blob: 6e2e72040ed3d3981db9ed17234e2d717f65b904 [file] [log] [blame]
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
Douglas Gregor94b1dd22008-10-24 04:54:22 +000015#include "SemaInherit.h"
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000016#include "clang/Basic/Diagnostic.h"
Douglas Gregoreb8f3062008-11-12 17:17:38 +000017#include "clang/Lex/Preprocessor.h"
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000018#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
Douglas Gregorf9eb9052008-11-19 21:05:33 +000020#include "clang/AST/ExprCXX.h"
Douglas Gregoreb8f3062008-11-12 17:17:38 +000021#include "clang/AST/TypeOrdering.h"
Douglas Gregorbf3af052008-11-13 20:12:29 +000022#include "llvm/ADT/SmallPtrSet.h"
Douglas Gregor3fc749d2008-12-23 00:26:44 +000023#include "llvm/ADT/STLExtras.h"
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000024#include "llvm/Support/Compiler.h"
25#include <algorithm>
26
27namespace clang {
28
29/// GetConversionCategory - Retrieve the implicit conversion
30/// category corresponding to the given implicit conversion kind.
31ImplicitConversionCategory
32GetConversionCategory(ImplicitConversionKind Kind) {
33 static const ImplicitConversionCategory
34 Category[(int)ICK_Num_Conversion_Kinds] = {
35 ICC_Identity,
36 ICC_Lvalue_Transformation,
37 ICC_Lvalue_Transformation,
38 ICC_Lvalue_Transformation,
39 ICC_Qualification_Adjustment,
40 ICC_Promotion,
41 ICC_Promotion,
Douglas Gregor5cdf8212009-02-12 00:15:05 +000042 ICC_Promotion,
43 ICC_Conversion,
44 ICC_Conversion,
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000045 ICC_Conversion,
46 ICC_Conversion,
47 ICC_Conversion,
48 ICC_Conversion,
49 ICC_Conversion,
Douglas Gregor15da57e2008-10-29 02:00:59 +000050 ICC_Conversion,
Douglas Gregorf9201e02009-02-11 23:02:49 +000051 ICC_Conversion,
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000052 ICC_Conversion
53 };
54 return Category[(int)Kind];
55}
56
57/// GetConversionRank - Retrieve the implicit conversion rank
58/// corresponding to the given implicit conversion kind.
59ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
60 static const ImplicitConversionRank
61 Rank[(int)ICK_Num_Conversion_Kinds] = {
62 ICR_Exact_Match,
63 ICR_Exact_Match,
64 ICR_Exact_Match,
65 ICR_Exact_Match,
66 ICR_Exact_Match,
67 ICR_Promotion,
68 ICR_Promotion,
Douglas Gregor5cdf8212009-02-12 00:15:05 +000069 ICR_Promotion,
70 ICR_Conversion,
71 ICR_Conversion,
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000072 ICR_Conversion,
73 ICR_Conversion,
74 ICR_Conversion,
75 ICR_Conversion,
76 ICR_Conversion,
Douglas Gregor15da57e2008-10-29 02:00:59 +000077 ICR_Conversion,
Douglas Gregorf9201e02009-02-11 23:02:49 +000078 ICR_Conversion,
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000079 ICR_Conversion
80 };
81 return Rank[(int)Kind];
82}
83
84/// GetImplicitConversionName - Return the name of this kind of
85/// implicit conversion.
86const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
87 static const char* Name[(int)ICK_Num_Conversion_Kinds] = {
88 "No conversion",
89 "Lvalue-to-rvalue",
90 "Array-to-pointer",
91 "Function-to-pointer",
92 "Qualification",
93 "Integral promotion",
94 "Floating point promotion",
Douglas Gregor5cdf8212009-02-12 00:15:05 +000095 "Complex promotion",
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000096 "Integral conversion",
97 "Floating conversion",
Douglas Gregor5cdf8212009-02-12 00:15:05 +000098 "Complex conversion",
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000099 "Floating-integral conversion",
Douglas Gregor5cdf8212009-02-12 00:15:05 +0000100 "Complex-real conversion",
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000101 "Pointer conversion",
102 "Pointer-to-member conversion",
Douglas Gregor15da57e2008-10-29 02:00:59 +0000103 "Boolean conversion",
Douglas Gregorf9201e02009-02-11 23:02:49 +0000104 "Compatible-types conversion",
Douglas Gregor15da57e2008-10-29 02:00:59 +0000105 "Derived-to-base conversion"
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000106 };
107 return Name[Kind];
108}
109
Douglas Gregor60d62c22008-10-31 16:23:19 +0000110/// StandardConversionSequence - Set the standard conversion
111/// sequence to the identity conversion.
112void StandardConversionSequence::setAsIdentityConversion() {
113 First = ICK_Identity;
114 Second = ICK_Identity;
115 Third = ICK_Identity;
116 Deprecated = false;
117 ReferenceBinding = false;
118 DirectBinding = false;
Sebastian Redl85002392009-03-29 22:46:24 +0000119 RRefBinding = false;
Douglas Gregor225c41e2008-11-03 19:09:14 +0000120 CopyConstructor = 0;
Douglas Gregor60d62c22008-10-31 16:23:19 +0000121}
122
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000123/// getRank - Retrieve the rank of this standard conversion sequence
124/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
125/// implicit conversions.
126ImplicitConversionRank StandardConversionSequence::getRank() const {
127 ImplicitConversionRank Rank = ICR_Exact_Match;
128 if (GetConversionRank(First) > Rank)
129 Rank = GetConversionRank(First);
130 if (GetConversionRank(Second) > Rank)
131 Rank = GetConversionRank(Second);
132 if (GetConversionRank(Third) > Rank)
133 Rank = GetConversionRank(Third);
134 return Rank;
135}
136
137/// isPointerConversionToBool - Determines whether this conversion is
138/// a conversion of a pointer or pointer-to-member to bool. This is
139/// used as part of the ranking of standard conversion sequences
140/// (C++ 13.3.3.2p4).
141bool StandardConversionSequence::isPointerConversionToBool() const
142{
143 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
144 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
145
146 // Note that FromType has not necessarily been transformed by the
147 // array-to-pointer or function-to-pointer implicit conversions, so
148 // check for their presence as well as checking whether FromType is
149 // a pointer.
150 if (ToType->isBooleanType() &&
Douglas Gregor2a7e58d2008-12-23 00:53:59 +0000151 (FromType->isPointerType() || FromType->isBlockPointerType() ||
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000152 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
153 return true;
154
155 return false;
156}
157
Douglas Gregorbc0805a2008-10-23 00:40:37 +0000158/// isPointerConversionToVoidPointer - Determines whether this
159/// conversion is a conversion of a pointer to a void pointer. This is
160/// used as part of the ranking of standard conversion sequences (C++
161/// 13.3.3.2p4).
162bool
163StandardConversionSequence::
164isPointerConversionToVoidPointer(ASTContext& Context) const
165{
166 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
167 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
168
169 // Note that FromType has not necessarily been transformed by the
170 // array-to-pointer implicit conversion, so check for its presence
171 // and redo the conversion to get a pointer.
172 if (First == ICK_Array_To_Pointer)
173 FromType = Context.getArrayDecayedType(FromType);
174
175 if (Second == ICK_Pointer_Conversion)
176 if (const PointerType* ToPtrType = ToType->getAsPointerType())
177 return ToPtrType->getPointeeType()->isVoidType();
178
179 return false;
180}
181
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000182/// DebugPrint - Print this standard conversion sequence to standard
183/// error. Useful for debugging overloading issues.
184void StandardConversionSequence::DebugPrint() const {
185 bool PrintedSomething = false;
186 if (First != ICK_Identity) {
187 fprintf(stderr, "%s", GetImplicitConversionName(First));
188 PrintedSomething = true;
189 }
190
191 if (Second != ICK_Identity) {
192 if (PrintedSomething) {
193 fprintf(stderr, " -> ");
194 }
195 fprintf(stderr, "%s", GetImplicitConversionName(Second));
Douglas Gregor225c41e2008-11-03 19:09:14 +0000196
197 if (CopyConstructor) {
198 fprintf(stderr, " (by copy constructor)");
199 } else if (DirectBinding) {
200 fprintf(stderr, " (direct reference binding)");
201 } else if (ReferenceBinding) {
202 fprintf(stderr, " (reference binding)");
203 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000204 PrintedSomething = true;
205 }
206
207 if (Third != ICK_Identity) {
208 if (PrintedSomething) {
209 fprintf(stderr, " -> ");
210 }
211 fprintf(stderr, "%s", GetImplicitConversionName(Third));
212 PrintedSomething = true;
213 }
214
215 if (!PrintedSomething) {
216 fprintf(stderr, "No conversions required");
217 }
218}
219
220/// DebugPrint - Print this user-defined conversion sequence to standard
221/// error. Useful for debugging overloading issues.
222void UserDefinedConversionSequence::DebugPrint() const {
223 if (Before.First || Before.Second || Before.Third) {
224 Before.DebugPrint();
225 fprintf(stderr, " -> ");
226 }
Chris Lattnerd9d22dd2008-11-24 05:29:24 +0000227 fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str());
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000228 if (After.First || After.Second || After.Third) {
229 fprintf(stderr, " -> ");
230 After.DebugPrint();
231 }
232}
233
234/// DebugPrint - Print this implicit conversion sequence to standard
235/// error. Useful for debugging overloading issues.
236void ImplicitConversionSequence::DebugPrint() const {
237 switch (ConversionKind) {
238 case StandardConversion:
239 fprintf(stderr, "Standard conversion: ");
240 Standard.DebugPrint();
241 break;
242 case UserDefinedConversion:
243 fprintf(stderr, "User-defined conversion: ");
244 UserDefined.DebugPrint();
245 break;
246 case EllipsisConversion:
247 fprintf(stderr, "Ellipsis conversion");
248 break;
249 case BadConversion:
250 fprintf(stderr, "Bad conversion");
251 break;
252 }
253
254 fprintf(stderr, "\n");
255}
256
257// IsOverload - Determine whether the given New declaration is an
258// overload of the Old declaration. This routine returns false if New
259// and Old cannot be overloaded, e.g., if they are functions with the
260// same signature (C++ 1.3.10) or if the Old declaration isn't a
261// function (or overload set). When it does return false and Old is an
262// OverloadedFunctionDecl, MatchedDecl will be set to point to the
263// FunctionDecl that New cannot be overloaded with.
264//
265// Example: Given the following input:
266//
267// void f(int, float); // #1
268// void f(int, int); // #2
269// int f(int, int); // #3
270//
271// When we process #1, there is no previous declaration of "f",
272// so IsOverload will not be used.
273//
274// When we process #2, Old is a FunctionDecl for #1. By comparing the
275// parameter types, we see that #1 and #2 are overloaded (since they
276// have different signatures), so this routine returns false;
277// MatchedDecl is unchanged.
278//
279// When we process #3, Old is an OverloadedFunctionDecl containing #1
280// and #2. We compare the signatures of #3 to #1 (they're overloaded,
281// so we do nothing) and then #3 to #2. Since the signatures of #3 and
282// #2 are identical (return types of functions are not part of the
283// signature), IsOverload returns false and MatchedDecl will be set to
284// point to the FunctionDecl for #2.
285bool
286Sema::IsOverload(FunctionDecl *New, Decl* OldD,
287 OverloadedFunctionDecl::function_iterator& MatchedDecl)
288{
289 if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) {
290 // Is this new function an overload of every function in the
291 // overload set?
292 OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
293 FuncEnd = Ovl->function_end();
294 for (; Func != FuncEnd; ++Func) {
295 if (!IsOverload(New, *Func, MatchedDecl)) {
296 MatchedDecl = Func;
297 return false;
298 }
299 }
300
301 // This function overloads every function in the overload set.
302 return true;
303 } else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) {
304 // Is the function New an overload of the function Old?
305 QualType OldQType = Context.getCanonicalType(Old->getType());
306 QualType NewQType = Context.getCanonicalType(New->getType());
307
308 // Compare the signatures (C++ 1.3.10) of the two functions to
309 // determine whether they are overloads. If we find any mismatch
310 // in the signature, they are overloads.
311
312 // If either of these functions is a K&R-style function (no
313 // prototype), then we consider them to have matching signatures.
Douglas Gregor72564e72009-02-26 23:50:07 +0000314 if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
315 isa<FunctionNoProtoType>(NewQType.getTypePtr()))
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000316 return false;
317
Douglas Gregor72564e72009-02-26 23:50:07 +0000318 FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType.getTypePtr());
319 FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType.getTypePtr());
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000320
321 // The signature of a function includes the types of its
322 // parameters (C++ 1.3.10), which includes the presence or absence
323 // of the ellipsis; see C++ DR 357).
324 if (OldQType != NewQType &&
325 (OldType->getNumArgs() != NewType->getNumArgs() ||
326 OldType->isVariadic() != NewType->isVariadic() ||
327 !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
328 NewType->arg_type_begin())))
329 return true;
330
331 // If the function is a class member, its signature includes the
332 // cv-qualifiers (if any) on the function itself.
333 //
334 // As part of this, also check whether one of the member functions
335 // is static, in which case they are not overloads (C++
336 // 13.1p2). While not part of the definition of the signature,
337 // this check is important to determine whether these functions
338 // can be overloaded.
339 CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
340 CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
341 if (OldMethod && NewMethod &&
342 !OldMethod->isStatic() && !NewMethod->isStatic() &&
Douglas Gregor1ca50c32008-11-21 15:36:28 +0000343 OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000344 return true;
345
346 // The signatures match; this is not an overload.
347 return false;
348 } else {
349 // (C++ 13p1):
350 // Only function declarations can be overloaded; object and type
351 // declarations cannot be overloaded.
352 return false;
353 }
354}
355
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000356/// TryImplicitConversion - Attempt to perform an implicit conversion
357/// from the given expression (Expr) to the given type (ToType). This
358/// function returns an implicit conversion sequence that can be used
359/// to perform the initialization. Given
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000360///
361/// void f(float f);
362/// void g(int i) { f(i); }
363///
364/// this routine would produce an implicit conversion sequence to
365/// describe the initialization of f from i, which will be a standard
366/// conversion sequence containing an lvalue-to-rvalue conversion (C++
367/// 4.1) followed by a floating-integral conversion (C++ 4.9).
368//
369/// Note that this routine only determines how the conversion can be
370/// performed; it does not actually perform the conversion. As such,
371/// it will not produce any diagnostics if no conversion is available,
372/// but will instead return an implicit conversion sequence of kind
373/// "BadConversion".
Douglas Gregor225c41e2008-11-03 19:09:14 +0000374///
375/// If @p SuppressUserConversions, then user-defined conversions are
376/// not permitted.
Douglas Gregor09f41cf2009-01-14 15:45:31 +0000377/// If @p AllowExplicit, then explicit user-defined conversions are
378/// permitted.
Sebastian Redle2b68332009-04-12 17:16:29 +0000379/// If @p ForceRValue, then overloading is performed as if From was an rvalue,
380/// no matter its actual lvalueness.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000381ImplicitConversionSequence
Douglas Gregor225c41e2008-11-03 19:09:14 +0000382Sema::TryImplicitConversion(Expr* From, QualType ToType,
Douglas Gregor09f41cf2009-01-14 15:45:31 +0000383 bool SuppressUserConversions,
Sebastian Redle2b68332009-04-12 17:16:29 +0000384 bool AllowExplicit, bool ForceRValue)
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000385{
386 ImplicitConversionSequence ICS;
Douglas Gregor60d62c22008-10-31 16:23:19 +0000387 if (IsStandardConversion(From, ToType, ICS.Standard))
388 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
Douglas Gregorf9201e02009-02-11 23:02:49 +0000389 else if (getLangOptions().CPlusPlus &&
390 IsUserDefinedConversion(From, ToType, ICS.UserDefined,
Sebastian Redle2b68332009-04-12 17:16:29 +0000391 !SuppressUserConversions, AllowExplicit,
392 ForceRValue)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000393 ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
Douglas Gregor396b7cd2008-11-03 17:51:48 +0000394 // C++ [over.ics.user]p4:
395 // A conversion of an expression of class type to the same class
396 // type is given Exact Match rank, and a conversion of an
397 // expression of class type to a base class of that type is
398 // given Conversion rank, in spite of the fact that a copy
399 // constructor (i.e., a user-defined conversion function) is
400 // called for those cases.
401 if (CXXConstructorDecl *Constructor
402 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
Douglas Gregor2b1e0032009-02-02 22:11:10 +0000403 QualType FromCanon
404 = Context.getCanonicalType(From->getType().getUnqualifiedType());
405 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
406 if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
Douglas Gregor225c41e2008-11-03 19:09:14 +0000407 // Turn this into a "standard" conversion sequence, so that it
408 // gets ranked with standard conversion sequences.
Douglas Gregor396b7cd2008-11-03 17:51:48 +0000409 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
410 ICS.Standard.setAsIdentityConversion();
411 ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr();
412 ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
Douglas Gregor225c41e2008-11-03 19:09:14 +0000413 ICS.Standard.CopyConstructor = Constructor;
Douglas Gregor2b1e0032009-02-02 22:11:10 +0000414 if (ToCanon != FromCanon)
Douglas Gregor396b7cd2008-11-03 17:51:48 +0000415 ICS.Standard.Second = ICK_Derived_To_Base;
416 }
Douglas Gregor60d62c22008-10-31 16:23:19 +0000417 }
Douglas Gregor734d9862009-01-30 23:27:23 +0000418
419 // C++ [over.best.ics]p4:
420 // However, when considering the argument of a user-defined
421 // conversion function that is a candidate by 13.3.1.3 when
422 // invoked for the copying of the temporary in the second step
423 // of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
424 // 13.3.1.6 in all cases, only standard conversion sequences and
425 // ellipsis conversion sequences are allowed.
426 if (SuppressUserConversions &&
427 ICS.ConversionKind == ImplicitConversionSequence::UserDefinedConversion)
428 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
Douglas Gregor396b7cd2008-11-03 17:51:48 +0000429 } else
Douglas Gregor60d62c22008-10-31 16:23:19 +0000430 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
Douglas Gregor60d62c22008-10-31 16:23:19 +0000431
432 return ICS;
433}
434
435/// IsStandardConversion - Determines whether there is a standard
436/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
437/// expression From to the type ToType. Standard conversion sequences
438/// only consider non-class types; for conversions that involve class
439/// types, use TryImplicitConversion. If a conversion exists, SCS will
440/// contain the standard conversion sequence required to perform this
441/// conversion and this routine will return true. Otherwise, this
442/// routine will return false and the value of SCS is unspecified.
443bool
444Sema::IsStandardConversion(Expr* From, QualType ToType,
445 StandardConversionSequence &SCS)
446{
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000447 QualType FromType = From->getType();
448
Douglas Gregor60d62c22008-10-31 16:23:19 +0000449 // Standard conversions (C++ [conv])
Douglas Gregoreb8f3062008-11-12 17:17:38 +0000450 SCS.setAsIdentityConversion();
Douglas Gregor60d62c22008-10-31 16:23:19 +0000451 SCS.Deprecated = false;
Douglas Gregor45920e82008-12-19 17:40:08 +0000452 SCS.IncompatibleObjC = false;
Douglas Gregor60d62c22008-10-31 16:23:19 +0000453 SCS.FromTypePtr = FromType.getAsOpaquePtr();
Douglas Gregor225c41e2008-11-03 19:09:14 +0000454 SCS.CopyConstructor = 0;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000455
Douglas Gregorf9201e02009-02-11 23:02:49 +0000456 // There are no standard conversions for class types in C++, so
457 // abort early. When overloading in C, however, we do permit
458 if (FromType->isRecordType() || ToType->isRecordType()) {
459 if (getLangOptions().CPlusPlus)
460 return false;
461
462 // When we're overloading in C, we allow, as standard conversions,
463 }
464
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000465 // The first conversion can be an lvalue-to-rvalue conversion,
466 // array-to-pointer conversion, or function-to-pointer conversion
467 // (C++ 4p1).
468
469 // Lvalue-to-rvalue conversion (C++ 4.1):
470 // An lvalue (3.10) of a non-function, non-array type T can be
471 // converted to an rvalue.
472 Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
473 if (argIsLvalue == Expr::LV_Valid &&
Douglas Gregor904eed32008-11-10 20:40:00 +0000474 !FromType->isFunctionType() && !FromType->isArrayType() &&
Douglas Gregor063daf62009-03-13 18:40:31 +0000475 Context.getCanonicalType(FromType) != Context.OverloadTy) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000476 SCS.First = ICK_Lvalue_To_Rvalue;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000477
478 // If T is a non-class type, the type of the rvalue is the
479 // cv-unqualified version of T. Otherwise, the type of the rvalue
Douglas Gregorf9201e02009-02-11 23:02:49 +0000480 // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
481 // just strip the qualifiers because they don't matter.
482
483 // FIXME: Doesn't see through to qualifiers behind a typedef!
Douglas Gregor60d62c22008-10-31 16:23:19 +0000484 FromType = FromType.getUnqualifiedType();
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000485 }
486 // Array-to-pointer conversion (C++ 4.2)
487 else if (FromType->isArrayType()) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000488 SCS.First = ICK_Array_To_Pointer;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000489
490 // An lvalue or rvalue of type "array of N T" or "array of unknown
491 // bound of T" can be converted to an rvalue of type "pointer to
492 // T" (C++ 4.2p1).
493 FromType = Context.getArrayDecayedType(FromType);
494
495 if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
496 // This conversion is deprecated. (C++ D.4).
Douglas Gregor60d62c22008-10-31 16:23:19 +0000497 SCS.Deprecated = true;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000498
499 // For the purpose of ranking in overload resolution
500 // (13.3.3.1.1), this conversion is considered an
501 // array-to-pointer conversion followed by a qualification
502 // conversion (4.4). (C++ 4.2p2)
Douglas Gregor60d62c22008-10-31 16:23:19 +0000503 SCS.Second = ICK_Identity;
504 SCS.Third = ICK_Qualification;
505 SCS.ToTypePtr = ToType.getAsOpaquePtr();
506 return true;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000507 }
508 }
509 // Function-to-pointer conversion (C++ 4.3).
510 else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000511 SCS.First = ICK_Function_To_Pointer;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000512
513 // An lvalue of function type T can be converted to an rvalue of
514 // type "pointer to T." The result is a pointer to the
515 // function. (C++ 4.3p1).
516 FromType = Context.getPointerType(FromType);
Sebastian Redl33b399a2009-02-04 21:23:32 +0000517 }
Douglas Gregor904eed32008-11-10 20:40:00 +0000518 // Address of overloaded function (C++ [over.over]).
519 else if (FunctionDecl *Fn
520 = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
521 SCS.First = ICK_Function_To_Pointer;
522
523 // We were able to resolve the address of the overloaded function,
524 // so we can convert to the type of that function.
525 FromType = Fn->getType();
Sebastian Redl7c80bd62009-03-16 23:22:08 +0000526 if (ToType->isLValueReferenceType())
527 FromType = Context.getLValueReferenceType(FromType);
528 else if (ToType->isRValueReferenceType())
529 FromType = Context.getRValueReferenceType(FromType);
Sebastian Redl33b399a2009-02-04 21:23:32 +0000530 else if (ToType->isMemberPointerType()) {
531 // Resolve address only succeeds if both sides are member pointers,
532 // but it doesn't have to be the same class. See DR 247.
533 // Note that this means that the type of &Derived::fn can be
534 // Ret (Base::*)(Args) if the fn overload actually found is from the
535 // base class, even if it was brought into the derived class via a
536 // using declaration. The standard isn't clear on this issue at all.
537 CXXMethodDecl *M = cast<CXXMethodDecl>(Fn);
538 FromType = Context.getMemberPointerType(FromType,
539 Context.getTypeDeclType(M->getParent()).getTypePtr());
540 } else
Douglas Gregor904eed32008-11-10 20:40:00 +0000541 FromType = Context.getPointerType(FromType);
542 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000543 // We don't require any conversions for the first step.
544 else {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000545 SCS.First = ICK_Identity;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000546 }
547
548 // The second conversion can be an integral promotion, floating
549 // point promotion, integral conversion, floating point conversion,
550 // floating-integral conversion, pointer conversion,
551 // pointer-to-member conversion, or boolean conversion (C++ 4p1).
Douglas Gregorf9201e02009-02-11 23:02:49 +0000552 // For overloading in C, this can also be a "compatible-type"
553 // conversion.
Douglas Gregor45920e82008-12-19 17:40:08 +0000554 bool IncompatibleObjC = false;
Douglas Gregorf9201e02009-02-11 23:02:49 +0000555 if (Context.hasSameUnqualifiedType(FromType, ToType)) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000556 // The unqualified versions of the types are the same: there's no
557 // conversion to do.
Douglas Gregor60d62c22008-10-31 16:23:19 +0000558 SCS.Second = ICK_Identity;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000559 }
560 // Integral promotion (C++ 4.5).
561 else if (IsIntegralPromotion(From, FromType, ToType)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000562 SCS.Second = ICK_Integral_Promotion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000563 FromType = ToType.getUnqualifiedType();
564 }
565 // Floating point promotion (C++ 4.6).
566 else if (IsFloatingPointPromotion(FromType, ToType)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000567 SCS.Second = ICK_Floating_Promotion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000568 FromType = ToType.getUnqualifiedType();
569 }
Douglas Gregor5cdf8212009-02-12 00:15:05 +0000570 // Complex promotion (Clang extension)
571 else if (IsComplexPromotion(FromType, ToType)) {
572 SCS.Second = ICK_Complex_Promotion;
573 FromType = ToType.getUnqualifiedType();
574 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000575 // Integral conversions (C++ 4.7).
