blob: 43b5e77e87bd59763043cb3fe7349577755095cd [file] [log] [blame]
Douglas Gregord2baafd2008-10-21 16:13:35 +00001//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
Douglas Gregorbb461502008-10-24 04:54:22 +000015#include "SemaInherit.h"
Douglas Gregord2baafd2008-10-21 16:13:35 +000016#include "clang/Basic/Diagnostic.h"
Douglas Gregor70d26122008-11-12 17:17:38 +000017#include "clang/Lex/Preprocessor.h"
Douglas Gregord2baafd2008-10-21 16:13:35 +000018#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
Douglas Gregor10f3c502008-11-19 21:05:33 +000020#include "clang/AST/ExprCXX.h"
Douglas Gregor70d26122008-11-12 17:17:38 +000021#include "clang/AST/TypeOrdering.h"
Douglas Gregor3d4492e2008-11-13 20:12:29 +000022#include "llvm/ADT/SmallPtrSet.h"
Douglas Gregord2baafd2008-10-21 16:13:35 +000023#include "llvm/Support/Compiler.h"
24#include <algorithm>
25
26namespace clang {
27
28/// GetConversionCategory - Retrieve the implicit conversion
29/// category corresponding to the given implicit conversion kind.
30ImplicitConversionCategory
31GetConversionCategory(ImplicitConversionKind Kind) {
32 static const ImplicitConversionCategory
33 Category[(int)ICK_Num_Conversion_Kinds] = {
34 ICC_Identity,
35 ICC_Lvalue_Transformation,
36 ICC_Lvalue_Transformation,
37 ICC_Lvalue_Transformation,
38 ICC_Qualification_Adjustment,
39 ICC_Promotion,
40 ICC_Promotion,
41 ICC_Conversion,
42 ICC_Conversion,
43 ICC_Conversion,
44 ICC_Conversion,
45 ICC_Conversion,
Douglas Gregor2aecd1f2008-10-29 02:00:59 +000046 ICC_Conversion,
Douglas Gregord2baafd2008-10-21 16:13:35 +000047 ICC_Conversion
48 };
49 return Category[(int)Kind];
50}
51
52/// GetConversionRank - Retrieve the implicit conversion rank
53/// corresponding to the given implicit conversion kind.
54ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
55 static const ImplicitConversionRank
56 Rank[(int)ICK_Num_Conversion_Kinds] = {
57 ICR_Exact_Match,
58 ICR_Exact_Match,
59 ICR_Exact_Match,
60 ICR_Exact_Match,
61 ICR_Exact_Match,
62 ICR_Promotion,
63 ICR_Promotion,
64 ICR_Conversion,
65 ICR_Conversion,
66 ICR_Conversion,
67 ICR_Conversion,
68 ICR_Conversion,
Douglas Gregor2aecd1f2008-10-29 02:00:59 +000069 ICR_Conversion,
Douglas Gregord2baafd2008-10-21 16:13:35 +000070 ICR_Conversion
71 };
72 return Rank[(int)Kind];
73}
74
75/// GetImplicitConversionName - Return the name of this kind of
76/// implicit conversion.
77const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
78 static const char* Name[(int)ICK_Num_Conversion_Kinds] = {
79 "No conversion",
80 "Lvalue-to-rvalue",
81 "Array-to-pointer",
82 "Function-to-pointer",
83 "Qualification",
84 "Integral promotion",
85 "Floating point promotion",
86 "Integral conversion",
87 "Floating conversion",
88 "Floating-integral conversion",
89 "Pointer conversion",
90 "Pointer-to-member conversion",
Douglas Gregor2aecd1f2008-10-29 02:00:59 +000091 "Boolean conversion",
92 "Derived-to-base conversion"
Douglas Gregord2baafd2008-10-21 16:13:35 +000093 };
94 return Name[Kind];
95}
96
Douglas Gregorb72e9da2008-10-31 16:23:19 +000097/// StandardConversionSequence - Set the standard conversion
98/// sequence to the identity conversion.
99void StandardConversionSequence::setAsIdentityConversion() {
100 First = ICK_Identity;
101 Second = ICK_Identity;
102 Third = ICK_Identity;
103 Deprecated = false;
104 ReferenceBinding = false;
105 DirectBinding = false;
Douglas Gregora3b34bb2008-11-03 19:09:14 +0000106 CopyConstructor = 0;
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000107}
108
Douglas Gregord2baafd2008-10-21 16:13:35 +0000109/// getRank - Retrieve the rank of this standard conversion sequence
110/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
111/// implicit conversions.
112ImplicitConversionRank StandardConversionSequence::getRank() const {
113 ImplicitConversionRank Rank = ICR_Exact_Match;
114 if (GetConversionRank(First) > Rank)
115 Rank = GetConversionRank(First);
116 if (GetConversionRank(Second) > Rank)
117 Rank = GetConversionRank(Second);
118 if (GetConversionRank(Third) > Rank)
119 Rank = GetConversionRank(Third);
120 return Rank;
121}
122
123/// isPointerConversionToBool - Determines whether this conversion is
124/// a conversion of a pointer or pointer-to-member to bool. This is
125/// used as part of the ranking of standard conversion sequences
126/// (C++ 13.3.3.2p4).
127bool StandardConversionSequence::isPointerConversionToBool() const
128{
129 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
130 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
131
132 // Note that FromType has not necessarily been transformed by the
133 // array-to-pointer or function-to-pointer implicit conversions, so
134 // check for their presence as well as checking whether FromType is
135 // a pointer.
136 if (ToType->isBooleanType() &&
137 (FromType->isPointerType() ||
138 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
139 return true;
140
141 return false;
142}
143
Douglas Gregor14046502008-10-23 00:40:37 +0000144/// isPointerConversionToVoidPointer - Determines whether this
145/// conversion is a conversion of a pointer to a void pointer. This is
146/// used as part of the ranking of standard conversion sequences (C++
147/// 13.3.3.2p4).
148bool
149StandardConversionSequence::
150isPointerConversionToVoidPointer(ASTContext& Context) const
151{
152 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
153 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
154
155 // Note that FromType has not necessarily been transformed by the
156 // array-to-pointer implicit conversion, so check for its presence
157 // and redo the conversion to get a pointer.
158 if (First == ICK_Array_To_Pointer)
159 FromType = Context.getArrayDecayedType(FromType);
160
161 if (Second == ICK_Pointer_Conversion)
162 if (const PointerType* ToPtrType = ToType->getAsPointerType())
163 return ToPtrType->getPointeeType()->isVoidType();
164
165 return false;
166}
167
Douglas Gregord2baafd2008-10-21 16:13:35 +0000168/// DebugPrint - Print this standard conversion sequence to standard
169/// error. Useful for debugging overloading issues.
170void StandardConversionSequence::DebugPrint() const {
171 bool PrintedSomething = false;
172 if (First != ICK_Identity) {
173 fprintf(stderr, "%s", GetImplicitConversionName(First));
174 PrintedSomething = true;
175 }
176
177 if (Second != ICK_Identity) {
178 if (PrintedSomething) {
179 fprintf(stderr, " -> ");
180 }
181 fprintf(stderr, "%s", GetImplicitConversionName(Second));
Douglas Gregora3b34bb2008-11-03 19:09:14 +0000182
183 if (CopyConstructor) {
184 fprintf(stderr, " (by copy constructor)");
185 } else if (DirectBinding) {
186 fprintf(stderr, " (direct reference binding)");
187 } else if (ReferenceBinding) {
188 fprintf(stderr, " (reference binding)");
189 }
Douglas Gregord2baafd2008-10-21 16:13:35 +0000190 PrintedSomething = true;
191 }
192
193 if (Third != ICK_Identity) {
194 if (PrintedSomething) {
195 fprintf(stderr, " -> ");
196 }
197 fprintf(stderr, "%s", GetImplicitConversionName(Third));
198 PrintedSomething = true;
199 }
200
201 if (!PrintedSomething) {
202 fprintf(stderr, "No conversions required");
203 }
204}
205
206/// DebugPrint - Print this user-defined conversion sequence to standard
207/// error. Useful for debugging overloading issues.
208void UserDefinedConversionSequence::DebugPrint() const {
209 if (Before.First || Before.Second || Before.Third) {
210 Before.DebugPrint();
211 fprintf(stderr, " -> ");
212 }
Chris Lattner271d4c22008-11-24 05:29:24 +0000213 fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str());
Douglas Gregord2baafd2008-10-21 16:13:35 +0000214 if (After.First || After.Second || After.Third) {
215 fprintf(stderr, " -> ");
216 After.DebugPrint();
217 }
218}
219
220/// DebugPrint - Print this implicit conversion sequence to standard
221/// error. Useful for debugging overloading issues.
222void ImplicitConversionSequence::DebugPrint() const {
223 switch (ConversionKind) {
224 case StandardConversion:
225 fprintf(stderr, "Standard conversion: ");
226 Standard.DebugPrint();
227 break;
228 case UserDefinedConversion:
229 fprintf(stderr, "User-defined conversion: ");
230 UserDefined.DebugPrint();
231 break;
232 case EllipsisConversion:
233 fprintf(stderr, "Ellipsis conversion");
234 break;
235 case BadConversion:
236 fprintf(stderr, "Bad conversion");
237 break;
238 }
239
240 fprintf(stderr, "\n");
241}
242
243// IsOverload - Determine whether the given New declaration is an
244// overload of the Old declaration. This routine returns false if New
245// and Old cannot be overloaded, e.g., if they are functions with the
246// same signature (C++ 1.3.10) or if the Old declaration isn't a
247// function (or overload set). When it does return false and Old is an
248// OverloadedFunctionDecl, MatchedDecl will be set to point to the
249// FunctionDecl that New cannot be overloaded with.
