blob: 9f834a7bde98deca6f70d140314a0d617a056da8 [file] [log] [blame]
Reid Spencer5f016e22007-07-11 17:01:13 +00001//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CodeGenModule.h"
16#include "clang/AST/AST.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Function.h"
20#include "llvm/GlobalVariable.h"
Chris Lattner99e0d792007-07-16 05:43:05 +000021#include "llvm/Support/MathExtras.h"
Reid Spencer5f016e22007-07-11 17:01:13 +000022using namespace clang;
23using namespace CodeGen;
24
25//===--------------------------------------------------------------------===//
26// Miscellaneous Helper Methods
27//===--------------------------------------------------------------------===//
28
29/// CreateTempAlloca - This creates a alloca and inserts it into the entry
30/// block.
31llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(const llvm::Type *Ty,
32 const char *Name) {
33 return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt);
34}
35
36/// EvaluateExprAsBool - Perform the usual unary conversions on the specified
37/// expression and compare the result against zero, returning an Int1Ty value.
38llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
39 QualType Ty;
40 RValue Val = EmitExprWithUsualUnaryConversions(E, Ty);
41 return ConvertScalarValueToBool(Val, Ty);
42}
43
44/// EmitLoadOfComplex - Given an RValue reference for a complex, emit code to
45/// load the real and imaginary pieces, returning them as Real/Imag.
46void CodeGenFunction::EmitLoadOfComplex(RValue V,
47 llvm::Value *&Real, llvm::Value *&Imag){
48 llvm::Value *Ptr = V.getAggregateAddr();
49
50 llvm::Constant *Zero = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0);
51 llvm::Constant *One = llvm::ConstantInt::get(llvm::Type::Int32Ty, 1);
52 llvm::Value *RealPtr = Builder.CreateGEP(Ptr, Zero, Zero, "realp");
53 llvm::Value *ImagPtr = Builder.CreateGEP(Ptr, Zero, One, "imagp");
54
55 // FIXME: Handle volatility.
56 Real = Builder.CreateLoad(RealPtr, "real");
57 Imag = Builder.CreateLoad(ImagPtr, "imag");
58}
59
60/// EmitStoreOfComplex - Store the specified real/imag parts into the
61/// specified value pointer.
62void CodeGenFunction::EmitStoreOfComplex(llvm::Value *Real, llvm::Value *Imag,
63 llvm::Value *ResPtr) {
64 llvm::Constant *Zero = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0);
65 llvm::Constant *One = llvm::ConstantInt::get(llvm::Type::Int32Ty, 1);
66 llvm::Value *RealPtr = Builder.CreateGEP(ResPtr, Zero, Zero, "real");
67 llvm::Value *ImagPtr = Builder.CreateGEP(ResPtr, Zero, One, "imag");
68
69 // FIXME: Handle volatility.
70 Builder.CreateStore(Real, RealPtr);
71 Builder.CreateStore(Imag, ImagPtr);
72}
73
74//===--------------------------------------------------------------------===//
75// Conversions
76//===--------------------------------------------------------------------===//
77
78/// EmitConversion - Convert the value specied by Val, whose type is ValTy, to
79/// the type specified by DstTy, following the rules of C99 6.3.
80RValue CodeGenFunction::EmitConversion(RValue Val, QualType ValTy,
81 QualType DstTy) {
82 ValTy = ValTy.getCanonicalType();
83 DstTy = DstTy.getCanonicalType();
84 if (ValTy == DstTy) return Val;
85
86 // Handle conversions to bool first, they are special: comparisons against 0.
87 if (const BuiltinType *DestBT = dyn_cast<BuiltinType>(DstTy))
88 if (DestBT->getKind() == BuiltinType::Bool)
89 return RValue::get(ConvertScalarValueToBool(Val, ValTy));
90
91 // Handle pointer conversions next: pointers can only be converted to/from
92 // other pointers and integers.
93 if (isa<PointerType>(DstTy)) {
94 const llvm::Type *DestTy = ConvertType(DstTy);
95
96 // The source value may be an integer, or a pointer.
97 assert(Val.isScalar() && "Can only convert from integer or pointer");
98 if (isa<llvm::PointerType>(Val.getVal()->getType()))
99 return RValue::get(Builder.CreateBitCast(Val.getVal(), DestTy, "conv"));
100 assert(ValTy->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
Chris Lattnerfa7c6452007-07-13 03:25:53 +0000101 return RValue::get(Builder.CreateIntToPtr(Val.getVal(), DestTy, "conv"));
Reid Spencer5f016e22007-07-11 17:01:13 +0000102 }
103
104 if (isa<PointerType>(ValTy)) {
105 // Must be an ptr to int cast.
106 const llvm::Type *DestTy = ConvertType(DstTy);
107 assert(isa<llvm::IntegerType>(DestTy) && "not ptr->int?");
108 return RValue::get(Builder.CreateIntToPtr(Val.getVal(), DestTy, "conv"));
109 }
110
111 // Finally, we have the arithmetic types: real int/float and complex
112 // int/float. Handle real->real conversions first, they are the most
113 // common.
114 if (Val.isScalar() && DstTy->isRealType()) {
115 // We know that these are representable as scalars in LLVM, convert to LLVM
116 // types since they are easier to reason about.
117 llvm::Value *SrcVal = Val.getVal();
118 const llvm::Type *DestTy = ConvertType(DstTy);
119 if (SrcVal->getType() == DestTy) return Val;
120
121 llvm::Value *Result;
122 if (isa<llvm::IntegerType>(SrcVal->getType())) {
123 bool InputSigned = ValTy->isSignedIntegerType();
124 if (isa<llvm::IntegerType>(DestTy))
125 Result = Builder.CreateIntCast(SrcVal, DestTy, InputSigned, "conv");
126 else if (InputSigned)
127 Result = Builder.CreateSIToFP(SrcVal, DestTy, "conv");
128 else
129 Result = Builder.CreateUIToFP(SrcVal, DestTy, "conv");
130 } else {
131 assert(SrcVal->getType()->isFloatingPoint() && "Unknown real conversion");
132 if (isa<llvm::IntegerType>(DestTy)) {
133 if (DstTy->isSignedIntegerType())
134 Result = Builder.CreateFPToSI(SrcVal, DestTy, "conv");
135 else
136 Result = Builder.CreateFPToUI(SrcVal, DestTy, "conv");
137 } else {
138 assert(DestTy->isFloatingPoint() && "Unknown real conversion");
139 if (DestTy->getTypeID() < SrcVal->getType()->getTypeID())
140 Result = Builder.CreateFPTrunc(SrcVal, DestTy, "conv");
141 else
142 Result = Builder.CreateFPExt(SrcVal, DestTy, "conv");
143 }
144 }
145 return RValue::get(Result);
146 }
147
148 assert(0 && "FIXME: We don't support complex conversions yet!");
149}
150
151
152/// ConvertScalarValueToBool - Convert the specified expression value to a
153/// boolean (i1) truth value. This is equivalent to "Val == 0".
154llvm::Value *CodeGenFunction::ConvertScalarValueToBool(RValue Val, QualType Ty){
155 Ty = Ty.getCanonicalType();
156 llvm::Value *Result;
157 if (const BuiltinType *BT = dyn_cast<BuiltinType>(Ty)) {
158 switch (BT->getKind()) {
159 default: assert(0 && "Unknown scalar value");
160 case BuiltinType::Bool:
161 Result = Val.getVal();
162 // Bool is already evaluated right.
163 assert(Result->getType() == llvm::Type::Int1Ty &&
164 "Unexpected bool value type!");
165 return Result;
166 case BuiltinType::Char_S:
167 case BuiltinType::Char_U:
168 case BuiltinType::SChar:
169 case BuiltinType::UChar:
170 case BuiltinType::Short:
171 case BuiltinType::UShort:
172 case BuiltinType::Int:
173 case BuiltinType::UInt:
174 case BuiltinType::Long:
175 case BuiltinType::ULong:
176 case BuiltinType::LongLong:
177 case BuiltinType::ULongLong:
178 // Code below handles simple integers.
179 break;
180 case BuiltinType::Float:
181 case BuiltinType::Double:
182 case BuiltinType::LongDouble: {
183 // Compare against 0.0 for fp scalars.
184 Result = Val.getVal();
185 llvm::Value *Zero = llvm::Constant::getNullValue(Result->getType());
186 // FIXME: llvm-gcc produces a une comparison: validate this is right.
187 Result = Builder.CreateFCmpUNE(Result, Zero, "tobool");
188 return Result;
189 }
190 }
191 } else if (isa<PointerType>(Ty) ||
192 cast<TagType>(Ty)->getDecl()->getKind() == Decl::Enum) {
193 // Code below handles this fine.
194 } else {
195 assert(isa<ComplexType>(Ty) && "Unknwon type!");
196 assert(0 && "FIXME: comparisons against complex not implemented yet");
197 }
198
199 // Usual case for integers, pointers, and enums: compare against zero.
200 Result = Val.getVal();
201
202 // Because of the type rules of C, we often end up computing a logical value,
203 // then zero extending it to int, then wanting it as a logical value again.
204 // Optimize this common case.
205 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Result)) {
206 if (ZI->getOperand(0)->getType() == llvm::Type::Int1Ty) {
207 Result = ZI->getOperand(0);
208 ZI->eraseFromParent();
209 return Result;
210 }
211 }
212
213 llvm::Value *Zero = llvm::Constant::getNullValue(Result->getType());
214 return Builder.CreateICmpNE(Result, Zero, "tobool");
215}
216
217//===----------------------------------------------------------------------===//
218// LValue Expression Emission
219//===----------------------------------------------------------------------===//
220
221/// EmitLValue - Emit code to compute a designator that specifies the location
222/// of the expression.
223///
224/// This can return one of two things: a simple address or a bitfield
225/// reference. In either case, the LLVM Value* in the LValue structure is
226/// guaranteed to be an LLVM pointer type.
227///
228/// If this returns a bitfield reference, nothing about the pointee type of
229/// the LLVM value is known: For example, it may not be a pointer to an
230/// integer.