Sebastian Redl07779722008-10-31 14:43:28 +0000576 // FIXME: isIntegralType shouldn't be true for enums in C++.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000577 else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
Sebastian Redl07779722008-10-31 14:43:28 +0000578 (ToType->isIntegralType() && !ToType->isEnumeralType())) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000579 SCS.Second = ICK_Integral_Conversion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000580 FromType = ToType.getUnqualifiedType();
581 }
582 // Floating point conversions (C++ 4.8).
583 else if (FromType->isFloatingType() && ToType->isFloatingType()) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000584 SCS.Second = ICK_Floating_Conversion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000585 FromType = ToType.getUnqualifiedType();
586 }
Douglas Gregor5cdf8212009-02-12 00:15:05 +0000587 // Complex conversions (C99 6.3.1.6)
588 else if (FromType->isComplexType() && ToType->isComplexType()) {
589 SCS.Second = ICK_Complex_Conversion;
590 FromType = ToType.getUnqualifiedType();
591 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000592 // Floating-integral conversions (C++ 4.9).
Sebastian Redl07779722008-10-31 14:43:28 +0000593 // FIXME: isIntegralType shouldn't be true for enums in C++.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000594 else if ((FromType->isFloatingType() &&
Sebastian Redl07779722008-10-31 14:43:28 +0000595 ToType->isIntegralType() && !ToType->isBooleanType() &&
596 !ToType->isEnumeralType()) ||
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000597 ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
598 ToType->isFloatingType())) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000599 SCS.Second = ICK_Floating_Integral;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000600 FromType = ToType.getUnqualifiedType();
601 }
Douglas Gregor5cdf8212009-02-12 00:15:05 +0000602 // Complex-real conversions (C99 6.3.1.7)
603 else if ((FromType->isComplexType() && ToType->isArithmeticType()) ||
604 (ToType->isComplexType() && FromType->isArithmeticType())) {
605 SCS.Second = ICK_Complex_Real;
606 FromType = ToType.getUnqualifiedType();
607 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000608 // Pointer conversions (C++ 4.10).
Douglas Gregor45920e82008-12-19 17:40:08 +0000609 else if (IsPointerConversion(From, FromType, ToType, FromType,
610 IncompatibleObjC)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000611 SCS.Second = ICK_Pointer_Conversion;
Douglas Gregor45920e82008-12-19 17:40:08 +0000612 SCS.IncompatibleObjC = IncompatibleObjC;
Sebastian Redl07779722008-10-31 14:43:28 +0000613 }
Sebastian Redl4433aaf2009-01-25 19:43:20 +0000614 // Pointer to member conversions (4.11).
615 else if (IsMemberPointerConversion(From, FromType, ToType, FromType)) {
616 SCS.Second = ICK_Pointer_Member;
617 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000618 // Boolean conversions (C++ 4.12).
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000619 else if (ToType->isBooleanType() &&
620 (FromType->isArithmeticType() ||
621 FromType->isEnumeralType() ||
Douglas Gregor2a7e58d2008-12-23 00:53:59 +0000622 FromType->isPointerType() ||
Sebastian Redl4433aaf2009-01-25 19:43:20 +0000623 FromType->isBlockPointerType() ||
624 FromType->isMemberPointerType())) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000625 SCS.Second = ICK_Boolean_Conversion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000626 FromType = Context.BoolTy;
Douglas Gregorf9201e02009-02-11 23:02:49 +0000627 }
628 // Compatible conversions (Clang extension for C function overloading)
629 else if (!getLangOptions().CPlusPlus &&
630 Context.typesAreCompatible(ToType, FromType)) {
631 SCS.Second = ICK_Compatible_Conversion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000632 } else {
633 // No second conversion required.
Douglas Gregor60d62c22008-10-31 16:23:19 +0000634 SCS.Second = ICK_Identity;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000635 }
636
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000637 QualType CanonFrom;
638 QualType CanonTo;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000639 // The third conversion can be a qualification conversion (C++ 4p1).
Douglas Gregor98cd5992008-10-21 23:43:52 +0000640 if (IsQualificationConversion(FromType, ToType)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000641 SCS.Third = ICK_Qualification;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000642 FromType = ToType;
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000643 CanonFrom = Context.getCanonicalType(FromType);
644 CanonTo = Context.getCanonicalType(ToType);
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000645 } else {
646 // No conversion required
Douglas Gregor60d62c22008-10-31 16:23:19 +0000647 SCS.Third = ICK_Identity;
648
649 // C++ [over.best.ics]p6:
650 // [...] Any difference in top-level cv-qualification is
651 // subsumed by the initialization itself and does not constitute
652 // a conversion. [...]
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000653 CanonFrom = Context.getCanonicalType(FromType);
654 CanonTo = Context.getCanonicalType(ToType);
Douglas Gregor60d62c22008-10-31 16:23:19 +0000655 if (CanonFrom.getUnqualifiedType() == CanonTo.getUnqualifiedType() &&
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000656 CanonFrom.getCVRQualifiers() != CanonTo.getCVRQualifiers()) {
657 FromType = ToType;
658 CanonFrom = CanonTo;
659 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000660 }
661
662 // If we have not converted the argument type to the parameter type,
663 // this is a bad conversion sequence.
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000664 if (CanonFrom != CanonTo)
Douglas Gregor60d62c22008-10-31 16:23:19 +0000665 return false;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000666
Douglas Gregor60d62c22008-10-31 16:23:19 +0000667 SCS.ToTypePtr = FromType.getAsOpaquePtr();
668 return true;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000669}
670
671/// IsIntegralPromotion - Determines whether the conversion from the
672/// expression From (whose potentially-adjusted type is FromType) to
673/// ToType is an integral promotion (C++ 4.5). If so, returns true and
674/// sets PromotedType to the promoted type.
675bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType)
676{
677 const BuiltinType *To = ToType->getAsBuiltinType();
Sebastian Redlf7be9442008-11-04 15:59:10 +0000678 // All integers are built-in.
Sebastian Redl07779722008-10-31 14:43:28 +0000679 if (!To) {
680 return false;
681 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000682
683 // An rvalue of type char, signed char, unsigned char, short int, or
684 // unsigned short int can be converted to an rvalue of type int if
685 // int can represent all the values of the source type; otherwise,
686 // the source rvalue can be converted to an rvalue of type unsigned
687 // int (C++ 4.5p1).
Sebastian Redl07779722008-10-31 14:43:28 +0000688 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000689 if (// We can promote any signed, promotable integer type to an int
690 (FromType->isSignedIntegerType() ||
691 // We can promote any unsigned integer type whose size is
692 // less than int to an int.
693 (!FromType->isSignedIntegerType() &&
Sebastian Redl07779722008-10-31 14:43:28 +0000694 Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000695 return To->getKind() == BuiltinType::Int;
Sebastian Redl07779722008-10-31 14:43:28 +0000696 }
697
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000698 return To->getKind() == BuiltinType::UInt;
699 }
700
701 // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
702 // can be converted to an rvalue of the first of the following types
703 // that can represent all the values of its underlying type: int,
704 // unsigned int, long, or unsigned long (C++ 4.5p2).
705 if ((FromType->isEnumeralType() || FromType->isWideCharType())
706 && ToType->isIntegerType()) {
707 // Determine whether the type we're converting from is signed or
708 // unsigned.
709 bool FromIsSigned;
710 uint64_t FromSize = Context.getTypeSize(FromType);
711 if (const EnumType *FromEnumType = FromType->getAsEnumType()) {
712 QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType();
713 FromIsSigned = UnderlyingType->isSignedIntegerType();
714 } else {
715 // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
716 FromIsSigned = true;
717 }
718
719 // The types we'll try to promote to, in the appropriate
720 // order. Try each of these types.
Douglas Gregorc9467cf2008-12-12 02:00:36 +0000721 QualType PromoteTypes[6] = {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000722 Context.IntTy, Context.UnsignedIntTy,
Douglas Gregorc9467cf2008-12-12 02:00:36 +0000723 Context.LongTy, Context.UnsignedLongTy ,
724 Context.LongLongTy, Context.UnsignedLongLongTy
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000725 };
Douglas Gregorc9467cf2008-12-12 02:00:36 +0000726 for (int Idx = 0; Idx < 6; ++Idx) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000727 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
728 if (FromSize < ToSize ||
729 (FromSize == ToSize &&
730 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
731 // We found the type that we can promote to. If this is the
732 // type we wanted, we have a promotion. Otherwise, no
733 // promotion.
Sebastian Redl07779722008-10-31 14:43:28 +0000734 return Context.getCanonicalType(ToType).getUnqualifiedType()
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000735 == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType();
736 }
737 }
738 }
739
740 // An rvalue for an integral bit-field (9.6) can be converted to an
741 // rvalue of type int if int can represent all the values of the
742 // bit-field; otherwise, it can be converted to unsigned int if
743 // unsigned int can represent all the values of the bit-field. If
744 // the bit-field is larger yet, no integral promotion applies to
745 // it. If the bit-field has an enumerated type, it is treated as any
746 // other value of that type for promotion purposes (C++ 4.5p3).
Douglas Gregorb7b5d132009-02-12 00:26:06 +0000747 // FIXME: We should delay checking of bit-fields until we actually
748 // perform the conversion.
749 if (MemberExpr *MemRef = dyn_cast_or_null<MemberExpr>(From)) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000750 using llvm::APSInt;
Douglas Gregor86f19402008-12-20 23:49:58 +0000751 if (FieldDecl *MemberDecl = dyn_cast<FieldDecl>(MemRef->getMemberDecl())) {
752 APSInt BitWidth;
753 if (MemberDecl->isBitField() &&
754 FromType->isIntegralType() && !FromType->isEnumeralType() &&
755 From->isIntegerConstantExpr(BitWidth, Context)) {
756 APSInt ToSize(Context.getTypeSize(ToType));
757
758 // Are we promoting to an int from a bitfield that fits in an int?
759 if (BitWidth < ToSize ||
760 (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
761 return To->getKind() == BuiltinType::Int;
762 }
763
764 // Are we promoting to an unsigned int from an unsigned bitfield
765 // that fits into an unsigned int?
766 if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
767 return To->getKind() == BuiltinType::UInt;
768 }
769
770 return false;
Sebastian Redl07779722008-10-31 14:43:28 +0000771 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000772 }
773 }
774
775 // An rvalue of type bool can be converted to an rvalue of type int,
776 // with false becoming zero and true becoming one (C++ 4.5p4).
Sebastian Redl07779722008-10-31 14:43:28 +0000777 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000778 return true;
Sebastian Redl07779722008-10-31 14:43:28 +0000779 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000780
781 return false;
782}
783
784/// IsFloatingPointPromotion - Determines whether the conversion from
785/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
786/// returns true and sets PromotedType to the promoted type.
787bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType)
788{
789 /// An rvalue of type float can be converted to an rvalue of type
790 /// double. (C++ 4.6p1).
791 if (const BuiltinType *FromBuiltin = FromType->getAsBuiltinType())
Douglas Gregor5cdf8212009-02-12 00:15:05 +0000792 if (const BuiltinType *ToBuiltin = ToType->getAsBuiltinType()) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000793 if (FromBuiltin->getKind() == BuiltinType::Float &&
794 ToBuiltin->getKind() == BuiltinType::Double)
795 return true;
796
Douglas Gregor5cdf8212009-02-12 00:15:05 +0000797 // C99 6.3.1.5p1:
798 // When a float is promoted to double or long double, or a
799 // double is promoted to long double [...].
800 if (!getLangOptions().CPlusPlus &&
801 (FromBuiltin->getKind() == BuiltinType::Float ||
802 FromBuiltin->getKind() == BuiltinType::Double) &&
803 (ToBuiltin->getKind() == BuiltinType::LongDouble))
804 return true;
805 }
806
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000807 return false;
808}
809
Douglas Gregor5cdf8212009-02-12 00:15:05 +0000810/// \brief Determine if a conversion is a complex promotion.
811///
812/// A complex promotion is defined as a complex -> complex conversion
813/// where the conversion between the underlying real types is a
Douglas Gregorb7b5d132009-02-12 00:26:06 +0000814/// floating-point or integral promotion.
Douglas Gregor5cdf8212009-02-12 00:15:05 +0000815bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
816 const ComplexType *FromComplex = FromType->getAsComplexType();
817 if (!FromComplex)
818 return false;
819
820 const ComplexType *ToComplex = ToType->getAsComplexType();
821 if (!ToComplex)
822 return false;
823
824 return IsFloatingPointPromotion(FromComplex->getElementType(),
Douglas Gregorb7b5d132009-02-12 00:26:06 +0000825 ToComplex->getElementType()) ||
826 IsIntegralPromotion(0, FromComplex->getElementType(),
827 ToComplex->getElementType());
Douglas Gregor5cdf8212009-02-12 00:15:05 +0000828}
829
Douglas Gregorcb7de522008-11-26 23:31:11 +0000830/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
831/// the pointer type FromPtr to a pointer to type ToPointee, with the
832/// same type qualifiers as FromPtr has on its pointee type. ToType,
833/// if non-empty, will be a pointer to ToType that may or may not have
834/// the right set of qualifiers on its pointee.
835static QualType
836BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
837 QualType ToPointee, QualType ToType,
838 ASTContext &Context) {
839 QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
840 QualType CanonToPointee = Context.getCanonicalType(ToPointee);
841 unsigned Quals = CanonFromPointee.getCVRQualifiers();
842
843 // Exact qualifier match -> return the pointer type we're converting to.
844 if (CanonToPointee.getCVRQualifiers() == Quals) {
845 // ToType is exactly what we need. Return it.
846 if (ToType.getTypePtr())
847 return ToType;
848
849 // Build a pointer to ToPointee. It has the right qualifiers
850 // already.
851 return Context.getPointerType(ToPointee);
852 }
853
854 // Just build a canonical type that has the right qualifiers.
855 return Context.getPointerType(CanonToPointee.getQualifiedType(Quals));
856}
857
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000858/// IsPointerConversion - Determines whether the conversion of the
859/// expression From, which has the (possibly adjusted) type FromType,
860/// can be converted to the type ToType via a pointer conversion (C++
861/// 4.10). If so, returns true and places the converted type (that
862/// might differ from ToType in its cv-qualifiers at some level) into
863/// ConvertedType.
Douglas Gregor071f2ae2008-11-27 00:15:41 +0000864///
Douglas Gregor7ca09762008-11-27 01:19:21 +0000865/// This routine also supports conversions to and from block pointers
866/// and conversions with Objective-C's 'id', 'id<protocols...>', and
867/// pointers to interfaces. FIXME: Once we've determined the
868/// appropriate overloading rules for Objective-C, we may want to
869/// split the Objective-C checks into a different routine; however,
870/// GCC seems to consider all of these conversions to be pointer
Douglas Gregor45920e82008-12-19 17:40:08 +0000871/// conversions, so for now they live here. IncompatibleObjC will be
872/// set if the conversion is an allowed Objective-C conversion that
873/// should result in a warning.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000874bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
Douglas Gregor45920e82008-12-19 17:40:08 +0000875 QualType& ConvertedType,
876 bool &IncompatibleObjC)
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000877{
Douglas Gregor45920e82008-12-19 17:40:08 +0000878 IncompatibleObjC = false;
Douglas Gregorc7887512008-12-19 19:13:09 +0000879 if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
880 return true;
Douglas Gregor45920e82008-12-19 17:40:08 +0000881
Douglas Gregor27b09ac2008-12-22 20:51:52 +0000882 // Conversion from a null pointer constant to any Objective-C pointer type.
883 if (Context.isObjCObjectPointerType(ToType) &&
884 From->isNullPointerConstant(Context)) {
885 ConvertedType = ToType;
886 return true;
887 }
888
Douglas Gregor071f2ae2008-11-27 00:15:41 +0000889 // Blocks: Block pointers can be converted to void*.
890 if (FromType->isBlockPointerType() && ToType->isPointerType() &&
891 ToType->getAsPointerType()->getPointeeType()->isVoidType()) {
892 ConvertedType = ToType;
893 return true;
894 }
895 // Blocks: A null pointer constant can be converted to a block
896 // pointer type.
897 if (ToType->isBlockPointerType() && From->isNullPointerConstant(Context)) {
898 ConvertedType = ToType;
899 return true;
900 }
901
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000902 const PointerType* ToTypePtr = ToType->getAsPointerType();
903 if (!ToTypePtr)
904 return false;
905
906 // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
907 if (From->isNullPointerConstant(Context)) {
908 ConvertedType = ToType;
909 return true;
910 }
Sebastian Redl07779722008-10-31 14:43:28 +0000911
Douglas Gregorcb7de522008-11-26 23:31:11 +0000912 // Beyond this point, both types need to be pointers.
913 const PointerType *FromTypePtr = FromType->getAsPointerType();
914 if (!FromTypePtr)
915 return false;
916
917 QualType FromPointeeType = FromTypePtr->getPointeeType();
918 QualType ToPointeeType = ToTypePtr->getPointeeType();
919
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000920 // An rvalue of type "pointer to cv T," where T is an object type,
921 // can be converted to an rvalue of type "pointer to cv void" (C++
922 // 4.10p2).
Douglas Gregorbad0e652009-03-24 20:32:41 +0000923 if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) {
Douglas Gregorbf408182008-11-27 00:52:49 +0000924 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
925 ToPointeeType,
Douglas Gregorcb7de522008-11-26 23:31:11 +0000926 ToType, Context);
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000927 return true;
928 }
929
Douglas Gregorf9201e02009-02-11 23:02:49 +0000930 // When we're overloading in C, we allow a special kind of pointer
931 // conversion for compatible-but-not-identical pointee types.
932 if (!getLangOptions().CPlusPlus &&
933 Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
934 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
935 ToPointeeType,
936 ToType, Context);
937 return true;
938 }
939
Douglas Gregorbc0805a2008-10-23 00:40:37 +0000940 // C++ [conv.ptr]p3:
941 //
942 // An rvalue of type "pointer to cv D," where D is a class type,
943 // can be converted to an rvalue of type "pointer to cv B," where
944 // B is a base class (clause 10) of D. If B is an inaccessible
945 // (clause 11) or ambiguous (10.2) base class of D, a program that
946 // necessitates this conversion is ill-formed. The result of the
947 // conversion is a pointer to the base class sub-object of the
948 // derived class object. The null pointer value is converted to
949 // the null pointer value of the destination type.
950 //
Douglas Gregor94b1dd22008-10-24 04:54:22 +0000951 // Note that we do not check for ambiguity or inaccessibility
952 // here. That is handled by CheckPointerConversion.
Douglas Gregorf9201e02009-02-11 23:02:49 +0000953 if (getLangOptions().CPlusPlus &&
954 FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
Douglas Gregorcb7de522008-11-26 23:31:11 +0000955 IsDerivedFrom(FromPointeeType, ToPointeeType)) {
Douglas Gregorbf408182008-11-27 00:52:49 +0000956 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
957 ToPointeeType,
Douglas Gregorcb7de522008-11-26 23:31:11 +0000958 ToType, Context);
959 return true;
960 }
Douglas Gregorbc0805a2008-10-23 00:40:37 +0000961
Douglas Gregorc7887512008-12-19 19:13:09 +0000962 return false;
963}
964
965/// isObjCPointerConversion - Determines whether this is an
966/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
967/// with the same arguments and return values.
968bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
969 QualType& ConvertedType,
970 bool &IncompatibleObjC) {
971 if (!getLangOptions().ObjC1)
972 return false;
973
974 // Conversions with Objective-C's id<...>.
975 if ((FromType->isObjCQualifiedIdType() || ToType->isObjCQualifiedIdType()) &&
976 ObjCQualifiedIdTypesAreCompatible(ToType, FromType, /*compare=*/false)) {
977 ConvertedType = ToType;
978 return true;
979 }
980
Douglas Gregor2a7e58d2008-12-23 00:53:59 +0000981 // Beyond this point, both types need to be pointers or block pointers.
982 QualType ToPointeeType;
Douglas Gregorc7887512008-12-19 19:13:09 +0000983 const PointerType* ToTypePtr = ToType->getAsPointerType();
Douglas Gregor2a7e58d2008-12-23 00:53:59 +0000984 if (ToTypePtr)
985 ToPointeeType = ToTypePtr->getPointeeType();
986 else if (const BlockPointerType *ToBlockPtr = ToType->getAsBlockPointerType())
987 ToPointeeType = ToBlockPtr->getPointeeType();
988 else
Douglas Gregorc7887512008-12-19 19:13:09 +0000989 return false;
990
Douglas Gregor2a7e58d2008-12-23 00:53:59 +0000991 QualType FromPointeeType;
Douglas Gregorc7887512008-12-19 19:13:09 +0000992 const PointerType *FromTypePtr = FromType->getAsPointerType();
Douglas Gregor2a7e58d2008-12-23 00:53:59 +0000993 if (FromTypePtr)
994 FromPointeeType = FromTypePtr->getPointeeType();
995 else if (const BlockPointerType *FromBlockPtr
996 = FromType->getAsBlockPointerType())
997 FromPointeeType = FromBlockPtr->getPointeeType();
998 else
Douglas Gregorc7887512008-12-19 19:13:09 +0000999 return false;
1000
Douglas Gregorcb7de522008-11-26 23:31:11 +00001001 // Objective C++: We're able to convert from a pointer to an
1002 // interface to a pointer to a different interface.
1003 const ObjCInterfaceType* FromIface = FromPointeeType->getAsObjCInterfaceType();
1004 const ObjCInterfaceType* ToIface = ToPointeeType->getAsObjCInterfaceType();
1005 if (FromIface && ToIface &&
1006 Context.canAssignObjCInterfaces(ToIface, FromIface)) {
Douglas Gregor2a7e58d2008-12-23 00:53:59 +00001007 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
Douglas Gregorbf408182008-11-27 00:52:49 +00001008 ToPointeeType,
Douglas Gregorcb7de522008-11-26 23:31:11 +00001009 ToType, Context);
1010 return true;
1011 }
1012
Douglas Gregor45920e82008-12-19 17:40:08 +00001013 if (FromIface && ToIface &&
1014 Context.canAssignObjCInterfaces(FromIface, ToIface)) {
1015 // Okay: this is some kind of implicit downcast of Objective-C
1016 // interfaces, which is permitted. However, we're going to
1017 // complain about it.
1018 IncompatibleObjC = true;
Douglas Gregor2a7e58d2008-12-23 00:53:59 +00001019 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
Douglas Gregor45920e82008-12-19 17:40:08 +00001020 ToPointeeType,
1021 ToType, Context);
1022 return true;
1023 }
1024
Douglas Gregorcb7de522008-11-26 23:31:11 +00001025 // Objective C++: We're able to convert between "id" and a pointer
1026 // to any interface (in both directions).
Steve Naroff389bf462009-02-12 17:52:19 +00001027 if ((FromIface && Context.isObjCIdStructType(ToPointeeType))
1028 || (ToIface && Context.isObjCIdStructType(FromPointeeType))) {
Douglas Gregorbf408182008-11-27 00:52:49 +00001029 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1030 ToPointeeType,
Douglas Gregorcb7de522008-11-26 23:31:11 +00001031 ToType, Context);
1032 return true;
1033 }
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001034
Douglas Gregordda78892008-12-18 23:43:31 +00001035 // Objective C++: Allow conversions between the Objective-C "id" and
1036 // "Class", in either direction.
Steve Naroff389bf462009-02-12 17:52:19 +00001037 if ((Context.isObjCIdStructType(FromPointeeType) &&
1038 Context.isObjCClassStructType(ToPointeeType)) ||
1039 (Context.isObjCClassStructType(FromPointeeType) &&
1040 Context.isObjCIdStructType(ToPointeeType))) {
Douglas Gregordda78892008-12-18 23:43:31 +00001041 ConvertedType = ToType;
1042 return true;
1043 }
1044
Douglas Gregorc7887512008-12-19 19:13:09 +00001045 // If we have pointers to pointers, recursively check whether this
1046 // is an Objective-C conversion.
1047 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1048 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1049 IncompatibleObjC)) {
1050 // We always complain about this conversion.
1051 IncompatibleObjC = true;
1052 ConvertedType = ToType;
1053 return true;
1054 }
1055
Douglas Gregor2a7e58d2008-12-23 00:53:59 +00001056 // If we have pointers to functions or blocks, check whether the only
Douglas Gregorc7887512008-12-19 19:13:09 +00001057 // differences in the argument and result types are in Objective-C
1058 // pointer conversions. If so, we permit the conversion (but
1059 // complain about it).
Douglas Gregor72564e72009-02-26 23:50:07 +00001060 const FunctionProtoType *FromFunctionType
1061 = FromPointeeType->getAsFunctionProtoType();
1062 const FunctionProtoType *ToFunctionType
1063 = ToPointeeType->getAsFunctionProtoType();
Douglas Gregorc7887512008-12-19 19:13:09 +00001064 if (FromFunctionType && ToFunctionType) {
1065 // If the function types are exactly the same, this isn't an
1066 // Objective-C pointer conversion.
1067 if (Context.getCanonicalType(FromPointeeType)
1068 == Context.getCanonicalType(ToPointeeType))
1069 return false;
1070
1071 // Perform the quick checks that will tell us whether these
1072 // function types are obviously different.
1073 if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1074 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1075 FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1076 return false;
1077
1078 bool HasObjCConversion = false;
1079 if (Context.getCanonicalType(FromFunctionType->getResultType())
1080 == Context.getCanonicalType(ToFunctionType->getResultType())) {
1081 // Okay, the types match exactly. Nothing to do.
1082 } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1083 ToFunctionType->getResultType(),
1084 ConvertedType, IncompatibleObjC)) {
1085 // Okay, we have an Objective-C pointer conversion.