250//
251// Example: Given the following input:
252//
253// void f(int, float); // #1
254// void f(int, int); // #2
255// int f(int, int); // #3
256//
257// When we process #1, there is no previous declaration of "f",
258// so IsOverload will not be used.
259//
260// When we process #2, Old is a FunctionDecl for #1. By comparing the
261// parameter types, we see that #1 and #2 are overloaded (since they
262// have different signatures), so this routine returns false;
263// MatchedDecl is unchanged.
264//
265// When we process #3, Old is an OverloadedFunctionDecl containing #1
266// and #2. We compare the signatures of #3 to #1 (they're overloaded,
267// so we do nothing) and then #3 to #2. Since the signatures of #3 and
268// #2 are identical (return types of functions are not part of the
269// signature), IsOverload returns false and MatchedDecl will be set to
270// point to the FunctionDecl for #2.
271bool
272Sema::IsOverload(FunctionDecl *New, Decl* OldD,
273 OverloadedFunctionDecl::function_iterator& MatchedDecl)
274{
275 if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) {
276 // Is this new function an overload of every function in the
277 // overload set?
278 OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
279 FuncEnd = Ovl->function_end();
280 for (; Func != FuncEnd; ++Func) {
281 if (!IsOverload(New, *Func, MatchedDecl)) {
282 MatchedDecl = Func;
283 return false;
284 }
285 }
286
287 // This function overloads every function in the overload set.
288 return true;
289 } else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) {
290 // Is the function New an overload of the function Old?
291 QualType OldQType = Context.getCanonicalType(Old->getType());
292 QualType NewQType = Context.getCanonicalType(New->getType());
293
294 // Compare the signatures (C++ 1.3.10) of the two functions to
295 // determine whether they are overloads. If we find any mismatch
296 // in the signature, they are overloads.
297
298 // If either of these functions is a K&R-style function (no
299 // prototype), then we consider them to have matching signatures.
300 if (isa<FunctionTypeNoProto>(OldQType.getTypePtr()) ||
301 isa<FunctionTypeNoProto>(NewQType.getTypePtr()))
302 return false;
303
304 FunctionTypeProto* OldType = cast<FunctionTypeProto>(OldQType.getTypePtr());
305 FunctionTypeProto* NewType = cast<FunctionTypeProto>(NewQType.getTypePtr());
306
307 // The signature of a function includes the types of its
308 // parameters (C++ 1.3.10), which includes the presence or absence
309 // of the ellipsis; see C++ DR 357).
310 if (OldQType != NewQType &&
311 (OldType->getNumArgs() != NewType->getNumArgs() ||
312 OldType->isVariadic() != NewType->isVariadic() ||
313 !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
314 NewType->arg_type_begin())))
315 return true;
316
317 // If the function is a class member, its signature includes the
318 // cv-qualifiers (if any) on the function itself.
319 //
320 // As part of this, also check whether one of the member functions
321 // is static, in which case they are not overloads (C++
322 // 13.1p2). While not part of the definition of the signature,
323 // this check is important to determine whether these functions
324 // can be overloaded.
325 CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
326 CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
327 if (OldMethod && NewMethod &&
328 !OldMethod->isStatic() && !NewMethod->isStatic() &&
Douglas Gregora7b56a32008-11-21 15:36:28 +0000329 OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
Douglas Gregord2baafd2008-10-21 16:13:35 +0000330 return true;
331
332 // The signatures match; this is not an overload.
333 return false;
334 } else {
335 // (C++ 13p1):
336 // Only function declarations can be overloaded; object and type
337 // declarations cannot be overloaded.
338 return false;
339 }
340}
341
Douglas Gregor81c29152008-10-29 00:13:59 +0000342/// TryImplicitConversion - Attempt to perform an implicit conversion
343/// from the given expression (Expr) to the given type (ToType). This
344/// function returns an implicit conversion sequence that can be used
345/// to perform the initialization. Given
Douglas Gregord2baafd2008-10-21 16:13:35 +0000346///
347/// void f(float f);
348/// void g(int i) { f(i); }
349///
350/// this routine would produce an implicit conversion sequence to
351/// describe the initialization of f from i, which will be a standard
352/// conversion sequence containing an lvalue-to-rvalue conversion (C++
353/// 4.1) followed by a floating-integral conversion (C++ 4.9).
354//
355/// Note that this routine only determines how the conversion can be
356/// performed; it does not actually perform the conversion. As such,
357/// it will not produce any diagnostics if no conversion is available,
358/// but will instead return an implicit conversion sequence of kind
359/// "BadConversion".
Douglas Gregora3b34bb2008-11-03 19:09:14 +0000360///
361/// If @p SuppressUserConversions, then user-defined conversions are
362/// not permitted.
Douglas Gregord2baafd2008-10-21 16:13:35 +0000363ImplicitConversionSequence
Douglas Gregora3b34bb2008-11-03 19:09:14 +0000364Sema::TryImplicitConversion(Expr* From, QualType ToType,
365 bool SuppressUserConversions)
Douglas Gregord2baafd2008-10-21 16:13:35 +0000366{
367 ImplicitConversionSequence ICS;
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000368 if (IsStandardConversion(From, ToType, ICS.Standard))
369 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
Douglas Gregora3b34bb2008-11-03 19:09:14 +0000370 else if (!SuppressUserConversions &&
371 IsUserDefinedConversion(From, ToType, ICS.UserDefined)) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000372 ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
Douglas Gregore640ab62008-11-03 17:51:48 +0000373 // C++ [over.ics.user]p4:
374 // A conversion of an expression of class type to the same class
375 // type is given Exact Match rank, and a conversion of an
376 // expression of class type to a base class of that type is
377 // given Conversion rank, in spite of the fact that a copy
378 // constructor (i.e., a user-defined conversion function) is
379 // called for those cases.
380 if (CXXConstructorDecl *Constructor
381 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
382 if (Constructor->isCopyConstructor(Context)) {
Douglas Gregora3b34bb2008-11-03 19:09:14 +0000383 // Turn this into a "standard" conversion sequence, so that it
384 // gets ranked with standard conversion sequences.
Douglas Gregore640ab62008-11-03 17:51:48 +0000385 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
386 ICS.Standard.setAsIdentityConversion();
387 ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr();
388 ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
Douglas Gregora3b34bb2008-11-03 19:09:14 +0000389 ICS.Standard.CopyConstructor = Constructor;
Douglas Gregore640ab62008-11-03 17:51:48 +0000390 if (IsDerivedFrom(From->getType().getUnqualifiedType(),
391 ToType.getUnqualifiedType()))
392 ICS.Standard.Second = ICK_Derived_To_Base;
393 }
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000394 }
Douglas Gregore640ab62008-11-03 17:51:48 +0000395 } else
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000396 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000397
398 return ICS;
399}
400
401/// IsStandardConversion - Determines whether there is a standard
402/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
403/// expression From to the type ToType. Standard conversion sequences
404/// only consider non-class types; for conversions that involve class
405/// types, use TryImplicitConversion. If a conversion exists, SCS will
406/// contain the standard conversion sequence required to perform this
407/// conversion and this routine will return true. Otherwise, this
408/// routine will return false and the value of SCS is unspecified.
409bool
410Sema::IsStandardConversion(Expr* From, QualType ToType,
411 StandardConversionSequence &SCS)
412{
Douglas Gregord2baafd2008-10-21 16:13:35 +0000413 QualType FromType = From->getType();
414
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000415 // There are no standard conversions for class types, so abort early.
416 if (FromType->isRecordType() || ToType->isRecordType())
417 return false;
418
419 // Standard conversions (C++ [conv])
Douglas Gregor70d26122008-11-12 17:17:38 +0000420 SCS.setAsIdentityConversion();
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000421 SCS.Deprecated = false;
422 SCS.FromTypePtr = FromType.getAsOpaquePtr();
Douglas Gregora3b34bb2008-11-03 19:09:14 +0000423 SCS.CopyConstructor = 0;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000424
425 // The first conversion can be an lvalue-to-rvalue conversion,
426 // array-to-pointer conversion, or function-to-pointer conversion
427 // (C++ 4p1).
428
429 // Lvalue-to-rvalue conversion (C++ 4.1):
430 // An lvalue (3.10) of a non-function, non-array type T can be
431 // converted to an rvalue.
432 Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
433 if (argIsLvalue == Expr::LV_Valid &&
Douglas Gregor45014fd2008-11-10 20:40:00 +0000434 !FromType->isFunctionType() && !FromType->isArrayType() &&
435 !FromType->isOverloadType()) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000436 SCS.First = ICK_Lvalue_To_Rvalue;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000437
438 // If T is a non-class type, the type of the rvalue is the
439 // cv-unqualified version of T. Otherwise, the type of the rvalue
440 // is T (C++ 4.1p1).
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000441 FromType = FromType.getUnqualifiedType();
Douglas Gregord2baafd2008-10-21 16:13:35 +0000442 }
443 // Array-to-pointer conversion (C++ 4.2)
444 else if (FromType->isArrayType()) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000445 SCS.First = ICK_Array_To_Pointer;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000446
447 // An lvalue or rvalue of type "array of N T" or "array of unknown
448 // bound of T" can be converted to an rvalue of type "pointer to
449 // T" (C++ 4.2p1).