231///
232/// If this returns a normal address, and if the lvalue's C type is fixed
233/// size, this method guarantees that the returned pointer type will point to
234/// an LLVM type of the same size of the lvalue's type. If the lvalue has a
235/// variable length type, this is not possible.
236///
237LValue CodeGenFunction::EmitLValue(const Expr *E) {
238 switch (E->getStmtClass()) {
239 default:
240 fprintf(stderr, "Unimplemented lvalue expr!\n");
241 E->dump();
242 return LValue::MakeAddr(llvm::UndefValue::get(
243 llvm::PointerType::get(llvm::Type::Int32Ty)));
244
245 case Expr::DeclRefExprClass: return EmitDeclRefLValue(cast<DeclRefExpr>(E));
246 case Expr::ParenExprClass:return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
Anders Carlsson22742662007-07-21 05:21:51 +0000247 case Expr::PreDefinedExprClass:
248 return EmitPreDefinedLValue(cast<PreDefinedExpr>(E));
Reid Spencer5f016e22007-07-11 17:01:13 +0000249 case Expr::StringLiteralClass:
250 return EmitStringLiteralLValue(cast<StringLiteral>(E));
251
252 case Expr::UnaryOperatorClass:
253 return EmitUnaryOpLValue(cast<UnaryOperator>(E));
254 case Expr::ArraySubscriptExprClass:
255 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
Chris Lattner349aaec2007-08-02 23:37:31 +0000256 case Expr::OCUVectorComponentClass:
257 return EmitOCUVectorComponentExpr(cast<OCUVectorComponent>(E));
Reid Spencer5f016e22007-07-11 17:01:13 +0000258 }
259}
260
261/// EmitLoadOfLValue - Given an expression that represents a value lvalue,
262/// this method emits the address of the lvalue, then loads the result as an
263/// rvalue, returning the rvalue.
264RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, QualType ExprType) {
265 ExprType = ExprType.getCanonicalType();
266
267 if (LV.isSimple()) {
268 llvm::Value *Ptr = LV.getAddress();
269 const llvm::Type *EltTy =
270 cast<llvm::PointerType>(Ptr->getType())->getElementType();
271
272 // Simple scalar l-value.
273 if (EltTy->isFirstClassType())
274 return RValue::get(Builder.CreateLoad(Ptr, "tmp"));
275
276 // Otherwise, we have an aggregate lvalue.
277 return RValue::getAggregate(Ptr);
278 }
279
280 if (LV.isVectorElt()) {
281 llvm::Value *Vec = Builder.CreateLoad(LV.getVectorAddr(), "tmp");
282 return RValue::get(Builder.CreateExtractElement(Vec, LV.getVectorIdx(),
283 "vecext"));
284 }
Chris Lattner46ea8eb2007-08-03 00:16:29 +0000285
286 // If this is a reference to a subset of the elements of a vector, either
287 // shuffle the input or extract/insert them as appropriate.
Chris Lattner34cdc862007-08-03 16:18:34 +0000288 if (LV.isOCUVectorComp())
289 return EmitLoadOfOCUComponentLValue(LV, ExprType);
Reid Spencer5f016e22007-07-11 17:01:13 +0000290
291 assert(0 && "Bitfield ref not impl!");
292}
293
Chris Lattner34cdc862007-08-03 16:18:34 +0000294// If this is a reference to a subset of the elements of a vector, either
295// shuffle the input or extract/insert them as appropriate.
296RValue CodeGenFunction::EmitLoadOfOCUComponentLValue(LValue LV,
297 QualType ExprType) {
298 llvm::Value *Vec = Builder.CreateLoad(LV.getOCUVectorAddr(), "tmp");
299
300 unsigned EncFields = LV.getOCUVectorComp();
301
302 // If the result of the expression is a non-vector type, we must be
303 // extracting a single element. Just codegen as an extractelement.
304 if (!isa<VectorType>(ExprType)) {
305 unsigned InIdx = OCUVectorComponent::getAccessedFieldNo(0, EncFields);
306 llvm::Value *Elt = llvm::ConstantInt::get(llvm::Type::Int32Ty, InIdx);
307 return RValue::get(Builder.CreateExtractElement(Vec, Elt, "tmp"));
308 }
309
310 // If the source and destination have the same number of elements, use a
311 // vector shuffle instead of insert/extracts.
312 unsigned NumResultElts = cast<VectorType>(ExprType)->getNumElements();
313 unsigned NumSourceElts =
314 cast<llvm::VectorType>(Vec->getType())->getNumElements();
315
316 if (NumResultElts == NumSourceElts) {
317 llvm::SmallVector<llvm::Constant*, 4> Mask;
318 for (unsigned i = 0; i != NumResultElts; ++i) {
319 unsigned InIdx = OCUVectorComponent::getAccessedFieldNo(i, EncFields);
320 Mask.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, InIdx));
321 }
322
323 llvm::Value *MaskV = llvm::ConstantVector::get(&Mask[0], Mask.size());
324 Vec = Builder.CreateShuffleVector(Vec,
325 llvm::UndefValue::get(Vec->getType()),
326 MaskV, "tmp");
327 return RValue::get(Vec);
328 }
329
330 // Start out with an undef of the result type.
331 llvm::Value *Result = llvm::UndefValue::get(ConvertType(ExprType));
332
333 // Extract/Insert each element of the result.
334 for (unsigned i = 0; i != NumResultElts; ++i) {
335 unsigned InIdx = OCUVectorComponent::getAccessedFieldNo(i, EncFields);
336 llvm::Value *Elt = llvm::ConstantInt::get(llvm::Type::Int32Ty, InIdx);
337 Elt = Builder.CreateExtractElement(Vec, Elt, "tmp");
338
339 llvm::Value *OutIdx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
340 Result = Builder.CreateInsertElement(Result, Elt, OutIdx, "tmp");
341 }
342
343 return RValue::get(Result);
344}
345
346
Reid Spencer5f016e22007-07-11 17:01:13 +0000347RValue CodeGenFunction::EmitLoadOfLValue(const Expr *E) {
348 return EmitLoadOfLValue(EmitLValue(E), E->getType());
349}
350
351
352/// EmitStoreThroughLValue - Store the specified rvalue into the specified
353/// lvalue, where both are guaranteed to the have the same type, and that type
354/// is 'Ty'.
355void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
356 QualType Ty) {
Chris Lattner017d6aa2007-08-03 16:28:33 +0000357 if (!Dst.isSimple()) {
358 if (Dst.isVectorElt()) {
359 // Read/modify/write the vector, inserting the new element.
360 // FIXME: Volatility.
361 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddr(), "tmp");
362 Vec = Builder.CreateInsertElement(Vec, Src.getVal(),
363 Dst.getVectorIdx(), "vecins");
364 Builder.CreateStore(Vec, Dst.getVectorAddr());
365 return;
366 }
Reid Spencer5f016e22007-07-11 17:01:13 +0000367
Chris Lattner017d6aa2007-08-03 16:28:33 +0000368 // If this is an update of elements of a vector, insert them as appropriate.
369 if (Dst.isOCUVectorComp())
370 return EmitStoreThroughOCUComponentLValue(Src, Dst, Ty);
371
372 assert(0 && "FIXME: Don't support store to bitfield yet");
373 }
Reid Spencer5f016e22007-07-11 17:01:13 +0000374
375 llvm::Value *DstAddr = Dst.getAddress();
376 if (Src.isScalar()) {
377 // FIXME: Handle volatility etc.
378 const llvm::Type *SrcTy = Src.getVal()->getType();
379 const llvm::Type *AddrTy =
380 cast<llvm::PointerType>(DstAddr->getType())->getElementType();
381
382 if (AddrTy != SrcTy)
383 DstAddr = Builder.CreateBitCast(DstAddr, llvm::PointerType::get(SrcTy),
384 "storetmp");
385 Builder.CreateStore(Src.getVal(), DstAddr);
386 return;
387 }
388
389 // Don't use memcpy for complex numbers.
390 if (Ty->isComplexType()) {
391 llvm::Value *Real, *Imag;
392 EmitLoadOfComplex(Src, Real, Imag);
393 EmitStoreOfComplex(Real, Imag, Dst.getAddress());
394 return;
395 }
396
397 // Aggregate assignment turns into llvm.memcpy.
398 const llvm::Type *SBP = llvm::PointerType::get(llvm::Type::Int8Ty);
399 llvm::Value *SrcAddr = Src.getAggregateAddr();
400
401 if (DstAddr->getType() != SBP)
402 DstAddr = Builder.CreateBitCast(DstAddr, SBP, "tmp");
403 if (SrcAddr->getType() != SBP)
404 SrcAddr = Builder.CreateBitCast(SrcAddr, SBP, "tmp");
405
406 unsigned Align = 1; // FIXME: Compute type alignments.
407 unsigned Size = 1234; // FIXME: Compute type sizes.
408
409 // FIXME: Handle variable sized types.
410 const llvm::Type *IntPtr = llvm::IntegerType::get(LLVMPointerWidth);
411 llvm::Value *SizeVal = llvm::ConstantInt::get(IntPtr, Size);
412
413 llvm::Value *MemCpyOps[4] = {
414 DstAddr, SrcAddr, SizeVal,llvm::ConstantInt::get(llvm::Type::Int32Ty, Align)
415 };
416
Chris Lattnerbf986512007-08-01 06:24:52 +0000417 Builder.CreateCall(CGM.getMemCpyFn(), MemCpyOps, MemCpyOps+4);
Reid Spencer5f016e22007-07-11 17:01:13 +0000418}
419
Chris Lattner017d6aa2007-08-03 16:28:33 +0000420void CodeGenFunction::EmitStoreThroughOCUComponentLValue(RValue Src, LValue Dst,
421 QualType Ty) {
422 // This access turns into a read/modify/write of the vector. Load the input
423 // value now.
424 llvm::Value *Vec = Builder.CreateLoad(Dst.getOCUVectorAddr(), "tmp");
425 // FIXME: Volatility.