1086 HasObjCConversion = true;
1087 } else {
1088 // Function types are too different. Abort.
1089 return false;
1090 }
1091
1092 // Check argument types.
1093 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1094 ArgIdx != NumArgs; ++ArgIdx) {
1095 QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1096 QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1097 if (Context.getCanonicalType(FromArgType)
1098 == Context.getCanonicalType(ToArgType)) {
1099 // Okay, the types match exactly. Nothing to do.
1100 } else if (isObjCPointerConversion(FromArgType, ToArgType,
1101 ConvertedType, IncompatibleObjC)) {
1102 // Okay, we have an Objective-C pointer conversion.
1103 HasObjCConversion = true;
1104 } else {
1105 // Argument types are too different. Abort.
1106 return false;
1107 }
1108 }
1109
1110 if (HasObjCConversion) {
1111 // We had an Objective-C conversion. Allow this pointer
1112 // conversion, but complain about it.
1113 ConvertedType = ToType;
1114 IncompatibleObjC = true;
1115 return true;
1116 }
1117 }
1118
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001119 return false;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001120}
1121
Douglas Gregor94b1dd22008-10-24 04:54:22 +00001122/// CheckPointerConversion - Check the pointer conversion from the
1123/// expression From to the type ToType. This routine checks for
1124/// ambiguous (FIXME: or inaccessible) derived-to-base pointer
1125/// conversions for which IsPointerConversion has already returned
1126/// true. It returns true and produces a diagnostic if there was an
1127/// error, or returns false otherwise.
1128bool Sema::CheckPointerConversion(Expr *From, QualType ToType) {
1129 QualType FromType = From->getType();
1130
1131 if (const PointerType *FromPtrType = FromType->getAsPointerType())
1132 if (const PointerType *ToPtrType = ToType->getAsPointerType()) {
Douglas Gregor94b1dd22008-10-24 04:54:22 +00001133 QualType FromPointeeType = FromPtrType->getPointeeType(),
1134 ToPointeeType = ToPtrType->getPointeeType();
Douglas Gregordda78892008-12-18 23:43:31 +00001135
1136 // Objective-C++ conversions are always okay.
1137 // FIXME: We should have a different class of conversions for
1138 // the Objective-C++ implicit conversions.
Steve Naroff389bf462009-02-12 17:52:19 +00001139 if (Context.isObjCIdStructType(FromPointeeType) ||
1140 Context.isObjCIdStructType(ToPointeeType) ||
1141 Context.isObjCClassStructType(FromPointeeType) ||
1142 Context.isObjCClassStructType(ToPointeeType))
Douglas Gregordda78892008-12-18 23:43:31 +00001143 return false;
1144
Douglas Gregor94b1dd22008-10-24 04:54:22 +00001145 if (FromPointeeType->isRecordType() &&
1146 ToPointeeType->isRecordType()) {
1147 // We must have a derived-to-base conversion. Check an
1148 // ambiguous or inaccessible conversion.
Douglas Gregor0575d4a2008-10-24 16:17:19 +00001149 return CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1150 From->getExprLoc(),
1151 From->getSourceRange());
Douglas Gregor94b1dd22008-10-24 04:54:22 +00001152 }
1153 }
1154
1155 return false;
1156}
1157
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001158/// IsMemberPointerConversion - Determines whether the conversion of the
1159/// expression From, which has the (possibly adjusted) type FromType, can be
1160/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1161/// If so, returns true and places the converted type (that might differ from
1162/// ToType in its cv-qualifiers at some level) into ConvertedType.
1163bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1164 QualType ToType, QualType &ConvertedType)
1165{
1166 const MemberPointerType *ToTypePtr = ToType->getAsMemberPointerType();
1167 if (!ToTypePtr)
1168 return false;
1169
1170 // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1171 if (From->isNullPointerConstant(Context)) {
1172 ConvertedType = ToType;
1173 return true;
1174 }
1175
1176 // Otherwise, both types have to be member pointers.
1177 const MemberPointerType *FromTypePtr = FromType->getAsMemberPointerType();
1178 if (!FromTypePtr)
1179 return false;
1180
1181 // A pointer to member of B can be converted to a pointer to member of D,
1182 // where D is derived from B (C++ 4.11p2).
1183 QualType FromClass(FromTypePtr->getClass(), 0);
1184 QualType ToClass(ToTypePtr->getClass(), 0);
1185 // FIXME: What happens when these are dependent? Is this function even called?
1186
1187 if (IsDerivedFrom(ToClass, FromClass)) {
1188 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1189 ToClass.getTypePtr());
1190 return true;
1191 }
1192
1193 return false;
1194}
1195
1196/// CheckMemberPointerConversion - Check the member pointer conversion from the
1197/// expression From to the type ToType. This routine checks for ambiguous or
1198/// virtual (FIXME: or inaccessible) base-to-derived member pointer conversions
1199/// for which IsMemberPointerConversion has already returned true. It returns
1200/// true and produces a diagnostic if there was an error, or returns false
1201/// otherwise.
1202bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType) {
1203 QualType FromType = From->getType();
Sebastian Redl21593ac2009-01-28 18:33:18 +00001204 const MemberPointerType *FromPtrType = FromType->getAsMemberPointerType();
1205 if (!FromPtrType)
1206 return false;
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001207
Sebastian Redl21593ac2009-01-28 18:33:18 +00001208 const MemberPointerType *ToPtrType = ToType->getAsMemberPointerType();
1209 assert(ToPtrType && "No member pointer cast has a target type "
1210 "that is not a member pointer.");
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001211
Sebastian Redl21593ac2009-01-28 18:33:18 +00001212 QualType FromClass = QualType(FromPtrType->getClass(), 0);
1213 QualType ToClass = QualType(ToPtrType->getClass(), 0);
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001214
Sebastian Redl21593ac2009-01-28 18:33:18 +00001215 // FIXME: What about dependent types?
1216 assert(FromClass->isRecordType() && "Pointer into non-class.");
1217 assert(ToClass->isRecordType() && "Pointer into non-class.");
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001218
Sebastian Redl21593ac2009-01-28 18:33:18 +00001219 BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
1220 /*DetectVirtual=*/true);
1221 bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1222 assert(DerivationOkay &&
1223 "Should not have been called if derivation isn't OK.");
1224 (void)DerivationOkay;
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001225
Sebastian Redl21593ac2009-01-28 18:33:18 +00001226 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1227 getUnqualifiedType())) {
1228 // Derivation is ambiguous. Redo the check to find the exact paths.
1229 Paths.clear();
1230 Paths.setRecordingPaths(true);
1231 bool StillOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1232 assert(StillOkay && "Derivation changed due to quantum fluctuation.");
1233 (void)StillOkay;
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001234
Sebastian Redl21593ac2009-01-28 18:33:18 +00001235 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1236 Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1237 << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1238 return true;
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001239 }
Sebastian Redl21593ac2009-01-28 18:33:18 +00001240
Douglas Gregorc1efaec2009-02-28 01:32:25 +00001241 if (const RecordType *VBase = Paths.getDetectedVirtual()) {
Sebastian Redl21593ac2009-01-28 18:33:18 +00001242 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1243 << FromClass << ToClass << QualType(VBase, 0)
1244 << From->getSourceRange();
1245 return true;
1246 }
1247
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001248 return false;
1249}
1250
Douglas Gregor98cd5992008-10-21 23:43:52 +00001251/// IsQualificationConversion - Determines whether the conversion from
1252/// an rvalue of type FromType to ToType is a qualification conversion
1253/// (C++ 4.4).
1254bool
1255Sema::IsQualificationConversion(QualType FromType, QualType ToType)
1256{
1257 FromType = Context.getCanonicalType(FromType);
1258 ToType = Context.getCanonicalType(ToType);
1259
1260 // If FromType and ToType are the same type, this is not a
1261 // qualification conversion.
1262 if (FromType == ToType)
1263 return false;
Sebastian Redl21593ac2009-01-28 18:33:18 +00001264
Douglas Gregor98cd5992008-10-21 23:43:52 +00001265 // (C++ 4.4p4):
1266 // A conversion can add cv-qualifiers at levels other than the first
1267 // in multi-level pointers, subject to the following rules: [...]
1268 bool PreviousToQualsIncludeConst = true;
Douglas Gregor98cd5992008-10-21 23:43:52 +00001269 bool UnwrappedAnyPointer = false;
Douglas Gregor57373262008-10-22 14:17:15 +00001270 while (UnwrapSimilarPointerTypes(FromType, ToType)) {
Douglas Gregor98cd5992008-10-21 23:43:52 +00001271 // Within each iteration of the loop, we check the qualifiers to
1272 // determine if this still looks like a qualification
1273 // conversion. Then, if all is well, we unwrap one more level of
Douglas Gregorf8268ae2008-10-22 17:49:05 +00001274 // pointers or pointers-to-members and do it all again
Douglas Gregor98cd5992008-10-21 23:43:52 +00001275 // until there are no more pointers or pointers-to-members left to
1276 // unwrap.
Douglas Gregor57373262008-10-22 14:17:15 +00001277 UnwrappedAnyPointer = true;
Douglas Gregor98cd5992008-10-21 23:43:52 +00001278
1279 // -- for every j > 0, if const is in cv 1,j then const is in cv
1280 // 2,j, and similarly for volatile.
Douglas Gregor9b6e2d22008-10-22 00:38:21 +00001281 if (!ToType.isAtLeastAsQualifiedAs(FromType))
Douglas Gregor98cd5992008-10-21 23:43:52 +00001282 return false;
Douglas Gregor57373262008-10-22 14:17:15 +00001283
Douglas Gregor98cd5992008-10-21 23:43:52 +00001284 // -- if the cv 1,j and cv 2,j are different, then const is in
1285 // every cv for 0 < k < j.
1286 if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
Douglas Gregor57373262008-10-22 14:17:15 +00001287 && !PreviousToQualsIncludeConst)
Douglas Gregor98cd5992008-10-21 23:43:52 +00001288 return false;
Douglas Gregor57373262008-10-22 14:17:15 +00001289
Douglas Gregor98cd5992008-10-21 23:43:52 +00001290 // Keep track of whether all prior cv-qualifiers in the "to" type
1291 // include const.
1292 PreviousToQualsIncludeConst
1293 = PreviousToQualsIncludeConst && ToType.isConstQualified();
Douglas Gregor57373262008-10-22 14:17:15 +00001294 }
Douglas Gregor98cd5992008-10-21 23:43:52 +00001295
1296 // We are left with FromType and ToType being the pointee types
1297 // after unwrapping the original FromType and ToType the same number
1298 // of types. If we unwrapped any pointers, and if FromType and
1299 // ToType have the same unqualified type (since we checked
1300 // qualifiers above), then this is a qualification conversion.
1301 return UnwrappedAnyPointer &&
1302 FromType.getUnqualifiedType() == ToType.getUnqualifiedType();
1303}
1304
Douglas Gregor734d9862009-01-30 23:27:23 +00001305/// Determines whether there is a user-defined conversion sequence
1306/// (C++ [over.ics.user]) that converts expression From to the type
1307/// ToType. If such a conversion exists, User will contain the
1308/// user-defined conversion sequence that performs such a conversion
1309/// and this routine will return true. Otherwise, this routine returns
1310/// false and User is unspecified.
1311///
1312/// \param AllowConversionFunctions true if the conversion should
1313/// consider conversion functions at all. If false, only constructors
1314/// will be considered.
1315///
1316/// \param AllowExplicit true if the conversion should consider C++0x
1317/// "explicit" conversion functions as well as non-explicit conversion
1318/// functions (C++0x [class.conv.fct]p2).
Sebastian Redle2b68332009-04-12 17:16:29 +00001319///
1320/// \param ForceRValue true if the expression should be treated as an rvalue
1321/// for overload resolution.
Douglas Gregor60d62c22008-10-31 16:23:19 +00001322bool Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
Douglas Gregor09f41cf2009-01-14 15:45:31 +00001323 UserDefinedConversionSequence& User,
Douglas Gregor734d9862009-01-30 23:27:23 +00001324 bool AllowConversionFunctions,
Sebastian Redle2b68332009-04-12 17:16:29 +00001325 bool AllowExplicit, bool ForceRValue)
Douglas Gregor60d62c22008-10-31 16:23:19 +00001326{
1327 OverloadCandidateSet CandidateSet;
Douglas Gregorc1efaec2009-02-28 01:32:25 +00001328 if (const RecordType *ToRecordType = ToType->getAsRecordType()) {
1329 if (CXXRecordDecl *ToRecordDecl
1330 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
1331 // C++ [over.match.ctor]p1:
1332 // When objects of class type are direct-initialized (8.5), or
1333 // copy-initialized from an expression of the same or a
1334 // derived class type (8.5), overload resolution selects the
1335 // constructor. [...] For copy-initialization, the candidate
1336 // functions are all the converting constructors (12.3.1) of
1337 // that class. The argument list is the expression-list within
1338 // the parentheses of the initializer.
1339 DeclarationName ConstructorName
1340 = Context.DeclarationNames.getCXXConstructorName(
1341 Context.getCanonicalType(ToType).getUnqualifiedType());
1342 DeclContext::lookup_iterator Con, ConEnd;
Douglas Gregor6ab35242009-04-09 21:40:53 +00001343 for (llvm::tie(Con, ConEnd)
1344 = ToRecordDecl->lookup(Context, ConstructorName);
Douglas Gregorc1efaec2009-02-28 01:32:25 +00001345 Con != ConEnd; ++Con) {
1346 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
1347 if (Constructor->isConvertingConstructor())
1348 AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
Sebastian Redle2b68332009-04-12 17:16:29 +00001349 /*SuppressUserConversions=*/true, ForceRValue);
Douglas Gregorc1efaec2009-02-28 01:32:25 +00001350 }
Douglas Gregor60d62c22008-10-31 16:23:19 +00001351 }
1352 }
1353
Douglas Gregor734d9862009-01-30 23:27:23 +00001354 if (!AllowConversionFunctions) {
1355 // Don't allow any conversion functions to enter the overload set.
Douglas Gregorc1efaec2009-02-28 01:32:25 +00001356 } else if (const RecordType *FromRecordType
1357 = From->getType()->getAsRecordType()) {
1358 if (CXXRecordDecl *FromRecordDecl
1359 = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
1360 // Add all of the conversion functions as candidates.
1361 // FIXME: Look for conversions in base classes!
1362 OverloadedFunctionDecl *Conversions
1363 = FromRecordDecl->getConversionFunctions();
1364 for (OverloadedFunctionDecl::function_iterator Func
1365 = Conversions->function_begin();
1366 Func != Conversions->function_end(); ++Func) {
1367 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
1368 if (AllowExplicit || !Conv->isExplicit())
1369 AddConversionCandidate(Conv, From, ToType, CandidateSet);
1370 }
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001371 }
1372 }
Douglas Gregor60d62c22008-10-31 16:23:19 +00001373
1374 OverloadCandidateSet::iterator Best;
1375 switch (BestViableFunction(CandidateSet, Best)) {
1376 case OR_Success:
1377 // Record the standard conversion we used and the conversion function.
Douglas Gregor60d62c22008-10-31 16:23:19 +00001378 if (CXXConstructorDecl *Constructor
1379 = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1380 // C++ [over.ics.user]p1:
1381 // If the user-defined conversion is specified by a
1382 // constructor (12.3.1), the initial standard conversion
1383 // sequence converts the source type to the type required by
1384 // the argument of the constructor.
1385 //
1386 // FIXME: What about ellipsis conversions?
1387 QualType ThisType = Constructor->getThisType(Context);
1388 User.Before = Best->Conversions[0].Standard;
1389 User.ConversionFunction = Constructor;
1390 User.After.setAsIdentityConversion();
1391 User.After.FromTypePtr
1392 = ThisType->getAsPointerType()->getPointeeType().getAsOpaquePtr();
1393 User.After.ToTypePtr = ToType.getAsOpaquePtr();
1394 return true;
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001395 } else if (CXXConversionDecl *Conversion
1396 = dyn_cast<CXXConversionDecl>(Best->Function)) {
1397 // C++ [over.ics.user]p1:
1398 //
1399 // [...] If the user-defined conversion is specified by a
1400 // conversion function (12.3.2), the initial standard
1401 // conversion sequence converts the source type to the
1402 // implicit object parameter of the conversion function.
1403 User.Before = Best->Conversions[0].Standard;
1404 User.ConversionFunction = Conversion;
1405
1406 // C++ [over.ics.user]p2:
1407 // The second standard conversion sequence converts the
1408 // result of the user-defined conversion to the target type
1409 // for the sequence. Since an implicit conversion sequence
1410 // is an initialization, the special rules for
1411 // initialization by user-defined conversion apply when
1412 // selecting the best user-defined conversion for a
1413 // user-defined conversion sequence (see 13.3.3 and
1414 // 13.3.3.1).
1415 User.After = Best->FinalConversion;
1416 return true;
Douglas Gregor60d62c22008-10-31 16:23:19 +00001417 } else {
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001418 assert(false && "Not a constructor or conversion function?");
Douglas Gregor60d62c22008-10-31 16:23:19 +00001419 return false;
1420 }
1421
1422 case OR_No_Viable_Function:
Douglas Gregor48f3bb92009-02-18 21:56:37 +00001423 case OR_Deleted:
Douglas Gregor60d62c22008-10-31 16:23:19 +00001424 // No conversion here! We're done.
1425 return false;
1426
1427 case OR_Ambiguous:
1428 // FIXME: See C++ [over.best.ics]p10 for the handling of
1429 // ambiguous conversion sequences.
1430 return false;
1431 }
1432
1433 return false;
1434}
1435
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001436/// CompareImplicitConversionSequences - Compare two implicit
1437/// conversion sequences to determine whether one is better than the
1438/// other or if they are indistinguishable (C++ 13.3.3.2).
1439ImplicitConversionSequence::CompareKind
1440Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1441 const ImplicitConversionSequence& ICS2)
1442{
1443 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1444 // conversion sequences (as defined in 13.3.3.1)
1445 // -- a standard conversion sequence (13.3.3.1.1) is a better
1446 // conversion sequence than a user-defined conversion sequence or
1447 // an ellipsis conversion sequence, and
1448 // -- a user-defined conversion sequence (13.3.3.1.2) is a better
1449 // conversion sequence than an ellipsis conversion sequence
1450 // (13.3.3.1.3).
1451 //
1452 if (ICS1.ConversionKind < ICS2.ConversionKind)
1453 return ImplicitConversionSequence::Better;
1454 else if (ICS2.ConversionKind < ICS1.ConversionKind)
1455 return ImplicitConversionSequence::Worse;
1456
1457 // Two implicit conversion sequences of the same form are
1458 // indistinguishable conversion sequences unless one of the
1459 // following rules apply: (C++ 13.3.3.2p3):
1460 if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion)
1461 return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1462 else if (ICS1.ConversionKind ==
1463 ImplicitConversionSequence::UserDefinedConversion) {
1464 // User-defined conversion sequence U1 is a better conversion
1465 // sequence than another user-defined conversion sequence U2 if
1466 // they contain the same user-defined conversion function or
1467 // constructor and if the second standard conversion sequence of
1468 // U1 is better than the second standard conversion sequence of
1469 // U2 (C++ 13.3.3.2p3).
1470 if (ICS1.UserDefined.ConversionFunction ==
1471 ICS2.UserDefined.ConversionFunction)
1472 return CompareStandardConversionSequences(ICS1.UserDefined.After,
1473 ICS2.UserDefined.After);
1474 }
1475
1476 return ImplicitConversionSequence::Indistinguishable;
1477}
1478
1479/// CompareStandardConversionSequences - Compare two standard
1480/// conversion sequences to determine whether one is better than the
1481/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1482ImplicitConversionSequence::CompareKind
1483Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1484 const StandardConversionSequence& SCS2)
1485{
1486 // Standard conversion sequence S1 is a better conversion sequence
1487 // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1488
1489 // -- S1 is a proper subsequence of S2 (comparing the conversion
1490 // sequences in the canonical form defined by 13.3.3.1.1,
1491 // excluding any Lvalue Transformation; the identity conversion
1492 // sequence is considered to be a subsequence of any
1493 // non-identity conversion sequence) or, if not that,
1494 if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
1495 // Neither is a proper subsequence of the other. Do nothing.
1496 ;
1497 else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
1498 (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
1499 (SCS1.Second == ICK_Identity &&
1500 SCS1.Third == ICK_Identity))
1501 // SCS1 is a proper subsequence of SCS2.
1502 return ImplicitConversionSequence::Better;
1503 else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
1504 (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
1505 (SCS2.Second == ICK_Identity &&
1506 SCS2.Third == ICK_Identity))
1507 // SCS2 is a proper subsequence of SCS1.
1508 return ImplicitConversionSequence::Worse;
1509
1510 // -- the rank of S1 is better than the rank of S2 (by the rules
1511 // defined below), or, if not that,
1512 ImplicitConversionRank Rank1 = SCS1.getRank();
1513 ImplicitConversionRank Rank2 = SCS2.getRank();
1514 if (Rank1 < Rank2)
1515 return ImplicitConversionSequence::Better;
1516 else if (Rank2 < Rank1)
1517 return ImplicitConversionSequence::Worse;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001518
Douglas Gregor57373262008-10-22 14:17:15 +00001519 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1520 // are indistinguishable unless one of the following rules
1521 // applies:
1522
1523 // A conversion that is not a conversion of a pointer, or
1524 // pointer to member, to bool is better than another conversion
1525 // that is such a conversion.
1526 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1527 return SCS2.isPointerConversionToBool()
1528 ? ImplicitConversionSequence::Better
1529 : ImplicitConversionSequence::Worse;
1530
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001531 // C++ [over.ics.rank]p4b2:
1532 //
1533 // If class B is derived directly or indirectly from class A,
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001534 // conversion of B* to A* is better than conversion of B* to
1535 // void*, and conversion of A* to void* is better than conversion
1536 // of B* to void*.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001537 bool SCS1ConvertsToVoid
1538 = SCS1.isPointerConversionToVoidPointer(Context);
1539 bool SCS2ConvertsToVoid
1540 = SCS2.isPointerConversionToVoidPointer(Context);
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001541 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1542 // Exactly one of the conversion sequences is a conversion to
1543 // a void pointer; it's the worse conversion.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001544 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1545 : ImplicitConversionSequence::Worse;
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001546 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1547 // Neither conversion sequence converts to a void pointer; compare
1548 // their derived-to-base conversions.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001549 if (ImplicitConversionSequence::CompareKind DerivedCK
1550 = CompareDerivedToBaseConversions(SCS1, SCS2))
1551 return DerivedCK;
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001552 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1553 // Both conversion sequences are conversions to void
1554 // pointers. Compare the source types to determine if there's an
1555 // inheritance relationship in their sources.
1556 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1557 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1558
1559 // Adjust the types we're converting from via the array-to-pointer
1560 // conversion, if we need to.
1561 if (SCS1.First == ICK_Array_To_Pointer)
1562 FromType1 = Context.getArrayDecayedType(FromType1);
1563 if (SCS2.First == ICK_Array_To_Pointer)
1564 FromType2 = Context.getArrayDecayedType(FromType2);
1565
1566 QualType FromPointee1
1567 = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1568 QualType FromPointee2
1569 = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1570
1571 if (IsDerivedFrom(FromPointee2, FromPointee1))
1572 return ImplicitConversionSequence::Better;
1573 else if (IsDerivedFrom(FromPointee1, FromPointee2))
1574 return ImplicitConversionSequence::Worse;
Douglas Gregorcb7de522008-11-26 23:31:11 +00001575
1576 // Objective-C++: If one interface is more specific than the
1577 // other, it is the better one.
1578 const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1579 const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1580 if (FromIface1 && FromIface1) {
1581 if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1582 return ImplicitConversionSequence::Better;
1583 else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1584 return ImplicitConversionSequence::Worse;
1585 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001586 }
Douglas Gregor57373262008-10-22 14:17:15 +00001587
1588 // Compare based on qualification conversions (C++ 13.3.3.2p3,
1589 // bullet 3).
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001590 if (ImplicitConversionSequence::CompareKind QualCK
Douglas Gregor57373262008-10-22 14:17:15 +00001591 = CompareQualificationConversions(SCS1, SCS2))
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001592 return QualCK;
Douglas Gregor57373262008-10-22 14:17:15 +00001593
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001594 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
Sebastian Redlf2e21e52009-03-22 23:49:27 +00001595 // C++0x [over.ics.rank]p3b4:
1596 // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
1597 // implicit object parameter of a non-static member function declared
1598 // without a ref-qualifier, and S1 binds an rvalue reference to an
1599 // rvalue and S2 binds an lvalue reference.
Sebastian Redla9845802009-03-29 15:27:50 +00001600 // FIXME: We don't know if we're dealing with the implicit object parameter,
1601 // or if the member function in this case has a ref qualifier.
1602 // (Of course, we don't have ref qualifiers yet.)
1603 if (SCS1.RRefBinding != SCS2.RRefBinding)
1604 return SCS1.RRefBinding ? ImplicitConversionSequence::Better
1605 : ImplicitConversionSequence::Worse;
Sebastian Redlf2e21e52009-03-22 23:49:27 +00001606
1607 // C++ [over.ics.rank]p3b4:
1608 // -- S1 and S2 are reference bindings (8.5.3), and the types to
1609 // which the references refer are the same type except for
1610 // top-level cv-qualifiers, and the type to which the reference
1611 // initialized by S2 refers is more cv-qualified than the type
1612 // to which the reference initialized by S1 refers.