450 FromType = Context.getArrayDecayedType(FromType);
451
452 if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
453 // This conversion is deprecated. (C++ D.4).
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000454 SCS.Deprecated = true;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000455
456 // For the purpose of ranking in overload resolution
457 // (13.3.3.1.1), this conversion is considered an
458 // array-to-pointer conversion followed by a qualification
459 // conversion (4.4). (C++ 4.2p2)
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000460 SCS.Second = ICK_Identity;
461 SCS.Third = ICK_Qualification;
462 SCS.ToTypePtr = ToType.getAsOpaquePtr();
463 return true;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000464 }
465 }
466 // Function-to-pointer conversion (C++ 4.3).
467 else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000468 SCS.First = ICK_Function_To_Pointer;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000469
470 // An lvalue of function type T can be converted to an rvalue of
471 // type "pointer to T." The result is a pointer to the
472 // function. (C++ 4.3p1).
473 FromType = Context.getPointerType(FromType);
Douglas Gregord2baafd2008-10-21 16:13:35 +0000474 }
Douglas Gregor45014fd2008-11-10 20:40:00 +0000475 // Address of overloaded function (C++ [over.over]).
476 else if (FunctionDecl *Fn
477 = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
478 SCS.First = ICK_Function_To_Pointer;
479
480 // We were able to resolve the address of the overloaded function,
481 // so we can convert to the type of that function.
482 FromType = Fn->getType();
483 if (ToType->isReferenceType())
484 FromType = Context.getReferenceType(FromType);
485 else
486 FromType = Context.getPointerType(FromType);
487 }
Douglas Gregord2baafd2008-10-21 16:13:35 +0000488 // We don't require any conversions for the first step.
489 else {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000490 SCS.First = ICK_Identity;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000491 }
492
493 // The second conversion can be an integral promotion, floating
494 // point promotion, integral conversion, floating point conversion,
495 // floating-integral conversion, pointer conversion,
496 // pointer-to-member conversion, or boolean conversion (C++ 4p1).
497 if (Context.getCanonicalType(FromType).getUnqualifiedType() ==
498 Context.getCanonicalType(ToType).getUnqualifiedType()) {
499 // The unqualified versions of the types are the same: there's no
500 // conversion to do.
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000501 SCS.Second = ICK_Identity;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000502 }
503 // Integral promotion (C++ 4.5).
504 else if (IsIntegralPromotion(From, FromType, ToType)) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000505 SCS.Second = ICK_Integral_Promotion;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000506 FromType = ToType.getUnqualifiedType();
507 }
508 // Floating point promotion (C++ 4.6).
509 else if (IsFloatingPointPromotion(FromType, ToType)) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000510 SCS.Second = ICK_Floating_Promotion;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000511 FromType = ToType.getUnqualifiedType();
512 }
513 // Integral conversions (C++ 4.7).
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000514 // FIXME: isIntegralType shouldn't be true for enums in C++.
Douglas Gregord2baafd2008-10-21 16:13:35 +0000515 else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000516 (ToType->isIntegralType() && !ToType->isEnumeralType())) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000517 SCS.Second = ICK_Integral_Conversion;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000518 FromType = ToType.getUnqualifiedType();
519 }
520 // Floating point conversions (C++ 4.8).
521 else if (FromType->isFloatingType() && ToType->isFloatingType()) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000522 SCS.Second = ICK_Floating_Conversion;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000523 FromType = ToType.getUnqualifiedType();
524 }
525 // Floating-integral conversions (C++ 4.9).
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000526 // FIXME: isIntegralType shouldn't be true for enums in C++.
Douglas Gregord2baafd2008-10-21 16:13:35 +0000527 else if ((FromType->isFloatingType() &&
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000528 ToType->isIntegralType() && !ToType->isBooleanType() &&
529 !ToType->isEnumeralType()) ||
Douglas Gregord2baafd2008-10-21 16:13:35 +0000530 ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
531 ToType->isFloatingType())) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000532 SCS.Second = ICK_Floating_Integral;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000533 FromType = ToType.getUnqualifiedType();
534 }
535 // Pointer conversions (C++ 4.10).
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000536 else if (IsPointerConversion(From, FromType, ToType, FromType)) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000537 SCS.Second = ICK_Pointer_Conversion;
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000538 }
Douglas Gregord2baafd2008-10-21 16:13:35 +0000539 // FIXME: Pointer to member conversions (4.11).
540 // Boolean conversions (C++ 4.12).
541 // FIXME: pointer-to-member type
542 else if (ToType->isBooleanType() &&
543 (FromType->isArithmeticType() ||
544 FromType->isEnumeralType() ||
545 FromType->isPointerType())) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000546 SCS.Second = ICK_Boolean_Conversion;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000547 FromType = Context.BoolTy;
548 } else {
549 // No second conversion required.
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000550 SCS.Second = ICK_Identity;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000551 }
552
Douglas Gregor81c29152008-10-29 00:13:59 +0000553 QualType CanonFrom;
554 QualType CanonTo;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000555 // The third conversion can be a qualification conversion (C++ 4p1).
Douglas Gregor6573cfd2008-10-21 23:43:52 +0000556 if (IsQualificationConversion(FromType, ToType)) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000557 SCS.Third = ICK_Qualification;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000558 FromType = ToType;
Douglas Gregor81c29152008-10-29 00:13:59 +0000559 CanonFrom = Context.getCanonicalType(FromType);
560 CanonTo = Context.getCanonicalType(ToType);
Douglas Gregord2baafd2008-10-21 16:13:35 +0000561 } else {
562 // No conversion required
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000563 SCS.Third = ICK_Identity;
564
565 // C++ [over.best.ics]p6:
566 // [...] Any difference in top-level cv-qualification is
567 // subsumed by the initialization itself and does not constitute
568 // a conversion. [...]
Douglas Gregor81c29152008-10-29 00:13:59 +0000569 CanonFrom = Context.getCanonicalType(FromType);
570 CanonTo = Context.getCanonicalType(ToType);
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000571 if (CanonFrom.getUnqualifiedType() == CanonTo.getUnqualifiedType() &&
Douglas Gregor81c29152008-10-29 00:13:59 +0000572 CanonFrom.getCVRQualifiers() != CanonTo.getCVRQualifiers()) {
573 FromType = ToType;
574 CanonFrom = CanonTo;
575 }
Douglas Gregord2baafd2008-10-21 16:13:35 +0000576 }
577
578 // If we have not converted the argument type to the parameter type,
579 // this is a bad conversion sequence.
Douglas Gregor81c29152008-10-29 00:13:59 +0000580 if (CanonFrom != CanonTo)
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000581 return false;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000582
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000583 SCS.ToTypePtr = FromType.getAsOpaquePtr();
584 return true;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000585}
586
587/// IsIntegralPromotion - Determines whether the conversion from the
588/// expression From (whose potentially-adjusted type is FromType) to
589/// ToType is an integral promotion (C++ 4.5). If so, returns true and
590/// sets PromotedType to the promoted type.
591bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType)
592{
593 const BuiltinType *To = ToType->getAsBuiltinType();
Sebastian Redl12aee862008-11-04 15:59:10 +0000594 // All integers are built-in.
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000595 if (!To) {
596 return false;
597 }
Douglas Gregord2baafd2008-10-21 16:13:35 +0000598
599 // An rvalue of type char, signed char, unsigned char, short int, or
600 // unsigned short int can be converted to an rvalue of type int if
601 // int can represent all the values of the source type; otherwise,
602 // the source rvalue can be converted to an rvalue of type unsigned
603 // int (C++ 4.5p1).
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000604 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) {
Douglas Gregord2baafd2008-10-21 16:13:35 +0000605 if (// We can promote any signed, promotable integer type to an int
606 (FromType->isSignedIntegerType() ||
607 // We can promote any unsigned integer type whose size is
608 // less than int to an int.
609 (!FromType->isSignedIntegerType() &&
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000610 Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
Douglas Gregord2baafd2008-10-21 16:13:35 +0000611 return To->getKind() == BuiltinType::Int;
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000612 }
613
Douglas Gregord2baafd2008-10-21 16:13:35 +0000614 return To->getKind() == BuiltinType::UInt;
615 }
616
617 // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
618 // can be converted to an rvalue of the first of the following types
619 // that can represent all the values of its underlying type: int,
620 // unsigned int, long, or unsigned long (C++ 4.5p2).
621 if ((FromType->isEnumeralType() || FromType->isWideCharType())
622 && ToType->isIntegerType()) {
623 // Determine whether the type we're converting from is signed or
624 // unsigned.
625 bool FromIsSigned;
626 uint64_t FromSize = Context.getTypeSize(FromType);
627 if (const EnumType *FromEnumType = FromType->getAsEnumType()) {
628 QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType();
629 FromIsSigned = UnderlyingType->isSignedIntegerType();
630 } else {
631 // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
632 FromIsSigned = true;
633 }
634
635 // The types we'll try to promote to, in the appropriate
636 // order. Try each of these types.
637 QualType PromoteTypes[4] = {
638 Context.IntTy, Context.UnsignedIntTy,
639 Context.LongTy, Context.UnsignedLongTy
640 };
Douglas Gregor849ea9c2008-11-19 03:25:36 +0000641 for (int Idx = 0; Idx < 4; ++Idx) {
Douglas Gregord2baafd2008-10-21 16:13:35 +0000642 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
643 if (FromSize < ToSize ||
644 (FromSize == ToSize &&
645 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
646 // We found the type that we can promote to. If this is the
647 // type we wanted, we have a promotion. Otherwise, no
648 // promotion.