426 unsigned EncFields = Dst.getOCUVectorComp();
427
428 llvm::Value *SrcVal = Src.getVal();
429
Chris Lattner7e6b51b2007-08-03 16:37:04 +0000430 if (const VectorType *VTy = Ty->getAsVectorType()) {
431 unsigned NumSrcElts = VTy->getNumElements();
432
433 // Extract/Insert each element.
434 for (unsigned i = 0; i != NumSrcElts; ++i) {
435 llvm::Value *Elt = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
436 Elt = Builder.CreateExtractElement(SrcVal, Elt, "tmp");
437
438 unsigned Idx = OCUVectorComponent::getAccessedFieldNo(i, EncFields);
439 llvm::Value *OutIdx = llvm::ConstantInt::get(llvm::Type::Int32Ty, Idx);
440 Vec = Builder.CreateInsertElement(Vec, Elt, OutIdx, "tmp");
441 }
442 } else {
443 // If the Src is a scalar (not a vector) it must be updating one element.
Chris Lattner017d6aa2007-08-03 16:28:33 +0000444 unsigned InIdx = OCUVectorComponent::getAccessedFieldNo(0, EncFields);
445 llvm::Value *Elt = llvm::ConstantInt::get(llvm::Type::Int32Ty, InIdx);
446 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt, "tmp");
Chris Lattner017d6aa2007-08-03 16:28:33 +0000447 }
448
Chris Lattner017d6aa2007-08-03 16:28:33 +0000449 Builder.CreateStore(Vec, Dst.getOCUVectorAddr());
450}
451
Reid Spencer5f016e22007-07-11 17:01:13 +0000452
453LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
454 const Decl *D = E->getDecl();
455 if (isa<BlockVarDecl>(D) || isa<ParmVarDecl>(D)) {
456 llvm::Value *V = LocalDeclMap[D];
457 assert(V && "BlockVarDecl not entered in LocalDeclMap?");
458 return LValue::MakeAddr(V);
459 } else if (isa<FunctionDecl>(D) || isa<FileVarDecl>(D)) {
460 return LValue::MakeAddr(CGM.GetAddrOfGlobalDecl(D));
461 }
462 assert(0 && "Unimp declref");
463}
464
465LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
466 // __extension__ doesn't affect lvalue-ness.
467 if (E->getOpcode() == UnaryOperator::Extension)
468 return EmitLValue(E->getSubExpr());
469
470 assert(E->getOpcode() == UnaryOperator::Deref &&
471 "'*' is the only unary operator that produces an lvalue");
472 return LValue::MakeAddr(EmitExpr(E->getSubExpr()).getVal());
473}
474
475LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
476 assert(!E->isWide() && "FIXME: Wide strings not supported yet!");
477 const char *StrData = E->getStrData();
478 unsigned Len = E->getByteLength();
479
480 // FIXME: Can cache/reuse these within the module.
481 llvm::Constant *C=llvm::ConstantArray::get(std::string(StrData, StrData+Len));
482
483 // Create a global variable for this.
484 C = new llvm::GlobalVariable(C->getType(), true,
485 llvm::GlobalValue::InternalLinkage,
486 C, ".str", CurFn->getParent());
487 llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
488 llvm::Constant *Zeros[] = { Zero, Zero };
489 C = llvm::ConstantExpr::getGetElementPtr(C, Zeros, 2);
490 return LValue::MakeAddr(C);
491}
492
Anders Carlsson22742662007-07-21 05:21:51 +0000493LValue CodeGenFunction::EmitPreDefinedLValue(const PreDefinedExpr *E) {
494 std::string FunctionName(CurFuncDecl->getName());
495 std::string GlobalVarName;
496
497 switch (E->getIdentType()) {
498 default:
499 assert(0 && "unknown pre-defined ident type");
500 case PreDefinedExpr::Func:
501 GlobalVarName = "__func__.";
502 break;
503 case PreDefinedExpr::Function:
504 GlobalVarName = "__FUNCTION__.";
505 break;
506 case PreDefinedExpr::PrettyFunction:
507 // FIXME:: Demangle C++ method names
508 GlobalVarName = "__PRETTY_FUNCTION__.";
509 break;
510 }
511
512 GlobalVarName += CurFuncDecl->getName();
513
514 // FIXME: Can cache/reuse these within the module.
515 llvm::Constant *C=llvm::ConstantArray::get(FunctionName);
516
517 // Create a global variable for this.
518 C = new llvm::GlobalVariable(C->getType(), true,
519 llvm::GlobalValue::InternalLinkage,
520 C, GlobalVarName, CurFn->getParent());
521 llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
522 llvm::Constant *Zeros[] = { Zero, Zero };
523 C = llvm::ConstantExpr::getGetElementPtr(C, Zeros, 2);
524 return LValue::MakeAddr(C);
525}
526
Reid Spencer5f016e22007-07-11 17:01:13 +0000527LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) {
528 // The index must always be a pointer or integer, neither of which is an
529 // aggregate. Emit it.
530 QualType IdxTy;
531 llvm::Value *Idx =
532 EmitExprWithUsualUnaryConversions(E->getIdx(), IdxTy).getVal();
533
534 // If the base is a vector type, then we are forming a vector element lvalue
535 // with this subscript.
536 if (E->getBase()->getType()->isVectorType()) {
537 // Emit the vector as an lvalue to get its address.
538 LValue Base = EmitLValue(E->getBase());
539 assert(Base.isSimple() && "Can only subscript lvalue vectors here!");
540 // FIXME: This should properly sign/zero/extend or truncate Idx to i32.
541 return LValue::MakeVectorElt(Base.getAddress(), Idx);
542 }
543
544 // At this point, the base must be a pointer or integer, neither of which are
545 // aggregates. Emit it.
546 QualType BaseTy;
547 llvm::Value *Base =
548 EmitExprWithUsualUnaryConversions(E->getBase(), BaseTy).getVal();
549
550 // Usually the base is the pointer type, but sometimes it is the index.
551 // Canonicalize to have the pointer as the base.
552 if (isa<llvm::PointerType>(Idx->getType())) {
553 std::swap(Base, Idx);
554 std::swap(BaseTy, IdxTy);
555 }
556
557 // The pointer is now the base. Extend or truncate the index type to 32 or
558 // 64-bits.
559 bool IdxSigned = IdxTy->isSignedIntegerType();
560 unsigned IdxBitwidth = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
561 if (IdxBitwidth != LLVMPointerWidth)
562 Idx = Builder.CreateIntCast(Idx, llvm::IntegerType::get(LLVMPointerWidth),
563 IdxSigned, "idxprom");
564
565 // We know that the pointer points to a type of the correct size, unless the
566 // size is a VLA.
Chris Lattner590b6642007-07-15 23:26:56 +0000567 if (!E->getType()->isConstantSizeType(getContext()))
Reid Spencer5f016e22007-07-11 17:01:13 +0000568 assert(0 && "VLA idx not implemented");
569 return LValue::MakeAddr(Builder.CreateGEP(Base, Idx, "arrayidx"));
570}
571
Chris Lattner349aaec2007-08-02 23:37:31 +0000572LValue CodeGenFunction::
573EmitOCUVectorComponentExpr(const OCUVectorComponent *E) {
574 // Emit the base vector as an l-value.
575 LValue Base = EmitLValue(E->getBase());
576 assert(Base.isSimple() && "Can only subscript lvalue vectors here!");
577
578 return LValue::MakeOCUVectorComp(Base.getAddress(),
579 E->getEncodedElementAccess());
580}
581
Reid Spencer5f016e22007-07-11 17:01:13 +0000582//===--------------------------------------------------------------------===//
583// Expression Emission
584//===--------------------------------------------------------------------===//
585
586RValue CodeGenFunction::EmitExpr(const Expr *E) {
587 assert(E && "Null expression?");
588
589 switch (E->getStmtClass()) {
590 default:
591 fprintf(stderr, "Unimplemented expr!\n");
592 E->dump();
593 return RValue::get(llvm::UndefValue::get(llvm::Type::Int32Ty));
594
595 // l-values.
596 case Expr::DeclRefExprClass:
597 // DeclRef's of EnumConstantDecl's are simple rvalues.
598 if (const EnumConstantDecl *EC =
599 dyn_cast<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
600 return RValue::get(llvm::ConstantInt::get(EC->getInitVal()));
601 return EmitLoadOfLValue(E);
602 case Expr::ArraySubscriptExprClass:
603 return EmitArraySubscriptExprRV(cast<ArraySubscriptExpr>(E));
Chris Lattner46ea8eb2007-08-03 00:16:29 +0000604 case Expr::OCUVectorComponentClass:
605 return EmitLoadOfLValue(E);
Anders Carlsson22742662007-07-21 05:21:51 +0000606 case Expr::PreDefinedExprClass:
Reid Spencer5f016e22007-07-11 17:01:13 +0000607 case Expr::StringLiteralClass:
608 return RValue::get(EmitLValue(E).getAddress());
609
610 // Leaf expressions.
611 case Expr::IntegerLiteralClass:
612 return EmitIntegerLiteral(cast<IntegerLiteral>(E));
613 case Expr::FloatingLiteralClass:
614 return EmitFloatingLiteral(cast<FloatingLiteral>(E));
Chris Lattnerb0a721a2007-07-13 05:18:11 +0000615 case Expr::CharacterLiteralClass:
616 return EmitCharacterLiteral(cast<CharacterLiteral>(E));
Reid Spencer5f016e22007-07-11 17:01:13 +0000617
618 // Operators.