Sebastian Redla9845802009-03-29 15:27:50 +00001613 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1614 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001615 T1 = Context.getCanonicalType(T1);
1616 T2 = Context.getCanonicalType(T2);
1617 if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) {
1618 if (T2.isMoreQualifiedThan(T1))
1619 return ImplicitConversionSequence::Better;
1620 else if (T1.isMoreQualifiedThan(T2))
1621 return ImplicitConversionSequence::Worse;
1622 }
1623 }
Douglas Gregor57373262008-10-22 14:17:15 +00001624
1625 return ImplicitConversionSequence::Indistinguishable;
1626}
1627
1628/// CompareQualificationConversions - Compares two standard conversion
1629/// sequences to determine whether they can be ranked based on their
1630/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1631ImplicitConversionSequence::CompareKind
1632Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1633 const StandardConversionSequence& SCS2)
1634{
Douglas Gregorba7e2102008-10-22 15:04:37 +00001635 // C++ 13.3.3.2p3:
Douglas Gregor57373262008-10-22 14:17:15 +00001636 // -- S1 and S2 differ only in their qualification conversion and
1637 // yield similar types T1 and T2 (C++ 4.4), respectively, and the
1638 // cv-qualification signature of type T1 is a proper subset of
1639 // the cv-qualification signature of type T2, and S1 is not the
1640 // deprecated string literal array-to-pointer conversion (4.2).
1641 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1642 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1643 return ImplicitConversionSequence::Indistinguishable;
1644
1645 // FIXME: the example in the standard doesn't use a qualification
1646 // conversion (!)
1647 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1648 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1649 T1 = Context.getCanonicalType(T1);
1650 T2 = Context.getCanonicalType(T2);
1651
1652 // If the types are the same, we won't learn anything by unwrapped
1653 // them.
1654 if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1655 return ImplicitConversionSequence::Indistinguishable;
1656
1657 ImplicitConversionSequence::CompareKind Result
1658 = ImplicitConversionSequence::Indistinguishable;
1659 while (UnwrapSimilarPointerTypes(T1, T2)) {
1660 // Within each iteration of the loop, we check the qualifiers to
1661 // determine if this still looks like a qualification
1662 // conversion. Then, if all is well, we unwrap one more level of
Douglas Gregorf8268ae2008-10-22 17:49:05 +00001663 // pointers or pointers-to-members and do it all again
Douglas Gregor57373262008-10-22 14:17:15 +00001664 // until there are no more pointers or pointers-to-members left
1665 // to unwrap. This essentially mimics what
1666 // IsQualificationConversion does, but here we're checking for a
1667 // strict subset of qualifiers.
1668 if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1669 // The qualifiers are the same, so this doesn't tell us anything
1670 // about how the sequences rank.
1671 ;
1672 else if (T2.isMoreQualifiedThan(T1)) {
1673 // T1 has fewer qualifiers, so it could be the better sequence.
1674 if (Result == ImplicitConversionSequence::Worse)
1675 // Neither has qualifiers that are a subset of the other's
1676 // qualifiers.
1677 return ImplicitConversionSequence::Indistinguishable;
1678
1679 Result = ImplicitConversionSequence::Better;
1680 } else if (T1.isMoreQualifiedThan(T2)) {
1681 // T2 has fewer qualifiers, so it could be the better sequence.
1682 if (Result == ImplicitConversionSequence::Better)
1683 // Neither has qualifiers that are a subset of the other's
1684 // qualifiers.
1685 return ImplicitConversionSequence::Indistinguishable;
1686
1687 Result = ImplicitConversionSequence::Worse;
1688 } else {
1689 // Qualifiers are disjoint.
1690 return ImplicitConversionSequence::Indistinguishable;
1691 }
1692
1693 // If the types after this point are equivalent, we're done.
1694 if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1695 break;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001696 }
1697
Douglas Gregor57373262008-10-22 14:17:15 +00001698 // Check that the winning standard conversion sequence isn't using
1699 // the deprecated string literal array to pointer conversion.
1700 switch (Result) {
1701 case ImplicitConversionSequence::Better:
1702 if (SCS1.Deprecated)
1703 Result = ImplicitConversionSequence::Indistinguishable;
1704 break;
1705
1706 case ImplicitConversionSequence::Indistinguishable:
1707 break;
1708
1709 case ImplicitConversionSequence::Worse:
1710 if (SCS2.Deprecated)
1711 Result = ImplicitConversionSequence::Indistinguishable;
1712 break;
1713 }
1714
1715 return Result;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001716}
1717
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001718/// CompareDerivedToBaseConversions - Compares two standard conversion
1719/// sequences to determine whether they can be ranked based on their
Douglas Gregorcb7de522008-11-26 23:31:11 +00001720/// various kinds of derived-to-base conversions (C++
1721/// [over.ics.rank]p4b3). As part of these checks, we also look at
1722/// conversions between Objective-C interface types.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001723ImplicitConversionSequence::CompareKind
1724Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
1725 const StandardConversionSequence& SCS2) {
1726 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1727 QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1728 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1729 QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1730
1731 // Adjust the types we're converting from via the array-to-pointer
1732 // conversion, if we need to.
1733 if (SCS1.First == ICK_Array_To_Pointer)
1734 FromType1 = Context.getArrayDecayedType(FromType1);
1735 if (SCS2.First == ICK_Array_To_Pointer)
1736 FromType2 = Context.getArrayDecayedType(FromType2);
1737
1738 // Canonicalize all of the types.
1739 FromType1 = Context.getCanonicalType(FromType1);
1740 ToType1 = Context.getCanonicalType(ToType1);
1741 FromType2 = Context.getCanonicalType(FromType2);
1742 ToType2 = Context.getCanonicalType(ToType2);
1743
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001744 // C++ [over.ics.rank]p4b3:
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001745 //
1746 // If class B is derived directly or indirectly from class A and
1747 // class C is derived directly or indirectly from B,
Douglas Gregorcb7de522008-11-26 23:31:11 +00001748 //
1749 // For Objective-C, we let A, B, and C also be Objective-C
1750 // interfaces.
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001751
1752 // Compare based on pointer conversions.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001753 if (SCS1.Second == ICK_Pointer_Conversion &&
Douglas Gregor7ca09762008-11-27 01:19:21 +00001754 SCS2.Second == ICK_Pointer_Conversion &&
1755 /*FIXME: Remove if Objective-C id conversions get their own rank*/
1756 FromType1->isPointerType() && FromType2->isPointerType() &&
1757 ToType1->isPointerType() && ToType2->isPointerType()) {
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001758 QualType FromPointee1
1759 = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1760 QualType ToPointee1
1761 = ToType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1762 QualType FromPointee2
1763 = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1764 QualType ToPointee2
1765 = ToType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
Douglas Gregorcb7de522008-11-26 23:31:11 +00001766
1767 const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1768 const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1769 const ObjCInterfaceType* ToIface1 = ToPointee1->getAsObjCInterfaceType();
1770 const ObjCInterfaceType* ToIface2 = ToPointee2->getAsObjCInterfaceType();
1771
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001772 // -- conversion of C* to B* is better than conversion of C* to A*,
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001773 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
1774 if (IsDerivedFrom(ToPointee1, ToPointee2))
1775 return ImplicitConversionSequence::Better;
1776 else if (IsDerivedFrom(ToPointee2, ToPointee1))
1777 return ImplicitConversionSequence::Worse;
Douglas Gregorcb7de522008-11-26 23:31:11 +00001778
1779 if (ToIface1 && ToIface2) {
1780 if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
1781 return ImplicitConversionSequence::Better;
1782 else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
1783 return ImplicitConversionSequence::Worse;
1784 }
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001785 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001786
1787 // -- conversion of B* to A* is better than conversion of C* to A*,
1788 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
1789 if (IsDerivedFrom(FromPointee2, FromPointee1))
1790 return ImplicitConversionSequence::Better;
1791 else if (IsDerivedFrom(FromPointee1, FromPointee2))
1792 return ImplicitConversionSequence::Worse;
Douglas Gregorcb7de522008-11-26 23:31:11 +00001793
1794 if (FromIface1 && FromIface2) {
1795 if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1796 return ImplicitConversionSequence::Better;
1797 else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1798 return ImplicitConversionSequence::Worse;
1799 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001800 }
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001801 }
1802
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001803 // Compare based on reference bindings.
1804 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding &&
1805 SCS1.Second == ICK_Derived_To_Base) {
1806 // -- binding of an expression of type C to a reference of type
1807 // B& is better than binding an expression of type C to a
1808 // reference of type A&,
1809 if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1810 ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1811 if (IsDerivedFrom(ToType1, ToType2))
1812 return ImplicitConversionSequence::Better;
1813 else if (IsDerivedFrom(ToType2, ToType1))
1814 return ImplicitConversionSequence::Worse;
1815 }
1816
Douglas Gregor225c41e2008-11-03 19:09:14 +00001817 // -- binding of an expression of type B to a reference of type
1818 // A& is better than binding an expression of type C to a
1819 // reference of type A&,
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001820 if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1821 ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1822 if (IsDerivedFrom(FromType2, FromType1))
1823 return ImplicitConversionSequence::Better;
1824 else if (IsDerivedFrom(FromType1, FromType2))
1825 return ImplicitConversionSequence::Worse;
1826 }
1827 }
1828
1829
1830 // FIXME: conversion of A::* to B::* is better than conversion of
1831 // A::* to C::*,
1832
1833 // FIXME: conversion of B::* to C::* is better than conversion of
1834 // A::* to C::*, and
1835
Douglas Gregor225c41e2008-11-03 19:09:14 +00001836 if (SCS1.CopyConstructor && SCS2.CopyConstructor &&
1837 SCS1.Second == ICK_Derived_To_Base) {
1838 // -- conversion of C to B is better than conversion of C to A,
1839 if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1840 ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1841 if (IsDerivedFrom(ToType1, ToType2))
1842 return ImplicitConversionSequence::Better;
1843 else if (IsDerivedFrom(ToType2, ToType1))
1844 return ImplicitConversionSequence::Worse;
1845 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001846
Douglas Gregor225c41e2008-11-03 19:09:14 +00001847 // -- conversion of B to A is better than conversion of C to A.
1848 if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1849 ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1850 if (IsDerivedFrom(FromType2, FromType1))
1851 return ImplicitConversionSequence::Better;
1852 else if (IsDerivedFrom(FromType1, FromType2))
1853 return ImplicitConversionSequence::Worse;
1854 }
1855 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001856
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001857 return ImplicitConversionSequence::Indistinguishable;
1858}
1859
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001860/// TryCopyInitialization - Try to copy-initialize a value of type
1861/// ToType from the expression From. Return the implicit conversion
1862/// sequence required to pass this argument, which may be a bad
1863/// conversion sequence (meaning that the argument cannot be passed to
Douglas Gregor225c41e2008-11-03 19:09:14 +00001864/// a parameter of this type). If @p SuppressUserConversions, then we
Sebastian Redle2b68332009-04-12 17:16:29 +00001865/// do not permit any user-defined conversion sequences. If @p ForceRValue,
1866/// then we treat @p From as an rvalue, even if it is an lvalue.
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001867ImplicitConversionSequence
Douglas Gregor225c41e2008-11-03 19:09:14 +00001868Sema::TryCopyInitialization(Expr *From, QualType ToType,
Sebastian Redle2b68332009-04-12 17:16:29 +00001869 bool SuppressUserConversions, bool ForceRValue) {
Douglas Gregorf9201e02009-02-11 23:02:49 +00001870 if (ToType->isReferenceType()) {
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001871 ImplicitConversionSequence ICS;
Sebastian Redle2b68332009-04-12 17:16:29 +00001872 CheckReferenceInit(From, ToType, &ICS, SuppressUserConversions,
1873 /*AllowExplicit=*/false, ForceRValue);
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001874 return ICS;
1875 } else {
Sebastian Redle2b68332009-04-12 17:16:29 +00001876 return TryImplicitConversion(From, ToType, SuppressUserConversions,
1877 ForceRValue);
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001878 }
1879}
1880
Sebastian Redle2b68332009-04-12 17:16:29 +00001881/// PerformCopyInitialization - Copy-initialize an object of type @p ToType with
1882/// the expression @p From. Returns true (and emits a diagnostic) if there was
1883/// an error, returns false if the initialization succeeded. Elidable should
1884/// be true when the copy may be elided (C++ 12.8p15). Overload resolution works
1885/// differently in C++0x for this case.
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001886bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
Sebastian Redle2b68332009-04-12 17:16:29 +00001887 const char* Flavor, bool Elidable) {
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001888 if (!getLangOptions().CPlusPlus) {
1889 // In C, argument passing is the same as performing an assignment.
1890 QualType FromType = From->getType();
1891 AssignConvertType ConvTy =
1892 CheckSingleAssignmentConstraints(ToType, From);
1893
1894 return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
1895 FromType, From, Flavor);
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001896 }
Sebastian Redle2b68332009-04-12 17:16:29 +00001897
Chris Lattnerd9d22dd2008-11-24 05:29:24 +00001898 if (ToType->isReferenceType())
1899 return CheckReferenceInit(From, ToType);
1900
Sebastian Redle2b68332009-04-12 17:16:29 +00001901 if (!PerformImplicitConversion(From, ToType, Flavor,
1902 /*AllowExplicit=*/false, Elidable))
Chris Lattnerd9d22dd2008-11-24 05:29:24 +00001903 return false;
Sebastian Redle2b68332009-04-12 17:16:29 +00001904
Chris Lattnerd9d22dd2008-11-24 05:29:24 +00001905 return Diag(From->getSourceRange().getBegin(),
1906 diag::err_typecheck_convert_incompatible)
1907 << ToType << From->getType() << Flavor << From->getSourceRange();
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001908}
1909
Douglas Gregor96176b32008-11-18 23:14:02 +00001910/// TryObjectArgumentInitialization - Try to initialize the object
1911/// parameter of the given member function (@c Method) from the
1912/// expression @p From.
1913ImplicitConversionSequence
1914Sema::TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method) {
1915 QualType ClassType = Context.getTypeDeclType(Method->getParent());
1916 unsigned MethodQuals = Method->getTypeQualifiers();
1917 QualType ImplicitParamType = ClassType.getQualifiedType(MethodQuals);
1918
1919 // Set up the conversion sequence as a "bad" conversion, to allow us
1920 // to exit early.
1921 ImplicitConversionSequence ICS;
1922 ICS.Standard.setAsIdentityConversion();
1923 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
1924
1925 // We need to have an object of class type.
1926 QualType FromType = From->getType();
1927 if (!FromType->isRecordType())
1928 return ICS;
1929
1930 // The implicit object parmeter is has the type "reference to cv X",
1931 // where X is the class of which the function is a member
1932 // (C++ [over.match.funcs]p4). However, when finding an implicit
1933 // conversion sequence for the argument, we are not allowed to
1934 // create temporaries or perform user-defined conversions
1935 // (C++ [over.match.funcs]p5). We perform a simplified version of
1936 // reference binding here, that allows class rvalues to bind to
1937 // non-constant references.
1938
1939 // First check the qualifiers. We don't care about lvalue-vs-rvalue
1940 // with the implicit object parameter (C++ [over.match.funcs]p5).
1941 QualType FromTypeCanon = Context.getCanonicalType(FromType);
1942 if (ImplicitParamType.getCVRQualifiers() != FromType.getCVRQualifiers() &&
1943 !ImplicitParamType.isAtLeastAsQualifiedAs(FromType))
1944 return ICS;
1945
1946 // Check that we have either the same type or a derived type. It
1947 // affects the conversion rank.
1948 QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
1949 if (ClassTypeCanon == FromTypeCanon.getUnqualifiedType())
1950 ICS.Standard.Second = ICK_Identity;
1951 else if (IsDerivedFrom(FromType, ClassType))
1952 ICS.Standard.Second = ICK_Derived_To_Base;
1953 else
1954 return ICS;
1955
1956 // Success. Mark this as a reference binding.
1957 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
1958 ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr();
1959 ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr();
1960 ICS.Standard.ReferenceBinding = true;
1961 ICS.Standard.DirectBinding = true;
Sebastian Redl85002392009-03-29 22:46:24 +00001962 ICS.Standard.RRefBinding = false;
Douglas Gregor96176b32008-11-18 23:14:02 +00001963 return ICS;
1964}
1965
1966/// PerformObjectArgumentInitialization - Perform initialization of
1967/// the implicit object parameter for the given Method with the given
1968/// expression.
1969bool
1970Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) {
1971 QualType ImplicitParamType
1972 = Method->getThisType(Context)->getAsPointerType()->getPointeeType();
1973 ImplicitConversionSequence ICS
1974 = TryObjectArgumentInitialization(From, Method);
1975 if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion)
1976 return Diag(From->getSourceRange().getBegin(),
Chris Lattnerfa25bbb2008-11-19 05:08:23 +00001977 diag::err_implicit_object_parameter_init)
Chris Lattnerd1625842008-11-24 06:25:27 +00001978 << ImplicitParamType << From->getType() << From->getSourceRange();
Douglas Gregor96176b32008-11-18 23:14:02 +00001979
1980 if (ICS.Standard.Second == ICK_Derived_To_Base &&
1981 CheckDerivedToBaseConversion(From->getType(), ImplicitParamType,
1982 From->getSourceRange().getBegin(),
1983 From->getSourceRange()))
1984 return true;
1985
1986 ImpCastExprToType(From, ImplicitParamType, /*isLvalue=*/true);
1987 return false;
1988}
1989
Douglas Gregor09f41cf2009-01-14 15:45:31 +00001990/// TryContextuallyConvertToBool - Attempt to contextually convert the
1991/// expression From to bool (C++0x [conv]p3).
1992ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
1993 return TryImplicitConversion(From, Context.BoolTy, false, true);
1994}
1995
1996/// PerformContextuallyConvertToBool - Perform a contextual conversion
1997/// of the expression From to bool (C++0x [conv]p3).
1998bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
1999 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
2000 if (!PerformImplicitConversion(From, Context.BoolTy, ICS, "converting"))
2001 return false;
2002
2003 return Diag(From->getSourceRange().getBegin(),
2004 diag::err_typecheck_bool_condition)
2005 << From->getType() << From->getSourceRange();
2006}
2007
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002008/// AddOverloadCandidate - Adds the given function to the set of
Douglas Gregor225c41e2008-11-03 19:09:14 +00002009/// candidate functions, using the given function call arguments. If
2010/// @p SuppressUserConversions, then don't allow user-defined
2011/// conversions via constructors or conversion operators.
Sebastian Redle2b68332009-04-12 17:16:29 +00002012/// If @p ForceRValue, treat all arguments as rvalues. This is a slightly
2013/// hacky way to implement the overloading rules for elidable copy
2014/// initialization in C++0x (C++0x 12.8p15).
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002015void
2016Sema::AddOverloadCandidate(FunctionDecl *Function,
2017 Expr **Args, unsigned NumArgs,
Douglas Gregor225c41e2008-11-03 19:09:14 +00002018 OverloadCandidateSet& CandidateSet,
Sebastian Redle2b68332009-04-12 17:16:29 +00002019 bool SuppressUserConversions,
2020 bool ForceRValue)
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002021{
Douglas Gregor72564e72009-02-26 23:50:07 +00002022 const FunctionProtoType* Proto
2023 = dyn_cast<FunctionProtoType>(Function->getType()->getAsFunctionType());
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002024 assert(Proto && "Functions without a prototype cannot be overloaded");
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002025 assert(!isa<CXXConversionDecl>(Function) &&
2026 "Use AddConversionCandidate for conversion functions");
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002027
Douglas Gregor88a35142008-12-22 05:46:06 +00002028 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
Sebastian Redl3201f6b2009-04-16 17:51:27 +00002029 if (!isa<CXXConstructorDecl>(Method)) {
2030 // If we get here, it's because we're calling a member function
2031 // that is named without a member access expression (e.g.,
2032 // "this->f") that was either written explicitly or created
2033 // implicitly. This can happen with a qualified call to a member
2034 // function, e.g., X::f(). We use a NULL object as the implied
2035 // object argument (C++ [over.call.func]p3).
2036 AddMethodCandidate(Method, 0, Args, NumArgs, CandidateSet,
2037 SuppressUserConversions, ForceRValue);
2038 return;
2039 }
2040 // We treat a constructor like a non-member function, since its object
2041 // argument doesn't participate in overload resolution.
Douglas Gregor88a35142008-12-22 05:46:06 +00002042 }
2043
2044
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002045 // Add this candidate
2046 CandidateSet.push_back(OverloadCandidate());
2047 OverloadCandidate& Candidate = CandidateSet.back();
2048 Candidate.Function = Function;
Douglas Gregor88a35142008-12-22 05:46:06 +00002049 Candidate.Viable = true;
Douglas Gregor106c6eb2008-11-19 22:57:39 +00002050 Candidate.IsSurrogate = false;
Douglas Gregor88a35142008-12-22 05:46:06 +00002051 Candidate.IgnoreObjectArgument = false;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002052
2053 unsigned NumArgsInProto = Proto->getNumArgs();
2054
2055 // (C++ 13.3.2p2): A candidate function having fewer than m
2056 // parameters is viable only if it has an ellipsis in its parameter
2057 // list (8.3.5).
2058 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2059 Candidate.Viable = false;
2060 return;
2061 }
2062
2063 // (C++ 13.3.2p2): A candidate function having more than m parameters
2064 // is viable only if the (m+1)st parameter has a default argument
2065 // (8.3.6). For the purposes of overload resolution, the
2066 // parameter list is truncated on the right, so that there are
2067 // exactly m parameters.
2068 unsigned MinRequiredArgs = Function->getMinRequiredArguments();
2069 if (NumArgs < MinRequiredArgs) {
2070 // Not enough arguments.
2071 Candidate.Viable = false;
2072 return;
2073 }
2074
2075 // Determine the implicit conversion sequences for each of the
2076 // arguments.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002077 Candidate.Conversions.resize(NumArgs);
2078 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2079 if (ArgIdx < NumArgsInProto) {
2080 // (C++ 13.3.2p3): for F to be a viable function, there shall
2081 // exist for each argument an implicit conversion sequence
2082 // (13.3.3.1) that converts that argument to the corresponding
2083 // parameter of F.
2084 QualType ParamType = Proto->getArgType(ArgIdx);
2085 Candidate.Conversions[ArgIdx]
Douglas Gregor225c41e2008-11-03 19:09:14 +00002086 = TryCopyInitialization(Args[ArgIdx], ParamType,
Sebastian Redle2b68332009-04-12 17:16:29 +00002087 SuppressUserConversions, ForceRValue);
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002088 if (Candidate.Conversions[ArgIdx].ConversionKind
Douglas Gregor96176b32008-11-18 23:14:02 +00002089 == ImplicitConversionSequence::BadConversion) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002090 Candidate.Viable = false;
Douglas Gregor96176b32008-11-18 23:14:02 +00002091 break;
2092 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002093 } else {
2094 // (C++ 13.3.2p2): For the purposes of overload resolution, any
2095 // argument for which there is no corresponding parameter is
2096 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2097 Candidate.Conversions[ArgIdx].ConversionKind
2098 = ImplicitConversionSequence::EllipsisConversion;
2099 }
2100 }
2101}
2102
Douglas Gregor063daf62009-03-13 18:40:31 +00002103/// \brief Add all of the function declarations in the given function set to
2104/// the overload canddiate set.
2105void Sema::AddFunctionCandidates(const FunctionSet &Functions,
2106 Expr **Args, unsigned NumArgs,
2107 OverloadCandidateSet& CandidateSet,
2108 bool SuppressUserConversions) {
2109 for (FunctionSet::const_iterator F = Functions.begin(),
2110 FEnd = Functions.end();
2111 F != FEnd; ++F)
2112 AddOverloadCandidate(*F, Args, NumArgs, CandidateSet,
2113 SuppressUserConversions);
2114}
2115
Douglas Gregor96176b32008-11-18 23:14:02 +00002116/// AddMethodCandidate - Adds the given C++ member function to the set
2117/// of candidate functions, using the given function call arguments
2118/// and the object argument (@c Object). For example, in a call
2119/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
2120/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
2121/// allow user-defined conversions via constructors or conversion
Sebastian Redle2b68332009-04-12 17:16:29 +00002122/// operators. If @p ForceRValue, treat all arguments as rvalues. This is
2123/// a slightly hacky way to implement the overloading rules for elidable copy
2124/// initialization in C++0x (C++0x 12.8p15).
Douglas Gregor96176b32008-11-18 23:14:02 +00002125void
2126Sema::AddMethodCandidate(CXXMethodDecl *Method, Expr *Object,
2127 Expr **Args, unsigned NumArgs,
2128 OverloadCandidateSet& CandidateSet,
Sebastian Redle2b68332009-04-12 17:16:29 +00002129 bool SuppressUserConversions, bool ForceRValue)
Douglas Gregor96176b32008-11-18 23:14:02 +00002130{
Douglas Gregor72564e72009-02-26 23:50:07 +00002131 const FunctionProtoType* Proto
2132 = dyn_cast<FunctionProtoType>(Method->getType()->getAsFunctionType());
Douglas Gregor96176b32008-11-18 23:14:02 +00002133 assert(Proto && "Methods without a prototype cannot be overloaded");
Sebastian Redl3201f6b2009-04-16 17:51:27 +00002134 assert(!isa<CXXConversionDecl>(Method) &&
Douglas Gregor96176b32008-11-18 23:14:02 +00002135 "Use AddConversionCandidate for conversion functions");
Sebastian Redl3201f6b2009-04-16 17:51:27 +00002136 assert(!isa<CXXConstructorDecl>(Method) &&
2137 "Use AddOverloadCandidate for constructors");
Douglas Gregor96176b32008-11-18 23:14:02 +00002138
2139 // Add this candidate
2140 CandidateSet.push_back(OverloadCandidate());
2141 OverloadCandidate& Candidate = CandidateSet.back();
2142 Candidate.Function = Method;
Douglas Gregor106c6eb2008-11-19 22:57:39 +00002143 Candidate.IsSurrogate = false;
Douglas Gregor88a35142008-12-22 05:46:06 +00002144 Candidate.IgnoreObjectArgument = false;
Douglas Gregor96176b32008-11-18 23:14:02 +00002145
2146 unsigned NumArgsInProto = Proto->getNumArgs();
2147
2148 // (C++ 13.3.2p2): A candidate function having fewer than m
2149 // parameters is viable only if it has an ellipsis in its parameter
2150 // list (8.3.5).