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000649 return Context.getCanonicalType(ToType).getUnqualifiedType()
Douglas Gregord2baafd2008-10-21 16:13:35 +0000650 == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType();
651 }
652 }
653 }
654
655 // An rvalue for an integral bit-field (9.6) can be converted to an
656 // rvalue of type int if int can represent all the values of the
657 // bit-field; otherwise, it can be converted to unsigned int if
658 // unsigned int can represent all the values of the bit-field. If
659 // the bit-field is larger yet, no integral promotion applies to
660 // it. If the bit-field has an enumerated type, it is treated as any
661 // other value of that type for promotion purposes (C++ 4.5p3).
662 if (MemberExpr *MemRef = dyn_cast<MemberExpr>(From)) {
663 using llvm::APSInt;
664 FieldDecl *MemberDecl = MemRef->getMemberDecl();
665 APSInt BitWidth;
666 if (MemberDecl->isBitField() &&
667 FromType->isIntegralType() && !FromType->isEnumeralType() &&
668 From->isIntegerConstantExpr(BitWidth, Context)) {
669 APSInt ToSize(Context.getTypeSize(ToType));
670
671 // Are we promoting to an int from a bitfield that fits in an int?
672 if (BitWidth < ToSize ||
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000673 (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
Douglas Gregord2baafd2008-10-21 16:13:35 +0000674 return To->getKind() == BuiltinType::Int;
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000675 }
676
Douglas Gregord2baafd2008-10-21 16:13:35 +0000677 // Are we promoting to an unsigned int from an unsigned bitfield
678 // that fits into an unsigned int?
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000679 if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
Douglas Gregord2baafd2008-10-21 16:13:35 +0000680 return To->getKind() == BuiltinType::UInt;
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000681 }
Douglas Gregord2baafd2008-10-21 16:13:35 +0000682
683 return false;
684 }
685 }
686
687 // An rvalue of type bool can be converted to an rvalue of type int,
688 // with false becoming zero and true becoming one (C++ 4.5p4).
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000689 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
Douglas Gregord2baafd2008-10-21 16:13:35 +0000690 return true;
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000691 }
Douglas Gregord2baafd2008-10-21 16:13:35 +0000692
693 return false;
694}
695
696/// IsFloatingPointPromotion - Determines whether the conversion from
697/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
698/// returns true and sets PromotedType to the promoted type.
699bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType)
700{
701 /// An rvalue of type float can be converted to an rvalue of type
702 /// double. (C++ 4.6p1).
703 if (const BuiltinType *FromBuiltin = FromType->getAsBuiltinType())
704 if (const BuiltinType *ToBuiltin = ToType->getAsBuiltinType())
705 if (FromBuiltin->getKind() == BuiltinType::Float &&
706 ToBuiltin->getKind() == BuiltinType::Double)
707 return true;
708
709 return false;
710}
711
Douglas Gregor24a90a52008-11-26 23:31:11 +0000712/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
713/// the pointer type FromPtr to a pointer to type ToPointee, with the
714/// same type qualifiers as FromPtr has on its pointee type. ToType,
715/// if non-empty, will be a pointer to ToType that may or may not have
716/// the right set of qualifiers on its pointee.
717static QualType
718BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
719 QualType ToPointee, QualType ToType,
720 ASTContext &Context) {
721 QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
722 QualType CanonToPointee = Context.getCanonicalType(ToPointee);
723 unsigned Quals = CanonFromPointee.getCVRQualifiers();
724
725 // Exact qualifier match -> return the pointer type we're converting to.
726 if (CanonToPointee.getCVRQualifiers() == Quals) {
727 // ToType is exactly what we need. Return it.
728 if (ToType.getTypePtr())
729 return ToType;
730
731 // Build a pointer to ToPointee. It has the right qualifiers
732 // already.
733 return Context.getPointerType(ToPointee);
734 }
735
736 // Just build a canonical type that has the right qualifiers.
737 return Context.getPointerType(CanonToPointee.getQualifiedType(Quals));
738}
739
Douglas Gregord2baafd2008-10-21 16:13:35 +0000740/// IsPointerConversion - Determines whether the conversion of the
741/// expression From, which has the (possibly adjusted) type FromType,
742/// can be converted to the type ToType via a pointer conversion (C++
743/// 4.10). If so, returns true and places the converted type (that
744/// might differ from ToType in its cv-qualifiers at some level) into
745/// ConvertedType.
Douglas Gregor9036ef72008-11-27 00:15:41 +0000746///
747/// This routine also supports conversions to and from block pointers.
Douglas Gregord2baafd2008-10-21 16:13:35 +0000748bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
749 QualType& ConvertedType)
750{
Douglas Gregor9036ef72008-11-27 00:15:41 +0000751 // Blocks: Block pointers can be converted to void*.
752 if (FromType->isBlockPointerType() && ToType->isPointerType() &&
753 ToType->getAsPointerType()->getPointeeType()->isVoidType()) {
754 ConvertedType = ToType;
755 return true;
756 }
757 // Blocks: A null pointer constant can be converted to a block
758 // pointer type.
759 if (ToType->isBlockPointerType() && From->isNullPointerConstant(Context)) {
760 ConvertedType = ToType;
761 return true;
762 }
763
Douglas Gregord2baafd2008-10-21 16:13:35 +0000764 const PointerType* ToTypePtr = ToType->getAsPointerType();
765 if (!ToTypePtr)
766 return false;
767
768 // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
769 if (From->isNullPointerConstant(Context)) {
770 ConvertedType = ToType;
771 return true;
772 }
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000773
Douglas Gregor24a90a52008-11-26 23:31:11 +0000774 // Beyond this point, both types need to be pointers.
775 const PointerType *FromTypePtr = FromType->getAsPointerType();
776 if (!FromTypePtr)
777 return false;
778
779 QualType FromPointeeType = FromTypePtr->getPointeeType();
780 QualType ToPointeeType = ToTypePtr->getPointeeType();
781
Douglas Gregord2baafd2008-10-21 16:13:35 +0000782 // An rvalue of type "pointer to cv T," where T is an object type,
783 // can be converted to an rvalue of type "pointer to cv void" (C++
784 // 4.10p2).
Douglas Gregor24a90a52008-11-26 23:31:11 +0000785 if (FromPointeeType->isIncompleteOrObjectType() && ToPointeeType->isVoidType()) {
Douglas Gregor8bb7ad82008-11-27 00:52:49 +0000786 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
787 ToPointeeType,
Douglas Gregor24a90a52008-11-26 23:31:11 +0000788 ToType, Context);
Douglas Gregord2baafd2008-10-21 16:13:35 +0000789 return true;
790 }
791
Douglas Gregor14046502008-10-23 00:40:37 +0000792 // C++ [conv.ptr]p3:
793 //
794 // An rvalue of type "pointer to cv D," where D is a class type,
795 // can be converted to an rvalue of type "pointer to cv B," where
796 // B is a base class (clause 10) of D. If B is an inaccessible
797 // (clause 11) or ambiguous (10.2) base class of D, a program that
798 // necessitates this conversion is ill-formed. The result of the
799 // conversion is a pointer to the base class sub-object of the
800 // derived class object. The null pointer value is converted to
801 // the null pointer value of the destination type.
802 //
Douglas Gregorbb461502008-10-24 04:54:22 +0000803 // Note that we do not check for ambiguity or inaccessibility
804 // here. That is handled by CheckPointerConversion.
Douglas Gregor24a90a52008-11-26 23:31:11 +0000805 if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
806 IsDerivedFrom(FromPointeeType, ToPointeeType)) {
Douglas Gregor8bb7ad82008-11-27 00:52:49 +0000807 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
808 ToPointeeType,
Douglas Gregor24a90a52008-11-26 23:31:11 +0000809 ToType, Context);
810 return true;
811 }
Douglas Gregor14046502008-10-23 00:40:37 +0000812
Douglas Gregor24a90a52008-11-26 23:31:11 +0000813 // Objective C++: We're able to convert from a pointer to an
814 // interface to a pointer to a different interface.
815 const ObjCInterfaceType* FromIface = FromPointeeType->getAsObjCInterfaceType();
816 const ObjCInterfaceType* ToIface = ToPointeeType->getAsObjCInterfaceType();
817 if (FromIface && ToIface &&
818 Context.canAssignObjCInterfaces(ToIface, FromIface)) {
Douglas Gregor8bb7ad82008-11-27 00:52:49 +0000819 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
820 ToPointeeType,
Douglas Gregor24a90a52008-11-26 23:31:11 +0000821 ToType, Context);
822 return true;
823 }
824
825 // Objective C++: We're able to convert between "id" and a pointer
826 // to any interface (in both directions).
827 if ((FromIface && Context.isObjCIdType(ToPointeeType))
828 || (ToIface && Context.isObjCIdType(FromPointeeType))) {
Douglas Gregor8bb7ad82008-11-27 00:52:49 +0000829 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
830 ToPointeeType,
Douglas Gregor24a90a52008-11-26 23:31:11 +0000831 ToType, Context);
832 return true;
833 }
Douglas Gregor14046502008-10-23 00:40:37 +0000834
Douglas Gregord2baafd2008-10-21 16:13:35 +0000835 return false;
836}
837
Douglas Gregorbb461502008-10-24 04:54:22 +0000838/// CheckPointerConversion - Check the pointer conversion from the
839/// expression From to the type ToType. This routine checks for
840/// ambiguous (FIXME: or inaccessible) derived-to-base pointer
841/// conversions for which IsPointerConversion has already returned
842/// true. It returns true and produces a diagnostic if there was an
843/// error, or returns false otherwise.
