| 54 | void mangle(const NamedDecl *D, StringRef Prefix = "\01?");
|
| 55 | void mangleName(const NamedDecl *ND);
|
| 56 | void mangleFunctionEncoding(const FunctionDecl *FD);
|
| 57 | void mangleVariableEncoding(const VarDecl *VD);
|
| 58 | void mangleNumber(int64_t Number);
|
| 59 | void mangleNumber(const llvm::APSInt &Value);
|
| 60 | void mangleType(QualType T, SourceRange Range, bool MangleQualifiers = true);
|
| 61 |
|
| 62 | private:
|
| 63 | void disableBackReferences() { UseNameBackReferences = false; }
|
| 64 | void mangleUnqualifiedName(const NamedDecl *ND) {
|
| 65 | mangleUnqualifiedName(ND, ND->getDeclName());
|
| 66 | }
|
| 67 | void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name);
|
| 68 | void mangleSourceName(const IdentifierInfo *II);
|
| 69 | void manglePostfix(const DeclContext *DC, bool NoFunction=false);
|
| 70 | void mangleOperatorName(OverloadedOperatorKind OO, SourceLocation Loc);
|
| 71 | void mangleQualifiers(Qualifiers Quals, bool IsMember);
|
| 72 | void manglePointerQualifiers(Qualifiers Quals);
|
| 73 |
|
| 74 | void mangleUnscopedTemplateName(const TemplateDecl *ND);
|
| 75 | void mangleTemplateInstantiationName(const TemplateDecl *TD,
|
| 76 | const SmallVectorImpl<TemplateArgumentLoc> &TemplateArgs);
|
| 77 | void mangleObjCMethodName(const ObjCMethodDecl *MD);
|
| 78 | void mangleLocalName(const FunctionDecl *FD);
|
| 79 |
|
| 80 | void mangleArgumentType(QualType T, SourceRange Range);
|
| 81 |
|
| 82 | // Declare manglers for every type class.
|
| 83 | #define ABSTRACT_TYPE(CLASS, PARENT)
|
| 84 | #define NON_CANONICAL_TYPE(CLASS, PARENT)
|
| 85 | #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T, \
|
| 86 | SourceRange Range);
|
| 87 | #include "clang/AST/TypeNodes.def"
|
| 88 | #undef ABSTRACT_TYPE
|
| 89 | #undef NON_CANONICAL_TYPE
|
| 90 | #undef TYPE
|
| 91 |
|
| 92 | void mangleType(const TagType*);
|
| 93 | void mangleType(const FunctionType *T, const FunctionDecl *D,
|
| 94 | bool IsStructor, bool IsInstMethod);
|
| 95 | void mangleType(const ArrayType *T, bool IsGlobal);
|
| 96 | void mangleExtraDimensions(QualType T);
|
| 97 | void mangleFunctionClass(const FunctionDecl *FD);
|
| 98 | void mangleCallingConvention(const FunctionType *T, bool IsInstMethod = false);
|
| 99 | void mangleIntegerLiteral(const llvm::APSInt &Number, bool IsBoolean);
|
| 100 | void mangleExpression(const Expr *E);
|
| 101 | void mangleThrowSpecification(const FunctionProtoType *T);
|
| 102 |
|
| 103 | void mangleTemplateArgs(
|
| 104 | const SmallVectorImpl<TemplateArgumentLoc> &TemplateArgs);
|
| 105 |
|
| 106 | };
|
| 107 |
|
| 108 | /// MicrosoftMangleContext - Overrides the default MangleContext for the
|
| 109 | /// Microsoft Visual C++ ABI.
|
| 110 | class MicrosoftMangleContext : public MangleContext {
|
| 111 | public:
|
| 112 | MicrosoftMangleContext(ASTContext &Context,
|
| 113 | DiagnosticsEngine &Diags) : MangleContext(Context, Diags) { }
|
| 114 | virtual bool shouldMangleDeclName(const NamedDecl *D);
|
| 115 | virtual void mangleName(const NamedDecl *D, raw_ostream &Out);
|
| 116 | virtual void mangleThunk(const CXXMethodDecl *MD,
|
| 117 | const ThunkInfo &Thunk,
|
| 118 | raw_ostream &);
|
| 119 | virtual void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
|
| 120 | const ThisAdjustment &ThisAdjustment,
|
| 121 | raw_ostream &);
|
| 122 | virtual void mangleCXXVTable(const CXXRecordDecl *RD,
|
| 123 | raw_ostream &);
|
| 124 | virtual void mangleCXXVTT(const CXXRecordDecl *RD,
|
| 125 | raw_ostream &);
|
| 126 | virtual void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
|
| 127 | const CXXRecordDecl *Type,
|
| 128 | raw_ostream &);
|
| 129 | virtual void mangleCXXRTTI(QualType T, raw_ostream &);
|
| 130 | virtual void mangleCXXRTTIName(QualType T, raw_ostream &);
|
| 131 | virtual void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
|
| 132 | raw_ostream &);
|
| 133 | virtual void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
|
| 134 | raw_ostream &);
|
| 135 | virtual void mangleReferenceTemporary(const clang::VarDecl *,
|
| 136 | raw_ostream &);
|
| 137 | };
|
| 138 |
|
| 139 | }
|
| 140 |
|
| 141 | static bool isInCLinkageSpecification(const Decl *D) {
|
| 142 | D = D->getCanonicalDecl();
|
| 143 | for (const DeclContext *DC = D->getDeclContext();
|
| 144 | !DC->isTranslationUnit(); DC = DC->getParent()) {
|
| 145 | if (const LinkageSpecDecl *Linkage = dyn_cast<LinkageSpecDecl>(DC))
|
| 146 | return Linkage->getLanguage() == LinkageSpecDecl::lang_c;
|
| 147 | }
|
| 148 |
|
| 149 | return false;
|
| 150 | }
|
| 151 |
|
| 152 | bool MicrosoftMangleContext::shouldMangleDeclName(const NamedDecl *D) {
|
| 153 | // In C, functions with no attributes never need to be mangled. Fastpath them.
|
| 154 | if (!getASTContext().getLangOpts().CPlusPlus && !D->hasAttrs())
|
| 155 | return false;
|
| 156 |
|
| 157 | // Any decl can be declared with __asm("foo") on it, and this takes precedence
|
| 158 | // over all other naming in the .o file.
|
| 159 | if (D->hasAttr<AsmLabelAttr>())
|
| 160 | return true;
|
| 161 |
|
| 162 | // Clang's "overloadable" attribute extension to C/C++ implies name mangling
|
| 163 | // (always) as does passing a C++ member function and a function
|
| 164 | // whose name is not a simple identifier.
|
| 165 | const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
|
| 166 | if (FD && (FD->hasAttr<OverloadableAttr>() || isa<CXXMethodDecl>(FD) ||
|
| 167 | !FD->getDeclName().isIdentifier()))
|
| 168 | return true;
|
| 169 |
|
| 170 | // Otherwise, no mangling is done outside C++ mode.
|
| 171 | if (!getASTContext().getLangOpts().CPlusPlus)
|
| 172 | return false;
|
| 173 |
|
| 174 | // Variables at global scope with internal linkage are not mangled.
|
| 175 | if (!FD) {
|
| 176 | const DeclContext *DC = D->getDeclContext();
|
| 177 | if (DC->isTranslationUnit() && D->getLinkage() == InternalLinkage)
|
| 178 | return false;
|
| 179 | }
|
| 180 |
|
| 181 | // C functions and "main" are not mangled.
|
| 182 | if ((FD && FD->isMain()) || isInCLinkageSpecification(D))
|
| 183 | return false;
|
| 184 |
|
| 185 | return true;
|
| 186 | }
|
| 187 |
|
| 188 | void MicrosoftCXXNameMangler::mangle(const NamedDecl *D,
|
| 189 | StringRef Prefix) {
|
| 190 | // MSVC doesn't mangle C++ names the same way it mangles extern "C" names.
|
| 191 | // Therefore it's really important that we don't decorate the
|
| 192 | // name with leading underscores or leading/trailing at signs. So, by
|
| 193 | // default, we emit an asm marker at the start so we get the name right.
|
| 194 | // Callers can override this with a custom prefix.
|
| 195 |
|
| 196 | // Any decl can be declared with __asm("foo") on it, and this takes precedence
|
| 197 | // over all other naming in the .o file.
|
| 198 | if (const AsmLabelAttr *ALA = D->getAttr<AsmLabelAttr>()) {
|
| 199 | // If we have an asm name, then we use it as the mangling.
|
| 200 | Out << '\01' << ALA->getLabel();
|
| 201 | return;
|
| 202 | }
|
| 203 |
|
| 204 | // <mangled-name> ::= ? <name> <type-encoding>
|
| 205 | Out << Prefix;
|
| 206 | mangleName(D);
|
| 207 | if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
|
| 208 | mangleFunctionEncoding(FD);
|
| 209 | else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
|
| 210 | mangleVariableEncoding(VD);
|
| 211 | else {
|
| 212 | // TODO: Fields? Can MSVC even mangle them?
|
| 213 | // Issue a diagnostic for now.
|
| 214 | DiagnosticsEngine &Diags = Context.getDiags();
|
| 215 | unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
| 216 | "cannot mangle this declaration yet");
|
| 217 | Diags.Report(D->getLocation(), DiagID)
|
| 218 | << D->getSourceRange();
|
| 219 | }
|
| 220 | }
|
| 221 |
|
| 222 | void MicrosoftCXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
|
| 223 | // <type-encoding> ::= <function-class> <function-type>
|
| 224 |
|
| 225 | // Don't mangle in the type if this isn't a decl we should typically mangle.
|
| 226 | if (!Context.shouldMangleDeclName(FD))
|
| 227 | return;
|
| 228 |
|
| 229 | // We should never ever see a FunctionNoProtoType at this point.
|
| 230 | // We don't even know how to mangle their types anyway :).
|
| 231 | const FunctionProtoType *FT = FD->getType()->castAs<FunctionProtoType>();
|
| 232 |
|
| 233 | bool InStructor = false, InInstMethod = false;
|
| 234 | const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
|
| 235 | if (MD) {
|
| 236 | if (MD->isInstance())
|
| 237 | InInstMethod = true;
|
| 238 | if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))
|
| 239 | InStructor = true;
|
| 240 | }
|
| 241 |
|
| 242 | // First, the function class.
|
| 243 | mangleFunctionClass(FD);
|
| 244 |
|
| 245 | mangleType(FT, FD, InStructor, InInstMethod);
|
| 246 | }
|
| 247 |
|
| 248 | void MicrosoftCXXNameMangler::mangleVariableEncoding(const VarDecl *VD) {
|
| 249 | // <type-encoding> ::= <storage-class> <variable-type>
|
| 250 | // <storage-class> ::= 0 # private static member
|
| 251 | // ::= 1 # protected static member
|
| 252 | // ::= 2 # public static member
|
| 253 | // ::= 3 # global
|
| 254 | // ::= 4 # static local
|
| 255 |
|
| 256 | // The first character in the encoding (after the name) is the storage class.
|
| 257 | if (VD->isStaticDataMember()) {
|
| 258 | // If it's a static member, it also encodes the access level.