2151 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2152 Candidate.Viable = false;
2153 return;
2154 }
2155
2156 // (C++ 13.3.2p2): A candidate function having more than m parameters
2157 // is viable only if the (m+1)st parameter has a default argument
2158 // (8.3.6). For the purposes of overload resolution, the
2159 // parameter list is truncated on the right, so that there are
2160 // exactly m parameters.
2161 unsigned MinRequiredArgs = Method->getMinRequiredArguments();
2162 if (NumArgs < MinRequiredArgs) {
2163 // Not enough arguments.
2164 Candidate.Viable = false;
2165 return;
2166 }
2167
2168 Candidate.Viable = true;
2169 Candidate.Conversions.resize(NumArgs + 1);
2170
Douglas Gregor88a35142008-12-22 05:46:06 +00002171 if (Method->isStatic() || !Object)
2172 // The implicit object argument is ignored.
2173 Candidate.IgnoreObjectArgument = true;
2174 else {
2175 // Determine the implicit conversion sequence for the object
2176 // parameter.
2177 Candidate.Conversions[0] = TryObjectArgumentInitialization(Object, Method);
2178 if (Candidate.Conversions[0].ConversionKind
2179 == ImplicitConversionSequence::BadConversion) {
2180 Candidate.Viable = false;
2181 return;
2182 }
Douglas Gregor96176b32008-11-18 23:14:02 +00002183 }
2184
2185 // Determine the implicit conversion sequences for each of the
2186 // arguments.
2187 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2188 if (ArgIdx < NumArgsInProto) {
2189 // (C++ 13.3.2p3): for F to be a viable function, there shall
2190 // exist for each argument an implicit conversion sequence
2191 // (13.3.3.1) that converts that argument to the corresponding
2192 // parameter of F.
2193 QualType ParamType = Proto->getArgType(ArgIdx);
2194 Candidate.Conversions[ArgIdx + 1]
2195 = TryCopyInitialization(Args[ArgIdx], ParamType,
Sebastian Redle2b68332009-04-12 17:16:29 +00002196 SuppressUserConversions, ForceRValue);
Douglas Gregor96176b32008-11-18 23:14:02 +00002197 if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2198 == ImplicitConversionSequence::BadConversion) {
2199 Candidate.Viable = false;
2200 break;
2201 }
2202 } else {
2203 // (C++ 13.3.2p2): For the purposes of overload resolution, any
2204 // argument for which there is no corresponding parameter is
2205 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2206 Candidate.Conversions[ArgIdx + 1].ConversionKind
2207 = ImplicitConversionSequence::EllipsisConversion;
2208 }
2209 }
2210}
2211
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002212/// AddConversionCandidate - Add a C++ conversion function as a
2213/// candidate in the candidate set (C++ [over.match.conv],
2214/// C++ [over.match.copy]). From is the expression we're converting from,
2215/// and ToType is the type that we're eventually trying to convert to
2216/// (which may or may not be the same type as the type that the
2217/// conversion function produces).
2218void
2219Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
2220 Expr *From, QualType ToType,
2221 OverloadCandidateSet& CandidateSet) {
2222 // Add this candidate
2223 CandidateSet.push_back(OverloadCandidate());
2224 OverloadCandidate& Candidate = CandidateSet.back();
2225 Candidate.Function = Conversion;
Douglas Gregor106c6eb2008-11-19 22:57:39 +00002226 Candidate.IsSurrogate = false;
Douglas Gregor88a35142008-12-22 05:46:06 +00002227 Candidate.IgnoreObjectArgument = false;
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002228 Candidate.FinalConversion.setAsIdentityConversion();
2229 Candidate.FinalConversion.FromTypePtr
2230 = Conversion->getConversionType().getAsOpaquePtr();
2231 Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr();
2232
Douglas Gregor96176b32008-11-18 23:14:02 +00002233 // Determine the implicit conversion sequence for the implicit
2234 // object parameter.
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002235 Candidate.Viable = true;
2236 Candidate.Conversions.resize(1);
Douglas Gregor96176b32008-11-18 23:14:02 +00002237 Candidate.Conversions[0] = TryObjectArgumentInitialization(From, Conversion);
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002238
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002239 if (Candidate.Conversions[0].ConversionKind
2240 == ImplicitConversionSequence::BadConversion) {
2241 Candidate.Viable = false;
2242 return;
2243 }
2244
2245 // To determine what the conversion from the result of calling the
2246 // conversion function to the type we're eventually trying to
2247 // convert to (ToType), we need to synthesize a call to the
2248 // conversion function and attempt copy initialization from it. This
2249 // makes sure that we get the right semantics with respect to
2250 // lvalues/rvalues and the type. Fortunately, we can allocate this
2251 // call on the stack and we don't need its arguments to be
2252 // well-formed.
2253 DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
2254 SourceLocation());
2255 ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002256 &ConversionRef, false);
Ted Kremenek668bf912009-02-09 20:51:47 +00002257
2258 // Note that it is safe to allocate CallExpr on the stack here because
2259 // there are 0 arguments (i.e., nothing is allocated using ASTContext's
2260 // allocator).
2261 CallExpr Call(Context, &ConversionFn, 0, 0,
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002262 Conversion->getConversionType().getNonReferenceType(),
2263 SourceLocation());
2264 ImplicitConversionSequence ICS = TryCopyInitialization(&Call, ToType, true);
2265 switch (ICS.ConversionKind) {
2266 case ImplicitConversionSequence::StandardConversion:
2267 Candidate.FinalConversion = ICS.Standard;
2268 break;
2269
2270 case ImplicitConversionSequence::BadConversion:
2271 Candidate.Viable = false;
2272 break;
2273
2274 default:
2275 assert(false &&
2276 "Can only end up with a standard conversion sequence or failure");
2277 }
2278}
2279
Douglas Gregor106c6eb2008-11-19 22:57:39 +00002280/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
2281/// converts the given @c Object to a function pointer via the
2282/// conversion function @c Conversion, and then attempts to call it
2283/// with the given arguments (C++ [over.call.object]p2-4). Proto is
2284/// the type of function that we'll eventually be calling.
2285void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
Douglas Gregor72564e72009-02-26 23:50:07 +00002286 const FunctionProtoType *Proto,
Douglas Gregor106c6eb2008-11-19 22:57:39 +00002287 Expr *Object, Expr **Args, unsigned NumArgs,
2288 OverloadCandidateSet& CandidateSet) {
2289 CandidateSet.push_back(OverloadCandidate());
2290 OverloadCandidate& Candidate = CandidateSet.back();
2291 Candidate.Function = 0;
2292 Candidate.Surrogate = Conversion;
2293 Candidate.Viable = true;
2294 Candidate.IsSurrogate = true;
Douglas Gregor88a35142008-12-22 05:46:06 +00002295 Candidate.IgnoreObjectArgument = false;
Douglas Gregor106c6eb2008-11-19 22:57:39 +00002296 Candidate.Conversions.resize(NumArgs + 1);
2297
2298 // Determine the implicit conversion sequence for the implicit
2299 // object parameter.
2300 ImplicitConversionSequence ObjectInit
2301 = TryObjectArgumentInitialization(Object, Conversion);
2302 if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) {
2303 Candidate.Viable = false;
2304 return;
2305 }
2306
2307 // The first conversion is actually a user-defined conversion whose
2308 // first conversion is ObjectInit's standard conversion (which is
2309 // effectively a reference binding). Record it as such.
2310 Candidate.Conversions[0].ConversionKind
2311 = ImplicitConversionSequence::UserDefinedConversion;
2312 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
2313 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
2314 Candidate.Conversions[0].UserDefined.After
2315 = Candidate.Conversions[0].UserDefined.Before;
2316 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
2317
2318 // Find the
2319 unsigned NumArgsInProto = Proto->getNumArgs();
2320
2321 // (C++ 13.3.2p2): A candidate function having fewer than m
2322 // parameters is viable only if it has an ellipsis in its parameter
2323 // list (8.3.5).
2324 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2325 Candidate.Viable = false;
2326 return;
2327 }
2328
2329 // Function types don't have any default arguments, so just check if
2330 // we have enough arguments.
2331 if (NumArgs < NumArgsInProto) {
2332 // Not enough arguments.
2333 Candidate.Viable = false;
2334 return;
2335 }
2336
2337 // Determine the implicit conversion sequences for each of the
2338 // arguments.
2339 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2340 if (ArgIdx < NumArgsInProto) {
2341 // (C++ 13.3.2p3): for F to be a viable function, there shall
2342 // exist for each argument an implicit conversion sequence
2343 // (13.3.3.1) that converts that argument to the corresponding
2344 // parameter of F.
2345 QualType ParamType = Proto->getArgType(ArgIdx);
2346 Candidate.Conversions[ArgIdx + 1]
2347 = TryCopyInitialization(Args[ArgIdx], ParamType,
2348 /*SuppressUserConversions=*/false);
2349 if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2350 == ImplicitConversionSequence::BadConversion) {
2351 Candidate.Viable = false;
2352 break;
2353 }
2354 } else {
2355 // (C++ 13.3.2p2): For the purposes of overload resolution, any
2356 // argument for which there is no corresponding parameter is
2357 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2358 Candidate.Conversions[ArgIdx + 1].ConversionKind
2359 = ImplicitConversionSequence::EllipsisConversion;
2360 }
2361 }
2362}
2363
Douglas Gregor063daf62009-03-13 18:40:31 +00002364// FIXME: This will eventually be removed, once we've migrated all of
2365// the operator overloading logic over to the scheme used by binary
2366// operators, which works for template instantiation.
2367void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
Douglas Gregorf680a0f2009-02-04 16:44:47 +00002368 SourceLocation OpLoc,
Douglas Gregor96176b32008-11-18 23:14:02 +00002369 Expr **Args, unsigned NumArgs,
Douglas Gregorf680a0f2009-02-04 16:44:47 +00002370 OverloadCandidateSet& CandidateSet,
2371 SourceRange OpRange) {
Douglas Gregor063daf62009-03-13 18:40:31 +00002372
2373 FunctionSet Functions;
2374
2375 QualType T1 = Args[0]->getType();
2376 QualType T2;
2377 if (NumArgs > 1)
2378 T2 = Args[1]->getType();
2379
2380 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2381 LookupOverloadedOperatorName(Op, S, T1, T2, Functions);
2382 ArgumentDependentLookup(OpName, Args, NumArgs, Functions);
2383 AddFunctionCandidates(Functions, Args, NumArgs, CandidateSet);
2384 AddMemberOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet, OpRange);
2385 AddBuiltinOperatorCandidates(Op, Args, NumArgs, CandidateSet);
2386}
2387
2388/// \brief Add overload candidates for overloaded operators that are
2389/// member functions.
2390///
2391/// Add the overloaded operator candidates that are member functions
2392/// for the operator Op that was used in an operator expression such
2393/// as "x Op y". , Args/NumArgs provides the operator arguments, and
2394/// CandidateSet will store the added overload candidates. (C++
2395/// [over.match.oper]).
2396void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
2397 SourceLocation OpLoc,
2398 Expr **Args, unsigned NumArgs,
2399 OverloadCandidateSet& CandidateSet,
2400 SourceRange OpRange) {
Douglas Gregor96176b32008-11-18 23:14:02 +00002401 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2402
2403 // C++ [over.match.oper]p3:
2404 // For a unary operator @ with an operand of a type whose
2405 // cv-unqualified version is T1, and for a binary operator @ with
2406 // a left operand of a type whose cv-unqualified version is T1 and
2407 // a right operand of a type whose cv-unqualified version is T2,
2408 // three sets of candidate functions, designated member
2409 // candidates, non-member candidates and built-in candidates, are
2410 // constructed as follows:
2411 QualType T1 = Args[0]->getType();
2412 QualType T2;
2413 if (NumArgs > 1)
2414 T2 = Args[1]->getType();
2415
2416 // -- If T1 is a class type, the set of member candidates is the
2417 // result of the qualified lookup of T1::operator@
2418 // (13.3.1.1.1); otherwise, the set of member candidates is
2419 // empty.
Douglas Gregor063daf62009-03-13 18:40:31 +00002420 // FIXME: Lookup in base classes, too!
Douglas Gregor96176b32008-11-18 23:14:02 +00002421 if (const RecordType *T1Rec = T1->getAsRecordType()) {
Douglas Gregor3fc749d2008-12-23 00:26:44 +00002422 DeclContext::lookup_const_iterator Oper, OperEnd;
Douglas Gregor6ab35242009-04-09 21:40:53 +00002423 for (llvm::tie(Oper, OperEnd) = T1Rec->getDecl()->lookup(Context, OpName);
Douglas Gregor3fc749d2008-12-23 00:26:44 +00002424 Oper != OperEnd; ++Oper)
2425 AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Args[0],
2426 Args+1, NumArgs - 1, CandidateSet,
Douglas Gregor96176b32008-11-18 23:14:02 +00002427 /*SuppressUserConversions=*/false);
Douglas Gregor96176b32008-11-18 23:14:02 +00002428 }
Douglas Gregor96176b32008-11-18 23:14:02 +00002429}
2430
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002431/// AddBuiltinCandidate - Add a candidate for a built-in
2432/// operator. ResultTy and ParamTys are the result and parameter types
2433/// of the built-in candidate, respectively. Args and NumArgs are the
Douglas Gregor88b4bf22009-01-13 00:52:54 +00002434/// arguments being passed to the candidate. IsAssignmentOperator
2435/// should be true when this built-in candidate is an assignment
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002436/// operator. NumContextualBoolArguments is the number of arguments
2437/// (at the beginning of the argument list) that will be contextually
2438/// converted to bool.
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002439void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
2440 Expr **Args, unsigned NumArgs,
Douglas Gregor88b4bf22009-01-13 00:52:54 +00002441 OverloadCandidateSet& CandidateSet,
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002442 bool IsAssignmentOperator,
2443 unsigned NumContextualBoolArguments) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002444 // Add this candidate
2445 CandidateSet.push_back(OverloadCandidate());
2446 OverloadCandidate& Candidate = CandidateSet.back();
2447 Candidate.Function = 0;
Douglas Gregorc9467cf2008-12-12 02:00:36 +00002448 Candidate.IsSurrogate = false;
Douglas Gregor88a35142008-12-22 05:46:06 +00002449 Candidate.IgnoreObjectArgument = false;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002450 Candidate.BuiltinTypes.ResultTy = ResultTy;
2451 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2452 Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
2453
2454 // Determine the implicit conversion sequences for each of the
2455 // arguments.
2456 Candidate.Viable = true;
2457 Candidate.Conversions.resize(NumArgs);
2458 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
Douglas Gregor88b4bf22009-01-13 00:52:54 +00002459 // C++ [over.match.oper]p4:
2460 // For the built-in assignment operators, conversions of the
2461 // left operand are restricted as follows:
2462 // -- no temporaries are introduced to hold the left operand, and
2463 // -- no user-defined conversions are applied to the left
2464 // operand to achieve a type match with the left-most
2465 // parameter of a built-in candidate.
2466 //
2467 // We block these conversions by turning off user-defined
2468 // conversions, since that is the only way that initialization of
2469 // a reference to a non-class type can occur from something that
2470 // is not of the same type.
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002471 if (ArgIdx < NumContextualBoolArguments) {
2472 assert(ParamTys[ArgIdx] == Context.BoolTy &&
2473 "Contextual conversion to bool requires bool type");
2474 Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
2475 } else {
2476 Candidate.Conversions[ArgIdx]
2477 = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx],
2478 ArgIdx == 0 && IsAssignmentOperator);
2479 }
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002480 if (Candidate.Conversions[ArgIdx].ConversionKind
Douglas Gregor96176b32008-11-18 23:14:02 +00002481 == ImplicitConversionSequence::BadConversion) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002482 Candidate.Viable = false;
Douglas Gregor96176b32008-11-18 23:14:02 +00002483 break;
2484 }
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002485 }
2486}
2487
2488/// BuiltinCandidateTypeSet - A set of types that will be used for the
2489/// candidate operator functions for built-in operators (C++
2490/// [over.built]). The types are separated into pointer types and
2491/// enumeration types.
2492class BuiltinCandidateTypeSet {
2493 /// TypeSet - A set of types.
Chris Lattnere37b94c2009-03-29 00:04:01 +00002494 typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002495
2496 /// PointerTypes - The set of pointer types that will be used in the
2497 /// built-in candidates.
2498 TypeSet PointerTypes;
2499
2500 /// EnumerationTypes - The set of enumeration types that will be
2501 /// used in the built-in candidates.
2502 TypeSet EnumerationTypes;
2503
2504 /// Context - The AST context in which we will build the type sets.
2505 ASTContext &Context;
2506
2507 bool AddWithMoreQualifiedTypeVariants(QualType Ty);
2508
2509public:
2510 /// iterator - Iterates through the types that are part of the set.
Chris Lattnere37b94c2009-03-29 00:04:01 +00002511 typedef TypeSet::iterator iterator;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002512
2513 BuiltinCandidateTypeSet(ASTContext &Context) : Context(Context) { }
2514
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002515 void AddTypesConvertedFrom(QualType Ty, bool AllowUserConversions,
2516 bool AllowExplicitConversions);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002517
2518 /// pointer_begin - First pointer type found;
2519 iterator pointer_begin() { return PointerTypes.begin(); }
2520
2521 /// pointer_end - Last pointer type found;
2522 iterator pointer_end() { return PointerTypes.end(); }
2523
2524 /// enumeration_begin - First enumeration type found;
2525 iterator enumeration_begin() { return EnumerationTypes.begin(); }
2526
2527 /// enumeration_end - Last enumeration type found;
2528 iterator enumeration_end() { return EnumerationTypes.end(); }
2529};
2530
2531/// AddWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
2532/// the set of pointer types along with any more-qualified variants of
2533/// that type. For example, if @p Ty is "int const *", this routine
2534/// will add "int const *", "int const volatile *", "int const
2535/// restrict *", and "int const volatile restrict *" to the set of
2536/// pointer types. Returns true if the add of @p Ty itself succeeded,
2537/// false otherwise.
2538bool BuiltinCandidateTypeSet::AddWithMoreQualifiedTypeVariants(QualType Ty) {
2539 // Insert this type.
Chris Lattnere37b94c2009-03-29 00:04:01 +00002540 if (!PointerTypes.insert(Ty))
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002541 return false;
2542
2543 if (const PointerType *PointerTy = Ty->getAsPointerType()) {
2544 QualType PointeeTy = PointerTy->getPointeeType();
2545 // FIXME: Optimize this so that we don't keep trying to add the same types.
2546
2547 // FIXME: Do we have to add CVR qualifiers at *all* levels to deal
2548 // with all pointer conversions that don't cast away constness?
2549 if (!PointeeTy.isConstQualified())
2550 AddWithMoreQualifiedTypeVariants
2551 (Context.getPointerType(PointeeTy.withConst()));
2552 if (!PointeeTy.isVolatileQualified())
2553 AddWithMoreQualifiedTypeVariants
2554 (Context.getPointerType(PointeeTy.withVolatile()));
2555 if (!PointeeTy.isRestrictQualified())
2556 AddWithMoreQualifiedTypeVariants
2557 (Context.getPointerType(PointeeTy.withRestrict()));
2558 }
2559
2560 return true;
2561}
2562
2563/// AddTypesConvertedFrom - Add each of the types to which the type @p
2564/// Ty can be implicit converted to the given set of @p Types. We're
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002565/// primarily interested in pointer types and enumeration types.
2566/// AllowUserConversions is true if we should look at the conversion
2567/// functions of a class type, and AllowExplicitConversions if we
2568/// should also include the explicit conversion functions of a class
2569/// type.
2570void
2571BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
2572 bool AllowUserConversions,
2573 bool AllowExplicitConversions) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002574 // Only deal with canonical types.
2575 Ty = Context.getCanonicalType(Ty);
2576
2577 // Look through reference types; they aren't part of the type of an
2578 // expression for the purposes of conversions.
2579 if (const ReferenceType *RefTy = Ty->getAsReferenceType())
2580 Ty = RefTy->getPointeeType();
2581
2582 // We don't care about qualifiers on the type.
2583 Ty = Ty.getUnqualifiedType();
2584
2585 if (const PointerType *PointerTy = Ty->getAsPointerType()) {
2586 QualType PointeeTy = PointerTy->getPointeeType();
2587
2588 // Insert our type, and its more-qualified variants, into the set
2589 // of types.
2590 if (!AddWithMoreQualifiedTypeVariants(Ty))
2591 return;
2592
2593 // Add 'cv void*' to our set of types.
2594 if (!Ty->isVoidType()) {
2595 QualType QualVoid
2596 = Context.VoidTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2597 AddWithMoreQualifiedTypeVariants(Context.getPointerType(QualVoid));
2598 }
2599
2600 // If this is a pointer to a class type, add pointers to its bases
2601 // (with the same level of cv-qualification as the original
2602 // derived class, of course).
2603 if (const RecordType *PointeeRec = PointeeTy->getAsRecordType()) {
2604 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(PointeeRec->getDecl());
2605 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2606 Base != ClassDecl->bases_end(); ++Base) {
2607 QualType BaseTy = Context.getCanonicalType(Base->getType());
2608 BaseTy = BaseTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2609
2610 // Add the pointer type, recursively, so that we get all of
2611 // the indirect base classes, too.
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002612 AddTypesConvertedFrom(Context.getPointerType(BaseTy), false, false);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002613 }
2614 }
2615 } else if (Ty->isEnumeralType()) {
Chris Lattnere37b94c2009-03-29 00:04:01 +00002616 EnumerationTypes.insert(Ty);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002617 } else if (AllowUserConversions) {
2618 if (const RecordType *TyRec = Ty->getAsRecordType()) {
2619 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
2620 // FIXME: Visit conversion functions in the base classes, too.
2621 OverloadedFunctionDecl *Conversions
2622 = ClassDecl->getConversionFunctions();
2623 for (OverloadedFunctionDecl::function_iterator Func
2624 = Conversions->function_begin();
2625 Func != Conversions->function_end(); ++Func) {
2626 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002627 if (AllowExplicitConversions || !Conv->isExplicit())
2628 AddTypesConvertedFrom(Conv->getConversionType(), false, false);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002629 }
2630 }
2631 }
2632}
2633
Douglas Gregor74253732008-11-19 15:42:04 +00002634/// AddBuiltinOperatorCandidates - Add the appropriate built-in
2635/// operator overloads to the candidate set (C++ [over.built]), based
2636/// on the operator @p Op and the arguments given. For example, if the
2637/// operator is a binary '+', this routine might add "int
2638/// operator+(int, int)" to cover integer addition.
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002639void
Douglas Gregor74253732008-11-19 15:42:04 +00002640Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
2641 Expr **Args, unsigned NumArgs,
2642 OverloadCandidateSet& CandidateSet) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002643 // The set of "promoted arithmetic types", which are the arithmetic
2644 // types are that preserved by promotion (C++ [over.built]p2). Note
2645 // that the first few of these types are the promoted integral
2646 // types; these types need to be first.
2647 // FIXME: What about complex?
2648 const unsigned FirstIntegralType = 0;
2649 const unsigned LastIntegralType = 13;
2650 const unsigned FirstPromotedIntegralType = 7,
2651 LastPromotedIntegralType = 13;
2652 const unsigned FirstPromotedArithmeticType = 7,
2653 LastPromotedArithmeticType = 16;
2654 const unsigned NumArithmeticTypes = 16;
2655 QualType ArithmeticTypes[NumArithmeticTypes] = {
2656 Context.BoolTy, Context.CharTy, Context.WCharTy,
2657 Context.SignedCharTy, Context.ShortTy,
2658 Context.UnsignedCharTy, Context.UnsignedShortTy,
2659 Context.IntTy, Context.LongTy, Context.LongLongTy,
2660 Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
2661 Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
2662 };
2663
2664 // Find all of the types that the arguments can convert to, but only
2665 // if the operator we're looking at has built-in operator candidates
2666 // that make use of these types.