844bool Sema::CheckPointerConversion(Expr *From, QualType ToType) {
845 QualType FromType = From->getType();
846
847 if (const PointerType *FromPtrType = FromType->getAsPointerType())
848 if (const PointerType *ToPtrType = ToType->getAsPointerType()) {
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000849 BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
850 /*DetectVirtual=*/false);
Douglas Gregorbb461502008-10-24 04:54:22 +0000851 QualType FromPointeeType = FromPtrType->getPointeeType(),
852 ToPointeeType = ToPtrType->getPointeeType();
853 if (FromPointeeType->isRecordType() &&
854 ToPointeeType->isRecordType()) {
855 // We must have a derived-to-base conversion. Check an
856 // ambiguous or inaccessible conversion.
Douglas Gregor651d1cc2008-10-24 16:17:19 +0000857 return CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
858 From->getExprLoc(),
859 From->getSourceRange());
Douglas Gregorbb461502008-10-24 04:54:22 +0000860 }
861 }
862
863 return false;
864}
865
Douglas Gregor6573cfd2008-10-21 23:43:52 +0000866/// IsQualificationConversion - Determines whether the conversion from
867/// an rvalue of type FromType to ToType is a qualification conversion
868/// (C++ 4.4).
869bool
870Sema::IsQualificationConversion(QualType FromType, QualType ToType)
871{
872 FromType = Context.getCanonicalType(FromType);
873 ToType = Context.getCanonicalType(ToType);
874
875 // If FromType and ToType are the same type, this is not a
876 // qualification conversion.
877 if (FromType == ToType)
878 return false;
879
880 // (C++ 4.4p4):
881 // A conversion can add cv-qualifiers at levels other than the first
882 // in multi-level pointers, subject to the following rules: [...]
883 bool PreviousToQualsIncludeConst = true;
Douglas Gregor6573cfd2008-10-21 23:43:52 +0000884 bool UnwrappedAnyPointer = false;
Douglas Gregorccc0ccc2008-10-22 14:17:15 +0000885 while (UnwrapSimilarPointerTypes(FromType, ToType)) {
Douglas Gregor6573cfd2008-10-21 23:43:52 +0000886 // Within each iteration of the loop, we check the qualifiers to
887 // determine if this still looks like a qualification
888 // conversion. Then, if all is well, we unwrap one more level of
Douglas Gregorabed2172008-10-22 17:49:05 +0000889 // pointers or pointers-to-members and do it all again
Douglas Gregor6573cfd2008-10-21 23:43:52 +0000890 // until there are no more pointers or pointers-to-members left to
891 // unwrap.
Douglas Gregorccc0ccc2008-10-22 14:17:15 +0000892 UnwrappedAnyPointer = true;
Douglas Gregor6573cfd2008-10-21 23:43:52 +0000893
894 // -- for every j > 0, if const is in cv 1,j then const is in cv
895 // 2,j, and similarly for volatile.
Douglas Gregore5db4f72008-10-22 00:38:21 +0000896 if (!ToType.isAtLeastAsQualifiedAs(FromType))
Douglas Gregor6573cfd2008-10-21 23:43:52 +0000897 return false;
Douglas Gregorccc0ccc2008-10-22 14:17:15 +0000898
Douglas Gregor6573cfd2008-10-21 23:43:52 +0000899 // -- if the cv 1,j and cv 2,j are different, then const is in
900 // every cv for 0 < k < j.
901 if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
Douglas Gregorccc0ccc2008-10-22 14:17:15 +0000902 && !PreviousToQualsIncludeConst)
Douglas Gregor6573cfd2008-10-21 23:43:52 +0000903 return false;
Douglas Gregorccc0ccc2008-10-22 14:17:15 +0000904
Douglas Gregor6573cfd2008-10-21 23:43:52 +0000905 // Keep track of whether all prior cv-qualifiers in the "to" type
906 // include const.
907 PreviousToQualsIncludeConst
908 = PreviousToQualsIncludeConst && ToType.isConstQualified();
Douglas Gregorccc0ccc2008-10-22 14:17:15 +0000909 }
Douglas Gregor6573cfd2008-10-21 23:43:52 +0000910
911 // We are left with FromType and ToType being the pointee types
912 // after unwrapping the original FromType and ToType the same number
913 // of types. If we unwrapped any pointers, and if FromType and
914 // ToType have the same unqualified type (since we checked
915 // qualifiers above), then this is a qualification conversion.
916 return UnwrappedAnyPointer &&
917 FromType.getUnqualifiedType() == ToType.getUnqualifiedType();
918}
919
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000920/// IsUserDefinedConversion - Determines whether there is a
921/// user-defined conversion sequence (C++ [over.ics.user]) that
922/// converts expression From to the type ToType. If such a conversion
923/// exists, User will contain the user-defined conversion sequence
924/// that performs such a conversion and this routine will return
925/// true. Otherwise, this routine returns false and User is
926/// unspecified.
927bool Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
928 UserDefinedConversionSequence& User)
929{
930 OverloadCandidateSet CandidateSet;
931 if (const CXXRecordType *ToRecordType
932 = dyn_cast_or_null<CXXRecordType>(ToType->getAsRecordType())) {
933 // C++ [over.match.ctor]p1:
934 // When objects of class type are direct-initialized (8.5), or
935 // copy-initialized from an expression of the same or a
936 // derived class type (8.5), overload resolution selects the
937 // constructor. [...] For copy-initialization, the candidate
938 // functions are all the converting constructors (12.3.1) of
939 // that class. The argument list is the expression-list within
940 // the parentheses of the initializer.
941 CXXRecordDecl *ToRecordDecl = ToRecordType->getDecl();
942 const OverloadedFunctionDecl *Constructors = ToRecordDecl->getConstructors();
943 for (OverloadedFunctionDecl::function_const_iterator func
944 = Constructors->function_begin();
945 func != Constructors->function_end(); ++func) {
946 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*func);
947 if (Constructor->isConvertingConstructor())
Douglas Gregora3b34bb2008-11-03 19:09:14 +0000948 AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
949 /*SuppressUserConversions=*/true);
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000950 }
951 }
952
Douglas Gregor60714f92008-11-07 22:36:19 +0000953 if (const CXXRecordType *FromRecordType
954 = dyn_cast_or_null<CXXRecordType>(From->getType()->getAsRecordType())) {
955 // Add all of the conversion functions as candidates.
956 // FIXME: Look for conversions in base classes!
957 CXXRecordDecl *FromRecordDecl = FromRecordType->getDecl();
958 OverloadedFunctionDecl *Conversions
959 = FromRecordDecl->getConversionFunctions();
960 for (OverloadedFunctionDecl::function_iterator Func
961 = Conversions->function_begin();
962 Func != Conversions->function_end(); ++Func) {
963 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
964 AddConversionCandidate(Conv, From, ToType, CandidateSet);
965 }
966 }
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000967
968 OverloadCandidateSet::iterator Best;
969 switch (BestViableFunction(CandidateSet, Best)) {
970 case OR_Success:
971 // Record the standard conversion we used and the conversion function.
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000972 if (CXXConstructorDecl *Constructor
973 = dyn_cast<CXXConstructorDecl>(Best->Function)) {
974 // C++ [over.ics.user]p1:
975 // If the user-defined conversion is specified by a
976 // constructor (12.3.1), the initial standard conversion
977 // sequence converts the source type to the type required by
978 // the argument of the constructor.
979 //
980 // FIXME: What about ellipsis conversions?
981 QualType ThisType = Constructor->getThisType(Context);
982 User.Before = Best->Conversions[0].Standard;
983 User.ConversionFunction = Constructor;
984 User.After.setAsIdentityConversion();
985 User.After.FromTypePtr
986 = ThisType->getAsPointerType()->getPointeeType().getAsOpaquePtr();
987 User.After.ToTypePtr = ToType.getAsOpaquePtr();
988 return true;
Douglas Gregor60714f92008-11-07 22:36:19 +0000989 } else if (CXXConversionDecl *Conversion
990 = dyn_cast<CXXConversionDecl>(Best->Function)) {
991 // C++ [over.ics.user]p1:
992 //
993 // [...] If the user-defined conversion is specified by a
994 // conversion function (12.3.2), the initial standard
995 // conversion sequence converts the source type to the
996 // implicit object parameter of the conversion function.
997 User.Before = Best->Conversions[0].Standard;
998 User.ConversionFunction = Conversion;
999
1000 // C++ [over.ics.user]p2:
1001 // The second standard conversion sequence converts the
1002 // result of the user-defined conversion to the target type
1003 // for the sequence. Since an implicit conversion sequence
1004 // is an initialization, the special rules for
1005 // initialization by user-defined conversion apply when
1006 // selecting the best user-defined conversion for a
1007 // user-defined conversion sequence (see 13.3.3 and
1008 // 13.3.3.1).
1009 User.After = Best->FinalConversion;
1010 return true;
Douglas Gregorb72e9da2008-10-31 16:23:19 +00001011 } else {
Douglas Gregor60714f92008-11-07 22:36:19 +00001012 assert(false && "Not a constructor or conversion function?");
Douglas Gregorb72e9da2008-10-31 16:23:19 +00001013 return false;
1014 }
1015
1016 case OR_No_Viable_Function:
1017 // No conversion here! We're done.