619 case Expr::ParenExprClass:
620 return EmitExpr(cast<ParenExpr>(E)->getSubExpr());
621 case Expr::UnaryOperatorClass:
622 return EmitUnaryOperator(cast<UnaryOperator>(E));
Chris Lattner5e3fbe52007-07-18 18:12:07 +0000623 case Expr::SizeOfAlignOfTypeExprClass:
624 return EmitSizeAlignOf(cast<SizeOfAlignOfTypeExpr>(E)->getArgumentType(),
625 E->getType(),
626 cast<SizeOfAlignOfTypeExpr>(E)->isSizeOf());
Chris Lattnerd07eb3b2007-07-13 20:25:53 +0000627 case Expr::ImplicitCastExprClass:
628 return EmitCastExpr(cast<ImplicitCastExpr>(E)->getSubExpr(), E->getType());
Reid Spencer5f016e22007-07-11 17:01:13 +0000629 case Expr::CastExprClass:
Chris Lattnerd07eb3b2007-07-13 20:25:53 +0000630 return EmitCastExpr(cast<CastExpr>(E)->getSubExpr(), E->getType());
Reid Spencer5f016e22007-07-11 17:01:13 +0000631 case Expr::CallExprClass:
632 return EmitCallExpr(cast<CallExpr>(E));
633 case Expr::BinaryOperatorClass:
634 return EmitBinaryOperator(cast<BinaryOperator>(E));
Chris Lattnerb0a721a2007-07-13 05:18:11 +0000635
636 case Expr::ConditionalOperatorClass:
637 return EmitConditionalOperator(cast<ConditionalOperator>(E));
Reid Spencer5f016e22007-07-11 17:01:13 +0000638 }
639
640}
641
642RValue CodeGenFunction::EmitIntegerLiteral(const IntegerLiteral *E) {
643 return RValue::get(llvm::ConstantInt::get(E->getValue()));
644}
645RValue CodeGenFunction::EmitFloatingLiteral(const FloatingLiteral *E) {
646 return RValue::get(llvm::ConstantFP::get(ConvertType(E->getType()),
647 E->getValue()));
648}
Chris Lattnerb0a721a2007-07-13 05:18:11 +0000649RValue CodeGenFunction::EmitCharacterLiteral(const CharacterLiteral *E) {
650 return RValue::get(llvm::ConstantInt::get(ConvertType(E->getType()),
651 E->getValue()));
652}
Reid Spencer5f016e22007-07-11 17:01:13 +0000653
654RValue CodeGenFunction::EmitArraySubscriptExprRV(const ArraySubscriptExpr *E) {
655 // Emit subscript expressions in rvalue context's. For most cases, this just
656 // loads the lvalue formed by the subscript expr. However, we have to be
657 // careful, because the base of a vector subscript is occasionally an rvalue,
658 // so we can't get it as an lvalue.
659 if (!E->getBase()->getType()->isVectorType())
660 return EmitLoadOfLValue(E);
661
662 // Handle the vector case. The base must be a vector, the index must be an
663 // integer value.
664 QualType BaseTy, IdxTy;
665 llvm::Value *Base =
666 EmitExprWithUsualUnaryConversions(E->getBase(), BaseTy).getVal();
667 llvm::Value *Idx =
668 EmitExprWithUsualUnaryConversions(E->getIdx(), IdxTy).getVal();
669
670 // FIXME: Convert Idx to i32 type.
671
672 return RValue::get(Builder.CreateExtractElement(Base, Idx, "vecext"));
673}
674
Chris Lattnerd07eb3b2007-07-13 20:25:53 +0000675// EmitCastExpr - Emit code for an explicit or implicit cast. Implicit casts
676// have to handle a more broad range of conversions than explicit casts, as they
677// handle things like function to ptr-to-function decay etc.
678RValue CodeGenFunction::EmitCastExpr(const Expr *Op, QualType DestTy) {
Reid Spencer5f016e22007-07-11 17:01:13 +0000679 QualType SrcTy;
Chris Lattnerd07eb3b2007-07-13 20:25:53 +0000680 RValue Src = EmitExprWithUsualUnaryConversions(Op, SrcTy);
Reid Spencer5f016e22007-07-11 17:01:13 +0000681
682 // If the destination is void, just evaluate the source.
Chris Lattnerd07eb3b2007-07-13 20:25:53 +0000683 if (DestTy->isVoidType())
Reid Spencer5f016e22007-07-11 17:01:13 +0000684 return RValue::getAggregate(0);
685
Chris Lattnerd07eb3b2007-07-13 20:25:53 +0000686 return EmitConversion(Src, SrcTy, DestTy);
Reid Spencer5f016e22007-07-11 17:01:13 +0000687}
688
689RValue CodeGenFunction::EmitCallExpr(const CallExpr *E) {
690 QualType CalleeTy;
691 llvm::Value *Callee =
692 EmitExprWithUsualUnaryConversions(E->getCallee(), CalleeTy).getVal();
693
694 // The callee type will always be a pointer to function type, get the function
695 // type.
696 CalleeTy = cast<PointerType>(CalleeTy.getCanonicalType())->getPointeeType();
697
698 // Get information about the argument types.
699 FunctionTypeProto::arg_type_iterator ArgTyIt = 0, ArgTyEnd = 0;
700
701 // Calling unprototyped functions provides no argument info.
702 if (const FunctionTypeProto *FTP = dyn_cast<FunctionTypeProto>(CalleeTy)) {
703 ArgTyIt = FTP->arg_type_begin();
704 ArgTyEnd = FTP->arg_type_end();
705 }
706
707 llvm::SmallVector<llvm::Value*, 16> Args;
708
709 // FIXME: Handle struct return.
710 for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
711 QualType ArgTy;
712 RValue ArgVal = EmitExprWithUsualUnaryConversions(E->getArg(i), ArgTy);
713
714 // If this argument has prototype information, convert it.
715 if (ArgTyIt != ArgTyEnd) {
716 ArgVal = EmitConversion(ArgVal, ArgTy, *ArgTyIt++);
717 } else {
718 // Otherwise, if passing through "..." or to a function with no prototype,
719 // perform the "default argument promotions" (C99 6.5.2.2p6), which
720 // includes the usual unary conversions, but also promotes float to
721 // double.
722 if (const BuiltinType *BT =
723 dyn_cast<BuiltinType>(ArgTy.getCanonicalType())) {
724 if (BT->getKind() == BuiltinType::Float)
725 ArgVal = RValue::get(Builder.CreateFPExt(ArgVal.getVal(),
726 llvm::Type::DoubleTy,"tmp"));
727 }
728 }
729
730
731 if (ArgVal.isScalar())
732 Args.push_back(ArgVal.getVal());
733 else // Pass by-address. FIXME: Set attribute bit on call.
734 Args.push_back(ArgVal.getAggregateAddr());
735 }
736
Chris Lattnerbf986512007-08-01 06:24:52 +0000737 llvm::Value *V = Builder.CreateCall(Callee, &Args[0], &Args[0]+Args.size());
Reid Spencer5f016e22007-07-11 17:01:13 +0000738 if (V->getType() != llvm::Type::VoidTy)
739 V->setName("call");
740
741 // FIXME: Struct return;
742 return RValue::get(V);
743}
744
745
746//===----------------------------------------------------------------------===//
747// Unary Operator Emission
748//===----------------------------------------------------------------------===//
749
750RValue CodeGenFunction::EmitExprWithUsualUnaryConversions(const Expr *E,
751 QualType &ResTy) {
752 ResTy = E->getType().getCanonicalType();
753
754 if (isa<FunctionType>(ResTy)) { // C99 6.3.2.1p4
755 // Functions are promoted to their address.
756 ResTy = getContext().getPointerType(ResTy);
757 return RValue::get(EmitLValue(E).getAddress());
758 } else if (const ArrayType *ary = dyn_cast<ArrayType>(ResTy)) {
759 // C99 6.3.2.1p3
760 ResTy = getContext().getPointerType(ary->getElementType());
761
762 // FIXME: For now we assume that all source arrays map to LLVM arrays. This
763 // will not true when we add support for VLAs.
764 llvm::Value *V = EmitLValue(E).getAddress(); // Bitfields can't be arrays.
765
766 assert(isa<llvm::PointerType>(V->getType()) &&
767 isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
768 ->getElementType()) &&
769 "Doesn't support VLAs yet!");
770 llvm::Constant *Idx0 = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0);
771 return RValue::get(Builder.CreateGEP(V, Idx0, Idx0, "arraydecay"));
772 } else if (ResTy->isPromotableIntegerType()) { // C99 6.3.1.1p2
773 // FIXME: this probably isn't right, pending clarification from Steve.
774 llvm::Value *Val = EmitExpr(E).getVal();
775
776 // If the input is a signed integer, sign extend to the destination.
777 if (ResTy->isSignedIntegerType()) {
778 Val = Builder.CreateSExt(Val, LLVMIntTy, "promote");
779 } else {
780 // This handles unsigned types, including bool.
781 Val = Builder.CreateZExt(Val, LLVMIntTy, "promote");
782 }
783 ResTy = getContext().IntTy;
784
785 return RValue::get(Val);
786 }
787
788 // Otherwise, this is a float, double, int, struct, etc.
789 return EmitExpr(E);
790}
791
792
793RValue CodeGenFunction::EmitUnaryOperator(const UnaryOperator *E) {
794 switch (E->getOpcode()) {
795 default:
796 printf("Unimplemented unary expr!\n");
797 E->dump();
798 return RValue::get(llvm::UndefValue::get(llvm::Type::Int32Ty));
Chris Lattner57274792007-07-11 23:43:46 +0000799 case UnaryOperator::PostInc:
800 case UnaryOperator::PostDec:
801 case UnaryOperator::PreInc :
802 case UnaryOperator::PreDec : return EmitUnaryIncDec(E);
803 case UnaryOperator::AddrOf : return EmitUnaryAddrOf(E);
804 case UnaryOperator::Deref : return EmitLoadOfLValue(E);
805 case UnaryOperator::Plus : return EmitUnaryPlus(E);
806 case UnaryOperator::Minus : return EmitUnaryMinus(E);
807 case UnaryOperator::Not : return EmitUnaryNot(E);
808 case UnaryOperator::LNot : return EmitUnaryLNot(E);
Chris Lattner5e3fbe52007-07-18 18:12:07 +0000809 case UnaryOperator::SizeOf :
810 return EmitSizeAlignOf(E->getSubExpr()->getType(), E->getType(), true);
811 case UnaryOperator::AlignOf :
812 return EmitSizeAlignOf(E->getSubExpr()->getType(), E->getType(), false);
Reid Spencer5f016e22007-07-11 17:01:13 +0000813 // FIXME: real/imag
814 case UnaryOperator::Extension: return EmitExpr(E->getSubExpr());
815 }
816}
817
Chris Lattner57274792007-07-11 23:43:46 +0000818RValue CodeGenFunction::EmitUnaryIncDec(const UnaryOperator *E) {
819 LValue LV = EmitLValue(E->getSubExpr());
820 RValue InVal = EmitLoadOfLValue(LV, E->getSubExpr()->getType());
821
822 // We know the operand is real or pointer type, so it must be an LLVM scalar.