2667 BuiltinCandidateTypeSet CandidateTypes(Context);
2668 if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
2669 Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
Douglas Gregor74253732008-11-19 15:42:04 +00002670 Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002671 Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
Douglas Gregor74253732008-11-19 15:42:04 +00002672 Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
Sebastian Redl3201f6b2009-04-16 17:51:27 +00002673 (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) {
Douglas Gregor74253732008-11-19 15:42:04 +00002674 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002675 CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
2676 true,
2677 (Op == OO_Exclaim ||
2678 Op == OO_AmpAmp ||
2679 Op == OO_PipePipe));
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002680 }
2681
2682 bool isComparison = false;
2683 switch (Op) {
2684 case OO_None:
2685 case NUM_OVERLOADED_OPERATORS:
2686 assert(false && "Expected an overloaded operator");
2687 break;
2688
Douglas Gregor74253732008-11-19 15:42:04 +00002689 case OO_Star: // '*' is either unary or binary
2690 if (NumArgs == 1)
2691 goto UnaryStar;
2692 else
2693 goto BinaryStar;
2694 break;
2695
2696 case OO_Plus: // '+' is either unary or binary
2697 if (NumArgs == 1)
2698 goto UnaryPlus;
2699 else
2700 goto BinaryPlus;
2701 break;
2702
2703 case OO_Minus: // '-' is either unary or binary
2704 if (NumArgs == 1)
2705 goto UnaryMinus;
2706 else
2707 goto BinaryMinus;
2708 break;
2709
2710 case OO_Amp: // '&' is either unary or binary
2711 if (NumArgs == 1)
2712 goto UnaryAmp;
2713 else
2714 goto BinaryAmp;
2715
2716 case OO_PlusPlus:
2717 case OO_MinusMinus:
2718 // C++ [over.built]p3:
2719 //
2720 // For every pair (T, VQ), where T is an arithmetic type, and VQ
2721 // is either volatile or empty, there exist candidate operator
2722 // functions of the form
2723 //
2724 // VQ T& operator++(VQ T&);
2725 // T operator++(VQ T&, int);
2726 //
2727 // C++ [over.built]p4:
2728 //
2729 // For every pair (T, VQ), where T is an arithmetic type other
2730 // than bool, and VQ is either volatile or empty, there exist
2731 // candidate operator functions of the form
2732 //
2733 // VQ T& operator--(VQ T&);
2734 // T operator--(VQ T&, int);
2735 for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
2736 Arith < NumArithmeticTypes; ++Arith) {
2737 QualType ArithTy = ArithmeticTypes[Arith];
2738 QualType ParamTypes[2]
Sebastian Redl7c80bd62009-03-16 23:22:08 +00002739 = { Context.getLValueReferenceType(ArithTy), Context.IntTy };
Douglas Gregor74253732008-11-19 15:42:04 +00002740
2741 // Non-volatile version.
2742 if (NumArgs == 1)
2743 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2744 else
2745 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2746
2747 // Volatile version
Sebastian Redl7c80bd62009-03-16 23:22:08 +00002748 ParamTypes[0] = Context.getLValueReferenceType(ArithTy.withVolatile());
Douglas Gregor74253732008-11-19 15:42:04 +00002749 if (NumArgs == 1)
2750 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2751 else
2752 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2753 }
2754
2755 // C++ [over.built]p5:
2756 //
2757 // For every pair (T, VQ), where T is a cv-qualified or
2758 // cv-unqualified object type, and VQ is either volatile or
2759 // empty, there exist candidate operator functions of the form
2760 //
2761 // T*VQ& operator++(T*VQ&);
2762 // T*VQ& operator--(T*VQ&);
2763 // T* operator++(T*VQ&, int);
2764 // T* operator--(T*VQ&, int);
2765 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2766 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2767 // Skip pointer types that aren't pointers to object types.
Douglas Gregorbad0e652009-03-24 20:32:41 +00002768 if (!(*Ptr)->getAsPointerType()->getPointeeType()->isObjectType())
Douglas Gregor74253732008-11-19 15:42:04 +00002769 continue;
2770
2771 QualType ParamTypes[2] = {
Sebastian Redl7c80bd62009-03-16 23:22:08 +00002772 Context.getLValueReferenceType(*Ptr), Context.IntTy
Douglas Gregor74253732008-11-19 15:42:04 +00002773 };
2774
2775 // Without volatile
2776 if (NumArgs == 1)
2777 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2778 else
2779 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2780
2781 if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
2782 // With volatile
Sebastian Redl7c80bd62009-03-16 23:22:08 +00002783 ParamTypes[0] = Context.getLValueReferenceType((*Ptr).withVolatile());
Douglas Gregor74253732008-11-19 15:42:04 +00002784 if (NumArgs == 1)
2785 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2786 else
2787 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2788 }
2789 }
2790 break;
2791
2792 UnaryStar:
2793 // C++ [over.built]p6:
2794 // For every cv-qualified or cv-unqualified object type T, there
2795 // exist candidate operator functions of the form
2796 //
2797 // T& operator*(T*);
2798 //
2799 // C++ [over.built]p7:
2800 // For every function type T, there exist candidate operator
2801 // functions of the form
2802 // T& operator*(T*);
2803 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2804 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2805 QualType ParamTy = *Ptr;
2806 QualType PointeeTy = ParamTy->getAsPointerType()->getPointeeType();
Sebastian Redl7c80bd62009-03-16 23:22:08 +00002807 AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy),
Douglas Gregor74253732008-11-19 15:42:04 +00002808 &ParamTy, Args, 1, CandidateSet);
2809 }
2810 break;
2811
2812 UnaryPlus:
2813 // C++ [over.built]p8:
2814 // For every type T, there exist candidate operator functions of
2815 // the form
2816 //
2817 // T* operator+(T*);
2818 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2819 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2820 QualType ParamTy = *Ptr;
2821 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
2822 }
2823
2824 // Fall through
2825
2826 UnaryMinus:
2827 // C++ [over.built]p9:
2828 // For every promoted arithmetic type T, there exist candidate
2829 // operator functions of the form
2830 //
2831 // T operator+(T);
2832 // T operator-(T);
2833 for (unsigned Arith = FirstPromotedArithmeticType;
2834 Arith < LastPromotedArithmeticType; ++Arith) {
2835 QualType ArithTy = ArithmeticTypes[Arith];
2836 AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
2837 }
2838 break;
2839
2840 case OO_Tilde:
2841 // C++ [over.built]p10:
2842 // For every promoted integral type T, there exist candidate
2843 // operator functions of the form
2844 //
2845 // T operator~(T);
2846 for (unsigned Int = FirstPromotedIntegralType;
2847 Int < LastPromotedIntegralType; ++Int) {
2848 QualType IntTy = ArithmeticTypes[Int];
2849 AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
2850 }
2851 break;
2852
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002853 case OO_New:
2854 case OO_Delete:
2855 case OO_Array_New:
2856 case OO_Array_Delete:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002857 case OO_Call:
Douglas Gregor74253732008-11-19 15:42:04 +00002858 assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002859 break;
2860
2861 case OO_Comma:
Douglas Gregor74253732008-11-19 15:42:04 +00002862 UnaryAmp:
2863 case OO_Arrow:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002864 // C++ [over.match.oper]p3:
2865 // -- For the operator ',', the unary operator '&', or the
2866 // operator '->', the built-in candidates set is empty.
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002867 break;
2868
2869 case OO_Less:
2870 case OO_Greater:
2871 case OO_LessEqual:
2872 case OO_GreaterEqual:
2873 case OO_EqualEqual:
2874 case OO_ExclaimEqual:
2875 // C++ [over.built]p15:
2876 //
2877 // For every pointer or enumeration type T, there exist
2878 // candidate operator functions of the form
2879 //
2880 // bool operator<(T, T);
2881 // bool operator>(T, T);
2882 // bool operator<=(T, T);
2883 // bool operator>=(T, T);
2884 // bool operator==(T, T);
2885 // bool operator!=(T, T);
2886 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2887 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2888 QualType ParamTypes[2] = { *Ptr, *Ptr };
2889 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
2890 }
2891 for (BuiltinCandidateTypeSet::iterator Enum
2892 = CandidateTypes.enumeration_begin();
2893 Enum != CandidateTypes.enumeration_end(); ++Enum) {
2894 QualType ParamTypes[2] = { *Enum, *Enum };
2895 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
2896 }
2897
2898 // Fall through.
2899 isComparison = true;
2900
Douglas Gregor74253732008-11-19 15:42:04 +00002901 BinaryPlus:
2902 BinaryMinus:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002903 if (!isComparison) {
2904 // We didn't fall through, so we must have OO_Plus or OO_Minus.
2905
2906 // C++ [over.built]p13:
2907 //
2908 // For every cv-qualified or cv-unqualified object type T
2909 // there exist candidate operator functions of the form
2910 //
2911 // T* operator+(T*, ptrdiff_t);
2912 // T& operator[](T*, ptrdiff_t); [BELOW]
2913 // T* operator-(T*, ptrdiff_t);
2914 // T* operator+(ptrdiff_t, T*);
2915 // T& operator[](ptrdiff_t, T*); [BELOW]
2916 //
2917 // C++ [over.built]p14:
2918 //
2919 // For every T, where T is a pointer to object type, there
2920 // exist candidate operator functions of the form
2921 //
2922 // ptrdiff_t operator-(T, T);
2923 for (BuiltinCandidateTypeSet::iterator Ptr
2924 = CandidateTypes.pointer_begin();
2925 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2926 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
2927
2928 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
2929 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2930
2931 if (Op == OO_Plus) {
2932 // T* operator+(ptrdiff_t, T*);
2933 ParamTypes[0] = ParamTypes[1];
2934 ParamTypes[1] = *Ptr;
2935 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2936 } else {
2937 // ptrdiff_t operator-(T, T);
2938 ParamTypes[1] = *Ptr;
2939 AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
2940 Args, 2, CandidateSet);
2941 }
2942 }
2943 }
2944 // Fall through
2945
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002946 case OO_Slash:
Douglas Gregor74253732008-11-19 15:42:04 +00002947 BinaryStar:
Sebastian Redl3201f6b2009-04-16 17:51:27 +00002948 Conditional:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002949 // C++ [over.built]p12:
2950 //
2951 // For every pair of promoted arithmetic types L and R, there
2952 // exist candidate operator functions of the form
2953 //
2954 // LR operator*(L, R);
2955 // LR operator/(L, R);
2956 // LR operator+(L, R);
2957 // LR operator-(L, R);
2958 // bool operator<(L, R);
2959 // bool operator>(L, R);
2960 // bool operator<=(L, R);
2961 // bool operator>=(L, R);
2962 // bool operator==(L, R);
2963 // bool operator!=(L, R);
2964 //
2965 // where LR is the result of the usual arithmetic conversions
2966 // between types L and R.
Sebastian Redl3201f6b2009-04-16 17:51:27 +00002967 //
2968 // C++ [over.built]p24:
2969 //
2970 // For every pair of promoted arithmetic types L and R, there exist
2971 // candidate operator functions of the form
2972 //
2973 // LR operator?(bool, L, R);
2974 //
2975 // where LR is the result of the usual arithmetic conversions
2976 // between types L and R.
2977 // Our candidates ignore the first parameter.
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002978 for (unsigned Left = FirstPromotedArithmeticType;
2979 Left < LastPromotedArithmeticType; ++Left) {
2980 for (unsigned Right = FirstPromotedArithmeticType;
2981 Right < LastPromotedArithmeticType; ++Right) {
2982 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
2983 QualType Result
2984 = isComparison? Context.BoolTy
2985 : UsualArithmeticConversionsType(LandR[0], LandR[1]);
2986 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
2987 }
2988 }
2989 break;
2990
2991 case OO_Percent:
Douglas Gregor74253732008-11-19 15:42:04 +00002992 BinaryAmp:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002993 case OO_Caret:
2994 case OO_Pipe:
2995 case OO_LessLess:
2996 case OO_GreaterGreater:
2997 // C++ [over.built]p17:
2998 //
2999 // For every pair of promoted integral types L and R, there
3000 // exist candidate operator functions of the form
3001 //
3002 // LR operator%(L, R);
3003 // LR operator&(L, R);
3004 // LR operator^(L, R);
3005 // LR operator|(L, R);
3006 // L operator<<(L, R);
3007 // L operator>>(L, R);
3008 //
3009 // where LR is the result of the usual arithmetic conversions
3010 // between types L and R.
3011 for (unsigned Left = FirstPromotedIntegralType;
3012 Left < LastPromotedIntegralType; ++Left) {
3013 for (unsigned Right = FirstPromotedIntegralType;
3014 Right < LastPromotedIntegralType; ++Right) {
3015 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3016 QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
3017 ? LandR[0]
3018 : UsualArithmeticConversionsType(LandR[0], LandR[1]);
3019 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3020 }
3021 }
3022 break;
3023
3024 case OO_Equal:
3025 // C++ [over.built]p20:
3026 //
3027 // For every pair (T, VQ), where T is an enumeration or
3028 // (FIXME:) pointer to member type and VQ is either volatile or
3029 // empty, there exist candidate operator functions of the form
3030 //
3031 // VQ T& operator=(VQ T&, T);
3032 for (BuiltinCandidateTypeSet::iterator Enum
3033 = CandidateTypes.enumeration_begin();
3034 Enum != CandidateTypes.enumeration_end(); ++Enum) {
3035 QualType ParamTypes[2];
3036
3037 // T& operator=(T&, T)
Sebastian Redl7c80bd62009-03-16 23:22:08 +00003038 ParamTypes[0] = Context.getLValueReferenceType(*Enum);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003039 ParamTypes[1] = *Enum;
Douglas Gregor88b4bf22009-01-13 00:52:54 +00003040 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
Douglas Gregor09f41cf2009-01-14 15:45:31 +00003041 /*IsAssignmentOperator=*/false);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003042
Douglas Gregor74253732008-11-19 15:42:04 +00003043 if (!Context.getCanonicalType(*Enum).isVolatileQualified()) {
3044 // volatile T& operator=(volatile T&, T)
Sebastian Redl7c80bd62009-03-16 23:22:08 +00003045 ParamTypes[0] = Context.getLValueReferenceType((*Enum).withVolatile());
Douglas Gregor74253732008-11-19 15:42:04 +00003046 ParamTypes[1] = *Enum;
Douglas Gregor88b4bf22009-01-13 00:52:54 +00003047 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
Douglas Gregor09f41cf2009-01-14 15:45:31 +00003048 /*IsAssignmentOperator=*/false);
Douglas Gregor74253732008-11-19 15:42:04 +00003049 }
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003050 }
3051 // Fall through.
3052
3053 case OO_PlusEqual:
3054 case OO_MinusEqual:
3055 // C++ [over.built]p19:
3056 //
3057 // For every pair (T, VQ), where T is any type and VQ is either
3058 // volatile or empty, there exist candidate operator functions
3059 // of the form
3060 //
3061 // T*VQ& operator=(T*VQ&, T*);
3062 //
3063 // C++ [over.built]p21:
3064 //
3065 // For every pair (T, VQ), where T is a cv-qualified or
3066 // cv-unqualified object type and VQ is either volatile or
3067 // empty, there exist candidate operator functions of the form
3068 //
3069 // T*VQ& operator+=(T*VQ&, ptrdiff_t);
3070 // T*VQ& operator-=(T*VQ&, ptrdiff_t);
3071 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3072 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3073 QualType ParamTypes[2];
3074 ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
3075
3076 // non-volatile version
Sebastian Redl7c80bd62009-03-16 23:22:08 +00003077 ParamTypes[0] = Context.getLValueReferenceType(*Ptr);
Douglas Gregor88b4bf22009-01-13 00:52:54 +00003078 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3079 /*IsAssigmentOperator=*/Op == OO_Equal);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003080
Douglas Gregor74253732008-11-19 15:42:04 +00003081 if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
3082 // volatile version
Sebastian Redl7c80bd62009-03-16 23:22:08 +00003083 ParamTypes[0] = Context.getLValueReferenceType((*Ptr).withVolatile());
Douglas Gregor88b4bf22009-01-13 00:52:54 +00003084 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3085 /*IsAssigmentOperator=*/Op == OO_Equal);
Douglas Gregor74253732008-11-19 15:42:04 +00003086 }
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003087 }
3088 // Fall through.
3089
3090 case OO_StarEqual:
3091 case OO_SlashEqual:
3092 // C++ [over.built]p18:
3093 //
3094 // For every triple (L, VQ, R), where L is an arithmetic type,
3095 // VQ is either volatile or empty, and R is a promoted
3096 // arithmetic type, there exist candidate operator functions of
3097 // the form
3098 //
3099 // VQ L& operator=(VQ L&, R);
3100 // VQ L& operator*=(VQ L&, R);
3101 // VQ L& operator/=(VQ L&, R);
3102 // VQ L& operator+=(VQ L&, R);
3103 // VQ L& operator-=(VQ L&, R);
3104 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
3105 for (unsigned Right = FirstPromotedArithmeticType;
3106 Right < LastPromotedArithmeticType; ++Right) {
3107 QualType ParamTypes[2];
3108 ParamTypes[1] = ArithmeticTypes[Right];
3109
3110 // Add this built-in operator as a candidate (VQ is empty).
Sebastian Redl7c80bd62009-03-16 23:22:08 +00003111 ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
Douglas Gregor88b4bf22009-01-13 00:52:54 +00003112 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3113 /*IsAssigmentOperator=*/Op == OO_Equal);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003114
3115 // Add this built-in operator as a candidate (VQ is 'volatile').
3116 ParamTypes[0] = ArithmeticTypes[Left].withVolatile();
Sebastian Redl7c80bd62009-03-16 23:22:08 +00003117 ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
Douglas Gregor88b4bf22009-01-13 00:52:54 +00003118 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3119 /*IsAssigmentOperator=*/Op == OO_Equal);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003120 }
3121 }
3122 break;
3123
3124 case OO_PercentEqual:
3125 case OO_LessLessEqual:
3126 case OO_GreaterGreaterEqual:
3127 case OO_AmpEqual:
3128 case OO_CaretEqual:
3129 case OO_PipeEqual:
3130 // C++ [over.built]p22:
3131 //
3132 // For every triple (L, VQ, R), where L is an integral type, VQ
3133 // is either volatile or empty, and R is a promoted integral
3134 // type, there exist candidate operator functions of the form
3135 //
3136 // VQ L& operator%=(VQ L&, R);
3137 // VQ L& operator<<=(VQ L&, R);
3138 // VQ L& operator>>=(VQ L&, R);
3139 // VQ L& operator&=(VQ L&, R);
3140 // VQ L& operator^=(VQ L&, R);
3141 // VQ L& operator|=(VQ L&, R);
3142 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
3143 for (unsigned Right = FirstPromotedIntegralType;
3144 Right < LastPromotedIntegralType; ++Right) {
3145 QualType ParamTypes[2];
3146 ParamTypes[1] = ArithmeticTypes[Right];
3147
3148 // Add this built-in operator as a candidate (VQ is empty).
Sebastian Redl7c80bd62009-03-16 23:22:08 +00003149 ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003150 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3151
3152 // Add this built-in operator as a candidate (VQ is 'volatile').
3153 ParamTypes[0] = ArithmeticTypes[Left];
3154 ParamTypes[0].addVolatile();
Sebastian Redl7c80bd62009-03-16 23:22:08 +00003155 ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003156 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3157 }
3158 }
3159 break;
3160
Douglas Gregor74253732008-11-19 15:42:04 +00003161 case OO_Exclaim: {
3162 // C++ [over.operator]p23:
3163 //
3164 // There also exist candidate operator functions of the form
3165 //
3166 // bool operator!(bool);
3167 // bool operator&&(bool, bool); [BELOW]
3168 // bool operator||(bool, bool); [BELOW]
3169 QualType ParamTy = Context.BoolTy;
Douglas Gregor09f41cf2009-01-14 15:45:31 +00003170 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
3171 /*IsAssignmentOperator=*/false,
3172 /*NumContextualBoolArguments=*/1);
Douglas Gregor74253732008-11-19 15:42:04 +00003173 break;
3174 }
3175
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003176 case OO_AmpAmp:
3177 case OO_PipePipe: {
3178 // C++ [over.operator]p23:
3179 //
3180 // There also exist candidate operator functions of the form
3181 //
Douglas Gregor74253732008-11-19 15:42:04 +00003182 // bool operator!(bool); [ABOVE]
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003183 // bool operator&&(bool, bool);
3184 // bool operator||(bool, bool);
3185 QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
Douglas Gregor09f41cf2009-01-14 15:45:31 +00003186 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
3187 /*IsAssignmentOperator=*/false,
3188 /*NumContextualBoolArguments=*/2);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003189 break;
3190 }
3191
3192 case OO_Subscript:
3193 // C++ [over.built]p13:
3194 //
3195 // For every cv-qualified or cv-unqualified object type T there
3196 // exist candidate operator functions of the form
3197 //
3198 // T* operator+(T*, ptrdiff_t); [ABOVE]
3199 // T& operator[](T*, ptrdiff_t);
3200 // T* operator-(T*, ptrdiff_t); [ABOVE]
3201 // T* operator+(ptrdiff_t, T*); [ABOVE]
3202 // T& operator[](ptrdiff_t, T*);
3203 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3204 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3205 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3206 QualType PointeeType = (*Ptr)->getAsPointerType()->getPointeeType();
Sebastian Redl7c80bd62009-03-16 23:22:08 +00003207 QualType ResultTy = Context.getLValueReferenceType(PointeeType);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003208
3209 // T& operator[](T*, ptrdiff_t)
3210 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3211
3212 // T& operator[](ptrdiff_t, T*);
3213 ParamTypes[0] = ParamTypes[1];
3214 ParamTypes[1] = *Ptr;
3215 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3216 }
3217 break;
3218
3219 case OO_ArrowStar:
3220 // FIXME: No support for pointer-to-members yet.
3221 break;
Sebastian Redl3201f6b2009-04-16 17:51:27 +00003222
3223 case OO_Conditional:
3224 // Note that we don't consider the first argument, since it has been
3225 // contextually converted to bool long ago. The candidates below are
3226 // therefore added as binary.
3227 //
3228 // C++ [over.built]p24:
3229 // For every type T, where T is a pointer or pointer-to-member type,
3230 // there exist candidate operator functions of the form
3231 //
3232 // T operator?(bool, T, T);
3233 //
3234 // FIXME: pointer-to-member
3235 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(),
3236 E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) {
3237 QualType ParamTypes[2] = { *Ptr, *Ptr };
3238 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3239 }
3240 goto Conditional;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003241 }
3242}
3243
Douglas Gregorfa047642009-02-04 00:32:51 +00003244/// \brief Add function candidates found via argument-dependent lookup
3245/// to the set of overloading candidates.
3246///
3247/// This routine performs argument-dependent name lookup based on the
3248/// given function name (which may also be an operator name) and adds
3249/// all of the overload candidates found by ADL to the overload
3250/// candidate set (C++ [basic.lookup.argdep]).
3251void
3252Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
3253 Expr **Args, unsigned NumArgs,
3254 OverloadCandidateSet& CandidateSet) {
Douglas Gregor3fd95ce2009-03-13 00:33:25 +00003255 FunctionSet Functions;
Douglas Gregorfa047642009-02-04 00:32:51 +00003256
Douglas Gregor3fd95ce2009-03-13 00:33:25 +00003257 // Record all of the function candidates that we've already
3258 // added to the overload set, so that we don't add those same
3259 // candidates a second time.
3260 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3261 CandEnd = CandidateSet.end();
3262 Cand != CandEnd; ++Cand)
3263 if (Cand->Function)
3264 Functions.insert(Cand->Function);
Douglas Gregorfa047642009-02-04 00:32:51 +00003265
Douglas Gregor3fd95ce2009-03-13 00:33:25 +00003266 ArgumentDependentLookup(Name, Args, NumArgs, Functions);
Douglas Gregorfa047642009-02-04 00:32:51 +00003267
Douglas Gregor3fd95ce2009-03-13 00:33:25 +00003268 // Erase all of the candidates we already knew about.
3269 // FIXME: This is suboptimal. Is there a better way?
3270 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3271 CandEnd = CandidateSet.end();
3272 Cand != CandEnd; ++Cand)
3273 if (Cand->Function)
3274 Functions.erase(Cand->Function);
3275
3276 // For each of the ADL candidates we found, add it to the overload
3277 // set.
3278 for (FunctionSet::iterator Func = Functions.begin(),
3279 FuncEnd = Functions.end();
3280 Func != FuncEnd; ++Func)
3281 AddOverloadCandidate(*Func, Args, NumArgs, CandidateSet);
Douglas Gregorfa047642009-02-04 00:32:51 +00003282}
3283
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003284/// isBetterOverloadCandidate - Determines whether the first overload
3285/// candidate is a better candidate than the second (C++ 13.3.3p1).
3286bool
3287Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
3288 const OverloadCandidate& Cand2)
3289{
3290 // Define viable functions to be better candidates than non-viable
3291 // functions.
3292 if (!Cand2.Viable)
3293 return Cand1.Viable;
3294 else if (!Cand1.Viable)
3295 return false;
3296
Douglas Gregor88a35142008-12-22 05:46:06 +00003297 // C++ [over.match.best]p1:
3298 //
3299 // -- if F is a static member function, ICS1(F) is defined such
3300 // that ICS1(F) is neither better nor worse than ICS1(G) for
3301 // any function G, and, symmetrically, ICS1(G) is neither
3302 // better nor worse than ICS1(F).
3303 unsigned StartArg = 0;
3304 if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
3305 StartArg = 1;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003306
3307 // (C++ 13.3.3p1): a viable function F1 is defined to be a better
3308 // function than another viable function F2 if for all arguments i,
3309 // ICSi(F1) is not a worse conversion sequence than ICSi(F2), and
3310 // then...
3311 unsigned NumArgs = Cand1.Conversions.size();
3312 assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
3313 bool HasBetterConversion = false;
Douglas Gregor88a35142008-12-22 05:46:06 +00003314 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003315 switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
3316 Cand2.Conversions[ArgIdx])) {
3317 case ImplicitConversionSequence::Better:
3318 // Cand1 has a better conversion sequence.
3319 HasBetterConversion = true;
3320 break;
3321
3322 case ImplicitConversionSequence::Worse:
3323 // Cand1 can't be better than Cand2.
3324 return false;
3325
3326 case ImplicitConversionSequence::Indistinguishable:
3327 // Do nothing.