1018 return false;
1019
1020 case OR_Ambiguous:
1021 // FIXME: See C++ [over.best.ics]p10 for the handling of
1022 // ambiguous conversion sequences.
1023 return false;
1024 }
1025
1026 return false;
1027}
1028
Douglas Gregord2baafd2008-10-21 16:13:35 +00001029/// CompareImplicitConversionSequences - Compare two implicit
1030/// conversion sequences to determine whether one is better than the
1031/// other or if they are indistinguishable (C++ 13.3.3.2).
1032ImplicitConversionSequence::CompareKind
1033Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1034 const ImplicitConversionSequence& ICS2)
1035{
1036 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1037 // conversion sequences (as defined in 13.3.3.1)
1038 // -- a standard conversion sequence (13.3.3.1.1) is a better
1039 // conversion sequence than a user-defined conversion sequence or
1040 // an ellipsis conversion sequence, and
1041 // -- a user-defined conversion sequence (13.3.3.1.2) is a better
1042 // conversion sequence than an ellipsis conversion sequence
1043 // (13.3.3.1.3).
1044 //
1045 if (ICS1.ConversionKind < ICS2.ConversionKind)
1046 return ImplicitConversionSequence::Better;
1047 else if (ICS2.ConversionKind < ICS1.ConversionKind)
1048 return ImplicitConversionSequence::Worse;
1049
1050 // Two implicit conversion sequences of the same form are
1051 // indistinguishable conversion sequences unless one of the
1052 // following rules apply: (C++ 13.3.3.2p3):
1053 if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion)
1054 return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1055 else if (ICS1.ConversionKind ==
1056 ImplicitConversionSequence::UserDefinedConversion) {
1057 // User-defined conversion sequence U1 is a better conversion
1058 // sequence than another user-defined conversion sequence U2 if
1059 // they contain the same user-defined conversion function or
1060 // constructor and if the second standard conversion sequence of
1061 // U1 is better than the second standard conversion sequence of
1062 // U2 (C++ 13.3.3.2p3).
1063 if (ICS1.UserDefined.ConversionFunction ==
1064 ICS2.UserDefined.ConversionFunction)
1065 return CompareStandardConversionSequences(ICS1.UserDefined.After,
1066 ICS2.UserDefined.After);
1067 }
1068
1069 return ImplicitConversionSequence::Indistinguishable;
1070}
1071
1072/// CompareStandardConversionSequences - Compare two standard
1073/// conversion sequences to determine whether one is better than the
1074/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1075ImplicitConversionSequence::CompareKind
1076Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1077 const StandardConversionSequence& SCS2)
1078{
1079 // Standard conversion sequence S1 is a better conversion sequence
1080 // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1081
1082 // -- S1 is a proper subsequence of S2 (comparing the conversion
1083 // sequences in the canonical form defined by 13.3.3.1.1,
1084 // excluding any Lvalue Transformation; the identity conversion
1085 // sequence is considered to be a subsequence of any
1086 // non-identity conversion sequence) or, if not that,
1087 if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
1088 // Neither is a proper subsequence of the other. Do nothing.
1089 ;
1090 else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
1091 (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
1092 (SCS1.Second == ICK_Identity &&
1093 SCS1.Third == ICK_Identity))
1094 // SCS1 is a proper subsequence of SCS2.
1095 return ImplicitConversionSequence::Better;
1096 else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
1097 (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
1098 (SCS2.Second == ICK_Identity &&
1099 SCS2.Third == ICK_Identity))
1100 // SCS2 is a proper subsequence of SCS1.
1101 return ImplicitConversionSequence::Worse;
1102
1103 // -- the rank of S1 is better than the rank of S2 (by the rules
1104 // defined below), or, if not that,
1105 ImplicitConversionRank Rank1 = SCS1.getRank();
1106 ImplicitConversionRank Rank2 = SCS2.getRank();
1107 if (Rank1 < Rank2)
1108 return ImplicitConversionSequence::Better;
1109 else if (Rank2 < Rank1)
1110 return ImplicitConversionSequence::Worse;
Douglas Gregord2baafd2008-10-21 16:13:35 +00001111
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001112 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1113 // are indistinguishable unless one of the following rules
1114 // applies:
1115
1116 // A conversion that is not a conversion of a pointer, or
1117 // pointer to member, to bool is better than another conversion
1118 // that is such a conversion.
1119 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1120 return SCS2.isPointerConversionToBool()
1121 ? ImplicitConversionSequence::Better
1122 : ImplicitConversionSequence::Worse;
1123
Douglas Gregor14046502008-10-23 00:40:37 +00001124 // C++ [over.ics.rank]p4b2:
1125 //
1126 // If class B is derived directly or indirectly from class A,
Douglas Gregor0e343382008-10-29 14:50:44 +00001127 // conversion of B* to A* is better than conversion of B* to
1128 // void*, and conversion of A* to void* is better than conversion
1129 // of B* to void*.
Douglas Gregor14046502008-10-23 00:40:37 +00001130 bool SCS1ConvertsToVoid
1131 = SCS1.isPointerConversionToVoidPointer(Context);
1132 bool SCS2ConvertsToVoid
1133 = SCS2.isPointerConversionToVoidPointer(Context);
Douglas Gregor0e343382008-10-29 14:50:44 +00001134 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1135 // Exactly one of the conversion sequences is a conversion to
1136 // a void pointer; it's the worse conversion.
Douglas Gregor14046502008-10-23 00:40:37 +00001137 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1138 : ImplicitConversionSequence::Worse;
Douglas Gregor0e343382008-10-29 14:50:44 +00001139 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1140 // Neither conversion sequence converts to a void pointer; compare
1141 // their derived-to-base conversions.
Douglas Gregor14046502008-10-23 00:40:37 +00001142 if (ImplicitConversionSequence::CompareKind DerivedCK
1143 = CompareDerivedToBaseConversions(SCS1, SCS2))
1144 return DerivedCK;
Douglas Gregor0e343382008-10-29 14:50:44 +00001145 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1146 // Both conversion sequences are conversions to void
1147 // pointers. Compare the source types to determine if there's an
1148 // inheritance relationship in their sources.
1149 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1150 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1151
1152 // Adjust the types we're converting from via the array-to-pointer
1153 // conversion, if we need to.
1154 if (SCS1.First == ICK_Array_To_Pointer)
1155 FromType1 = Context.getArrayDecayedType(FromType1);
1156 if (SCS2.First == ICK_Array_To_Pointer)
1157 FromType2 = Context.getArrayDecayedType(FromType2);
1158
1159 QualType FromPointee1
1160 = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1161 QualType FromPointee2
1162 = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1163
1164 if (IsDerivedFrom(FromPointee2, FromPointee1))
1165 return ImplicitConversionSequence::Better;
1166 else if (IsDerivedFrom(FromPointee1, FromPointee2))
1167 return ImplicitConversionSequence::Worse;
Douglas Gregor24a90a52008-11-26 23:31:11 +00001168
1169 // Objective-C++: If one interface is more specific than the
1170 // other, it is the better one.
1171 const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1172 const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1173 if (FromIface1 && FromIface1) {
1174 if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1175 return ImplicitConversionSequence::Better;
1176 else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1177 return ImplicitConversionSequence::Worse;
1178 }
Douglas Gregor0e343382008-10-29 14:50:44 +00001179 }
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001180
1181 // Compare based on qualification conversions (C++ 13.3.3.2p3,
1182 // bullet 3).
Douglas Gregor14046502008-10-23 00:40:37 +00001183 if (ImplicitConversionSequence::CompareKind QualCK
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001184 = CompareQualificationConversions(SCS1, SCS2))
Douglas Gregor14046502008-10-23 00:40:37 +00001185 return QualCK;
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001186
Douglas Gregor0e343382008-10-29 14:50:44 +00001187 // C++ [over.ics.rank]p3b4:
1188 // -- S1 and S2 are reference bindings (8.5.3), and the types to
1189 // which the references refer are the same type except for
1190 // top-level cv-qualifiers, and the type to which the reference
1191 // initialized by S2 refers is more cv-qualified than the type
1192 // to which the reference initialized by S1 refers.
1193 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
1194 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1195 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1196 T1 = Context.getCanonicalType(T1);
1197 T2 = Context.getCanonicalType(T2);
1198 if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) {
1199 if (T2.isMoreQualifiedThan(T1))
1200 return ImplicitConversionSequence::Better;
1201 else if (T1.isMoreQualifiedThan(T2))
1202 return ImplicitConversionSequence::Worse;
1203 }
1204 }
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001205
1206 return ImplicitConversionSequence::Indistinguishable;
1207}
1208
1209/// CompareQualificationConversions - Compares two standard conversion
1210/// sequences to determine whether they can be ranked based on their
1211/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1212ImplicitConversionSequence::CompareKind
1213Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1214 const StandardConversionSequence& SCS2)
1215{
Douglas Gregor4459bbe2008-10-22 15:04:37 +00001216 // C++ 13.3.3.2p3:
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001217 // -- S1 and S2 differ only in their qualification conversion and
1218 // yield similar types T1 and T2 (C++ 4.4), respectively, and the
1219 // cv-qualification signature of type T1 is a proper subset of
1220 // the cv-qualification signature of type T2, and S1 is not the
1221 // deprecated string literal array-to-pointer conversion (4.2).