|
| 259 | switch (VD->getAccess()) {
|
| 260 | default:
|
| 261 | case AS_private: Out << '0'; break;
|
| 262 | case AS_protected: Out << '1'; break;
|
| 263 | case AS_public: Out << '2'; break;
|
| 264 | }
|
| 265 | }
|
| 266 | else if (!VD->isStaticLocal())
|
| 267 | Out << '3';
|
| 268 | else
|
| 269 | Out << '4';
|
| 270 | // Now mangle the type.
|
| 271 | // <variable-type> ::= <type> <cvr-qualifiers>
|
| 272 | // ::= <type> <pointee-cvr-qualifiers> # pointers, references
|
| 273 | // Pointers and references are odd. The type of 'int * const foo;' gets
|
| 274 | // mangled as 'QAHA' instead of 'PAHB', for example.
|
| 275 | TypeLoc TL = VD->getTypeSourceInfo()->getTypeLoc();
|
| 276 | QualType Ty = TL.getType();
|
| 277 | if (Ty->isPointerType() || Ty->isReferenceType()) {
|
| 278 | mangleType(Ty, TL.getSourceRange());
|
| 279 | mangleQualifiers(Ty->getPointeeType().getQualifiers(), false);
|
| 280 | } else if (const ArrayType *AT = getASTContext().getAsArrayType(Ty)) {
|
| 281 | // Global arrays are funny, too.
|
| 282 | mangleType(AT, true);
|
| 283 | mangleQualifiers(Ty.getQualifiers(), false);
|
| 284 | } else {
|
| 285 | mangleType(Ty.getLocalUnqualifiedType(), TL.getSourceRange());
|
| 286 | mangleQualifiers(Ty.getLocalQualifiers(), false);
|
| 287 | }
|
| 288 | }
|
| 289 |
|
| 290 | void MicrosoftCXXNameMangler::mangleName(const NamedDecl *ND) {
|
| 291 | // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @
|
| 292 | const DeclContext *DC = ND->getDeclContext();
|
| 293 |
|
| 294 | // Always start with the unqualified name.
|
| 295 | mangleUnqualifiedName(ND);
|
| 296 |
|
| 297 | // If this is an extern variable declared locally, the relevant DeclContext
|
| 298 | // is that of the containing namespace, or the translation unit.
|
| 299 | if (isa<FunctionDecl>(DC) && ND->hasLinkage())
|
| 300 | while (!DC->isNamespace() && !DC->isTranslationUnit())
|
| 301 | DC = DC->getParent();
|
| 302 |
|
| 303 | manglePostfix(DC);
|
| 304 |
|
| 305 | // Terminate the whole name with an '@'.
|
| 306 | Out << '@';
|
| 307 | }
|
| 308 |
|
| 309 | void MicrosoftCXXNameMangler::mangleNumber(int64_t Number) {
|
| 310 | llvm::APSInt APSNumber(/*BitWidth=*/64, /*isUnsigned=*/false);
|
| 311 | APSNumber = Number;
|
| 312 | mangleNumber(APSNumber);
|
| 313 | }
|
| 314 |
|
| 315 | void MicrosoftCXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
|
| 316 | // <number> ::= [?] <decimal digit> # 1 <= Number <= 10
|
| 317 | // ::= [?] <hex digit>+ @ # 0 or > 9; A = 0, B = 1, etc...
|
| 318 | // ::= [?] @ # 0 (alternate mangling, not emitted by VC)
|
| 319 | if (Value.isSigned() && Value.isNegative()) {
|
| 320 | Out << '?';
|
| 321 | mangleNumber(llvm::APSInt(Value.abs()));
|
| 322 | return;
|
| 323 | }
|
| 324 | llvm::APSInt Temp(Value);
|
| 325 | // There's a special shorter mangling for 0, but Microsoft
|
| 326 | // chose not to use it. Instead, 0 gets mangled as "A@". Oh well...
|
| 327 | if (Value.uge(1) && Value.ule(10)) {
|
| 328 | --Temp;
|
| 329 | Temp.print(Out, false);
|
| 330 | } else {
|
| 331 | // We have to build up the encoding in reverse order, so it will come
|
| 332 | // out right when we write it out.
|
| 333 | char Encoding[64];
|
| 334 | char *EndPtr = Encoding+sizeof(Encoding);
|
| 335 | char *CurPtr = EndPtr;
|
| 336 | llvm::APSInt NibbleMask(Value.getBitWidth(), Value.isUnsigned());
|
| 337 | NibbleMask = 0xf;
|
| 338 | do {
|
| 339 | *--CurPtr = 'A' + Temp.And(NibbleMask).getLimitedValue(0xf);
|
| 340 | Temp = Temp.lshr(4);
|
| 341 | } while (Temp != 0);
|
| 342 | Out.write(CurPtr, EndPtr-CurPtr);
|
| 343 | Out << '@';
|
| 344 | }
|
| 345 | }
|
| 346 |
|
| 347 | static const TemplateDecl *
|
| 348 | isTemplate(const NamedDecl *ND,
|
| 349 | SmallVectorImpl<TemplateArgumentLoc> &TemplateArgs) {
|
| 350 | // Check if we have a function template.
|
| 351 | if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)){
|
| 352 | if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
|
| 353 | if (FD->getTemplateSpecializationArgsAsWritten()) {
|
| 354 | const ASTTemplateArgumentListInfo *ArgList =
|
| 355 | FD->getTemplateSpecializationArgsAsWritten();
|
| 356 | TemplateArgs.append(ArgList->getTemplateArgs(),
|
| 357 | ArgList->getTemplateArgs() +
|
| 358 | ArgList->NumTemplateArgs);
|
| 359 | } else {
|
| 360 | const TemplateArgumentList *ArgList =
|
| 361 | FD->getTemplateSpecializationArgs();
|
| 362 | TemplateArgumentListInfo LI;
|
| 363 | for (unsigned i = 0, e = ArgList->size(); i != e; ++i)
|
| 364 | TemplateArgs.push_back(TemplateArgumentLoc(ArgList->get(i),
|
| 365 | FD->getTypeSourceInfo()));
|
| 366 | }
|
| 367 | return TD;
|
| 368 | }
|
| 369 | }
|
| 370 |
|
| 371 | // Check if we have a class template.
|
| 372 | if (const ClassTemplateSpecializationDecl *Spec =
|
| 373 | dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
|
| 374 | TypeSourceInfo *TSI = Spec->getTypeAsWritten();
|
| 375 | if (TSI) {
|
| 376 | TemplateSpecializationTypeLoc TSTL =
|
| 377 | cast<TemplateSpecializationTypeLoc>(TSI->getTypeLoc());
|
| 378 | TemplateArgumentListInfo LI(TSTL.getLAngleLoc(), TSTL.getRAngleLoc());
|
| 379 | for (unsigned i = 0, e = TSTL.getNumArgs(); i != e; ++i)
|
| 380 | TemplateArgs.push_back(TSTL.getArgLoc(i));
|
| 381 | } else {
|
| 382 | TemplateArgumentListInfo LI;
|
| 383 | const TemplateArgumentList &ArgList =
|
| 384 | Spec->getTemplateArgs();
|
| 385 | for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
|
| 386 | TemplateArgs.push_back(TemplateArgumentLoc(ArgList[i],
|
| 387 | TemplateArgumentLocInfo()));
|
| 388 | }
|
| 389 | return Spec->getSpecializedTemplate();
|
| 390 | }
|
| 391 |
|
| 392 | return 0;
|
| 393 | }
|
| 394 |
|
| 395 | void
|
| 396 | MicrosoftCXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
|
| 397 | DeclarationName Name) {
|
| 398 | // <unqualified-name> ::= <operator-name>
|
| 399 | // ::= <ctor-dtor-name>
|
| 400 | // ::= <source-name>
|
| 401 | // ::= <template-name>
|
| 402 | SmallVector<TemplateArgumentLoc, 2> TemplateArgs;
|
| 403 | // Check if we have a template.
|
| 404 | if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
|
| 405 | // We have a template.
|
| 406 | // Here comes the tricky thing: if we need to mangle something like
|
| 407 | // void foo(A::X<Y>, B::X<Y>),
|
| 408 | // the X<Y> part is aliased. However, if you need to mangle
|
| 409 | // void foo(A::X<A::Y>, A::X<B::Y>),
|
| 410 | // the A::X<> part is not aliased.
|
| 411 | // That said, from the mangler's perspective we have a structure like this:
|
| 412 | // namespace[s] -> type[ -> template-parameters]
|
| 413 | // but from the Clang perspective we have
|
| 414 | // type [ -> template-parameters]
|
| 415 | // \-> namespace[s]
|
| 416 | // What we do is we create a new mangler, mangle the same type (without
|
| 417 | // a namespace suffix) using the extra mangler with back references
|
| 418 | // disabled (to avoid infinite recursion) and then use the mangled type
|
| 419 | // name as a key to check the mangling of different types for aliasing.
|
| 420 |
|
| 421 | std::string BackReferenceKey;
|
| 422 | BackRefMap::iterator Found;
|
| 423 | if (UseNameBackReferences) {
|
| 424 | llvm::raw_string_ostream Stream(BackReferenceKey);
|
| 425 | MicrosoftCXXNameMangler Extra(Context, Stream);
|
| 426 | Extra.disableBackReferences();
|
| 427 | Extra.mangleUnqualifiedName(ND, Name);
|
| 428 | Stream.flush();
|
| 429 |
|
| 430 | Found = NameBackReferences.find(BackReferenceKey);
|
| 431 | }
|
| 432 | if (!UseNameBackReferences || Found == NameBackReferences.end()) {
|
| 433 | mangleTemplateInstantiationName(TD, TemplateArgs);
|
| 434 | if (UseNameBackReferences && NameBackReferences.size() < 10) {
|
| 435 | size_t Size = NameBackReferences.size();
|
| 436 | NameBackReferences[BackReferenceKey] = Size;
|
| 437 | }
|
| 438 | } else {
|
| 439 | Out << Found->second;
|
| 440 | }
|
| 441 | return;
|
| 442 | }
|
| 443 |
|
| 444 | switch (Name.getNameKind()) {
|
| 445 | case DeclarationName::Identifier: {
|
| 446 | if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
|
| 447 | mangleSourceName(II);
|
| 448 | break;
|
| 449 | }
|
| 450 |
|
| 451 | // Otherwise, an anonymous entity. We must have a declaration.
|
| 452 | assert(ND && "mangling empty name without declaration");
|
| 453 |
|
| 454 | if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
|
| 455 | if (NS->isAnonymousNamespace()) {
|
| 456 | Out << "?A@";
|
| 457 | break;
|
| 458 | }
|
| 459 | }
|
| 460 |
|
| 461 | // We must have an anonymous struct.
|
| 462 | const TagDecl *TD = cast<TagDecl>(ND);
|
| 463 | if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
|
| 464 | assert(TD->getDeclContext() == D->getDeclContext() &&
|
| 465 | "Typedef should not be in another decl context!");
|
| 466 | assert(D->getDeclName().getAsIdentifierInfo() &&
|
| 467 | "Typedef was not named!");
|
| 468 | mangleSourceName(D->getDeclName().getAsIdentifierInfo());
|
| 469 | break;
|
| 470 | }
|
| 471 |
|
| 472 | // When VC encounters an anonymous type with no tag and no typedef,
|
| 473 | // it literally emits '<unnamed-tag>'.