3328 break;
3329 }
3330 }
3331
3332 if (HasBetterConversion)
3333 return true;
3334
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003335 // FIXME: Several other bullets in (C++ 13.3.3p1) need to be
3336 // implemented, but they require template support.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003337
Douglas Gregorf1991ea2008-11-07 22:36:19 +00003338 // C++ [over.match.best]p1b4:
3339 //
3340 // -- the context is an initialization by user-defined conversion
3341 // (see 8.5, 13.3.1.5) and the standard conversion sequence
3342 // from the return type of F1 to the destination type (i.e.,
3343 // the type of the entity being initialized) is a better
3344 // conversion sequence than the standard conversion sequence
3345 // from the return type of F2 to the destination type.
Douglas Gregor447b69e2008-11-19 03:25:36 +00003346 if (Cand1.Function && Cand2.Function &&
3347 isa<CXXConversionDecl>(Cand1.Function) &&
Douglas Gregorf1991ea2008-11-07 22:36:19 +00003348 isa<CXXConversionDecl>(Cand2.Function)) {
3349 switch (CompareStandardConversionSequences(Cand1.FinalConversion,
3350 Cand2.FinalConversion)) {
3351 case ImplicitConversionSequence::Better:
3352 // Cand1 has a better conversion sequence.
3353 return true;
3354
3355 case ImplicitConversionSequence::Worse:
3356 // Cand1 can't be better than Cand2.
3357 return false;
3358
3359 case ImplicitConversionSequence::Indistinguishable:
3360 // Do nothing
3361 break;
3362 }
3363 }
3364
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003365 return false;
3366}
3367
3368/// BestViableFunction - Computes the best viable function (C++ 13.3.3)
3369/// within an overload candidate set. If overloading is successful,
3370/// the result will be OR_Success and Best will be set to point to the
3371/// best viable function within the candidate set. Otherwise, one of
3372/// several kinds of errors will be returned; see
3373/// Sema::OverloadingResult.
3374Sema::OverloadingResult
3375Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
3376 OverloadCandidateSet::iterator& Best)
3377{
3378 // Find the best viable function.
3379 Best = CandidateSet.end();
3380 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3381 Cand != CandidateSet.end(); ++Cand) {
3382 if (Cand->Viable) {
3383 if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
3384 Best = Cand;
3385 }
3386 }
3387
3388 // If we didn't find any viable functions, abort.
3389 if (Best == CandidateSet.end())
3390 return OR_No_Viable_Function;
3391
3392 // Make sure that this function is better than every other viable
3393 // function. If not, we have an ambiguity.
3394 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3395 Cand != CandidateSet.end(); ++Cand) {
3396 if (Cand->Viable &&
3397 Cand != Best &&
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003398 !isBetterOverloadCandidate(*Best, *Cand)) {
3399 Best = CandidateSet.end();
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003400 return OR_Ambiguous;
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003401 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003402 }
3403
3404 // Best is the best viable function.
Douglas Gregor48f3bb92009-02-18 21:56:37 +00003405 if (Best->Function &&
3406 (Best->Function->isDeleted() ||
3407 Best->Function->getAttr<UnavailableAttr>()))
3408 return OR_Deleted;
3409
3410 // If Best refers to a function that is either deleted (C++0x) or
3411 // unavailable (Clang extension) report an error.
3412
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003413 return OR_Success;
3414}
3415
3416/// PrintOverloadCandidates - When overload resolution fails, prints
3417/// diagnostic messages containing the candidates in the candidate
3418/// set. If OnlyViable is true, only viable candidates will be printed.
3419void
3420Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
3421 bool OnlyViable)
3422{
3423 OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3424 LastCand = CandidateSet.end();
3425 for (; Cand != LastCand; ++Cand) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003426 if (Cand->Viable || !OnlyViable) {
3427 if (Cand->Function) {
Douglas Gregor48f3bb92009-02-18 21:56:37 +00003428 if (Cand->Function->isDeleted() ||
3429 Cand->Function->getAttr<UnavailableAttr>()) {
3430 // Deleted or "unavailable" function.
3431 Diag(Cand->Function->getLocation(), diag::err_ovl_candidate_deleted)
3432 << Cand->Function->isDeleted();
3433 } else {
3434 // Normal function
3435 // FIXME: Give a better reason!
3436 Diag(Cand->Function->getLocation(), diag::err_ovl_candidate);
3437 }
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003438 } else if (Cand->IsSurrogate) {
Douglas Gregor621b3932008-11-21 02:54:28 +00003439 // Desugar the type of the surrogate down to a function type,
3440 // retaining as many typedefs as possible while still showing
3441 // the function type (and, therefore, its parameter types).
3442 QualType FnType = Cand->Surrogate->getConversionType();
Sebastian Redl7c80bd62009-03-16 23:22:08 +00003443 bool isLValueReference = false;
3444 bool isRValueReference = false;
Douglas Gregor621b3932008-11-21 02:54:28 +00003445 bool isPointer = false;
Sebastian Redl7c80bd62009-03-16 23:22:08 +00003446 if (const LValueReferenceType *FnTypeRef =
3447 FnType->getAsLValueReferenceType()) {
Douglas Gregor621b3932008-11-21 02:54:28 +00003448 FnType = FnTypeRef->getPointeeType();
Sebastian Redl7c80bd62009-03-16 23:22:08 +00003449 isLValueReference = true;
3450 } else if (const RValueReferenceType *FnTypeRef =
3451 FnType->getAsRValueReferenceType()) {
3452 FnType = FnTypeRef->getPointeeType();
3453 isRValueReference = true;
Douglas Gregor621b3932008-11-21 02:54:28 +00003454 }
3455 if (const PointerType *FnTypePtr = FnType->getAsPointerType()) {
3456 FnType = FnTypePtr->getPointeeType();
3457 isPointer = true;
3458 }
3459 // Desugar down to a function type.
3460 FnType = QualType(FnType->getAsFunctionType(), 0);
3461 // Reconstruct the pointer/reference as appropriate.
3462 if (isPointer) FnType = Context.getPointerType(FnType);
Sebastian Redl7c80bd62009-03-16 23:22:08 +00003463 if (isRValueReference) FnType = Context.getRValueReferenceType(FnType);
3464 if (isLValueReference) FnType = Context.getLValueReferenceType(FnType);
Douglas Gregor621b3932008-11-21 02:54:28 +00003465
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003466 Diag(Cand->Surrogate->getLocation(), diag::err_ovl_surrogate_cand)
Chris Lattnerd1625842008-11-24 06:25:27 +00003467 << FnType;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003468 } else {
3469 // FIXME: We need to get the identifier in here
3470 // FIXME: Do we want the error message to point at the
3471 // operator? (built-ins won't have a location)
3472 QualType FnType
3473 = Context.getFunctionType(Cand->BuiltinTypes.ResultTy,
3474 Cand->BuiltinTypes.ParamTypes,
3475 Cand->Conversions.size(),
3476 false, 0);
3477
Chris Lattnerd1625842008-11-24 06:25:27 +00003478 Diag(SourceLocation(), diag::err_ovl_builtin_candidate) << FnType;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003479 }
3480 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003481 }
3482}
3483
Douglas Gregor904eed32008-11-10 20:40:00 +00003484/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
3485/// an overloaded function (C++ [over.over]), where @p From is an
3486/// expression with overloaded function type and @p ToType is the type
3487/// we're trying to resolve to. For example:
3488///
3489/// @code
3490/// int f(double);
3491/// int f(int);
3492///
3493/// int (*pfd)(double) = f; // selects f(double)
3494/// @endcode
3495///
3496/// This routine returns the resulting FunctionDecl if it could be
3497/// resolved, and NULL otherwise. When @p Complain is true, this
3498/// routine will emit diagnostics if there is an error.
3499FunctionDecl *
Sebastian Redl33b399a2009-02-04 21:23:32 +00003500Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
Douglas Gregor904eed32008-11-10 20:40:00 +00003501 bool Complain) {
3502 QualType FunctionType = ToType;
Sebastian Redl33b399a2009-02-04 21:23:32 +00003503 bool IsMember = false;
Daniel Dunbarbb710012009-02-26 19:13:44 +00003504 if (const PointerType *ToTypePtr = ToType->getAsPointerType())
Douglas Gregor904eed32008-11-10 20:40:00 +00003505 FunctionType = ToTypePtr->getPointeeType();
Daniel Dunbarbb710012009-02-26 19:13:44 +00003506 else if (const ReferenceType *ToTypeRef = ToType->getAsReferenceType())
3507 FunctionType = ToTypeRef->getPointeeType();
Sebastian Redl33b399a2009-02-04 21:23:32 +00003508 else if (const MemberPointerType *MemTypePtr =
3509 ToType->getAsMemberPointerType()) {
3510 FunctionType = MemTypePtr->getPointeeType();
3511 IsMember = true;
3512 }
Douglas Gregor904eed32008-11-10 20:40:00 +00003513
3514 // We only look at pointers or references to functions.
3515 if (!FunctionType->isFunctionType())
3516 return 0;
3517
3518 // Find the actual overloaded function declaration.
3519 OverloadedFunctionDecl *Ovl = 0;
3520
3521 // C++ [over.over]p1:
3522 // [...] [Note: any redundant set of parentheses surrounding the
3523 // overloaded function name is ignored (5.1). ]
3524 Expr *OvlExpr = From->IgnoreParens();
3525
3526 // C++ [over.over]p1:
3527 // [...] The overloaded function name can be preceded by the &
3528 // operator.
3529 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) {
3530 if (UnOp->getOpcode() == UnaryOperator::AddrOf)
3531 OvlExpr = UnOp->getSubExpr()->IgnoreParens();
3532 }
3533
3534 // Try to dig out the overloaded function.
3535 if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(OvlExpr))
3536 Ovl = dyn_cast<OverloadedFunctionDecl>(DR->getDecl());
3537
3538 // If there's no overloaded function declaration, we're done.
3539 if (!Ovl)
3540 return 0;
3541
3542 // Look through all of the overloaded functions, searching for one
3543 // whose type matches exactly.
3544 // FIXME: When templates or using declarations come along, we'll actually
3545 // have to deal with duplicates, partial ordering, etc. For now, we
3546 // can just do a simple search.
3547 FunctionType = Context.getCanonicalType(FunctionType.getUnqualifiedType());
3548 for (OverloadedFunctionDecl::function_iterator Fun = Ovl->function_begin();
3549 Fun != Ovl->function_end(); ++Fun) {
3550 // C++ [over.over]p3:
3551 // Non-member functions and static member functions match
Sebastian Redl0defd762009-02-05 12:33:33 +00003552 // targets of type "pointer-to-function" or "reference-to-function."
3553 // Nonstatic member functions match targets of
Sebastian Redl33b399a2009-02-04 21:23:32 +00003554 // type "pointer-to-member-function."
3555 // Note that according to DR 247, the containing class does not matter.
3556 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Fun)) {
3557 // Skip non-static functions when converting to pointer, and static
3558 // when converting to member pointer.
3559 if (Method->isStatic() == IsMember)
Douglas Gregor904eed32008-11-10 20:40:00 +00003560 continue;
Sebastian Redl33b399a2009-02-04 21:23:32 +00003561 } else if (IsMember)
3562 continue;
Douglas Gregor904eed32008-11-10 20:40:00 +00003563
3564 if (FunctionType == Context.getCanonicalType((*Fun)->getType()))
3565 return *Fun;
3566 }
3567
3568 return 0;
3569}
3570
Douglas Gregorf6b89692008-11-26 05:54:23 +00003571/// ResolveOverloadedCallFn - Given the call expression that calls Fn
Douglas Gregorfa047642009-02-04 00:32:51 +00003572/// (which eventually refers to the declaration Func) and the call
3573/// arguments Args/NumArgs, attempt to resolve the function call down
3574/// to a specific function. If overload resolution succeeds, returns
3575/// the function declaration produced by overload
Douglas Gregor0a396682008-11-26 06:01:48 +00003576/// resolution. Otherwise, emits diagnostics, deletes all of the
Douglas Gregorf6b89692008-11-26 05:54:23 +00003577/// arguments and Fn, and returns NULL.
Douglas Gregorfa047642009-02-04 00:32:51 +00003578FunctionDecl *Sema::ResolveOverloadedCallFn(Expr *Fn, NamedDecl *Callee,
Douglas Gregor17330012009-02-04 15:01:18 +00003579 DeclarationName UnqualifiedName,
Douglas Gregor0a396682008-11-26 06:01:48 +00003580 SourceLocation LParenLoc,
3581 Expr **Args, unsigned NumArgs,
3582 SourceLocation *CommaLocs,
Douglas Gregorfa047642009-02-04 00:32:51 +00003583 SourceLocation RParenLoc,
Douglas Gregor17330012009-02-04 15:01:18 +00003584 bool &ArgumentDependentLookup) {
Douglas Gregorf6b89692008-11-26 05:54:23 +00003585 OverloadCandidateSet CandidateSet;
Douglas Gregor17330012009-02-04 15:01:18 +00003586
3587 // Add the functions denoted by Callee to the set of candidate
3588 // functions. While we're doing so, track whether argument-dependent
3589 // lookup still applies, per:
3590 //
3591 // C++0x [basic.lookup.argdep]p3:
3592 // Let X be the lookup set produced by unqualified lookup (3.4.1)
3593 // and let Y be the lookup set produced by argument dependent
3594 // lookup (defined as follows). If X contains
3595 //
3596 // -- a declaration of a class member, or
3597 //
3598 // -- a block-scope function declaration that is not a
3599 // using-declaration, or
3600 //
3601 // -- a declaration that is neither a function or a function
3602 // template
3603 //
3604 // then Y is empty.
Douglas Gregorfa047642009-02-04 00:32:51 +00003605 if (OverloadedFunctionDecl *Ovl
Douglas Gregor17330012009-02-04 15:01:18 +00003606 = dyn_cast_or_null<OverloadedFunctionDecl>(Callee)) {
3607 for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
3608 FuncEnd = Ovl->function_end();
3609 Func != FuncEnd; ++Func) {
3610 AddOverloadCandidate(*Func, Args, NumArgs, CandidateSet);
3611
3612 if ((*Func)->getDeclContext()->isRecord() ||
3613 (*Func)->getDeclContext()->isFunctionOrMethod())
3614 ArgumentDependentLookup = false;
3615 }
3616 } else if (FunctionDecl *Func = dyn_cast_or_null<FunctionDecl>(Callee)) {
3617 AddOverloadCandidate(Func, Args, NumArgs, CandidateSet);
3618
3619 if (Func->getDeclContext()->isRecord() ||
3620 Func->getDeclContext()->isFunctionOrMethod())
3621 ArgumentDependentLookup = false;
3622 }
3623
3624 if (Callee)
3625 UnqualifiedName = Callee->getDeclName();
3626
Douglas Gregorfa047642009-02-04 00:32:51 +00003627 if (ArgumentDependentLookup)
Douglas Gregor17330012009-02-04 15:01:18 +00003628 AddArgumentDependentLookupCandidates(UnqualifiedName, Args, NumArgs,
Douglas Gregorfa047642009-02-04 00:32:51 +00003629 CandidateSet);
3630
Douglas Gregorf6b89692008-11-26 05:54:23 +00003631 OverloadCandidateSet::iterator Best;
3632 switch (BestViableFunction(CandidateSet, Best)) {
Douglas Gregor0a396682008-11-26 06:01:48 +00003633 case OR_Success:
3634 return Best->Function;
Douglas Gregorf6b89692008-11-26 05:54:23 +00003635
3636 case OR_No_Viable_Function:
Chris Lattner4330d652009-02-17 07:29:20 +00003637 Diag(Fn->getSourceRange().getBegin(),
Douglas Gregorf6b89692008-11-26 05:54:23 +00003638 diag::err_ovl_no_viable_function_in_call)
Chris Lattner4330d652009-02-17 07:29:20 +00003639 << UnqualifiedName << Fn->getSourceRange();
Douglas Gregorf6b89692008-11-26 05:54:23 +00003640 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3641 break;
3642
3643 case OR_Ambiguous:
3644 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
Douglas Gregor17330012009-02-04 15:01:18 +00003645 << UnqualifiedName << Fn->getSourceRange();
Douglas Gregorf6b89692008-11-26 05:54:23 +00003646 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3647 break;
Douglas Gregor48f3bb92009-02-18 21:56:37 +00003648
3649 case OR_Deleted:
3650 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
3651 << Best->Function->isDeleted()
3652 << UnqualifiedName
3653 << Fn->getSourceRange();
3654 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3655 break;
Douglas Gregorf6b89692008-11-26 05:54:23 +00003656 }
3657
3658 // Overload resolution failed. Destroy all of the subexpressions and
3659 // return NULL.
3660 Fn->Destroy(Context);
3661 for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
3662 Args[Arg]->Destroy(Context);
3663 return 0;
3664}
3665
Douglas Gregorbc736fc2009-03-13 23:49:33 +00003666/// \brief Create a unary operation that may resolve to an overloaded
3667/// operator.
3668///
3669/// \param OpLoc The location of the operator itself (e.g., '*').
3670///
3671/// \param OpcIn The UnaryOperator::Opcode that describes this
3672/// operator.
3673///
3674/// \param Functions The set of non-member functions that will be
3675/// considered by overload resolution. The caller needs to build this
3676/// set based on the context using, e.g.,
3677/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
3678/// set should not contain any member functions; those will be added
3679/// by CreateOverloadedUnaryOp().
3680///
3681/// \param input The input argument.
3682Sema::OwningExprResult Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc,
3683 unsigned OpcIn,
3684 FunctionSet &Functions,
3685 ExprArg input) {
3686 UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
3687 Expr *Input = (Expr *)input.get();
3688
3689 OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
3690 assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
3691 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3692
3693 Expr *Args[2] = { Input, 0 };
3694 unsigned NumArgs = 1;
3695
3696 // For post-increment and post-decrement, add the implicit '0' as
3697 // the second argument, so that we know this is a post-increment or
3698 // post-decrement.
3699 if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) {
3700 llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
3701 Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy,
3702 SourceLocation());
3703 NumArgs = 2;
3704 }
3705
3706 if (Input->isTypeDependent()) {
3707 OverloadedFunctionDecl *Overloads
3708 = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
3709 for (FunctionSet::iterator Func = Functions.begin(),
3710 FuncEnd = Functions.end();
3711 Func != FuncEnd; ++Func)
3712 Overloads->addOverload(*Func);
3713
3714 DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
3715 OpLoc, false, false);
3716
3717 input.release();
3718 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
3719 &Args[0], NumArgs,
3720 Context.DependentTy,
3721 OpLoc));
3722 }
3723
3724 // Build an empty overload set.
3725 OverloadCandidateSet CandidateSet;
3726
3727 // Add the candidates from the given function set.
3728 AddFunctionCandidates(Functions, &Args[0], NumArgs, CandidateSet, false);
3729
3730 // Add operator candidates that are member functions.
3731 AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
3732
3733 // Add builtin operator candidates.
3734 AddBuiltinOperatorCandidates(Op, &Args[0], NumArgs, CandidateSet);
3735
3736 // Perform overload resolution.
3737 OverloadCandidateSet::iterator Best;
3738 switch (BestViableFunction(CandidateSet, Best)) {
3739 case OR_Success: {
3740 // We found a built-in operator or an overloaded operator.
3741 FunctionDecl *FnDecl = Best->Function;
3742
3743 if (FnDecl) {
3744 // We matched an overloaded operator. Build a call to that
3745 // operator.
3746
3747 // Convert the arguments.
3748 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
3749 if (PerformObjectArgumentInitialization(Input, Method))
3750 return ExprError();
3751 } else {
3752 // Convert the arguments.
3753 if (PerformCopyInitialization(Input,
3754 FnDecl->getParamDecl(0)->getType(),
3755 "passing"))
3756 return ExprError();
3757 }
3758
3759 // Determine the result type
3760 QualType ResultTy
3761 = FnDecl->getType()->getAsFunctionType()->getResultType();
3762 ResultTy = ResultTy.getNonReferenceType();
3763
3764 // Build the actual expression node.
3765 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
3766 SourceLocation());
3767 UsualUnaryConversions(FnExpr);
3768
3769 input.release();
3770 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
3771 &Input, 1, ResultTy,
3772 OpLoc));
3773 } else {
3774 // We matched a built-in operator. Convert the arguments, then
3775 // break out so that we will build the appropriate built-in
3776 // operator node.
3777 if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
3778 Best->Conversions[0], "passing"))
3779 return ExprError();
3780
3781 break;
3782 }
3783 }
3784
3785 case OR_No_Viable_Function:
3786 // No viable function; fall through to handling this as a
3787 // built-in operator, which will produce an error message for us.
3788 break;
3789
3790 case OR_Ambiguous:
3791 Diag(OpLoc, diag::err_ovl_ambiguous_oper)
3792 << UnaryOperator::getOpcodeStr(Opc)
3793 << Input->getSourceRange();
3794 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3795 return ExprError();
3796
3797 case OR_Deleted:
3798 Diag(OpLoc, diag::err_ovl_deleted_oper)
3799 << Best->Function->isDeleted()
3800 << UnaryOperator::getOpcodeStr(Opc)
3801 << Input->getSourceRange();
3802 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3803 return ExprError();
3804 }
3805
3806 // Either we found no viable overloaded operator or we matched a
3807 // built-in operator. In either case, fall through to trying to
3808 // build a built-in operation.
3809 input.release();
3810 return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input));
3811}
3812
Douglas Gregor063daf62009-03-13 18:40:31 +00003813/// \brief Create a binary operation that may resolve to an overloaded
3814/// operator.
3815///
3816/// \param OpLoc The location of the operator itself (e.g., '+').
3817///
3818/// \param OpcIn The BinaryOperator::Opcode that describes this
3819/// operator.
3820///
3821/// \param Functions The set of non-member functions that will be
3822/// considered by overload resolution. The caller needs to build this
3823/// set based on the context using, e.g.,
3824/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
3825/// set should not contain any member functions; those will be added
3826/// by CreateOverloadedBinOp().
3827///
3828/// \param LHS Left-hand argument.
3829/// \param RHS Right-hand argument.
3830Sema::OwningExprResult
3831Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
3832 unsigned OpcIn,
3833 FunctionSet &Functions,
3834 Expr *LHS, Expr *RHS) {
Douglas Gregor063daf62009-03-13 18:40:31 +00003835 Expr *Args[2] = { LHS, RHS };
3836
3837 BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
3838 OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
3839 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3840
3841 // If either side is type-dependent, create an appropriate dependent
3842 // expression.
3843 if (LHS->isTypeDependent() || RHS->isTypeDependent()) {
3844 // .* cannot be overloaded.
3845 if (Opc == BinaryOperator::PtrMemD)
3846 return Owned(new (Context) BinaryOperator(LHS, RHS, Opc,
3847 Context.DependentTy, OpLoc));
3848
3849 OverloadedFunctionDecl *Overloads
3850 = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
3851 for (FunctionSet::iterator Func = Functions.begin(),
3852 FuncEnd = Functions.end();
3853 Func != FuncEnd; ++Func)
3854 Overloads->addOverload(*Func);
3855
3856 DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
3857 OpLoc, false, false);
3858
3859 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
3860 Args, 2,
3861 Context.DependentTy,
3862 OpLoc));
3863 }
3864
3865 // If this is the .* operator, which is not overloadable, just
3866 // create a built-in binary operator.
3867 if (Opc == BinaryOperator::PtrMemD)
3868 return CreateBuiltinBinOp(OpLoc, Opc, LHS, RHS);
3869
3870 // If this is one of the assignment operators, we only perform
3871 // overload resolution if the left-hand side is a class or
3872 // enumeration type (C++ [expr.ass]p3).
3873 if (Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign &&
3874 !LHS->getType()->isOverloadableType())
3875 return CreateBuiltinBinOp(OpLoc, Opc, LHS, RHS);
3876
Douglas Gregorbc736fc2009-03-13 23:49:33 +00003877 // Build an empty overload set.
3878 OverloadCandidateSet CandidateSet;
Douglas Gregor063daf62009-03-13 18:40:31 +00003879
3880 // Add the candidates from the given function set.
3881 AddFunctionCandidates(Functions, Args, 2, CandidateSet, false);
3882
3883 // Add operator candidates that are member functions.
3884 AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
3885
3886 // Add builtin operator candidates.
3887 AddBuiltinOperatorCandidates(Op, Args, 2, CandidateSet);
3888
3889 // Perform overload resolution.
3890 OverloadCandidateSet::iterator Best;
3891 switch (BestViableFunction(CandidateSet, Best)) {
Sebastian Redl3201f6b2009-04-16 17:51:27 +00003892 case OR_Success: {
Douglas Gregor063daf62009-03-13 18:40:31 +00003893 // We found a built-in operator or an overloaded operator.
3894 FunctionDecl *FnDecl = Best->Function;
3895
3896 if (FnDecl) {
3897 // We matched an overloaded operator. Build a call to that
3898 // operator.
3899
3900 // Convert the arguments.
3901 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
3902 if (PerformObjectArgumentInitialization(LHS, Method) ||
3903 PerformCopyInitialization(RHS, FnDecl->getParamDecl(0)->getType(),
3904 "passing"))
3905 return ExprError();
3906 } else {
3907 // Convert the arguments.
3908 if (PerformCopyInitialization(LHS, FnDecl->getParamDecl(0)->getType(),
3909 "passing") ||
3910 PerformCopyInitialization(RHS, FnDecl->getParamDecl(1)->getType(),
3911 "passing"))
3912 return ExprError();
3913 }
3914
3915 // Determine the result type
3916 QualType ResultTy
3917 = FnDecl->getType()->getAsFunctionType()->getResultType();
3918 ResultTy = ResultTy.getNonReferenceType();
3919
3920 // Build the actual expression node.