1222 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1223 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1224 return ImplicitConversionSequence::Indistinguishable;
1225
1226 // FIXME: the example in the standard doesn't use a qualification
1227 // conversion (!)
1228 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1229 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1230 T1 = Context.getCanonicalType(T1);
1231 T2 = Context.getCanonicalType(T2);
1232
1233 // If the types are the same, we won't learn anything by unwrapped
1234 // them.
1235 if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1236 return ImplicitConversionSequence::Indistinguishable;
1237
1238 ImplicitConversionSequence::CompareKind Result
1239 = ImplicitConversionSequence::Indistinguishable;
1240 while (UnwrapSimilarPointerTypes(T1, T2)) {
1241 // Within each iteration of the loop, we check the qualifiers to
1242 // determine if this still looks like a qualification
1243 // conversion. Then, if all is well, we unwrap one more level of
Douglas Gregorabed2172008-10-22 17:49:05 +00001244 // pointers or pointers-to-members and do it all again
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001245 // until there are no more pointers or pointers-to-members left
1246 // to unwrap. This essentially mimics what
1247 // IsQualificationConversion does, but here we're checking for a
1248 // strict subset of qualifiers.
1249 if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1250 // The qualifiers are the same, so this doesn't tell us anything
1251 // about how the sequences rank.
1252 ;
1253 else if (T2.isMoreQualifiedThan(T1)) {
1254 // T1 has fewer qualifiers, so it could be the better sequence.
1255 if (Result == ImplicitConversionSequence::Worse)
1256 // Neither has qualifiers that are a subset of the other's
1257 // qualifiers.
1258 return ImplicitConversionSequence::Indistinguishable;
1259
1260 Result = ImplicitConversionSequence::Better;
1261 } else if (T1.isMoreQualifiedThan(T2)) {
1262 // T2 has fewer qualifiers, so it could be the better sequence.
1263 if (Result == ImplicitConversionSequence::Better)
1264 // Neither has qualifiers that are a subset of the other's
1265 // qualifiers.
1266 return ImplicitConversionSequence::Indistinguishable;
1267
1268 Result = ImplicitConversionSequence::Worse;
1269 } else {
1270 // Qualifiers are disjoint.
1271 return ImplicitConversionSequence::Indistinguishable;
1272 }
1273
1274 // If the types after this point are equivalent, we're done.
1275 if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1276 break;
Douglas Gregord2baafd2008-10-21 16:13:35 +00001277 }
1278
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001279 // Check that the winning standard conversion sequence isn't using
1280 // the deprecated string literal array to pointer conversion.
1281 switch (Result) {
1282 case ImplicitConversionSequence::Better:
1283 if (SCS1.Deprecated)
1284 Result = ImplicitConversionSequence::Indistinguishable;
1285 break;
1286
1287 case ImplicitConversionSequence::Indistinguishable:
1288 break;
1289
1290 case ImplicitConversionSequence::Worse:
1291 if (SCS2.Deprecated)
1292 Result = ImplicitConversionSequence::Indistinguishable;
1293 break;
1294 }
1295
1296 return Result;
Douglas Gregord2baafd2008-10-21 16:13:35 +00001297}
1298
Douglas Gregor14046502008-10-23 00:40:37 +00001299/// CompareDerivedToBaseConversions - Compares two standard conversion
1300/// sequences to determine whether they can be ranked based on their
Douglas Gregor24a90a52008-11-26 23:31:11 +00001301/// various kinds of derived-to-base conversions (C++
1302/// [over.ics.rank]p4b3). As part of these checks, we also look at
1303/// conversions between Objective-C interface types.
Douglas Gregor14046502008-10-23 00:40:37 +00001304ImplicitConversionSequence::CompareKind
1305Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
1306 const StandardConversionSequence& SCS2) {
1307 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1308 QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1309 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1310 QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1311
1312 // Adjust the types we're converting from via the array-to-pointer
1313 // conversion, if we need to.
1314 if (SCS1.First == ICK_Array_To_Pointer)
1315 FromType1 = Context.getArrayDecayedType(FromType1);
1316 if (SCS2.First == ICK_Array_To_Pointer)
1317 FromType2 = Context.getArrayDecayedType(FromType2);
1318
1319 // Canonicalize all of the types.
1320 FromType1 = Context.getCanonicalType(FromType1);
1321 ToType1 = Context.getCanonicalType(ToType1);
1322 FromType2 = Context.getCanonicalType(FromType2);
1323 ToType2 = Context.getCanonicalType(ToType2);
1324
Douglas Gregor0e343382008-10-29 14:50:44 +00001325 // C++ [over.ics.rank]p4b3:
Douglas Gregor14046502008-10-23 00:40:37 +00001326 //
1327 // If class B is derived directly or indirectly from class A and
1328 // class C is derived directly or indirectly from B,
Douglas Gregor24a90a52008-11-26 23:31:11 +00001329 //
1330 // For Objective-C, we let A, B, and C also be Objective-C
1331 // interfaces.
Douglas Gregor0e343382008-10-29 14:50:44 +00001332
1333 // Compare based on pointer conversions.
Douglas Gregor14046502008-10-23 00:40:37 +00001334 if (SCS1.Second == ICK_Pointer_Conversion &&
1335 SCS2.Second == ICK_Pointer_Conversion) {
Douglas Gregor14046502008-10-23 00:40:37 +00001336 QualType FromPointee1
1337 = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1338 QualType ToPointee1
1339 = ToType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1340 QualType FromPointee2
1341 = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1342 QualType ToPointee2
1343 = ToType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
Douglas Gregor24a90a52008-11-26 23:31:11 +00001344
1345 const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1346 const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1347 const ObjCInterfaceType* ToIface1 = ToPointee1->getAsObjCInterfaceType();
1348 const ObjCInterfaceType* ToIface2 = ToPointee2->getAsObjCInterfaceType();
1349
Douglas Gregor0e343382008-10-29 14:50:44 +00001350 // -- conversion of C* to B* is better than conversion of C* to A*,
Douglas Gregor14046502008-10-23 00:40:37 +00001351 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
1352 if (IsDerivedFrom(ToPointee1, ToPointee2))
1353 return ImplicitConversionSequence::Better;
1354 else if (IsDerivedFrom(ToPointee2, ToPointee1))
1355 return ImplicitConversionSequence::Worse;
Douglas Gregor24a90a52008-11-26 23:31:11 +00001356
1357 if (ToIface1 && ToIface2) {
1358 if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
1359 return ImplicitConversionSequence::Better;
1360 else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
1361 return ImplicitConversionSequence::Worse;
1362 }
Douglas Gregor14046502008-10-23 00:40:37 +00001363 }
Douglas Gregor0e343382008-10-29 14:50:44 +00001364
1365 // -- conversion of B* to A* is better than conversion of C* to A*,
1366 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
1367 if (IsDerivedFrom(FromPointee2, FromPointee1))
1368 return ImplicitConversionSequence::Better;
1369 else if (IsDerivedFrom(FromPointee1, FromPointee2))
1370 return ImplicitConversionSequence::Worse;
Douglas Gregor24a90a52008-11-26 23:31:11 +00001371
1372 if (FromIface1 && FromIface2) {
1373 if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1374 return ImplicitConversionSequence::Better;
1375 else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1376 return ImplicitConversionSequence::Worse;
1377 }
Douglas Gregor0e343382008-10-29 14:50:44 +00001378 }
Douglas Gregor14046502008-10-23 00:40:37 +00001379 }
1380
Douglas Gregor0e343382008-10-29 14:50:44 +00001381 // Compare based on reference bindings.
1382 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding &&
1383 SCS1.Second == ICK_Derived_To_Base) {
1384 // -- binding of an expression of type C to a reference of type
1385 // B& is better than binding an expression of type C to a
1386 // reference of type A&,
1387 if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1388 ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1389 if (IsDerivedFrom(ToType1, ToType2))
1390 return ImplicitConversionSequence::Better;
1391 else if (IsDerivedFrom(ToType2, ToType1))
1392 return ImplicitConversionSequence::Worse;
1393 }
1394
Douglas Gregora3b34bb2008-11-03 19:09:14 +00001395 // -- binding of an expression of type B to a reference of type
1396 // A& is better than binding an expression of type C to a
1397 // reference of type A&,
Douglas Gregor0e343382008-10-29 14:50:44 +00001398 if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1399 ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1400 if (IsDerivedFrom(FromType2, FromType1))
1401 return ImplicitConversionSequence::Better;
1402 else if (IsDerivedFrom(FromType1, FromType2))
1403 return ImplicitConversionSequence::Worse;
1404 }
1405 }
1406
1407
1408 // FIXME: conversion of A::* to B::* is better than conversion of
1409 // A::* to C::*,
1410
1411 // FIXME: conversion of B::* to C::* is better than conversion of
1412 // A::* to C::*, and
1413
Douglas Gregora3b34bb2008-11-03 19:09:14 +00001414 if (SCS1.CopyConstructor && SCS2.CopyConstructor &&
1415 SCS1.Second == ICK_Derived_To_Base) {
1416 // -- conversion of C to B is better than conversion of C to A,
1417 if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1418 ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1419 if (IsDerivedFrom(ToType1, ToType2))
1420 return ImplicitConversionSequence::Better;
1421 else if (IsDerivedFrom(ToType2, ToType1))
1422 return ImplicitConversionSequence::Worse;
1423 }
Douglas Gregor0e343382008-10-29 14:50:44 +00001424
Douglas Gregora3b34bb2008-11-03 19:09:14 +00001425 // -- conversion of B to A is better than conversion of C to A.