|
| 474 | Out << "<unnamed-tag>";
|
| 475 | break;
|
| 476 | }
|
| 477 |
|
| 478 | case DeclarationName::ObjCZeroArgSelector:
|
| 479 | case DeclarationName::ObjCOneArgSelector:
|
| 480 | case DeclarationName::ObjCMultiArgSelector:
|
| 481 | llvm_unreachable("Can't mangle Objective-C selector names here!");
|
| 482 |
|
| 483 | case DeclarationName::CXXConstructorName:
|
| 484 | Out << "?0";
|
| 485 | break;
|
| 486 |
|
| 487 | case DeclarationName::CXXDestructorName:
|
| 488 | Out << "?1";
|
| 489 | break;
|
| 490 |
|
| 491 | case DeclarationName::CXXConversionFunctionName:
|
| 492 | // <operator-name> ::= ?B # (cast)
|
| 493 | // The target type is encoded as the return type.
|
| 494 | Out << "?B";
|
| 495 | break;
|
| 496 |
|
| 497 | case DeclarationName::CXXOperatorName:
|
| 498 | mangleOperatorName(Name.getCXXOverloadedOperator(), ND->getLocation());
|
| 499 | break;
|
| 500 |
|
| 501 | case DeclarationName::CXXLiteralOperatorName: {
|
| 502 | // FIXME: Was this added in VS2010? Does MS even know how to mangle this?
|
| 503 | DiagnosticsEngine Diags = Context.getDiags();
|
| 504 | unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
| 505 | "cannot mangle this literal operator yet");
|
| 506 | Diags.Report(ND->getLocation(), DiagID);
|
| 507 | break;
|
| 508 | }
|
| 509 |
|
| 510 | case DeclarationName::CXXUsingDirective:
|
| 511 | llvm_unreachable("Can't mangle a using directive name!");
|
| 512 | }
|
| 513 | }
|
| 514 |
|
| 515 | void MicrosoftCXXNameMangler::manglePostfix(const DeclContext *DC,
|
| 516 | bool NoFunction) {
|
| 517 | // <postfix> ::= <unqualified-name> [<postfix>]
|
| 518 | // ::= <substitution> [<postfix>]
|
| 519 |
|
| 520 | if (!DC) return;
|
| 521 |
|
| 522 | while (isa<LinkageSpecDecl>(DC))
|
| 523 | DC = DC->getParent();
|
| 524 |
|
| 525 | if (DC->isTranslationUnit())
|
| 526 | return;
|
| 527 |
|
| 528 | if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) {
|
| 529 | Context.mangleBlock(BD, Out);
|
| 530 | Out << '@';
|
| 531 | return manglePostfix(DC->getParent(), NoFunction);
|
| 532 | }
|
| 533 |
|
| 534 | if (NoFunction && (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)))
|
| 535 | return;
|
| 536 | else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(DC))
|
| 537 | mangleObjCMethodName(Method);
|
| 538 | else if (const FunctionDecl *Func = dyn_cast<FunctionDecl>(DC))
|
| 539 | mangleLocalName(Func);
|
| 540 | else {
|
| 541 | mangleUnqualifiedName(cast<NamedDecl>(DC));
|
| 542 | manglePostfix(DC->getParent(), NoFunction);
|
| 543 | }
|
| 544 | }
|
| 545 |
|
| 546 | void MicrosoftCXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO,
|
| 547 | SourceLocation Loc) {
|
| 548 | switch (OO) {
|
| 549 | // ?0 # constructor
|
| 550 | // ?1 # destructor
|
| 551 | // <operator-name> ::= ?2 # new
|
| 552 | case OO_New: Out << "?2"; break;
|
| 553 | // <operator-name> ::= ?3 # delete
|
| 554 | case OO_Delete: Out << "?3"; break;
|
| 555 | // <operator-name> ::= ?4 # =
|
| 556 | case OO_Equal: Out << "?4"; break;
|
| 557 | // <operator-name> ::= ?5 # >>
|
| 558 | case OO_GreaterGreater: Out << "?5"; break;
|
| 559 | // <operator-name> ::= ?6 # <<
|
| 560 | case OO_LessLess: Out << "?6"; break;
|
| 561 | // <operator-name> ::= ?7 # !
|
| 562 | case OO_Exclaim: Out << "?7"; break;
|
| 563 | // <operator-name> ::= ?8 # ==
|
| 564 | case OO_EqualEqual: Out << "?8"; break;
|
| 565 | // <operator-name> ::= ?9 # !=
|
| 566 | case OO_ExclaimEqual: Out << "?9"; break;
|
| 567 | // <operator-name> ::= ?A # []
|
| 568 | case OO_Subscript: Out << "?A"; break;
|
| 569 | // ?B # conversion
|
| 570 | // <operator-name> ::= ?C # ->
|
| 571 | case OO_Arrow: Out << "?C"; break;
|
| 572 | // <operator-name> ::= ?D # *
|
| 573 | case OO_Star: Out << "?D"; break;
|
| 574 | // <operator-name> ::= ?E # ++
|
| 575 | case OO_PlusPlus: Out << "?E"; break;
|
| 576 | // <operator-name> ::= ?F # --
|
| 577 | case OO_MinusMinus: Out << "?F"; break;
|
| 578 | // <operator-name> ::= ?G # -
|
| 579 | case OO_Minus: Out << "?G"; break;
|
| 580 | // <operator-name> ::= ?H # +
|
| 581 | case OO_Plus: Out << "?H"; break;
|
| 582 | // <operator-name> ::= ?I # &
|
| 583 | case OO_Amp: Out << "?I"; break;
|
| 584 | // <operator-name> ::= ?J # ->*
|
| 585 | case OO_ArrowStar: Out << "?J"; break;
|
| 586 | // <operator-name> ::= ?K # /
|
| 587 | case OO_Slash: Out << "?K"; break;
|
| 588 | // <operator-name> ::= ?L # %
|
| 589 | case OO_Percent: Out << "?L"; break;
|
| 590 | // <operator-name> ::= ?M # <
|
| 591 | case OO_Less: Out << "?M"; break;
|
| 592 | // <operator-name> ::= ?N # <=
|
| 593 | case OO_LessEqual: Out << "?N"; break;
|
| 594 | // <operator-name> ::= ?O # >
|
| 595 | case OO_Greater: Out << "?O"; break;
|
| 596 | // <operator-name> ::= ?P # >=
|
| 597 | case OO_GreaterEqual: Out << "?P"; break;
|
| 598 | // <operator-name> ::= ?Q # ,
|
| 599 | case OO_Comma: Out << "?Q"; break;
|
| 600 | // <operator-name> ::= ?R # ()
|
| 601 | case OO_Call: Out << "?R"; break;
|
| 602 | // <operator-name> ::= ?S # ~
|
| 603 | case OO_Tilde: Out << "?S"; break;
|
| 604 | // <operator-name> ::= ?T # ^
|
| 605 | case OO_Caret: Out << "?T"; break;
|
| 606 | // <operator-name> ::= ?U # |
|
| 607 | case OO_Pipe: Out << "?U"; break;
|
| 608 | // <operator-name> ::= ?V # &&
|
| 609 | case OO_AmpAmp: Out << "?V"; break;
|
| 610 | // <operator-name> ::= ?W # ||
|
| 611 | case OO_PipePipe: Out << "?W"; break;
|
| 612 | // <operator-name> ::= ?X # *=
|
| 613 | case OO_StarEqual: Out << "?X"; break;
|
| 614 | // <operator-name> ::= ?Y # +=
|
| 615 | case OO_PlusEqual: Out << "?Y"; break;
|
| 616 | // <operator-name> ::= ?Z # -=
|
| 617 | case OO_MinusEqual: Out << "?Z"; break;
|
| 618 | // <operator-name> ::= ?_0 # /=
|
| 619 | case OO_SlashEqual: Out << "?_0"; break;
|
| 620 | // <operator-name> ::= ?_1 # %=
|
| 621 | case OO_PercentEqual: Out << "?_1"; break;
|
| 622 | // <operator-name> ::= ?_2 # >>=
|
| 623 | case OO_GreaterGreaterEqual: Out << "?_2"; break;
|
| 624 | // <operator-name> ::= ?_3 # <<=
|
| 625 | case OO_LessLessEqual: Out << "?_3"; break;
|
| 626 | // <operator-name> ::= ?_4 # &=
|
| 627 | case OO_AmpEqual: Out << "?_4"; break;
|
| 628 | // <operator-name> ::= ?_5 # |=
|
| 629 | case OO_PipeEqual: Out << "?_5"; break;
|
| 630 | // <operator-name> ::= ?_6 # ^=
|
| 631 | case OO_CaretEqual: Out << "?_6"; break;
|
| 632 | // ?_7 # vftable
|
| 633 | // ?_8 # vbtable
|
| 634 | // ?_9 # vcall
|
| 635 | // ?_A # typeof
|
| 636 | // ?_B # local static guard
|
| 637 | // ?_C # string
|
| 638 | // ?_D # vbase destructor
|
| 639 | // ?_E # vector deleting destructor
|
| 640 | // ?_F # default constructor closure
|
| 641 | // ?_G # scalar deleting destructor
|
| 642 | // ?_H # vector constructor iterator
|
| 643 | // ?_I # vector destructor iterator
|
| 644 | // ?_J # vector vbase constructor iterator
|
| 645 | // ?_K # virtual displacement map
|
| 646 | // ?_L # eh vector constructor iterator
|
| 647 | // ?_M # eh vector destructor iterator
|
| 648 | // ?_N # eh vector vbase constructor iterator
|
| 649 | // ?_O # copy constructor closure
|
| 650 | // ?_P<name> # udt returning <name>
|
| 651 | // ?_Q # <unknown>
|
| 652 | // ?_R0 # RTTI Type Descriptor
|
| 653 | // ?_R1 # RTTI Base Class Descriptor at (a,b,c,d)
|
| 654 | // ?_R2 # RTTI Base Class Array
|
| 655 | // ?_R3 # RTTI Class Hierarchy Descriptor
|
| 656 | // ?_R4 # RTTI Complete Object Locator
|
| 657 | // ?_S # local vftable
|
| 658 | // ?_T # local vftable constructor closure
|
| 659 | // <operator-name> ::= ?_U # new[]
|
| 660 | case OO_Array_New: Out << "?_U"; break;
|
| 661 | // <operator-name> ::= ?_V # delete[]
|
| 662 | case OO_Array_Delete: Out << "?_V"; break;
|
| 663 |
|
| 664 | case OO_Conditional: {
|
| 665 | DiagnosticsEngine &Diags = Context.getDiags();
|
| 666 | unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
| 667 | "cannot mangle this conditional operator yet");
|
| 668 | Diags.Report(Loc, DiagID);
|
| 669 | break;
|
| 670 | }
|
| 671 |
|
| 672 | case OO_None:
|
| 673 | case NUM_OVERLOADED_OPERATORS:
|
| 674 | llvm_unreachable("Not an overloaded operator");
|
| 675 | }
|
| 676 | }
|
| 677 |
|
| 678 | void MicrosoftCXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
|
| 679 | // <source name> ::= <identifier> @
|
| 680 | std::string key = II->getNameStart();
|
| 681 | BackRefMap::iterator Found;
|
| 682 | if (UseNameBackReferences)
|
| 683 | Found = NameBackReferences.find(key);
|
| 684 | if (!UseNameBackReferences || Found == NameBackReferences.end()) {
|
| 685 | Out << II->getName() << '@';
|
| 686 | if (UseNameBackReferences && NameBackReferences.size() < 10) {
|
| 687 | size_t Size = NameBackReferences.size();
|
| 688 | NameBackReferences[key] = Size;
|
| 689 | }
|
| 690 | } else {
|
| 691 | Out << Found->second;
|
| 692 | }
|
| 693 | }
|
| 694 |
|
| 695 | void MicrosoftCXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
|
| 696 | Context.mangleObjCMethodName(MD, Out);
|
| 697 | }
|
| 698 |
|
| 699 | // Find out how many function decls live above this one and return an integer
|
| 700 | // suitable for use as the number in a numbered anonymous scope.