823 assert(InVal.isScalar() && "Unknown thing to increment");
824 llvm::Value *InV = InVal.getVal();
825
826 int AmountVal = 1;
827 if (E->getOpcode() == UnaryOperator::PreDec ||
828 E->getOpcode() == UnaryOperator::PostDec)
829 AmountVal = -1;
830
831 llvm::Value *NextVal;
832 if (isa<llvm::IntegerType>(InV->getType())) {
833 NextVal = llvm::ConstantInt::get(InV->getType(), AmountVal);
834 NextVal = Builder.CreateAdd(InV, NextVal, AmountVal == 1 ? "inc" : "dec");
835 } else if (InV->getType()->isFloatingPoint()) {
836 NextVal = llvm::ConstantFP::get(InV->getType(), AmountVal);
837 NextVal = Builder.CreateAdd(InV, NextVal, AmountVal == 1 ? "inc" : "dec");
838 } else {
839 // FIXME: This is not right for pointers to VLA types.
840 assert(isa<llvm::PointerType>(InV->getType()));
841 NextVal = llvm::ConstantInt::get(llvm::Type::Int32Ty, AmountVal);
842 NextVal = Builder.CreateGEP(InV, NextVal, AmountVal == 1 ? "inc" : "dec");
843 }
844
845 RValue NextValToStore = RValue::get(NextVal);
846
847 // Store the updated result through the lvalue.
848 EmitStoreThroughLValue(NextValToStore, LV, E->getSubExpr()->getType());
849
850 // If this is a postinc, return the value read from memory, otherwise use the
851 // updated value.
852 if (E->getOpcode() == UnaryOperator::PreDec ||
853 E->getOpcode() == UnaryOperator::PreInc)
854 return NextValToStore;
855 else
856 return InVal;
857}
858
Reid Spencer5f016e22007-07-11 17:01:13 +0000859/// C99 6.5.3.2
860RValue CodeGenFunction::EmitUnaryAddrOf(const UnaryOperator *E) {
861 // The address of the operand is just its lvalue. It cannot be a bitfield.
862 return RValue::get(EmitLValue(E->getSubExpr()).getAddress());
863}
864
865RValue CodeGenFunction::EmitUnaryPlus(const UnaryOperator *E) {
866 // Unary plus just performs promotions on its arithmetic operand.
867 QualType Ty;
868 return EmitExprWithUsualUnaryConversions(E->getSubExpr(), Ty);
869}
870
871RValue CodeGenFunction::EmitUnaryMinus(const UnaryOperator *E) {
872 // Unary minus performs promotions, then negates its arithmetic operand.
873 QualType Ty;
874 RValue V = EmitExprWithUsualUnaryConversions(E->getSubExpr(), Ty);
875
876 if (V.isScalar())
877 return RValue::get(Builder.CreateNeg(V.getVal(), "neg"));
878
879 assert(0 && "FIXME: This doesn't handle complex operands yet");
880}
881
882RValue CodeGenFunction::EmitUnaryNot(const UnaryOperator *E) {
883 // Unary not performs promotions, then complements its integer operand.
884 QualType Ty;
885 RValue V = EmitExprWithUsualUnaryConversions(E->getSubExpr(), Ty);
886
887 if (V.isScalar())
888 return RValue::get(Builder.CreateNot(V.getVal(), "neg"));
889
890 assert(0 && "FIXME: This doesn't handle integer complex operands yet (GNU)");
891}
892
893
894/// C99 6.5.3.3
895RValue CodeGenFunction::EmitUnaryLNot(const UnaryOperator *E) {
896 // Compare operand to zero.
897 llvm::Value *BoolVal = EvaluateExprAsBool(E->getSubExpr());
898
899 // Invert value.
900 // TODO: Could dynamically modify easy computations here. For example, if
901 // the operand is an icmp ne, turn into icmp eq.
902 BoolVal = Builder.CreateNot(BoolVal, "lnot");
903
904 // ZExt result to int.
905 return RValue::get(Builder.CreateZExt(BoolVal, LLVMIntTy, "lnot.ext"));
906}
907
Chris Lattner5e3fbe52007-07-18 18:12:07 +0000908/// EmitSizeAlignOf - Return the size or alignment of the 'TypeToSize' type as
909/// an integer (RetType).
910RValue CodeGenFunction::EmitSizeAlignOf(QualType TypeToSize,
911 QualType RetType, bool isSizeOf) {
912 /// FIXME: This doesn't handle VLAs yet!
913 std::pair<uint64_t, unsigned> Info =
914 getContext().getTypeInfo(TypeToSize, SourceLocation());
915
916 uint64_t Val = isSizeOf ? Info.first : Info.second;
917 Val /= 8; // Return size in bytes, not bits.
918
919 assert(RetType->isIntegerType() && "Result type must be an integer!");
920
921 unsigned ResultWidth = getContext().getTypeSize(RetType, SourceLocation());
922 return RValue::get(llvm::ConstantInt::get(llvm::APInt(ResultWidth, Val)));
923}
924
Reid Spencer5f016e22007-07-11 17:01:13 +0000925
926//===--------------------------------------------------------------------===//
927// Binary Operator Emission
928//===--------------------------------------------------------------------===//
929
930// FIXME describe.
931QualType CodeGenFunction::
932EmitUsualArithmeticConversions(const BinaryOperator *E, RValue &LHS,
933 RValue &RHS) {
934 QualType LHSType, RHSType;
935 LHS = EmitExprWithUsualUnaryConversions(E->getLHS(), LHSType);
936 RHS = EmitExprWithUsualUnaryConversions(E->getRHS(), RHSType);
937
938 // If both operands have the same source type, we're done already.
939 if (LHSType == RHSType) return LHSType;
940
941 // If either side is a non-arithmetic type (e.g. a pointer), we are done.
942 // The caller can deal with this (e.g. pointer + int).
943 if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
944 return LHSType;
945
946 // At this point, we have two different arithmetic types.
947
948 // Handle complex types first (C99 6.3.1.8p1).
949 if (LHSType->isComplexType() || RHSType->isComplexType()) {
950 assert(0 && "FIXME: complex types unimp");
951#if 0
952 // if we have an integer operand, the result is the complex type.
953 if (rhs->isIntegerType())
954 return lhs;
955 if (lhs->isIntegerType())
956 return rhs;
957 return Context.maxComplexType(lhs, rhs);
958#endif
959 }
960
961 // If neither operand is complex, they must be scalars.
962 llvm::Value *LHSV = LHS.getVal();
963 llvm::Value *RHSV = RHS.getVal();
964
965 // If the LLVM types are already equal, then they only differed in sign, or it
966 // was something like char/signed char or double/long double.
967 if (LHSV->getType() == RHSV->getType())
968 return LHSType;
969
970 // Now handle "real" floating types (i.e. float, double, long double).
971 if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType()) {
972 // if we have an integer operand, the result is the real floating type, and
973 // the integer converts to FP.
974 if (RHSType->isIntegerType()) {
975 // Promote the RHS to an FP type of the LHS, with the sign following the
976 // RHS.
977 if (RHSType->isSignedIntegerType())
978 RHS = RValue::get(Builder.CreateSIToFP(RHSV,LHSV->getType(),"promote"));
979 else
980 RHS = RValue::get(Builder.CreateUIToFP(RHSV,LHSV->getType(),"promote"));
981 return LHSType;
982 }
983
984 if (LHSType->isIntegerType()) {
985 // Promote the LHS to an FP type of the RHS, with the sign following the
986 // LHS.
987 if (LHSType->isSignedIntegerType())
988 LHS = RValue::get(Builder.CreateSIToFP(LHSV,RHSV->getType(),"promote"));
989 else
990 LHS = RValue::get(Builder.CreateUIToFP(LHSV,RHSV->getType(),"promote"));
991 return RHSType;
992 }
993
994 // Otherwise, they are two FP types. Promote the smaller operand to the
995 // bigger result.
996 QualType BiggerType = ASTContext::maxFloatingType(LHSType, RHSType);
997
998 if (BiggerType == LHSType)
999 RHS = RValue::get(Builder.CreateFPExt(RHSV, LHSV->getType(), "promote"));
1000 else
1001 LHS = RValue::get(Builder.CreateFPExt(LHSV, RHSV->getType(), "promote"));
1002 return BiggerType;
1003 }
1004
1005 // Finally, we have two integer types that are different according to C. Do
1006 // a sign or zero extension if needed.
1007
1008 // Otherwise, one type is smaller than the other.
1009 QualType ResTy = ASTContext::maxIntegerType(LHSType, RHSType);
1010
1011 if (LHSType == ResTy) {
1012 if (RHSType->isSignedIntegerType())
1013 RHS = RValue::get(Builder.CreateSExt(RHSV, LHSV->getType(), "promote"));
1014 else
1015 RHS = RValue::get(Builder.CreateZExt(RHSV, LHSV->getType(), "promote"));
1016 } else {
1017 assert(RHSType == ResTy && "Unknown conversion");
1018 if (LHSType->isSignedIntegerType())
1019 LHS = RValue::get(Builder.CreateSExt(LHSV, RHSV->getType(), "promote"));
1020 else
1021 LHS = RValue::get(Builder.CreateZExt(LHSV, RHSV->getType(), "promote"));
1022 }
1023 return ResTy;
1024}
1025
1026/// EmitCompoundAssignmentOperands - Compound assignment operations (like +=)
1027/// are strange in that the result of the operation is not the same type as the
1028/// intermediate computation. This function emits the LHS and RHS operands of
1029/// the compound assignment, promoting them to their common computation type.