3921 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
3922 SourceLocation());
3923 UsualUnaryConversions(FnExpr);
3924
3925 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
3926 Args, 2, ResultTy,
3927 OpLoc));
3928 } else {
3929 // We matched a built-in operator. Convert the arguments, then
3930 // break out so that we will build the appropriate built-in
3931 // operator node.
3932 if (PerformImplicitConversion(LHS, Best->BuiltinTypes.ParamTypes[0],
3933 Best->Conversions[0], "passing") ||
3934 PerformImplicitConversion(RHS, Best->BuiltinTypes.ParamTypes[1],
3935 Best->Conversions[1], "passing"))
3936 return ExprError();
3937
3938 break;
3939 }
3940 }
3941
3942 case OR_No_Viable_Function:
3943 // No viable function; fall through to handling this as a
3944 // built-in operator, which will produce an error message for us.
3945 break;
3946
3947 case OR_Ambiguous:
3948 Diag(OpLoc, diag::err_ovl_ambiguous_oper)
3949 << BinaryOperator::getOpcodeStr(Opc)
3950 << LHS->getSourceRange() << RHS->getSourceRange();
3951 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3952 return ExprError();
3953
3954 case OR_Deleted:
3955 Diag(OpLoc, diag::err_ovl_deleted_oper)
3956 << Best->Function->isDeleted()
3957 << BinaryOperator::getOpcodeStr(Opc)
3958 << LHS->getSourceRange() << RHS->getSourceRange();
3959 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3960 return ExprError();
3961 }
3962
3963 // Either we found no viable overloaded operator or we matched a
3964 // built-in operator. In either case, try to build a built-in
3965 // operation.
3966 return CreateBuiltinBinOp(OpLoc, Opc, LHS, RHS);
3967}
3968
Douglas Gregor88a35142008-12-22 05:46:06 +00003969/// BuildCallToMemberFunction - Build a call to a member
3970/// function. MemExpr is the expression that refers to the member
3971/// function (and includes the object parameter), Args/NumArgs are the
3972/// arguments to the function call (not including the object
3973/// parameter). The caller needs to validate that the member
3974/// expression refers to a member function or an overloaded member
3975/// function.
3976Sema::ExprResult
3977Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
3978 SourceLocation LParenLoc, Expr **Args,
3979 unsigned NumArgs, SourceLocation *CommaLocs,
3980 SourceLocation RParenLoc) {
3981 // Dig out the member expression. This holds both the object
3982 // argument and the member function we're referring to.
3983 MemberExpr *MemExpr = 0;
3984 if (ParenExpr *ParenE = dyn_cast<ParenExpr>(MemExprE))
3985 MemExpr = dyn_cast<MemberExpr>(ParenE->getSubExpr());
3986 else
3987 MemExpr = dyn_cast<MemberExpr>(MemExprE);
3988 assert(MemExpr && "Building member call without member expression");
3989
3990 // Extract the object argument.
3991 Expr *ObjectArg = MemExpr->getBase();
3992 if (MemExpr->isArrow())
Ted Kremenek8189cde2009-02-07 01:47:29 +00003993 ObjectArg = new (Context) UnaryOperator(ObjectArg, UnaryOperator::Deref,
3994 ObjectArg->getType()->getAsPointerType()->getPointeeType(),
Douglas Gregor611a8c42009-02-19 00:52:42 +00003995 ObjectArg->getLocStart());
Douglas Gregor88a35142008-12-22 05:46:06 +00003996 CXXMethodDecl *Method = 0;
3997 if (OverloadedFunctionDecl *Ovl
3998 = dyn_cast<OverloadedFunctionDecl>(MemExpr->getMemberDecl())) {
3999 // Add overload candidates
4000 OverloadCandidateSet CandidateSet;
4001 for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
4002 FuncEnd = Ovl->function_end();
4003 Func != FuncEnd; ++Func) {
4004 assert(isa<CXXMethodDecl>(*Func) && "Function is not a method");
4005 Method = cast<CXXMethodDecl>(*Func);
4006 AddMethodCandidate(Method, ObjectArg, Args, NumArgs, CandidateSet,
4007 /*SuppressUserConversions=*/false);
4008 }
4009
4010 OverloadCandidateSet::iterator Best;
4011 switch (BestViableFunction(CandidateSet, Best)) {
4012 case OR_Success:
4013 Method = cast<CXXMethodDecl>(Best->Function);
4014 break;
4015
4016 case OR_No_Viable_Function:
4017 Diag(MemExpr->getSourceRange().getBegin(),
4018 diag::err_ovl_no_viable_member_function_in_call)
Chris Lattner4330d652009-02-17 07:29:20 +00004019 << Ovl->getDeclName() << MemExprE->getSourceRange();
Douglas Gregor88a35142008-12-22 05:46:06 +00004020 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4021 // FIXME: Leaking incoming expressions!
4022 return true;
4023
4024 case OR_Ambiguous:
4025 Diag(MemExpr->getSourceRange().getBegin(),
4026 diag::err_ovl_ambiguous_member_call)
4027 << Ovl->getDeclName() << MemExprE->getSourceRange();
4028 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4029 // FIXME: Leaking incoming expressions!
4030 return true;
Douglas Gregor48f3bb92009-02-18 21:56:37 +00004031
4032 case OR_Deleted:
4033 Diag(MemExpr->getSourceRange().getBegin(),
4034 diag::err_ovl_deleted_member_call)
4035 << Best->Function->isDeleted()
4036 << Ovl->getDeclName() << MemExprE->getSourceRange();
4037 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4038 // FIXME: Leaking incoming expressions!
4039 return true;
Douglas Gregor88a35142008-12-22 05:46:06 +00004040 }
4041
4042 FixOverloadedFunctionReference(MemExpr, Method);
4043 } else {
4044 Method = dyn_cast<CXXMethodDecl>(MemExpr->getMemberDecl());
4045 }
4046
4047 assert(Method && "Member call to something that isn't a method?");
Ted Kremenek8189cde2009-02-07 01:47:29 +00004048 ExprOwningPtr<CXXMemberCallExpr>
Ted Kremenek668bf912009-02-09 20:51:47 +00004049 TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExpr, Args,
4050 NumArgs,
Douglas Gregor88a35142008-12-22 05:46:06 +00004051 Method->getResultType().getNonReferenceType(),
4052 RParenLoc));
4053
4054 // Convert the object argument (for a non-static member function call).
4055 if (!Method->isStatic() &&
4056 PerformObjectArgumentInitialization(ObjectArg, Method))
4057 return true;
4058 MemExpr->setBase(ObjectArg);
4059
4060 // Convert the rest of the arguments
Douglas Gregor72564e72009-02-26 23:50:07 +00004061 const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType());
Douglas Gregor88a35142008-12-22 05:46:06 +00004062 if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
4063 RParenLoc))
4064 return true;
4065
Sebastian Redl0eb23302009-01-19 00:08:26 +00004066 return CheckFunctionCall(Method, TheCall.take()).release();
Douglas Gregor88a35142008-12-22 05:46:06 +00004067}
4068
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004069/// BuildCallToObjectOfClassType - Build a call to an object of class
4070/// type (C++ [over.call.object]), which can end up invoking an
4071/// overloaded function call operator (@c operator()) or performing a
4072/// user-defined conversion on the object argument.
Douglas Gregor88a35142008-12-22 05:46:06 +00004073Sema::ExprResult
Douglas Gregor5c37de72008-12-06 00:22:45 +00004074Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
4075 SourceLocation LParenLoc,
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004076 Expr **Args, unsigned NumArgs,
4077 SourceLocation *CommaLocs,
4078 SourceLocation RParenLoc) {
4079 assert(Object->getType()->isRecordType() && "Requires object type argument");
4080 const RecordType *Record = Object->getType()->getAsRecordType();
4081
4082 // C++ [over.call.object]p1:
4083 // If the primary-expression E in the function call syntax
4084 // evaluates to a class object of type “cv T”, then the set of
4085 // candidate functions includes at least the function call
4086 // operators of T. The function call operators of T are obtained by
4087 // ordinary lookup of the name operator() in the context of
4088 // (E).operator().
4089 OverloadCandidateSet CandidateSet;
Douglas Gregor44b43212008-12-11 16:49:14 +00004090 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
Douglas Gregor3fc749d2008-12-23 00:26:44 +00004091 DeclContext::lookup_const_iterator Oper, OperEnd;
Douglas Gregor6ab35242009-04-09 21:40:53 +00004092 for (llvm::tie(Oper, OperEnd) = Record->getDecl()->lookup(Context, OpName);
Douglas Gregor3fc749d2008-12-23 00:26:44 +00004093 Oper != OperEnd; ++Oper)
4094 AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Object, Args, NumArgs,
4095 CandidateSet, /*SuppressUserConversions=*/false);
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004096
Douglas Gregor106c6eb2008-11-19 22:57:39 +00004097 // C++ [over.call.object]p2:
4098 // In addition, for each conversion function declared in T of the
4099 // form
4100 //
4101 // operator conversion-type-id () cv-qualifier;
4102 //
4103 // where cv-qualifier is the same cv-qualification as, or a
4104 // greater cv-qualification than, cv, and where conversion-type-id
Douglas Gregora967a6f2008-11-20 13:33:37 +00004105 // denotes the type "pointer to function of (P1,...,Pn) returning
4106 // R", or the type "reference to pointer to function of
4107 // (P1,...,Pn) returning R", or the type "reference to function
4108 // of (P1,...,Pn) returning R", a surrogate call function [...]
Douglas Gregor106c6eb2008-11-19 22:57:39 +00004109 // is also considered as a candidate function. Similarly,
4110 // surrogate call functions are added to the set of candidate
4111 // functions for each conversion function declared in an
4112 // accessible base class provided the function is not hidden
4113 // within T by another intervening declaration.
4114 //
4115 // FIXME: Look in base classes for more conversion operators!
4116 OverloadedFunctionDecl *Conversions
4117 = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions();
Douglas Gregor621b3932008-11-21 02:54:28 +00004118 for (OverloadedFunctionDecl::function_iterator
4119 Func = Conversions->function_begin(),
4120 FuncEnd = Conversions->function_end();
4121 Func != FuncEnd; ++Func) {
Douglas Gregor106c6eb2008-11-19 22:57:39 +00004122 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
4123
4124 // Strip the reference type (if any) and then the pointer type (if
4125 // any) to get down to what might be a function type.
4126 QualType ConvType = Conv->getConversionType().getNonReferenceType();
4127 if (const PointerType *ConvPtrType = ConvType->getAsPointerType())
4128 ConvType = ConvPtrType->getPointeeType();
4129
Douglas Gregor72564e72009-02-26 23:50:07 +00004130 if (const FunctionProtoType *Proto = ConvType->getAsFunctionProtoType())
Douglas Gregor106c6eb2008-11-19 22:57:39 +00004131 AddSurrogateCandidate(Conv, Proto, Object, Args, NumArgs, CandidateSet);
4132 }
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004133
4134 // Perform overload resolution.
4135 OverloadCandidateSet::iterator Best;
4136 switch (BestViableFunction(CandidateSet, Best)) {
4137 case OR_Success:
Douglas Gregor106c6eb2008-11-19 22:57:39 +00004138 // Overload resolution succeeded; we'll build the appropriate call
4139 // below.
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004140 break;
4141
4142 case OR_No_Viable_Function:
Sebastian Redle4c452c2008-11-22 13:44:36 +00004143 Diag(Object->getSourceRange().getBegin(),
4144 diag::err_ovl_no_viable_object_call)
Chris Lattner4330d652009-02-17 07:29:20 +00004145 << Object->getType() << Object->getSourceRange();
Sebastian Redle4c452c2008-11-22 13:44:36 +00004146 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004147 break;
4148
4149 case OR_Ambiguous:
4150 Diag(Object->getSourceRange().getBegin(),
4151 diag::err_ovl_ambiguous_object_call)
Chris Lattnerd1625842008-11-24 06:25:27 +00004152 << Object->getType() << Object->getSourceRange();
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004153 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4154 break;
Douglas Gregor48f3bb92009-02-18 21:56:37 +00004155
4156 case OR_Deleted:
4157 Diag(Object->getSourceRange().getBegin(),
4158 diag::err_ovl_deleted_object_call)
4159 << Best->Function->isDeleted()
4160 << Object->getType() << Object->getSourceRange();
4161 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4162 break;
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004163 }
4164
Douglas Gregor106c6eb2008-11-19 22:57:39 +00004165 if (Best == CandidateSet.end()) {
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004166 // We had an error; delete all of the subexpressions and return
4167 // the error.
Ted Kremenek8189cde2009-02-07 01:47:29 +00004168 Object->Destroy(Context);
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004169 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
Ted Kremenek8189cde2009-02-07 01:47:29 +00004170 Args[ArgIdx]->Destroy(Context);
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004171 return true;
4172 }
4173
Douglas Gregor106c6eb2008-11-19 22:57:39 +00004174 if (Best->Function == 0) {
4175 // Since there is no function declaration, this is one of the
4176 // surrogate candidates. Dig out the conversion function.
4177 CXXConversionDecl *Conv
4178 = cast<CXXConversionDecl>(
4179 Best->Conversions[0].UserDefined.ConversionFunction);
4180
4181 // We selected one of the surrogate functions that converts the
4182 // object parameter to a function pointer. Perform the conversion
4183 // on the object argument, then let ActOnCallExpr finish the job.
4184 // FIXME: Represent the user-defined conversion in the AST!
Sebastian Redl0eb23302009-01-19 00:08:26 +00004185 ImpCastExprToType(Object,
Douglas Gregor106c6eb2008-11-19 22:57:39 +00004186 Conv->getConversionType().getNonReferenceType(),
Sebastian Redl7c80bd62009-03-16 23:22:08 +00004187 Conv->getConversionType()->isLValueReferenceType());
Sebastian Redl0eb23302009-01-19 00:08:26 +00004188 return ActOnCallExpr(S, ExprArg(*this, Object), LParenLoc,
4189 MultiExprArg(*this, (ExprTy**)Args, NumArgs),
4190 CommaLocs, RParenLoc).release();
Douglas Gregor106c6eb2008-11-19 22:57:39 +00004191 }
4192
4193 // We found an overloaded operator(). Build a CXXOperatorCallExpr
4194 // that calls this method, using Object for the implicit object
4195 // parameter and passing along the remaining arguments.
4196 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
Douglas Gregor72564e72009-02-26 23:50:07 +00004197 const FunctionProtoType *Proto = Method->getType()->getAsFunctionProtoType();
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004198
4199 unsigned NumArgsInProto = Proto->getNumArgs();
4200 unsigned NumArgsToCheck = NumArgs;
4201
4202 // Build the full argument list for the method call (the
4203 // implicit object parameter is placed at the beginning of the
4204 // list).
4205 Expr **MethodArgs;
4206 if (NumArgs < NumArgsInProto) {
4207 NumArgsToCheck = NumArgsInProto;
4208 MethodArgs = new Expr*[NumArgsInProto + 1];
4209 } else {
4210 MethodArgs = new Expr*[NumArgs + 1];
4211 }
4212 MethodArgs[0] = Object;
4213 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
4214 MethodArgs[ArgIdx + 1] = Args[ArgIdx];
4215
Ted Kremenek8189cde2009-02-07 01:47:29 +00004216 Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
4217 SourceLocation());
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004218 UsualUnaryConversions(NewFn);
4219
4220 // Once we've built TheCall, all of the expressions are properly
4221 // owned.
4222 QualType ResultTy = Method->getResultType().getNonReferenceType();
Ted Kremenek8189cde2009-02-07 01:47:29 +00004223 ExprOwningPtr<CXXOperatorCallExpr>
Douglas Gregor063daf62009-03-13 18:40:31 +00004224 TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
4225 MethodArgs, NumArgs + 1,
Ted Kremenek8189cde2009-02-07 01:47:29 +00004226 ResultTy, RParenLoc));
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004227 delete [] MethodArgs;
4228
Douglas Gregor518fda12009-01-13 05:10:00 +00004229 // We may have default arguments. If so, we need to allocate more
4230 // slots in the call for them.
4231 if (NumArgs < NumArgsInProto)
Ted Kremenek8189cde2009-02-07 01:47:29 +00004232 TheCall->setNumArgs(Context, NumArgsInProto + 1);
Douglas Gregor518fda12009-01-13 05:10:00 +00004233 else if (NumArgs > NumArgsInProto)
4234 NumArgsToCheck = NumArgsInProto;
4235
Chris Lattner312531a2009-04-12 08:11:20 +00004236 bool IsError = false;
4237
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004238 // Initialize the implicit object parameter.
Chris Lattner312531a2009-04-12 08:11:20 +00004239 IsError |= PerformObjectArgumentInitialization(Object, Method);
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004240 TheCall->setArg(0, Object);
4241
Chris Lattner312531a2009-04-12 08:11:20 +00004242
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004243 // Check the argument types.
4244 for (unsigned i = 0; i != NumArgsToCheck; i++) {
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004245 Expr *Arg;
Douglas Gregor518fda12009-01-13 05:10:00 +00004246 if (i < NumArgs) {
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004247 Arg = Args[i];
Douglas Gregor518fda12009-01-13 05:10:00 +00004248
4249 // Pass the argument.
4250 QualType ProtoArgType = Proto->getArgType(i);
Chris Lattner312531a2009-04-12 08:11:20 +00004251 IsError |= PerformCopyInitialization(Arg, ProtoArgType, "passing");
Douglas Gregor518fda12009-01-13 05:10:00 +00004252 } else {
Ted Kremenek8189cde2009-02-07 01:47:29 +00004253 Arg = new (Context) CXXDefaultArgExpr(Method->getParamDecl(i));
Douglas Gregor518fda12009-01-13 05:10:00 +00004254 }
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004255
4256 TheCall->setArg(i + 1, Arg);
4257 }
4258
4259 // If this is a variadic call, handle args passed through "...".
4260 if (Proto->isVariadic()) {
4261 // Promote the arguments (C99 6.5.2.2p7).
4262 for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
4263 Expr *Arg = Args[i];
Chris Lattner312531a2009-04-12 08:11:20 +00004264 IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod);
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004265 TheCall->setArg(i + 1, Arg);
4266 }
4267 }
4268
Chris Lattner312531a2009-04-12 08:11:20 +00004269 if (IsError) return true;
4270
Sebastian Redl0eb23302009-01-19 00:08:26 +00004271 return CheckFunctionCall(Method, TheCall.take()).release();
Douglas Gregorf9eb9052008-11-19 21:05:33 +00004272}
4273
Douglas Gregor8ba10742008-11-20 16:27:02 +00004274/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
4275/// (if one exists), where @c Base is an expression of class type and
4276/// @c Member is the name of the member we're trying to find.
4277Action::ExprResult
Douglas Gregor3fc749d2008-12-23 00:26:44 +00004278Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc,
Douglas Gregor8ba10742008-11-20 16:27:02 +00004279 SourceLocation MemberLoc,
4280 IdentifierInfo &Member) {
4281 assert(Base->getType()->isRecordType() && "left-hand side must have class type");
4282
4283 // C++ [over.ref]p1:
4284 //
4285 // [...] An expression x->m is interpreted as (x.operator->())->m
4286 // for a class object x of type T if T::operator->() exists and if
4287 // the operator is selected as the best match function by the
4288 // overload resolution mechanism (13.3).
4289 // FIXME: look in base classes.
4290 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
4291 OverloadCandidateSet CandidateSet;
4292 const RecordType *BaseRecord = Base->getType()->getAsRecordType();
Douglas Gregor3fc749d2008-12-23 00:26:44 +00004293
4294 DeclContext::lookup_const_iterator Oper, OperEnd;
Douglas Gregor6ab35242009-04-09 21:40:53 +00004295 for (llvm::tie(Oper, OperEnd)
4296 = BaseRecord->getDecl()->lookup(Context, OpName);
Douglas Gregor3fc749d2008-12-23 00:26:44 +00004297 Oper != OperEnd; ++Oper)
4298 AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Base, 0, 0, CandidateSet,
Douglas Gregor8ba10742008-11-20 16:27:02 +00004299 /*SuppressUserConversions=*/false);
Douglas Gregor8ba10742008-11-20 16:27:02 +00004300
Ted Kremenek8189cde2009-02-07 01:47:29 +00004301 ExprOwningPtr<Expr> BasePtr(this, Base);
Douglas Gregorfc195ef2008-11-21 03:04:22 +00004302
Douglas Gregor8ba10742008-11-20 16:27:02 +00004303 // Perform overload resolution.
4304 OverloadCandidateSet::iterator Best;
4305 switch (BestViableFunction(CandidateSet, Best)) {
4306 case OR_Success:
4307 // Overload resolution succeeded; we'll build the call below.
4308 break;
4309
4310 case OR_No_Viable_Function:
4311 if (CandidateSet.empty())
4312 Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
Chris Lattnerd1625842008-11-24 06:25:27 +00004313 << BasePtr->getType() << BasePtr->getSourceRange();
Douglas Gregor8ba10742008-11-20 16:27:02 +00004314 else
4315 Diag(OpLoc, diag::err_ovl_no_viable_oper)
Chris Lattner4330d652009-02-17 07:29:20 +00004316 << "operator->" << BasePtr->getSourceRange();
Douglas Gregor8ba10742008-11-20 16:27:02 +00004317 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
Douglas Gregor8ba10742008-11-20 16:27:02 +00004318 return true;
4319
4320 case OR_Ambiguous:
4321 Diag(OpLoc, diag::err_ovl_ambiguous_oper)
Chris Lattnerd1625842008-11-24 06:25:27 +00004322 << "operator->" << BasePtr->getSourceRange();
Douglas Gregor8ba10742008-11-20 16:27:02 +00004323 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
Douglas Gregor8ba10742008-11-20 16:27:02 +00004324 return true;
Douglas Gregor48f3bb92009-02-18 21:56:37 +00004325
4326 case OR_Deleted:
4327 Diag(OpLoc, diag::err_ovl_deleted_oper)
4328 << Best->Function->isDeleted()
4329 << "operator->" << BasePtr->getSourceRange();
4330 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4331 return true;
Douglas Gregor8ba10742008-11-20 16:27:02 +00004332 }
4333
4334 // Convert the object parameter.
4335 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
Douglas Gregorfc195ef2008-11-21 03:04:22 +00004336 if (PerformObjectArgumentInitialization(Base, Method))
Douglas Gregor8ba10742008-11-20 16:27:02 +00004337 return true;
Douglas Gregorfc195ef2008-11-21 03:04:22 +00004338
4339 // No concerns about early exits now.
4340 BasePtr.take();
Douglas Gregor8ba10742008-11-20 16:27:02 +00004341
4342 // Build the operator call.
Ted Kremenek8189cde2009-02-07 01:47:29 +00004343 Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
4344 SourceLocation());
Douglas Gregor8ba10742008-11-20 16:27:02 +00004345 UsualUnaryConversions(FnExpr);
Douglas Gregor063daf62009-03-13 18:40:31 +00004346 Base = new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr, &Base, 1,
Douglas Gregor8ba10742008-11-20 16:27:02 +00004347 Method->getResultType().getNonReferenceType(),
4348 OpLoc);
Sebastian Redl0eb23302009-01-19 00:08:26 +00004349 return ActOnMemberReferenceExpr(S, ExprArg(*this, Base), OpLoc, tok::arrow,
Chris Lattnerb28317a2009-03-28 19:18:32 +00004350 MemberLoc, Member, DeclPtrTy()).release();
Douglas Gregor8ba10742008-11-20 16:27:02 +00004351}
4352
Douglas Gregor904eed32008-11-10 20:40:00 +00004353/// FixOverloadedFunctionReference - E is an expression that refers to
4354/// a C++ overloaded function (possibly with some parentheses and
4355/// perhaps a '&' around it). We have resolved the overloaded function
4356/// to the function declaration Fn, so patch up the expression E to
4357/// refer (possibly indirectly) to Fn.
4358void Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
4359 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
4360 FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
4361 E->setType(PE->getSubExpr()->getType());
4362 } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
4363 assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
4364 "Can only take the address of an overloaded function");
Douglas Gregorb86b0572009-02-11 01:18:59 +00004365 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
4366 if (Method->isStatic()) {
4367 // Do nothing: static member functions aren't any different
4368 // from non-member functions.
4369 }
4370 else if (QualifiedDeclRefExpr *DRE
4371 = dyn_cast<QualifiedDeclRefExpr>(UnOp->getSubExpr())) {
4372 // We have taken the address of a pointer to member
4373 // function. Perform the computation here so that we get the
4374 // appropriate pointer to member type.
4375 DRE->setDecl(Fn);
4376 DRE->setType(Fn->getType());
4377 QualType ClassType
4378 = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
4379 E->setType(Context.getMemberPointerType(Fn->getType(),
4380 ClassType.getTypePtr()));
4381 return;
4382 }
4383 }
Douglas Gregor904eed32008-11-10 20:40:00 +00004384 FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
Douglas Gregora35284b2009-02-11 00:19:33 +00004385 E->setType(Context.getPointerType(UnOp->getSubExpr()->getType()));
Douglas Gregor904eed32008-11-10 20:40:00 +00004386 } else if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
4387 assert(isa<OverloadedFunctionDecl>(DR->getDecl()) &&
4388 "Expected overloaded function");
4389 DR->setDecl(Fn);
4390 E->setType(Fn->getType());
Douglas Gregor88a35142008-12-22 05:46:06 +00004391 } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(E)) {
4392 MemExpr->setMemberDecl(Fn);
4393 E->setType(Fn->getType());
Douglas Gregor904eed32008-11-10 20:40:00 +00004394 } else {
4395 assert(false && "Invalid reference to overloaded function");
4396 }
4397}
4398
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00004399} // end namespace clang