|
| 701 | // TODO: Memoize.
|
| 702 | static unsigned getLocalNestingLevel(const FunctionDecl *FD) {
|
| 703 | const DeclContext *DC = FD->getParent();
|
| 704 | int level = 1;
|
| 705 |
|
| 706 | while (DC && !DC->isTranslationUnit()) {
|
| 707 | if (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)) level++;
|
| 708 | DC = DC->getParent();
|
| 709 | }
|
| 710 |
|
| 711 | return 2*level;
|
| 712 | }
|
| 713 |
|
| 714 | void MicrosoftCXXNameMangler::mangleLocalName(const FunctionDecl *FD) {
|
| 715 | // <nested-name> ::= <numbered-anonymous-scope> ? <mangled-name>
|
| 716 | // <numbered-anonymous-scope> ::= ? <number>
|
| 717 | // Even though the name is rendered in reverse order (e.g.
|
| 718 | // A::B::C is rendered as C@B@A), VC numbers the scopes from outermost to
|
| 719 | // innermost. So a method bar in class C local to function foo gets mangled
|
| 720 | // as something like:
|
| 721 | // ?bar@C@?1??foo@@YAXXZ@QAEXXZ
|
| 722 | // This is more apparent when you have a type nested inside a method of a
|
| 723 | // type nested inside a function. A method baz in class D local to method
|
| 724 | // bar of class C local to function foo gets mangled as:
|
| 725 | // ?baz@D@?3??bar@C@?1??foo@@YAXXZ@QAEXXZ@QAEXXZ
|
| 726 | // This scheme is general enough to support GCC-style nested
|
| 727 | // functions. You could have a method baz of class C inside a function bar
|
| 728 | // inside a function foo, like so:
|
| 729 | // ?baz@C@?3??bar@?1??foo@@YAXXZ@YAXXZ@QAEXXZ
|
| 730 | int NestLevel = getLocalNestingLevel(FD);
|
| 731 | Out << '?';
|
| 732 | mangleNumber(NestLevel);
|
| 733 | Out << '?';
|
| 734 | mangle(FD, "?");
|
| 735 | }
|
| 736 |
|
| 737 | void MicrosoftCXXNameMangler::mangleTemplateInstantiationName(
|
| 738 | const TemplateDecl *TD,
|
| 739 | const SmallVectorImpl<TemplateArgumentLoc> &TemplateArgs) {
|
| 740 | // <template-name> ::= <unscoped-template-name> <template-args>
|
| 741 | // ::= <substitution>
|
| 742 | // Always start with the unqualified name.
|
| 743 |
|
| 744 | // Templates have their own context for back references.
|
| 745 | ArgBackRefMap OuterArgsContext;
|
| 746 | BackRefMap OuterTemplateContext;
|
| 747 | NameBackReferences.swap(OuterTemplateContext);
|
| 748 | TypeBackReferences.swap(OuterArgsContext);
|
| 749 |
|
| 750 | mangleUnscopedTemplateName(TD);
|
| 751 | mangleTemplateArgs(TemplateArgs);
|
| 752 |
|
| 753 | // Restore the previous back reference contexts.
|
| 754 | NameBackReferences.swap(OuterTemplateContext);
|
| 755 | TypeBackReferences.swap(OuterArgsContext);
|
| 756 | }
|
| 757 |
|
| 758 | void
|
| 759 | MicrosoftCXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *TD) {
|
| 760 | // <unscoped-template-name> ::= ?$ <unqualified-name>
|
| 761 | Out << "?$";
|
| 762 | mangleUnqualifiedName(TD);
|
| 763 | }
|
| 764 |
|
| 765 | void
|
| 766 | MicrosoftCXXNameMangler::mangleIntegerLiteral(const llvm::APSInt &Value,
|
| 767 | bool IsBoolean) {
|
| 768 | // <integer-literal> ::= $0 <number>
|
| 769 | Out << "$0";
|
| 770 | // Make sure booleans are encoded as 0/1.
|
| 771 | if (IsBoolean && Value.getBoolValue())
|
| 772 | mangleNumber(1);
|
| 773 | else
|
| 774 | mangleNumber(Value);
|
| 775 | }
|
| 776 |
|
| 777 | void
|
| 778 | MicrosoftCXXNameMangler::mangleExpression(const Expr *E) {
|
| 779 | // See if this is a constant expression.
|
| 780 | llvm::APSInt Value;
|
| 781 | if (E->isIntegerConstantExpr(Value, Context.getASTContext())) {
|
| 782 | mangleIntegerLiteral(Value, E->getType()->isBooleanType());
|
| 783 | return;
|
| 784 | }
|
| 785 |
|
| 786 | // As bad as this diagnostic is, it's better than crashing.
|
| 787 | DiagnosticsEngine &Diags = Context.getDiags();
|
| 788 | unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
| 789 | "cannot yet mangle expression type %0");
|
| 790 | Diags.Report(E->getExprLoc(), DiagID)
|
| 791 | << E->getStmtClassName() << E->getSourceRange();
|
| 792 | }
|
| 793 |
|
| 794 | void
|
| 795 | MicrosoftCXXNameMangler::mangleTemplateArgs(
|
| 796 | const SmallVectorImpl<TemplateArgumentLoc> &TemplateArgs) {
|
| 797 | // <template-args> ::= {<type> | <integer-literal>}+ @
|
| 798 | unsigned NumTemplateArgs = TemplateArgs.size();
|
| 799 | for (unsigned i = 0; i < NumTemplateArgs; ++i) {
|
| 800 | const TemplateArgumentLoc &TAL = TemplateArgs[i];
|
| 801 | const TemplateArgument &TA = TAL.getArgument();
|
| 802 | switch (TA.getKind()) {
|
| 803 | case TemplateArgument::Null:
|
| 804 | llvm_unreachable("Can't mangle null template arguments!");
|
| 805 | case TemplateArgument::Type:
|
| 806 | mangleType(TA.getAsType(), TAL.getSourceRange());
|
| 807 | break;
|
| 808 | case TemplateArgument::Integral:
|
| 809 | mangleIntegerLiteral(TA.getAsIntegral(),
|
| 810 | TA.getIntegralType()->isBooleanType());
|
| 811 | break;
|
| 812 | case TemplateArgument::Expression:
|
| 813 | mangleExpression(TA.getAsExpr());
|
| 814 | break;
|
| 815 | case TemplateArgument::Template:
|
| 816 | case TemplateArgument::TemplateExpansion:
|
| 817 | case TemplateArgument::Declaration:
|
| 818 | case TemplateArgument::NullPtr:
|
| 819 | case TemplateArgument::Pack: {
|
| 820 | // Issue a diagnostic.
|
| 821 | DiagnosticsEngine &Diags = Context.getDiags();
|
| 822 | unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
| 823 | "cannot mangle this %select{ERROR|ERROR|pointer/reference|nullptr|"
|
| 824 | "integral|template|template pack expansion|ERROR|parameter pack}0 "
|
| 825 | "template argument yet");
|
| 826 | Diags.Report(TAL.getLocation(), DiagID)
|
| 827 | << TA.getKind()
|
| 828 | << TAL.getSourceRange();
|
| 829 | }
|
| 830 | }
|
| 831 | }
|
| 832 | Out << '@';
|
| 833 | }
|
| 834 |
|
| 835 | void MicrosoftCXXNameMangler::mangleQualifiers(Qualifiers Quals,
|
| 836 | bool IsMember) {
|
| 837 | // <cvr-qualifiers> ::= [E] [F] [I] <base-cvr-qualifiers>
|
| 838 | // 'E' means __ptr64 (32-bit only); 'F' means __unaligned (32/64-bit only);
|
| 839 | // 'I' means __restrict (32/64-bit).
|
| 840 | // Note that the MSVC __restrict keyword isn't the same as the C99 restrict
|
| 841 | // keyword!
|
| 842 | // <base-cvr-qualifiers> ::= A # near
|
| 843 | // ::= B # near const
|
| 844 | // ::= C # near volatile
|
| 845 | // ::= D # near const volatile
|
| 846 | // ::= E # far (16-bit)
|
| 847 | // ::= F # far const (16-bit)
|
| 848 | // ::= G # far volatile (16-bit)
|
| 849 | // ::= H # far const volatile (16-bit)
|
| 850 | // ::= I # huge (16-bit)
|
| 851 | // ::= J # huge const (16-bit)
|
| 852 | // ::= K # huge volatile (16-bit)
|
| 853 | // ::= L # huge const volatile (16-bit)
|
| 854 | // ::= M <basis> # based
|
| 855 | // ::= N <basis> # based const
|
| 856 | // ::= O <basis> # based volatile
|
| 857 | // ::= P <basis> # based const volatile
|
| 858 | // ::= Q # near member
|
| 859 | // ::= R # near const member
|
| 860 | // ::= S # near volatile member
|
| 861 | // ::= T # near const volatile member
|
| 862 | // ::= U # far member (16-bit)
|
| 863 | // ::= V # far const member (16-bit)
|
| 864 | // ::= W # far volatile member (16-bit)
|
| 865 | // ::= X # far const volatile member (16-bit)
|
| 866 | // ::= Y # huge member (16-bit)
|
| 867 | // ::= Z # huge const member (16-bit)
|
| 868 | // ::= 0 # huge volatile member (16-bit)
|
| 869 | // ::= 1 # huge const volatile member (16-bit)
|
| 870 | // ::= 2 <basis> # based member
|
| 871 | // ::= 3 <basis> # based const member
|
| 872 | // ::= 4 <basis> # based volatile member
|
| 873 | // ::= 5 <basis> # based const volatile member
|
| 874 | // ::= 6 # near function (pointers only)
|
| 875 | // ::= 7 # far function (pointers only)
|
| 876 | // ::= 8 # near method (pointers only)
|
| 877 | // ::= 9 # far method (pointers only)
|
| 878 | // ::= _A <basis> # based function (pointers only)
|
| 879 | // ::= _B <basis> # based function (far?) (pointers only)
|
| 880 | // ::= _C <basis> # based method (pointers only)
|
| 881 | // ::= _D <basis> # based method (far?) (pointers only)
|
| 882 | // ::= _E # block (Clang)
|
| 883 | // <basis> ::= 0 # __based(void)
|
| 884 | // ::= 1 # __based(segment)?
|
| 885 | // ::= 2 <name> # __based(name)
|
| 886 | // ::= 3 # ?
|
| 887 | // ::= 4 # ?