1030///
1031/// Since the LHS is an lvalue, and the result is stored back through it, we
1032/// return the lvalue as well as the LHS/RHS rvalues. On return, the LHS and
1033/// RHS values are both in the computation type for the operator.
1034void CodeGenFunction::
1035EmitCompoundAssignmentOperands(const CompoundAssignOperator *E,
1036 LValue &LHSLV, RValue &LHS, RValue &RHS) {
1037 LHSLV = EmitLValue(E->getLHS());
1038
1039 // Load the LHS and RHS operands.
1040 QualType LHSTy = E->getLHS()->getType();
1041 LHS = EmitLoadOfLValue(LHSLV, LHSTy);
1042 QualType RHSTy;
1043 RHS = EmitExprWithUsualUnaryConversions(E->getRHS(), RHSTy);
1044
1045 // Shift operands do the usual unary conversions, but do not do the binary
1046 // conversions.
1047 if (E->isShiftAssignOp()) {
1048 // FIXME: This is broken. Implicit conversions should be made explicit,
1049 // so that this goes away. This causes us to reload the LHS.
1050 LHS = EmitExprWithUsualUnaryConversions(E->getLHS(), LHSTy);
1051 }
1052
1053 // Convert the LHS and RHS to the common evaluation type.
1054 LHS = EmitConversion(LHS, LHSTy, E->getComputationType());
1055 RHS = EmitConversion(RHS, RHSTy, E->getComputationType());
1056}
1057
1058/// EmitCompoundAssignmentResult - Given a result value in the computation type,
1059/// truncate it down to the actual result type, store it through the LHS lvalue,
1060/// and return it.
1061RValue CodeGenFunction::
1062EmitCompoundAssignmentResult(const CompoundAssignOperator *E,
1063 LValue LHSLV, RValue ResV) {
1064
1065 // Truncate back to the destination type.
1066 if (E->getComputationType() != E->getType())
1067 ResV = EmitConversion(ResV, E->getComputationType(), E->getType());
1068
1069 // Store the result value into the LHS.
1070 EmitStoreThroughLValue(ResV, LHSLV, E->getType());
1071
1072 // Return the result.
1073 return ResV;
1074}
1075
1076
1077RValue CodeGenFunction::EmitBinaryOperator(const BinaryOperator *E) {
1078 RValue LHS, RHS;
1079 switch (E->getOpcode()) {
1080 default:
1081 fprintf(stderr, "Unimplemented binary expr!\n");
1082 E->dump();
1083 return RValue::get(llvm::UndefValue::get(llvm::Type::Int32Ty));
1084 case BinaryOperator::Mul:
1085 EmitUsualArithmeticConversions(E, LHS, RHS);
1086 return EmitMul(LHS, RHS, E->getType());
1087 case BinaryOperator::Div:
1088 EmitUsualArithmeticConversions(E, LHS, RHS);
1089 return EmitDiv(LHS, RHS, E->getType());
1090 case BinaryOperator::Rem:
1091 EmitUsualArithmeticConversions(E, LHS, RHS);
1092 return EmitRem(LHS, RHS, E->getType());
Chris Lattner8b9023b2007-07-13 03:05:23 +00001093 case BinaryOperator::Add: {
1094 QualType ExprTy = E->getType();
1095 if (ExprTy->isPointerType()) {
1096 Expr *LHSExpr = E->getLHS();
1097 QualType LHSTy;
1098 LHS = EmitExprWithUsualUnaryConversions(LHSExpr, LHSTy);
1099 Expr *RHSExpr = E->getRHS();
1100 QualType RHSTy;
1101 RHS = EmitExprWithUsualUnaryConversions(RHSExpr, RHSTy);
1102 return EmitPointerAdd(LHS, LHSTy, RHS, RHSTy, ExprTy);
1103 } else {
1104 EmitUsualArithmeticConversions(E, LHS, RHS);
1105 return EmitAdd(LHS, RHS, ExprTy);
1106 }
1107 }
1108 case BinaryOperator::Sub: {
1109 QualType ExprTy = E->getType();
1110 Expr *LHSExpr = E->getLHS();
1111 if (LHSExpr->getType()->isPointerType()) {
1112 QualType LHSTy;
1113 LHS = EmitExprWithUsualUnaryConversions(LHSExpr, LHSTy);
1114 Expr *RHSExpr = E->getRHS();
1115 QualType RHSTy;
1116 RHS = EmitExprWithUsualUnaryConversions(RHSExpr, RHSTy);
1117 return EmitPointerSub(LHS, LHSTy, RHS, RHSTy, ExprTy);
1118 } else {
1119 EmitUsualArithmeticConversions(E, LHS, RHS);
1120 return EmitSub(LHS, RHS, ExprTy);
1121 }
1122 }
Reid Spencer5f016e22007-07-11 17:01:13 +00001123 case BinaryOperator::Shl:
1124 EmitShiftOperands(E, LHS, RHS);
1125 return EmitShl(LHS, RHS, E->getType());
1126 case BinaryOperator::Shr:
1127 EmitShiftOperands(E, LHS, RHS);
1128 return EmitShr(LHS, RHS, E->getType());
1129 case BinaryOperator::And:
1130 EmitUsualArithmeticConversions(E, LHS, RHS);
1131 return EmitAnd(LHS, RHS, E->getType());
1132 case BinaryOperator::Xor:
1133 EmitUsualArithmeticConversions(E, LHS, RHS);
1134 return EmitXor(LHS, RHS, E->getType());
1135 case BinaryOperator::Or :
1136 EmitUsualArithmeticConversions(E, LHS, RHS);
1137 return EmitOr(LHS, RHS, E->getType());
1138 case BinaryOperator::LAnd: return EmitBinaryLAnd(E);
1139 case BinaryOperator::LOr: return EmitBinaryLOr(E);
1140 case BinaryOperator::LT:
1141 return EmitBinaryCompare(E, llvm::ICmpInst::ICMP_ULT,
1142 llvm::ICmpInst::ICMP_SLT,
1143 llvm::FCmpInst::FCMP_OLT);
1144 case BinaryOperator::GT:
1145 return EmitBinaryCompare(E, llvm::ICmpInst::ICMP_UGT,
1146 llvm::ICmpInst::ICMP_SGT,
1147 llvm::FCmpInst::FCMP_OGT);
1148 case BinaryOperator::LE:
1149 return EmitBinaryCompare(E, llvm::ICmpInst::ICMP_ULE,
1150 llvm::ICmpInst::ICMP_SLE,
1151 llvm::FCmpInst::FCMP_OLE);
1152 case BinaryOperator::GE:
1153 return EmitBinaryCompare(E, llvm::ICmpInst::ICMP_UGE,
1154 llvm::ICmpInst::ICMP_SGE,
1155 llvm::FCmpInst::FCMP_OGE);
1156 case BinaryOperator::EQ:
1157 return EmitBinaryCompare(E, llvm::ICmpInst::ICMP_EQ,
1158 llvm::ICmpInst::ICMP_EQ,
1159 llvm::FCmpInst::FCMP_OEQ);
1160 case BinaryOperator::NE:
1161 return EmitBinaryCompare(E, llvm::ICmpInst::ICMP_NE,
1162 llvm::ICmpInst::ICMP_NE,
1163 llvm::FCmpInst::FCMP_UNE);
1164 case BinaryOperator::Assign:
1165 return EmitBinaryAssign(E);
1166
1167 case BinaryOperator::MulAssign: {
1168 const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E);
1169 LValue LHSLV;
1170 EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS);
1171 LHS = EmitMul(LHS, RHS, CAO->getComputationType());
1172 return EmitCompoundAssignmentResult(CAO, LHSLV, LHS);
1173 }
1174 case BinaryOperator::DivAssign: {
1175 const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E);
1176 LValue LHSLV;
1177 EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS);
1178 LHS = EmitDiv(LHS, RHS, CAO->getComputationType());
1179 return EmitCompoundAssignmentResult(CAO, LHSLV, LHS);
1180 }
1181 case BinaryOperator::RemAssign: {
1182 const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E);
1183 LValue LHSLV;
1184 EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS);
1185 LHS = EmitRem(LHS, RHS, CAO->getComputationType());
1186 return EmitCompoundAssignmentResult(CAO, LHSLV, LHS);
1187 }
1188 case BinaryOperator::AddAssign: {
1189 const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E);
1190 LValue LHSLV;
1191 EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS);
1192 LHS = EmitAdd(LHS, RHS, CAO->getComputationType());
1193 return EmitCompoundAssignmentResult(CAO, LHSLV, LHS);
1194 }
1195 case BinaryOperator::SubAssign: {
1196 const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E);
1197 LValue LHSLV;
1198 EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS);
1199 LHS = EmitSub(LHS, RHS, CAO->getComputationType());
1200 return EmitCompoundAssignmentResult(CAO, LHSLV, LHS);
1201 }
1202 case BinaryOperator::ShlAssign: {
1203 const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E);
1204 LValue LHSLV;
1205 EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS);
1206 LHS = EmitShl(LHS, RHS, CAO->getComputationType());
1207 return EmitCompoundAssignmentResult(CAO, LHSLV, LHS);
1208 }
1209 case BinaryOperator::ShrAssign: {
1210 const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E);
1211 LValue LHSLV;
1212 EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS);
1213 LHS = EmitShr(LHS, RHS, CAO->getComputationType());
1214 return EmitCompoundAssignmentResult(CAO, LHSLV, LHS);
1215 }
1216 case BinaryOperator::AndAssign: {
1217 const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E);
1218 LValue LHSLV;
1219 EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS);
1220 LHS = EmitAnd(LHS, RHS, CAO->getComputationType());
1221 return EmitCompoundAssignmentResult(CAO, LHSLV, LHS);
1222 }
1223 case BinaryOperator::OrAssign: {
1224 const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E);
1225 LValue LHSLV;
1226 EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS);
1227 LHS = EmitOr(LHS, RHS, CAO->getComputationType());
1228 return EmitCompoundAssignmentResult(CAO, LHSLV, LHS);
1229 }
1230 case BinaryOperator::XorAssign: {
1231 const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E);
1232 LValue LHSLV;
1233 EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS);
1234 LHS = EmitXor(LHS, RHS, CAO->getComputationType());
1235 return EmitCompoundAssignmentResult(CAO, LHSLV, LHS);
1236 }
1237 case BinaryOperator::Comma: return EmitBinaryComma(E);
1238 }
1239}
1240
1241RValue CodeGenFunction::EmitMul(RValue LHS, RValue RHS, QualType ResTy) {
1242 if (LHS.isScalar())
1243 return RValue::get(Builder.CreateMul(LHS.getVal(), RHS.getVal(), "mul"));
1244
Gabor Greif4db18f22007-07-13 23:33:18 +00001245 // Otherwise, this must be a complex number.