|
| 888 | // ::= 5 # not really based
|
| 889 | bool HasConst = Quals.hasConst(),
|
| 890 | HasVolatile = Quals.hasVolatile();
|
| 891 | if (!IsMember) {
|
| 892 | if (HasConst && HasVolatile) {
|
| 893 | Out << 'D';
|
| 894 | } else if (HasVolatile) {
|
| 895 | Out << 'C';
|
| 896 | } else if (HasConst) {
|
| 897 | Out << 'B';
|
| 898 | } else {
|
| 899 | Out << 'A';
|
| 900 | }
|
| 901 | } else {
|
| 902 | if (HasConst && HasVolatile) {
|
| 903 | Out << 'T';
|
| 904 | } else if (HasVolatile) {
|
| 905 | Out << 'S';
|
| 906 | } else if (HasConst) {
|
| 907 | Out << 'R';
|
| 908 | } else {
|
| 909 | Out << 'Q';
|
| 910 | }
|
| 911 | }
|
| 912 |
|
| 913 | // FIXME: For now, just drop all extension qualifiers on the floor.
|
| 914 | }
|
| 915 |
|
| 916 | void MicrosoftCXXNameMangler::manglePointerQualifiers(Qualifiers Quals) {
|
| 917 | // <pointer-cvr-qualifiers> ::= P # no qualifiers
|
| 918 | // ::= Q # const
|
| 919 | // ::= R # volatile
|
| 920 | // ::= S # const volatile
|
| 921 | bool HasConst = Quals.hasConst(),
|
| 922 | HasVolatile = Quals.hasVolatile();
|
| 923 | if (HasConst && HasVolatile) {
|
| 924 | Out << 'S';
|
| 925 | } else if (HasVolatile) {
|
| 926 | Out << 'R';
|
| 927 | } else if (HasConst) {
|
| 928 | Out << 'Q';
|
| 929 | } else {
|
| 930 | Out << 'P';
|
| 931 | }
|
| 932 | }
|
| 933 |
|
| 934 | void MicrosoftCXXNameMangler::mangleArgumentType(QualType T,
|
| 935 | SourceRange Range) {
|
| 936 | void *TypePtr = getASTContext().getCanonicalType(T).getAsOpaquePtr();
|
| 937 | ArgBackRefMap::iterator Found = TypeBackReferences.find(TypePtr);
|
| 938 |
|
| 939 | if (Found == TypeBackReferences.end()) {
|
| 940 | size_t OutSizeBefore = Out.GetNumBytesInBuffer();
|
| 941 |
|
| 942 | mangleType(T, Range, false);
|
| 943 |
|
| 944 | // See if it's worth creating a back reference.
|
| 945 | // Only types longer than 1 character are considered
|
| 946 | // and only 10 back references slots are available:
|
| 947 | bool LongerThanOneChar = (Out.GetNumBytesInBuffer() - OutSizeBefore > 1);
|
| 948 | if (LongerThanOneChar && TypeBackReferences.size() < 10) {
|
| 949 | size_t Size = TypeBackReferences.size();
|
| 950 | TypeBackReferences[TypePtr] = Size;
|
| 951 | }
|
| 952 | } else {
|
| 953 | Out << Found->second;
|
| 954 | }
|
| 955 | }
|
| 956 |
|
| 957 | void MicrosoftCXXNameMangler::mangleType(QualType T, SourceRange Range,
|
| 958 | bool MangleQualifiers) {
|
| 959 | // Only operate on the canonical type!
|
| 960 | T = getASTContext().getCanonicalType(T);
|
| 961 |
|
| 962 | Qualifiers Quals = T.getLocalQualifiers();
|
| 963 | // We have to mangle these now, while we still have enough information.
|
| 964 | if (T->isAnyPointerType() || T->isMemberPointerType() ||
|
| 965 | T->isBlockPointerType()) {
|
| 966 | manglePointerQualifiers(Quals);
|
| 967 | } else if (Quals && MangleQualifiers) {
|
| 968 | mangleQualifiers(Quals, false);
|
| 969 | }
|
| 970 |
|
| 971 | SplitQualType split = T.split();
|
| 972 | const Type *ty = split.Ty;
|
| 973 |
|
| 974 | // If we're mangling a qualified array type, push the qualifiers to
|
| 975 | // the element type.
|
| 976 | if (split.Quals && isa<ArrayType>(T)) {
|
| 977 | ty = Context.getASTContext().getAsArrayType(T);
|
| 978 | }
|
| 979 |
|
| 980 | switch (ty->getTypeClass()) {
|
| 981 | #define ABSTRACT_TYPE(CLASS, PARENT)
|
| 982 | #define NON_CANONICAL_TYPE(CLASS, PARENT) \
|
| 983 | case Type::CLASS: \
|
| 984 | llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
|
| 985 | return;
|
| 986 | #define TYPE(CLASS, PARENT) \
|
| 987 | case Type::CLASS: \
|
| 988 | mangleType(cast<CLASS##Type>(ty), Range); \
|
| 989 | break;
|
| 990 | #include "clang/AST/TypeNodes.def"
|
| 991 | #undef ABSTRACT_TYPE
|
| 992 | #undef NON_CANONICAL_TYPE
|
| 993 | #undef TYPE
|
| 994 | }
|
| 995 | }
|
| 996 |
|
| 997 | void MicrosoftCXXNameMangler::mangleType(const BuiltinType *T,
|
| 998 | SourceRange Range) {
|
| 999 | // <type> ::= <builtin-type>
|
| 1000 | // <builtin-type> ::= X # void
|
| 1001 | // ::= C # signed char
|
| 1002 | // ::= D # char
|
| 1003 | // ::= E # unsigned char
|
| 1004 | // ::= F # short
|
| 1005 | // ::= G # unsigned short (or wchar_t if it's not a builtin)
|
| 1006 | // ::= H # int
|
| 1007 | // ::= I # unsigned int
|
| 1008 | // ::= J # long
|
| 1009 | // ::= K # unsigned long
|
| 1010 | // L # <none>
|
| 1011 | // ::= M # float
|
| 1012 | // ::= N # double
|
| 1013 | // ::= O # long double (__float80 is mangled differently)
|
| 1014 | // ::= _J # long long, __int64
|
| 1015 | // ::= _K # unsigned long long, __int64
|
| 1016 | // ::= _L # __int128
|
| 1017 | // ::= _M # unsigned __int128
|
| 1018 | // ::= _N # bool
|
| 1019 | // _O # <array in parameter>
|
| 1020 | // ::= _T # __float80 (Intel)
|
| 1021 | // ::= _W # wchar_t
|
| 1022 | // ::= _Z # __float80 (Digital Mars)
|
| 1023 | switch (T->getKind()) {
|
| 1024 | case BuiltinType::Void: Out << 'X'; break;
|
| 1025 | case BuiltinType::SChar: Out << 'C'; break;
|
| 1026 | case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'D'; break;
|
| 1027 | case BuiltinType::UChar: Out << 'E'; break;
|
| 1028 | case BuiltinType::Short: Out << 'F'; break;
|
| 1029 | case BuiltinType::UShort: Out << 'G'; break;
|
| 1030 | case BuiltinType::Int: Out << 'H'; break;
|
| 1031 | case BuiltinType::UInt: Out << 'I'; break;
|
| 1032 | case BuiltinType::Long: Out << 'J'; break;
|
| 1033 | case BuiltinType::ULong: Out << 'K'; break;
|
| 1034 | case BuiltinType::Float: Out << 'M'; break;
|
| 1035 | case BuiltinType::Double: Out << 'N'; break;
|
| 1036 | // TODO: Determine size and mangle accordingly
|
| 1037 | case BuiltinType::LongDouble: Out << 'O'; break;
|
| 1038 | case BuiltinType::LongLong: Out << "_J"; break;
|
| 1039 | case BuiltinType::ULongLong: Out << "_K"; break;
|
| 1040 | case BuiltinType::Int128: Out << "_L"; break;
|
| 1041 | case BuiltinType::UInt128: Out << "_M"; break;
|
| 1042 | case BuiltinType::Bool: Out << "_N"; break;
|
| 1043 | case BuiltinType::WChar_S:
|
| 1044 | case BuiltinType::WChar_U: Out << "_W"; break;
|
| 1045 |
|
| 1046 | #define BUILTIN_TYPE(Id, SingletonId)
|
| 1047 | #define PLACEHOLDER_TYPE(Id, SingletonId) \
|
| 1048 | case BuiltinType::Id:
|
| 1049 | #include "clang/AST/BuiltinTypes.def"
|
| 1050 | case BuiltinType::Dependent:
|
| 1051 | llvm_unreachable("placeholder types shouldn't get to name mangling");
|
| 1052 |
|
| 1053 | case BuiltinType::ObjCId: Out << "PAUobjc_object@@"; break;
|
| 1054 | case BuiltinType::ObjCClass: Out << "PAUobjc_class@@"; break;
|
| 1055 | case BuiltinType::ObjCSel: Out << "PAUobjc_selector@@"; break;
|
| 1056 |
|
| 1057 | case BuiltinType::OCLImage1d: Out << "PAUocl_image1d@@"; break;
|
| 1058 | case BuiltinType::OCLImage1dArray: Out << "PAUocl_image1darray@@"; break;
|
| 1059 | case BuiltinType::OCLImage1dBuffer: Out << "PAUocl_image1dbuffer@@"; break;
|
| 1060 | case BuiltinType::OCLImage2d: Out << "PAUocl_image2d@@"; break;
|
| 1061 | case BuiltinType::OCLImage2dArray: Out << "PAUocl_image2darray@@"; break;
|
| 1062 | case BuiltinType::OCLImage3d: Out << "PAUocl_image3d@@"; break;
|
| 1063 |
|
| 1064 | case BuiltinType::NullPtr: Out << "$$T"; break;
|
| 1065 |
|
| 1066 | case BuiltinType::Char16:
|
| 1067 | case BuiltinType::Char32:
|
| 1068 | case BuiltinType::Half: {
|
| 1069 | DiagnosticsEngine &Diags = Context.getDiags();
|
| 1070 | unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
| 1071 | "cannot mangle this built-in %0 type yet");
|
| 1072 | Diags.Report(Range.getBegin(), DiagID)
|
| 1073 | << T->getName(Context.getASTContext().getPrintingPolicy())
|
| 1074 | << Range;
|
| 1075 | break;
|
| 1076 | }
|
| 1077 | }
|
| 1078 | }
|
| 1079 |
|
| 1080 | // <type> ::= <function-type>
|
| 1081 | void MicrosoftCXXNameMangler::mangleType(const FunctionProtoType *T,
|
| 1082 | SourceRange) {
|
| 1083 | // Structors only appear in decls, so at this point we know it's not a
|
| 1084 | // structor type.
|
| 1085 | // FIXME: This may not be lambda-friendly.
|
| 1086 | Out << "$$A6";
|
| 1087 | mangleType(T, NULL, false, false);
|
| 1088 | }
|
| 1089 | void MicrosoftCXXNameMangler::mangleType(const FunctionNoProtoType *T,
|
| 1090 | SourceRange) {
|
| 1091 | llvm_unreachable("Can't mangle K&R function prototypes");
|
| 1092 | }
|
| 1093 |
|
| 1094 | void MicrosoftCXXNameMangler::mangleType(const FunctionType *T,
|
| 1095 | const FunctionDecl *D,
|
| 1096 | bool IsStructor,
|
| 1097 | bool IsInstMethod) {
|
| 1098 | // <function-type> ::= <this-cvr-qualifiers> <calling-convention>
|
| 1099 | // <return-type> <argument-list> <throw-spec>
|
| 1100 | const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
|
| 1101 |
|
| 1102 | // If this is a C++ instance method, mangle the CVR qualifiers for the
|
| 1103 | // this pointer.
|
| 1104 | if (IsInstMethod)
|
| 1105 | mangleQualifiers(Qualifiers::fromCVRMask(Proto->getTypeQuals()), false);
|
| 1106 |
|
| 1107 | mangleCallingConvention(T, IsInstMethod);
|
| 1108 |
|
| 1109 | // <return-type> ::= <type>
|
| 1110 | // ::= @ # structors (they have no declared return type)
|
| 1111 | if (IsStructor)
|
| 1112 | Out << '@';
|
| 1113 | else {
|
| 1114 | QualType Result = Proto->getResultType();
|
| 1115 | const Type* RT = Result.getTypePtr();
|
| 1116 | if (!RT->isAnyPointerType() && !RT->isReferenceType()) {
|
| 1117 | if (Result.hasQualifiers() || !RT->isBuiltinType())
|
| 1118 | Out << '?';
|
| 1119 | if (!RT->isBuiltinType() && !Result.hasQualifiers()) {
|
| 1120 | // Lack of qualifiers for user types is mangled as 'A'.
|
| 1121 | Out << 'A';
|
| 1122 | }
|
| 1123 | }
|
| 1124 |
|
| 1125 | // FIXME: Get the source range for the result type. Or, better yet,
|
| 1126 | // implement the unimplemented stuff so we don't need accurate source
|
| 1127 | // location info anymore :).
|
| 1128 | mangleType(Result, SourceRange());
|
| 1129 | }
|
| 1130 |
|
| 1131 | // <argument-list> ::= X # void
|
| 1132 | // ::= <type>+ @
|
| 1133 | // ::= <type>* Z # varargs
|
| 1134 | if (Proto->getNumArgs() == 0 && !Proto->isVariadic()) {
|
| 1135 | Out << 'X';
|
| 1136 | } else {
|
| 1137 | if (D) {
|
| 1138 | // If we got a decl, use the type-as-written to make sure arrays
|
| 1139 | // get mangled right. Note that we can't rely on the TSI
|
| 1140 | // existing if (for example) the parameter was synthesized.
|
| 1141 | for (FunctionDecl::param_const_iterator Parm = D->param_begin(),
|
| 1142 | ParmEnd = D->param_end(); Parm != ParmEnd; ++Parm) {
|
| 1143 | TypeSourceInfo *TSI = (*Parm)->getTypeSourceInfo();
|
| 1144 | QualType Type = TSI ? TSI->getType() : (*Parm)->getType();
|
| 1145 | mangleArgumentType(Type, (*Parm)->getSourceRange());
|
| 1146 | }
|
| 1147 | } else {
|
| 1148 | // Happens for function pointer type arguments for example.
|
| 1149 | for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
|
| 1150 | ArgEnd = Proto->arg_type_end();
|
| 1151 | Arg != ArgEnd; ++Arg)
|
| 1152 | mangleArgumentType(*Arg, SourceRange());
|
| 1153 | }
|
| 1154 | // <builtin-type> ::= Z # ellipsis
|
| 1155 | if (Proto->isVariadic())
|
| 1156 | Out << 'Z';
|
| 1157 | else
|
| 1158 | Out << '@';
|
| 1159 | }
|
| 1160 |
|
| 1161 | mangleThrowSpecification(Proto);
|
| 1162 | }
|
| 1163 |
|
| 1164 | void MicrosoftCXXNameMangler::mangleFunctionClass(const FunctionDecl *FD) {
|
| 1165 | // <function-class> ::= A # private: near
|
| 1166 | // ::= B # private: far
|
| 1167 | // ::= C # private: static near
|
| 1168 | // ::= D # private: static far
|
| 1169 | // ::= E # private: virtual near
|
| 1170 | // ::= F # private: virtual far
|
| 1171 | // ::= G # private: thunk near
|
| 1172 | // ::= H # private: thunk far
|
| 1173 | // ::= I # protected: near
|
| 1174 | // ::= J # protected: far
|
| 1175 | // ::= K # protected: static near
|
| 1176 | // ::= L # protected: static far
|
| 1177 | // ::= M # protected: virtual near
|
| 1178 | // ::= N # protected: virtual far
|
| 1179 | // ::= O # protected: thunk near
|
| 1180 | // ::= P # protected: thunk far
|
| 1181 | // ::= Q # public: near
|
| 1182 | // ::= R # public: far
|
| 1183 | // ::= S # public: static near
|
| 1184 | // ::= T # public: static far
|
| 1185 | // ::= U # public: virtual near
|
| 1186 | // ::= V # public: virtual far
|
| 1187 | // ::= W # public: thunk near
|
| 1188 | // ::= X # public: thunk far
|
| 1189 | // ::= Y # global near
|
| 1190 | // ::= Z # global far
|
| 1191 | if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
|
| 1192 | switch (MD->getAccess()) {
|
| 1193 | default:
|
| 1194 | case AS_private:
|
| 1195 | if (MD->isStatic())
|
| 1196 | Out << 'C';
|
| 1197 | else if (MD->isVirtual())
|
| 1198 | Out << 'E';
|
| 1199 | else
|
| 1200 | Out << 'A';
|
| 1201 | break;
|
| 1202 | case AS_protected:
|
| 1203 | if (MD->isStatic())
|
| 1204 | Out << 'K';
|
| 1205 | else if (MD->isVirtual())
|
| 1206 | Out << 'M';
|
| 1207 | else
|
| 1208 | Out << 'I';
|
| 1209 | break;
|
| 1210 | case AS_public:
|
| 1211 | if (MD->isStatic())
|
| 1212 | Out << 'S';
|
| 1213 | else if (MD->isVirtual())
|
| 1214 | Out << 'U';
|
| 1215 | else
|
| 1216 | Out << 'Q';
|
| 1217 | }
|
| 1218 | } else
|
| 1219 | Out << 'Y';
|
| 1220 | }
|
| 1221 | void MicrosoftCXXNameMangler::mangleCallingConvention(const FunctionType *T,
|
| 1222 | bool IsInstMethod) {
|
| 1223 | // <calling-convention> ::= A # __cdecl
|
| 1224 | // ::= B # __export __cdecl
|
| 1225 | // ::= C # __pascal
|
| 1226 | // ::= D # __export __pascal
|
| 1227 | // ::= E # __thiscall
|
| 1228 | // ::= F # __export __thiscall
|
| 1229 | // ::= G # __stdcall
|
| 1230 | // ::= H # __export __stdcall
|
| 1231 | // ::= I # __fastcall
|
| 1232 | // ::= J # __export __fastcall
|
| 1233 | // The 'export' calling conventions are from a bygone era
|
| 1234 | // (*cough*Win16*cough*) when functions were declared for export with
|
| 1235 | // that keyword. (It didn't actually export them, it just made them so
|
| 1236 | // that they could be in a DLL and somebody from another module could call
|
| 1237 | // them.)
|
| 1238 | CallingConv CC = T->getCallConv();
|
| 1239 | if (CC == CC_Default) {
|
| 1240 | if (IsInstMethod) {
|
| 1241 | const FunctionProtoType *FPT =
|
| 1242 | T->getCanonicalTypeUnqualified().castAs<FunctionProtoType>();
|
| 1243 | bool isVariadic = FPT->isVariadic();
|
| 1244 | CC = getASTContext().getDefaultCXXMethodCallConv(isVariadic);
|
| 1245 | } else {
|
| 1246 | CC = CC_C;
|
| 1247 | }
|
| 1248 | }
|
| 1249 | switch (CC) {
|
| 1250 | default:
|
| 1251 | llvm_unreachable("Unsupported CC for mangling");
|
| 1252 | case CC_Default:
|
| 1253 | case CC_C: Out << 'A'; break;
|
| 1254 | case CC_X86Pascal: Out << 'C'; break;
|
| 1255 | case CC_X86ThisCall: Out << 'E'; break;
|
| 1256 | case CC_X86StdCall: Out << 'G'; break;
|
| 1257 | case CC_X86FastCall: Out << 'I'; break;
|
| 1258 | }
|
| 1259 | }
|
| 1260 | void MicrosoftCXXNameMangler::mangleThrowSpecification(
|
| 1261 | const FunctionProtoType *FT) {
|
| 1262 | // <throw-spec> ::= Z # throw(...) (default)
|
| 1263 | // ::= @ # throw() or __declspec/__attribute__((nothrow))
|
| 1264 | // ::= <type>+
|
| 1265 | // NOTE: Since the Microsoft compiler ignores throw specifications, they are
|
| 1266 | // all actually mangled as 'Z'. (They're ignored because their associated
|
| 1267 | // functionality isn't implemented, and probably never will be.)
|
| 1268 | Out << 'Z';
|
| 1269 | }
|
| 1270 |
|
| 1271 | void MicrosoftCXXNameMangler::mangleType(const UnresolvedUsingType *T,
|
| 1272 | SourceRange Range) {
|
| 1273 | // Probably should be mangled as a template instantiation; need to see what
|
| 1274 | // VC does first.
|
| 1275 | DiagnosticsEngine &Diags = Context.getDiags();
|
| 1276 | unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
| 1277 | "cannot mangle this unresolved dependent type yet");
|
| 1278 | Diags.Report(Range.getBegin(), DiagID)
|
| 1279 | << Range;
|
| 1280 | }
|
| 1281 |
|
| 1282 | // <type> ::= <union-type> | <struct-type> | <class-type> | <enum-type>
|
| 1283 | // <union-type> ::= T <name>
|
| 1284 | // <struct-type> ::= U <name>
|
| 1285 | // <class-type> ::= V <name>
|
| 1286 | // <enum-type> ::= W <size> <name>
|
| 1287 | void MicrosoftCXXNameMangler::mangleType(const EnumType *T, SourceRange) {
|
| 1288 | mangleType(cast<TagType>(T));
|
| 1289 | }
|
| 1290 | void MicrosoftCXXNameMangler::mangleType(const RecordType *T, SourceRange) {
|
| 1291 | mangleType(cast<TagType>(T));
|
| 1292 | }
|
| 1293 | void MicrosoftCXXNameMangler::mangleType(const TagType *T) {
|
| 1294 | switch (T->getDecl()->getTagKind()) {
|
| 1295 | case TTK_Union:
|
| 1296 | Out << 'T';
|
| 1297 | break;
|
| 1298 | case TTK_Struct:
|
| 1299 | case TTK_Interface:
|
| 1300 | Out << 'U';
|
| 1301 | break;
|
| 1302 | case TTK_Class:
|
| 1303 | Out << 'V';
|
| 1304 | break;
|
| 1305 | case TTK_Enum:
|
| 1306 | Out << 'W';
|
| 1307 | Out << getASTContext().getTypeSizeInChars(
|
| 1308 | cast<EnumDecl>(T->getDecl())->getIntegerType()).getQuantity();
|
| 1309 | break;
|
| 1310 | }
|
| 1311 | mangleName(T->getDecl());
|
| 1312 | }
|
| 1313 |
|
| 1314 | // <type> ::= <array-type>
|
| 1315 | // <array-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers>
|
| 1316 | // [Y <dimension-count> <dimension>+]
|
| 1317 | // <element-type> # as global
|
| 1318 | // ::= Q <cvr-qualifiers> [Y <dimension-count> <dimension>+]
|
| 1319 | // <element-type> # as param
|
| 1320 | // It's supposed to be the other way around, but for some strange reason, it
|
| 1321 | // isn't. Today this behavior is retained for the sole purpose of backwards
|
| 1322 | // compatibility.