1246 llvm::Value *LHSR, *LHSI, *RHSR, *RHSI;
1247
1248 EmitLoadOfComplex(LHS, LHSR, LHSI);
1249 EmitLoadOfComplex(RHS, RHSR, RHSI);
1250
1251 llvm::Value *ResRl = Builder.CreateMul(LHSR, RHSR, "mul.rl");
1252 llvm::Value *ResRr = Builder.CreateMul(LHSI, RHSI, "mul.rr");
1253 llvm::Value *ResR = Builder.CreateSub(ResRl, ResRr, "mul.r");
1254
1255 llvm::Value *ResIl = Builder.CreateMul(LHSI, RHSR, "mul.il");
1256 llvm::Value *ResIr = Builder.CreateMul(LHSR, RHSI, "mul.ir");
1257 llvm::Value *ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i");
1258
1259 llvm::Value *Res = CreateTempAlloca(ConvertType(ResTy));
1260 EmitStoreOfComplex(ResR, ResI, Res);
1261 return RValue::getAggregate(Res);
Reid Spencer5f016e22007-07-11 17:01:13 +00001262}
1263
1264RValue CodeGenFunction::EmitDiv(RValue LHS, RValue RHS, QualType ResTy) {
1265 if (LHS.isScalar()) {
1266 llvm::Value *RV;
1267 if (LHS.getVal()->getType()->isFloatingPoint())
1268 RV = Builder.CreateFDiv(LHS.getVal(), RHS.getVal(), "div");
1269 else if (ResTy->isUnsignedIntegerType())
1270 RV = Builder.CreateUDiv(LHS.getVal(), RHS.getVal(), "div");
1271 else
1272 RV = Builder.CreateSDiv(LHS.getVal(), RHS.getVal(), "div");
1273 return RValue::get(RV);
1274 }
1275 assert(0 && "FIXME: This doesn't handle complex operands yet");
1276}
1277
1278RValue CodeGenFunction::EmitRem(RValue LHS, RValue RHS, QualType ResTy) {
1279 if (LHS.isScalar()) {
1280 llvm::Value *RV;
1281 // Rem in C can't be a floating point type: C99 6.5.5p2.
1282 if (ResTy->isUnsignedIntegerType())
1283 RV = Builder.CreateURem(LHS.getVal(), RHS.getVal(), "rem");
1284 else
1285 RV = Builder.CreateSRem(LHS.getVal(), RHS.getVal(), "rem");
1286 return RValue::get(RV);
1287 }
1288
1289 assert(0 && "FIXME: This doesn't handle complex operands yet");
1290}
1291
1292RValue CodeGenFunction::EmitAdd(RValue LHS, RValue RHS, QualType ResTy) {
1293 if (LHS.isScalar())
1294 return RValue::get(Builder.CreateAdd(LHS.getVal(), RHS.getVal(), "add"));
1295
1296 // Otherwise, this must be a complex number.
1297 llvm::Value *LHSR, *LHSI, *RHSR, *RHSI;
1298
1299 EmitLoadOfComplex(LHS, LHSR, LHSI);
1300 EmitLoadOfComplex(RHS, RHSR, RHSI);
1301
1302 llvm::Value *ResR = Builder.CreateAdd(LHSR, RHSR, "add.r");
1303 llvm::Value *ResI = Builder.CreateAdd(LHSI, RHSI, "add.i");
1304
1305 llvm::Value *Res = CreateTempAlloca(ConvertType(ResTy));
1306 EmitStoreOfComplex(ResR, ResI, Res);
1307 return RValue::getAggregate(Res);
1308}
1309
Chris Lattner8b9023b2007-07-13 03:05:23 +00001310RValue CodeGenFunction::EmitPointerAdd(RValue LHS, QualType LHSTy,
1311 RValue RHS, QualType RHSTy,
1312 QualType ResTy) {
1313 llvm::Value *LHSValue = LHS.getVal();
1314 llvm::Value *RHSValue = RHS.getVal();
1315 if (LHSTy->isPointerType()) {
1316 // pointer + int
1317 return RValue::get(Builder.CreateGEP(LHSValue, RHSValue, "add.ptr"));
1318 } else {
1319 // int + pointer
1320 return RValue::get(Builder.CreateGEP(RHSValue, LHSValue, "add.ptr"));
1321 }
1322}
1323
Reid Spencer5f016e22007-07-11 17:01:13 +00001324RValue CodeGenFunction::EmitSub(RValue LHS, RValue RHS, QualType ResTy) {
1325 if (LHS.isScalar())
1326 return RValue::get(Builder.CreateSub(LHS.getVal(), RHS.getVal(), "sub"));
1327
1328 assert(0 && "FIXME: This doesn't handle complex operands yet");
1329}
1330
Chris Lattner8b9023b2007-07-13 03:05:23 +00001331RValue CodeGenFunction::EmitPointerSub(RValue LHS, QualType LHSTy,
1332 RValue RHS, QualType RHSTy,
1333 QualType ResTy) {
1334 llvm::Value *LHSValue = LHS.getVal();
1335 llvm::Value *RHSValue = RHS.getVal();
1336 if (const PointerType *RHSPtrType =
1337 dyn_cast<PointerType>(RHSTy.getTypePtr())) {
1338 // pointer - pointer
1339 const PointerType *LHSPtrType = cast<PointerType>(LHSTy.getTypePtr());
1340 QualType LHSElementType = LHSPtrType->getPointeeType();
1341 assert(LHSElementType == RHSPtrType->getPointeeType() &&
1342 "can't subtract pointers with differing element types");
Chris Lattner99e0d792007-07-16 05:43:05 +00001343 uint64_t ElementSize = getContext().getTypeSize(LHSElementType,
Chris Lattnerd2d2a112007-07-14 01:29:45 +00001344 SourceLocation()) / 8;
Chris Lattner8b9023b2007-07-13 03:05:23 +00001345 const llvm::Type *ResultType = ConvertType(ResTy);
1346 llvm::Value *CastLHS = Builder.CreatePtrToInt(LHSValue, ResultType,
1347 "sub.ptr.lhs.cast");
1348 llvm::Value *CastRHS = Builder.CreatePtrToInt(RHSValue, ResultType,
1349 "sub.ptr.rhs.cast");
1350 llvm::Value *BytesBetween = Builder.CreateSub(CastLHS, CastRHS,
1351 "sub.ptr.sub");
Chris Lattner99e0d792007-07-16 05:43:05 +00001352
1353 // HACK: LLVM doesn't have an divide instruction that 'knows' there is no
1354 // remainder. As such, we handle common power-of-two cases here to generate
1355 // better code.
1356 if (llvm::isPowerOf2_64(ElementSize)) {
1357 llvm::Value *ShAmt =
1358 llvm::ConstantInt::get(ResultType, llvm::Log2_64(ElementSize));
1359 return RValue::get(Builder.CreateAShr(BytesBetween, ShAmt,"sub.ptr.shr"));
1360 } else {
1361 // Otherwise, do a full sdiv.
1362 llvm::Value *BytesPerElement =
1363 llvm::ConstantInt::get(ResultType, ElementSize);
1364 return RValue::get(Builder.CreateSDiv(BytesBetween, BytesPerElement,
1365 "sub.ptr.div"));
1366 }
Chris Lattner8b9023b2007-07-13 03:05:23 +00001367 } else {
1368 // pointer - int
1369 llvm::Value *NegatedRHS = Builder.CreateNeg(RHSValue, "sub.ptr.neg");
1370 return RValue::get(Builder.CreateGEP(LHSValue, NegatedRHS, "sub.ptr"));
1371 }
1372}
1373
Reid Spencer5f016e22007-07-11 17:01:13 +00001374void CodeGenFunction::EmitShiftOperands(const BinaryOperator *E,
1375 RValue &LHS, RValue &RHS) {
1376 // For shifts, integer promotions are performed, but the usual arithmetic
1377 // conversions are not. The LHS and RHS need not have the same type.
1378 QualType ResTy;
1379 LHS = EmitExprWithUsualUnaryConversions(E->getLHS(), ResTy);
1380 RHS = EmitExprWithUsualUnaryConversions(E->getRHS(), ResTy);
1381}
1382
1383
1384RValue CodeGenFunction::EmitShl(RValue LHSV, RValue RHSV, QualType ResTy) {
1385 llvm::Value *LHS = LHSV.getVal(), *RHS = RHSV.getVal();
1386
1387 // LLVM requires the LHS and RHS to be the same type, promote or truncate the
1388 // RHS to the same size as the LHS.
1389 if (LHS->getType() != RHS->getType())
1390 RHS = Builder.CreateIntCast(RHS, LHS->getType(), false, "sh_prom");
1391
1392 return RValue::get(Builder.CreateShl(LHS, RHS, "shl"));
1393}
1394
1395RValue CodeGenFunction::EmitShr(RValue LHSV, RValue RHSV, QualType ResTy) {
1396 llvm::Value *LHS = LHSV.getVal(), *RHS = RHSV.getVal();
1397
1398 // LLVM requires the LHS and RHS to be the same type, promote or truncate the
1399 // RHS to the same size as the LHS.