|
| 1323 | void MicrosoftCXXNameMangler::mangleType(const ArrayType *T, bool IsGlobal) {
|
| 1324 | // This isn't a recursive mangling, so now we have to do it all in this
|
| 1325 | // one call.
|
| 1326 | if (IsGlobal) {
|
| 1327 | manglePointerQualifiers(T->getElementType().getQualifiers());
|
| 1328 | } else {
|
| 1329 | Out << 'Q';
|
| 1330 | }
|
| 1331 | mangleExtraDimensions(T->getElementType());
|
| 1332 | }
|
| 1333 | void MicrosoftCXXNameMangler::mangleType(const ConstantArrayType *T,
|
| 1334 | SourceRange) {
|
| 1335 | mangleType(cast<ArrayType>(T), false);
|
| 1336 | }
|
| 1337 | void MicrosoftCXXNameMangler::mangleType(const VariableArrayType *T,
|
| 1338 | SourceRange) {
|
| 1339 | mangleType(cast<ArrayType>(T), false);
|
| 1340 | }
|
| 1341 | void MicrosoftCXXNameMangler::mangleType(const DependentSizedArrayType *T,
|
| 1342 | SourceRange) {
|
| 1343 | mangleType(cast<ArrayType>(T), false);
|
| 1344 | }
|
| 1345 | void MicrosoftCXXNameMangler::mangleType(const IncompleteArrayType *T,
|
| 1346 | SourceRange) {
|
| 1347 | mangleType(cast<ArrayType>(T), false);
|
| 1348 | }
|
| 1349 | void MicrosoftCXXNameMangler::mangleExtraDimensions(QualType ElementTy) {
|
| 1350 | SmallVector<llvm::APInt, 3> Dimensions;
|
| 1351 | for (;;) {
|
| 1352 | if (const ConstantArrayType *CAT =
|
| 1353 | getASTContext().getAsConstantArrayType(ElementTy)) {
|
| 1354 | Dimensions.push_back(CAT->getSize());
|
| 1355 | ElementTy = CAT->getElementType();
|
| 1356 | } else if (ElementTy->isVariableArrayType()) {
|
| 1357 | const VariableArrayType *VAT =
|
| 1358 | getASTContext().getAsVariableArrayType(ElementTy);
|
| 1359 | DiagnosticsEngine &Diags = Context.getDiags();
|
| 1360 | unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
| 1361 | "cannot mangle this variable-length array yet");
|
| 1362 | Diags.Report(VAT->getSizeExpr()->getExprLoc(), DiagID)
|
| 1363 | << VAT->getBracketsRange();
|
| 1364 | return;
|
| 1365 | } else if (ElementTy->isDependentSizedArrayType()) {
|
| 1366 | // The dependent expression has to be folded into a constant (TODO).
|
| 1367 | const DependentSizedArrayType *DSAT =
|
| 1368 | getASTContext().getAsDependentSizedArrayType(ElementTy);
|
| 1369 | DiagnosticsEngine &Diags = Context.getDiags();
|
| 1370 | unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
| 1371 | "cannot mangle this dependent-length array yet");
|
| 1372 | Diags.Report(DSAT->getSizeExpr()->getExprLoc(), DiagID)
|
| 1373 | << DSAT->getBracketsRange();
|
| 1374 | return;
|
| 1375 | } else if (ElementTy->isIncompleteArrayType()) continue;
|
| 1376 | else break;
|
| 1377 | }
|
| 1378 | mangleQualifiers(ElementTy.getQualifiers(), false);
|
| 1379 | // If there are any additional dimensions, mangle them now.
|
| 1380 | if (Dimensions.size() > 0) {
|
| 1381 | Out << 'Y';
|
| 1382 | // <dimension-count> ::= <number> # number of extra dimensions
|
| 1383 | mangleNumber(Dimensions.size());
|
| 1384 | for (unsigned Dim = 0; Dim < Dimensions.size(); ++Dim) {
|
| 1385 | mangleNumber(Dimensions[Dim].getLimitedValue());
|
| 1386 | }
|
| 1387 | }
|
| 1388 | mangleType(ElementTy.getLocalUnqualifiedType(), SourceRange());
|
| 1389 | }
|
| 1390 |
|
| 1391 | // <type> ::= <pointer-to-member-type>
|
| 1392 | // <pointer-to-member-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers>
|
| 1393 | // <class name> <type>
|
| 1394 | void MicrosoftCXXNameMangler::mangleType(const MemberPointerType *T,
|
| 1395 | SourceRange Range) {
|
| 1396 | QualType PointeeType = T->getPointeeType();
|
| 1397 | if (const FunctionProtoType *FPT = PointeeType->getAs<FunctionProtoType>()) {
|
| 1398 | Out << '8';
|
| 1399 | mangleName(T->getClass()->castAs<RecordType>()->getDecl());
|
| 1400 | mangleType(FPT, NULL, false, true);
|
| 1401 | } else {
|
| 1402 | mangleQualifiers(PointeeType.getQualifiers(), true);
|
| 1403 | mangleName(T->getClass()->castAs<RecordType>()->getDecl());
|
| 1404 | mangleType(PointeeType.getLocalUnqualifiedType(), Range);
|
| 1405 | }
|
| 1406 | }
|
| 1407 |
|
| 1408 | void MicrosoftCXXNameMangler::mangleType(const TemplateTypeParmType *T,
|
| 1409 | SourceRange Range) {
|
| 1410 | DiagnosticsEngine &Diags = Context.getDiags();
|
| 1411 | unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
| 1412 | "cannot mangle this template type parameter type yet");
|
| 1413 | Diags.Report(Range.getBegin(), DiagID)
|
| 1414 | << Range;
|
| 1415 | }
|
| 1416 |
|
| 1417 | void MicrosoftCXXNameMangler::mangleType(
|
| 1418 | const SubstTemplateTypeParmPackType *T,
|
| 1419 | SourceRange Range) {
|
| 1420 | DiagnosticsEngine &Diags = Context.getDiags();
|
| 1421 | unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
| 1422 | "cannot mangle this substituted parameter pack yet");
|
| 1423 | Diags.Report(Range.getBegin(), DiagID)
|
| 1424 | << Range;
|
| 1425 | }
|
| 1426 |
|
| 1427 | // <type> ::= <pointer-type>
|
| 1428 | // <pointer-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers> <type>
|
| 1429 | void MicrosoftCXXNameMangler::mangleType(const PointerType *T,
|
| 1430 | SourceRange Range) {
|
| 1431 | QualType PointeeTy = T->getPointeeType();
|
| 1432 | if (PointeeTy->isArrayType()) {
|
| 1433 | // Pointers to arrays are mangled like arrays.
|
| 1434 | mangleExtraDimensions(PointeeTy);
|
| 1435 | } else if (const FunctionType *FT = PointeeTy->getAs<FunctionType>()) {
|
| 1436 | // Function pointers are special.
|
| 1437 | Out << '6';
|
| 1438 | mangleType(FT, NULL, false, false);
|
| 1439 | } else {
|
| 1440 | mangleQualifiers(PointeeTy.getQualifiers(), false);
|
| 1441 | mangleType(PointeeTy, Range, false);
|
| 1442 | }
|
| 1443 | }
|
| 1444 | void MicrosoftCXXNameMangler::mangleType(const ObjCObjectPointerType *T,
|
| 1445 | SourceRange Range) {
|
| 1446 | // Object pointers never have qualifiers.
|
| 1447 | Out << 'A';
|
| 1448 | mangleType(T->getPointeeType(), Range);
|
| 1449 | }
|
| 1450 |
|
| 1451 | // <type> ::= <reference-type>
|
| 1452 | // <reference-type> ::= A <cvr-qualifiers> <type>
|
| 1453 | void MicrosoftCXXNameMangler::mangleType(const LValueReferenceType *T,
|
| 1454 | SourceRange Range) {
|
| 1455 | Out << 'A';
|
| 1456 | QualType PointeeTy = T->getPointeeType();
|
| 1457 | if (!PointeeTy.hasQualifiers())
|
| 1458 | // Lack of qualifiers is mangled as 'A'.
|
| 1459 | Out << 'A';
|
| 1460 | mangleType(PointeeTy, Range);
|
| 1461 | }
|
| 1462 |
|
| 1463 | // <type> ::= <r-value-reference-type>
|
| 1464 | // <r-value-reference-type> ::= $$Q <cvr-qualifiers> <type>
|
| 1465 | void MicrosoftCXXNameMangler::mangleType(const RValueReferenceType *T,
|
| 1466 | SourceRange Range) {
|
| 1467 | Out << "$$Q";
|
| 1468 | QualType PointeeTy = T->getPointeeType();
|
| 1469 | if (!PointeeTy.hasQualifiers())
|
| 1470 | // Lack of qualifiers is mangled as 'A'.
|
| 1471 | Out << 'A';
|
| 1472 | mangleType(PointeeTy, Range);
|
| 1473 | }
|
| 1474 |
|
| 1475 | void MicrosoftCXXNameMangler::mangleType(const ComplexType *T,
|
| 1476 | SourceRange Range) {
|
| 1477 | DiagnosticsEngine &Diags = Context.getDiags();
|
| 1478 | unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
| 1479 | "cannot mangle this complex number type yet");
|
| 1480 | Diags.Report(Range.getBegin(), DiagID)
|
| 1481 | << Range;
|
| 1482 | }
|
| 1483 |
|
| 1484 | void MicrosoftCXXNameMangler::mangleType(const VectorType *T,
|
| 1485 | SourceRange Range) {
|
| 1486 | DiagnosticsEngine &Diags = Context.getDiags();
|
| 1487 | unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
| 1488 | "cannot mangle this vector type yet");
|
| 1489 | Diags.Report(Range.getBegin(), DiagID)
|
| 1490 | << Range;
|
| 1491 | }
|
| 1492 | void MicrosoftCXXNameMangler::mangleType(const ExtVectorType *T,
|
| 1493 | SourceRange Range) {
|
| 1494 | DiagnosticsEngine &Diags = Context.getDiags();
|
| 1495 | unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
| 1496 | "cannot mangle this extended vector type yet");
|
| 1497 | Diags.Report(Range.getBegin(), DiagID)
|
| 1498 | << Range;
|
| 1499 | }
|
| 1500 | void MicrosoftCXXNameMangler::mangleType(const DependentSizedExtVectorType *T,
|
| 1501 | SourceRange Range) {
|
| 1502 | DiagnosticsEngine &Diags = Context.getDiags();
|
| 1503 | unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
| 1504 | "cannot mangle this dependent-sized extended vector type yet");
|
| 1505 | Diags.Report(Range.getBegin(), DiagID)
|
| 1506 | << Range;
|
| 1507 | }
|
| 1508 |
|
| 1509 | void MicrosoftCXXNameMangler::mangleType(const ObjCInterfaceType *T,
|
| 1510 | SourceRange) {
|
| 1511 | // ObjC interfaces have structs underlying them.
|
| 1512 | Out << 'U';
|
| 1513 | mangleName(T->getDecl());
|
| 1514 | }
|
| 1515 |
|
| 1516 | void MicrosoftCXXNameMangler::mangleType(const ObjCObjectType *T,
|
| 1517 | SourceRange Range) {
|
| 1518 | // We don't allow overloading by different protocol qualification,
|
| 1519 | // so mangling them isn't necessary.
|
| 1520 | mangleType(T->getBaseType(), Range);
|
| 1521 | }
|
| 1522 |
|
| 1523 | void MicrosoftCXXNameMangler::mangleType(const BlockPointerType *T,
|
| 1524 | SourceRange Range) {
|
| 1525 | Out << "_E";
|
| 1526 |
|
| 1527 | QualType pointee = T->getPointeeType();
|
| 1528 | mangleType(pointee->castAs<FunctionProtoType>(), NULL, false, false);
|
| 1529 | }
|
| 1530 |
|
| 1531 | void MicrosoftCXXNameMangler::mangleType(const InjectedClassNameType *T,
|
| 1532 | SourceRange Range) {
|
| 1533 | DiagnosticsEngine &Diags = Context.getDiags();
|
| 1534 | unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
| 1535 | "cannot mangle this injected class name type yet");
|
| 1536 | Diags.Report(Range.getBegin(), DiagID)
|
| 1537 | << Range;
|
| 1538 | }
|
| 1539 |
|
| 1540 | void MicrosoftCXXNameMangler::mangleType(const TemplateSpecializationType *T,
|
| 1541 | SourceRange Range) {
|
| 1542 | DiagnosticsEngine &Diags = Context.getDiags();
|
| 1543 | unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
| 1544 | "cannot mangle this template specialization type yet");
|
| 1545 | Diags.Report(Range.getBegin(), DiagID)
|
| 1546 | << Range;
|
| 1547 | }
|
| 1548 |
|
| 1549 | void MicrosoftCXXNameMangler::mangleType(const DependentNameType *T,
|
| 1550 | SourceRange Range) {
|
| 1551 | DiagnosticsEngine &Diags = Context.getDiags();
|
| 1552 | unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
| 1553 | "cannot mangle this dependent name type yet");
|
| 1554 | Diags.Report(Range.getBegin(), DiagID)
|
| 1555 | << Range;
|
| 1556 | }
|
| 1557 |
|
| 1558 | void MicrosoftCXXNameMangler::mangleType(
|
| 1559 | const DependentTemplateSpecializationType *T,
|
| 1560 | SourceRange Range) {
|
| 1561 | DiagnosticsEngine &Diags = Context.getDiags();
|
| 1562 | unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
| 1563 | "cannot mangle this dependent template specialization type yet");
|
| 1564 | Diags.Report(Range.getBegin(), DiagID)
|
| 1565 | << Range;
|
| 1566 | }
|
| 1567 |
|
| 1568 | void MicrosoftCXXNameMangler::mangleType(const PackExpansionType *T,
|
| 1569 | SourceRange Range) {
|
| 1570 | DiagnosticsEngine &Diags = Context.getDiags();
|
| 1571 | unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
| 1572 | "cannot mangle this pack expansion yet");
|
| 1573 | Diags.Report(Range.getBegin(), DiagID)
|
| 1574 | << Range;
|
| 1575 | }
|
| 1576 |
|
| 1577 | void MicrosoftCXXNameMangler::mangleType(const TypeOfType *T,
|
| 1578 | SourceRange Range) {
|
| 1579 | DiagnosticsEngine &Diags = Context.getDiags();
|
| 1580 | unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
| 1581 | "cannot mangle this typeof(type) yet");
|
| 1582 | Diags.Report(Range.getBegin(), DiagID)
|
| 1583 | << Range;
|
| 1584 | }
|
| 1585 |
|
| 1586 | void MicrosoftCXXNameMangler::mangleType(const TypeOfExprType *T,
|
| 1587 | SourceRange Range) {
|
| 1588 | DiagnosticsEngine &Diags = Context.getDiags();
|
| 1589 | unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
| 1590 | "cannot mangle this typeof(expression) yet");
|
| 1591 | Diags.Report(Range.getBegin(), DiagID)
|
| 1592 | << Range;
|
| 1593 | }
|
| 1594 |
|
| 1595 | void MicrosoftCXXNameMangler::mangleType(const DecltypeType *T,
|
| 1596 | SourceRange Range) {
|
| 1597 | DiagnosticsEngine &Diags = Context.getDiags();
|
| 1598 | unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
| 1599 | "cannot mangle this decltype() yet");
|
| 1600 | Diags.Report(Range.getBegin(), DiagID)
|
| 1601 | << Range;
|
| 1602 | }
|
| 1603 |
|
| 1604 | void MicrosoftCXXNameMangler::mangleType(const UnaryTransformType *T,
|
| 1605 | SourceRange Range) {
|
| 1606 | DiagnosticsEngine &Diags = Context.getDiags();
|
| 1607 | unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
| 1608 | "cannot mangle this unary transform type yet");
|
| 1609 | Diags.Report(Range.getBegin(), DiagID)
|
| 1610 | << Range;
|
| 1611 | }
|
| 1612 |
|
| 1613 | void MicrosoftCXXNameMangler::mangleType(const AutoType *T, SourceRange Range) {
|
| 1614 | DiagnosticsEngine &Diags = Context.getDiags();
|
| 1615 | unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
| 1616 | "cannot mangle this 'auto' type yet");
|
| 1617 | Diags.Report(Range.getBegin(), DiagID)
|
| 1618 | << Range;
|
| 1619 | }
|
| 1620 |
|
| 1621 | void MicrosoftCXXNameMangler::mangleType(const AtomicType *T,
|
| 1622 | SourceRange Range) {
|
| 1623 | DiagnosticsEngine &Diags = Context.getDiags();
|
| 1624 | unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
| 1625 | "cannot mangle this C11 atomic type yet");
|
| 1626 | Diags.Report(Range.getBegin(), DiagID)
|
| 1627 | << Range;
|
| 1628 | }
|
| 1629 |
|
| 1630 | void MicrosoftMangleContext::mangleName(const NamedDecl *D,
|
| 1631 | raw_ostream &Out) {
|
| 1632 | assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
|
| 1633 | "Invalid mangleName() call, argument is not a variable or function!");
|
| 1634 | assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
|
| 1635 | "Invalid mangleName() call on 'structor decl!");
|
| 1636 |
|
| 1637 | PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
|
| 1638 | getASTContext().getSourceManager(),
|
| 1639 | "Mangling declaration");
|
| 1640 |
|
| 1641 | MicrosoftCXXNameMangler Mangler(*this, Out);
|
| 1642 | return Mangler.mangle(D);
|
| 1643 | }
|
| 1644 | void MicrosoftMangleContext::mangleThunk(const CXXMethodDecl *MD,
|
| 1645 | const ThunkInfo &Thunk,
|
| 1646 | raw_ostream &) {
|
| 1647 | unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
|
| 1648 | "cannot mangle thunk for this method yet");
|
| 1649 | getDiags().Report(MD->getLocation(), DiagID);
|
| 1650 | }
|
| 1651 | void MicrosoftMangleContext::mangleCXXDtorThunk(const CXXDestructorDecl *DD,
|
| 1652 | CXXDtorType Type,
|
| 1653 | const ThisAdjustment &,
|
| 1654 | raw_ostream &) {
|
| 1655 | unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
|
| 1656 | "cannot mangle thunk for this destructor yet");
|
| 1657 | getDiags().Report(DD->getLocation(), DiagID);
|
| 1658 | }
|
| 1659 | void MicrosoftMangleContext::mangleCXXVTable(const CXXRecordDecl *RD,
|
| 1660 | raw_ostream &Out) {
|
| 1661 | // <mangled-name> ::= ? <operator-name> <class-name> <storage-class>
|
| 1662 | // <cvr-qualifiers> [<name>] @
|
| 1663 | // <operator-name> ::= _7 # vftable
|
| 1664 | // ::= _8 # vbtable
|
| 1665 | // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
|
| 1666 | // is always '6' for vftables and '7' for vbtables. (The difference is
|
| 1667 | // beyond me.)
|
| 1668 | // TODO: vbtables.
|
| 1669 | MicrosoftCXXNameMangler Mangler(*this, Out);
|
| 1670 | Mangler.getStream() << "\01??_7";
|
| 1671 | Mangler.mangleName(RD);
|
| 1672 | Mangler.getStream() << "6B";
|
| 1673 | // TODO: If the class has more than one vtable, mangle in the class it came
|
| 1674 | // from.
|
| 1675 | Mangler.getStream() << '@';
|
| 1676 | }
|
| 1677 | void MicrosoftMangleContext::mangleCXXVTT(const CXXRecordDecl *RD,
|
| 1678 | raw_ostream &) {
|
| 1679 | llvm_unreachable("The MS C++ ABI does not have virtual table tables!");
|
| 1680 | }
|
| 1681 | void MicrosoftMangleContext::mangleCXXCtorVTable(const CXXRecordDecl *RD,
|
| 1682 | int64_t Offset,
|
| 1683 | const CXXRecordDecl *Type,
|
| 1684 | raw_ostream &) {
|
| 1685 | llvm_unreachable("The MS C++ ABI does not have constructor vtables!");
|
| 1686 | }
|
| 1687 | void MicrosoftMangleContext::mangleCXXRTTI(QualType T,
|
| 1688 | raw_ostream &) {
|
| 1689 | // FIXME: Give a location...
|
| 1690 | unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
|
| 1691 | "cannot mangle RTTI descriptors for type %0 yet");
|
| 1692 | getDiags().Report(DiagID)
|
| 1693 | << T.getBaseTypeIdentifier();
|
| 1694 | }
|
| 1695 | void MicrosoftMangleContext::mangleCXXRTTIName(QualType T,
|
| 1696 | raw_ostream &) {
|
| 1697 | // FIXME: Give a location...
|
| 1698 | unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
|
| 1699 | "cannot mangle the name of type %0 into RTTI descriptors yet");
|
| 1700 | getDiags().Report(DiagID)
|
| 1701 | << T.getBaseTypeIdentifier();
|
| 1702 | }
|
| 1703 | void MicrosoftMangleContext::mangleCXXCtor(const CXXConstructorDecl *D,
|
| 1704 | CXXCtorType Type,
|
| 1705 | raw_ostream & Out) {
|
| 1706 | MicrosoftCXXNameMangler mangler(*this, Out);
|
| 1707 | mangler.mangle(D);
|
| 1708 | }
|
| 1709 | void MicrosoftMangleContext::mangleCXXDtor(const CXXDestructorDecl *D,
|
| 1710 | CXXDtorType Type,
|
| 1711 | raw_ostream & Out) {
|
| 1712 | MicrosoftCXXNameMangler mangler(*this, Out);
|
| 1713 | mangler.mangle(D);
|
| 1714 | }
|
| 1715 | void MicrosoftMangleContext::mangleReferenceTemporary(const clang::VarDecl *VD,
|
| 1716 | raw_ostream &) {
|
| 1717 | unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
|
| 1718 | "cannot mangle this reference temporary yet");
|
| 1719 | getDiags().Report(VD->getLocation(), DiagID);
|
| 1720 | }
|
| 1721 |
|
| 1722 | MangleContext *clang::createMicrosoftMangleContext(ASTContext &Context,
|
| 1723 | DiagnosticsEngine &Diags) {
|
| 1724 | return new MicrosoftMangleContext(Context, Diags);
|
| 1725 | }
|