1400 if (LHS->getType() != RHS->getType())
1401 RHS = Builder.CreateIntCast(RHS, LHS->getType(), false, "sh_prom");
1402
1403 if (ResTy->isUnsignedIntegerType())
1404 return RValue::get(Builder.CreateLShr(LHS, RHS, "shr"));
1405 else
1406 return RValue::get(Builder.CreateAShr(LHS, RHS, "shr"));
1407}
1408
1409RValue CodeGenFunction::EmitBinaryCompare(const BinaryOperator *E,
1410 unsigned UICmpOpc, unsigned SICmpOpc,
1411 unsigned FCmpOpc) {
1412 RValue LHS, RHS;
1413 EmitUsualArithmeticConversions(E, LHS, RHS);
1414
1415 llvm::Value *Result;
1416 if (LHS.isScalar()) {
1417 if (LHS.getVal()->getType()->isFloatingPoint()) {
1418 Result = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1419 LHS.getVal(), RHS.getVal(), "cmp");
1420 } else if (E->getLHS()->getType()->isUnsignedIntegerType()) {
1421 // FIXME: This check isn't right for "unsigned short < int" where ushort
1422 // promotes to int and does a signed compare.
1423 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1424 LHS.getVal(), RHS.getVal(), "cmp");
1425 } else {
1426 // Signed integers and pointers.
1427 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
1428 LHS.getVal(), RHS.getVal(), "cmp");
1429 }
1430 } else {
1431 // Struct/union/complex
Gabor Greif4db18f22007-07-13 23:33:18 +00001432 llvm::Value *LHSR, *LHSI, *RHSR, *RHSI, *ResultR, *ResultI;
1433 EmitLoadOfComplex(LHS, LHSR, LHSI);
1434 EmitLoadOfComplex(RHS, RHSR, RHSI);
1435
Gabor Greifd5e0d982007-07-14 20:05:18 +00001436 // FIXME: need to consider _Complex over integers too!
1437
Gabor Greif4db18f22007-07-13 23:33:18 +00001438 ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1439 LHSR, RHSR, "cmp.r");
1440 ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1441 LHSI, RHSI, "cmp.i");
1442 if (BinaryOperator::EQ == E->getOpcode()) {
1443 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
1444 } else if (BinaryOperator::NE == E->getOpcode()) {
1445 Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
1446 } else {
1447 assert(0 && "Complex comparison other than == or != ?");
1448 }
Reid Spencer5f016e22007-07-11 17:01:13 +00001449 }
Gabor Greif4db18f22007-07-13 23:33:18 +00001450
Reid Spencer5f016e22007-07-11 17:01:13 +00001451 // ZExt result to int.
1452 return RValue::get(Builder.CreateZExt(Result, LLVMIntTy, "cmp.ext"));
1453}
1454
1455RValue CodeGenFunction::EmitAnd(RValue LHS, RValue RHS, QualType ResTy) {
1456 if (LHS.isScalar())
1457 return RValue::get(Builder.CreateAnd(LHS.getVal(), RHS.getVal(), "and"));
1458
1459 assert(0 && "FIXME: This doesn't handle complex integer operands yet (GNU)");
1460}
1461
1462RValue CodeGenFunction::EmitXor(RValue LHS, RValue RHS, QualType ResTy) {
1463 if (LHS.isScalar())
1464 return RValue::get(Builder.CreateXor(LHS.getVal(), RHS.getVal(), "xor"));
1465
1466 assert(0 && "FIXME: This doesn't handle complex integer operands yet (GNU)");
1467}
1468
1469RValue CodeGenFunction::EmitOr(RValue LHS, RValue RHS, QualType ResTy) {
1470 if (LHS.isScalar())
1471 return RValue::get(Builder.CreateOr(LHS.getVal(), RHS.getVal(), "or"));
1472
1473 assert(0 && "FIXME: This doesn't handle complex integer operands yet (GNU)");
1474}
1475
1476RValue CodeGenFunction::EmitBinaryLAnd(const BinaryOperator *E) {
1477 llvm::Value *LHSCond = EvaluateExprAsBool(E->getLHS());
1478
1479 llvm::BasicBlock *ContBlock = new llvm::BasicBlock("land_cont");
1480 llvm::BasicBlock *RHSBlock = new llvm::BasicBlock("land_rhs");
1481
1482 llvm::BasicBlock *OrigBlock = Builder.GetInsertBlock();
1483 Builder.CreateCondBr(LHSCond, RHSBlock, ContBlock);
1484
1485 EmitBlock(RHSBlock);
1486 llvm::Value *RHSCond = EvaluateExprAsBool(E->getRHS());
1487
1488 // Reaquire the RHS block, as there may be subblocks inserted.
1489 RHSBlock = Builder.GetInsertBlock();
1490 EmitBlock(ContBlock);
1491
1492 // Create a PHI node. If we just evaluted the LHS condition, the result is
1493 // false. If we evaluated both, the result is the RHS condition.
1494 llvm::PHINode *PN = Builder.CreatePHI(llvm::Type::Int1Ty, "land");
1495 PN->reserveOperandSpace(2);
1496 PN->addIncoming(llvm::ConstantInt::getFalse(), OrigBlock);
1497 PN->addIncoming(RHSCond, RHSBlock);
1498
1499 // ZExt result to int.
1500 return RValue::get(Builder.CreateZExt(PN, LLVMIntTy, "land.ext"));
1501}
1502
1503RValue CodeGenFunction::EmitBinaryLOr(const BinaryOperator *E) {
1504 llvm::Value *LHSCond = EvaluateExprAsBool(E->getLHS());
1505
1506 llvm::BasicBlock *ContBlock = new llvm::BasicBlock("lor_cont");
1507 llvm::BasicBlock *RHSBlock = new llvm::BasicBlock("lor_rhs");
1508
1509 llvm::BasicBlock *OrigBlock = Builder.GetInsertBlock();
1510 Builder.CreateCondBr(LHSCond, ContBlock, RHSBlock);
1511
1512 EmitBlock(RHSBlock);
1513 llvm::Value *RHSCond = EvaluateExprAsBool(E->getRHS());
1514
1515 // Reaquire the RHS block, as there may be subblocks inserted.
1516 RHSBlock = Builder.GetInsertBlock();
1517 EmitBlock(ContBlock);
1518
1519 // Create a PHI node. If we just evaluted the LHS condition, the result is
1520 // true. If we evaluated both, the result is the RHS condition.
1521 llvm::PHINode *PN = Builder.CreatePHI(llvm::Type::Int1Ty, "lor");
1522 PN->reserveOperandSpace(2);
1523 PN->addIncoming(llvm::ConstantInt::getTrue(), OrigBlock);
1524 PN->addIncoming(RHSCond, RHSBlock);
1525
1526 // ZExt result to int.
1527 return RValue::get(Builder.CreateZExt(PN, LLVMIntTy, "lor.ext"));
1528}
1529
1530RValue CodeGenFunction::EmitBinaryAssign(const BinaryOperator *E) {
1531 LValue LHS = EmitLValue(E->getLHS());
1532
1533 QualType RHSTy;
1534 RValue RHS = EmitExprWithUsualUnaryConversions(E->getRHS(), RHSTy);
1535
1536 // Convert the RHS to the type of the LHS.
1537 RHS = EmitConversion(RHS, RHSTy, E->getType());
1538
1539 // Store the value into the LHS.
1540 EmitStoreThroughLValue(RHS, LHS, E->getType());
1541
1542 // Return the converted RHS.
1543 return RHS;
1544}
1545
1546
1547RValue CodeGenFunction::EmitBinaryComma(const BinaryOperator *E) {
1548 EmitExpr(E->getLHS());
1549 return EmitExpr(E->getRHS());
1550}
Chris Lattnerb0a721a2007-07-13 05:18:11 +00001551
1552RValue CodeGenFunction::EmitConditionalOperator(const ConditionalOperator *E) {
1553 llvm::BasicBlock *LHSBlock = new llvm::BasicBlock("cond.?");
1554 llvm::BasicBlock *RHSBlock = new llvm::BasicBlock("cond.:");
1555 llvm::BasicBlock *ContBlock = new llvm::BasicBlock("cond.cont");
1556
1557 llvm::Value *Cond = EvaluateExprAsBool(E->getCond());
1558 Builder.CreateCondBr(Cond, LHSBlock, RHSBlock);
1559
Chris Lattner06c8d962007-07-14 00:01:01 +00001560 // FIXME: Implement this for aggregate values.
1561
Chris Lattnerb0a721a2007-07-13 05:18:11 +00001562 // FIXME: LHS & RHS need the "usual arithmetic conversions" but
1563 // that's not possible with the current design.
1564
1565 EmitBlock(LHSBlock);
1566 QualType LHSTy;
1567 llvm::Value *LHSValue = E->getLHS() ? // GNU extension
1568 EmitExprWithUsualUnaryConversions(E->getLHS(), LHSTy).getVal() :
1569 Cond;
1570 Builder.CreateBr(ContBlock);
1571 LHSBlock = Builder.GetInsertBlock();
1572
1573 EmitBlock(RHSBlock);
1574 QualType RHSTy;
1575 llvm::Value *RHSValue =
1576 EmitExprWithUsualUnaryConversions(E->getRHS(), RHSTy).getVal();
1577 Builder.CreateBr(ContBlock);
1578 RHSBlock = Builder.GetInsertBlock();
1579
1580 const llvm::Type *LHSType = LHSValue->getType();
1581 assert(LHSType == RHSValue->getType() && "?: LHS & RHS must have same type");
1582
1583 EmitBlock(ContBlock);
1584 llvm::PHINode *PN = Builder.CreatePHI(LHSType, "cond");
1585 PN->reserveOperandSpace(2);
1586 PN->addIncoming(LHSValue, LHSBlock);
1587 PN->addIncoming(RHSValue, RHSBlock);
1588
1589 return RValue::get(PN);
1590}