1426 if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1427 ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1428 if (IsDerivedFrom(FromType2, FromType1))
1429 return ImplicitConversionSequence::Better;
1430 else if (IsDerivedFrom(FromType1, FromType2))
1431 return ImplicitConversionSequence::Worse;
1432 }
1433 }
Douglas Gregor0e343382008-10-29 14:50:44 +00001434
Douglas Gregor14046502008-10-23 00:40:37 +00001435 return ImplicitConversionSequence::Indistinguishable;
1436}
1437
Douglas Gregor81c29152008-10-29 00:13:59 +00001438/// TryCopyInitialization - Try to copy-initialize a value of type
1439/// ToType from the expression From. Return the implicit conversion
1440/// sequence required to pass this argument, which may be a bad
1441/// conversion sequence (meaning that the argument cannot be passed to
Douglas Gregora3b34bb2008-11-03 19:09:14 +00001442/// a parameter of this type). If @p SuppressUserConversions, then we
1443/// do not permit any user-defined conversion sequences.
Douglas Gregor81c29152008-10-29 00:13:59 +00001444ImplicitConversionSequence
Douglas Gregora3b34bb2008-11-03 19:09:14 +00001445Sema::TryCopyInitialization(Expr *From, QualType ToType,
1446 bool SuppressUserConversions) {
Douglas Gregor81c29152008-10-29 00:13:59 +00001447 if (!getLangOptions().CPlusPlus) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +00001448 // In C, copy initialization is the same as performing an assignment.
Douglas Gregor81c29152008-10-29 00:13:59 +00001449 AssignConvertType ConvTy =
1450 CheckSingleAssignmentConstraints(ToType, From);
1451 ImplicitConversionSequence ICS;
1452 if (getLangOptions().NoExtensions? ConvTy != Compatible
1453 : ConvTy == Incompatible)
1454 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
1455 else
1456 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
1457 return ICS;
1458 } else if (ToType->isReferenceType()) {
1459 ImplicitConversionSequence ICS;
Douglas Gregora3b34bb2008-11-03 19:09:14 +00001460 CheckReferenceInit(From, ToType, &ICS, SuppressUserConversions);
Douglas Gregor81c29152008-10-29 00:13:59 +00001461 return ICS;
1462 } else {
Douglas Gregora3b34bb2008-11-03 19:09:14 +00001463 return TryImplicitConversion(From, ToType, SuppressUserConversions);
Douglas Gregor81c29152008-10-29 00:13:59 +00001464 }
1465}
1466
1467/// PerformArgumentPassing - Pass the argument Arg into a parameter of
1468/// type ToType. Returns true (and emits a diagnostic) if there was
1469/// an error, returns false if the initialization succeeded.
1470bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
1471 const char* Flavor) {
1472 if (!getLangOptions().CPlusPlus) {
1473 // In C, argument passing is the same as performing an assignment.
1474 QualType FromType = From->getType();
1475 AssignConvertType ConvTy =
1476 CheckSingleAssignmentConstraints(ToType, From);
1477
1478 return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
1479 FromType, From, Flavor);
Douglas Gregor81c29152008-10-29 00:13:59 +00001480 }
Chris Lattner271d4c22008-11-24 05:29:24 +00001481
1482 if (ToType->isReferenceType())
1483 return CheckReferenceInit(From, ToType);
1484
1485 if (!PerformImplicitConversion(From, ToType))
1486 return false;
1487
1488 return Diag(From->getSourceRange().getBegin(),
1489 diag::err_typecheck_convert_incompatible)
1490 << ToType << From->getType() << Flavor << From->getSourceRange();
Douglas Gregor81c29152008-10-29 00:13:59 +00001491}
1492
Douglas Gregor5ed15042008-11-18 23:14:02 +00001493/// TryObjectArgumentInitialization - Try to initialize the object
1494/// parameter of the given member function (@c Method) from the
1495/// expression @p From.
1496ImplicitConversionSequence
1497Sema::TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method) {
1498 QualType ClassType = Context.getTypeDeclType(Method->getParent());
1499 unsigned MethodQuals = Method->getTypeQualifiers();
1500 QualType ImplicitParamType = ClassType.getQualifiedType(MethodQuals);
1501
1502 // Set up the conversion sequence as a "bad" conversion, to allow us
1503 // to exit early.
1504 ImplicitConversionSequence ICS;
1505 ICS.Standard.setAsIdentityConversion();
1506 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
1507
1508 // We need to have an object of class type.
1509 QualType FromType = From->getType();
1510 if (!FromType->isRecordType())
1511 return ICS;
1512
1513 // The implicit object parmeter is has the type "reference to cv X",
1514 // where X is the class of which the function is a member
1515 // (C++ [over.match.funcs]p4). However, when finding an implicit
1516 // conversion sequence for the argument, we are not allowed to
1517 // create temporaries or perform user-defined conversions
1518 // (C++ [over.match.funcs]p5). We perform a simplified version of
1519 // reference binding here, that allows class rvalues to bind to
1520 // non-constant references.
1521
1522 // First check the qualifiers. We don't care about lvalue-vs-rvalue
1523 // with the implicit object parameter (C++ [over.match.funcs]p5).
1524 QualType FromTypeCanon = Context.getCanonicalType(FromType);
1525 if (ImplicitParamType.getCVRQualifiers() != FromType.getCVRQualifiers() &&
1526 !ImplicitParamType.isAtLeastAsQualifiedAs(FromType))
1527 return ICS;
1528
1529 // Check that we have either the same type or a derived type. It
1530 // affects the conversion rank.
1531 QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
1532 if (ClassTypeCanon == FromTypeCanon.getUnqualifiedType())
1533 ICS.Standard.Second = ICK_Identity;
1534 else if (IsDerivedFrom(FromType, ClassType))
1535 ICS.Standard.Second = ICK_Derived_To_Base;
1536 else
1537 return ICS;
1538
1539 // Success. Mark this as a reference binding.
1540 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
1541 ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr();
1542 ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr();
1543 ICS.Standard.ReferenceBinding = true;
1544 ICS.Standard.DirectBinding = true;
1545 return ICS;
1546}
1547
1548/// PerformObjectArgumentInitialization - Perform initialization of
1549/// the implicit object parameter for the given Method with the given
1550/// expression.
1551bool
1552Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) {
1553 QualType ImplicitParamType
1554 = Method->getThisType(Context)->getAsPointerType()->getPointeeType();
1555 ImplicitConversionSequence ICS
1556 = TryObjectArgumentInitialization(From, Method);
1557 if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion)
1558 return Diag(From->getSourceRange().getBegin(),
Chris Lattner8ba580c2008-11-19 05:08:23 +00001559 diag::err_implicit_object_parameter_init)
Chris Lattner4bfd2232008-11-24 06:25:27 +00001560 << ImplicitParamType << From->getType() << From->getSourceRange();
Douglas Gregor5ed15042008-11-18 23:14:02 +00001561
1562 if (ICS.Standard.Second == ICK_Derived_To_Base &&
1563 CheckDerivedToBaseConversion(From->getType(), ImplicitParamType,
1564 From->getSourceRange().getBegin(),
1565 From->getSourceRange()))
1566 return true;
1567
1568 ImpCastExprToType(From, ImplicitParamType, /*isLvalue=*/true);
1569 return false;
1570}
1571
Douglas Gregord2baafd2008-10-21 16:13:35 +00001572/// AddOverloadCandidate - Adds the given function to the set of
Douglas Gregora3b34bb2008-11-03 19:09:14 +00001573/// candidate functions, using the given function call arguments. If
1574/// @p SuppressUserConversions, then don't allow user-defined
1575/// conversions via constructors or conversion operators.
Douglas Gregord2baafd2008-10-21 16:13:35 +00001576void
1577Sema::AddOverloadCandidate(FunctionDecl *Function,
1578 Expr **Args, unsigned NumArgs,
Douglas Gregora3b34bb2008-11-03 19:09:14 +00001579 OverloadCandidateSet& CandidateSet,
1580 bool SuppressUserConversions)
Douglas Gregord2baafd2008-10-21 16:13:35 +00001581{
1582 const FunctionTypeProto* Proto
1583 = dyn_cast<FunctionTypeProto>(Function->getType()->getAsFunctionType());
1584 assert(Proto && "Functions without a prototype cannot be overloaded");
Douglas Gregor60714f92008-11-07 22:36:19 +00001585 assert(!isa<CXXConversionDecl>(Function) &&
1586 "Use AddConversionCandidate for conversion functions");
Douglas Gregord2baafd2008-10-21 16:13:35 +00001587
1588 // Add this candidate
1589 CandidateSet.push_back(OverloadCandidate());
1590 OverloadCandidate& Candidate = CandidateSet.back();
1591 Candidate.Function = Function;
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00001592 Candidate.IsSurrogate = false;
Douglas Gregord2baafd2008-10-21 16:13:35 +00001593
1594 unsigned NumArgsInProto = Proto->getNumArgs();
1595
1596 // (C++ 13.3.2p2): A candidate function having fewer than m
1597 // parameters is viable only if it has an ellipsis in its parameter
1598 // list (8.3.5).
1599 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
1600 Candidate.Viable = false;
1601 return;
1602 }
1603
1604 // (C++ 13.3.2p2): A candidate function having more than m parameters
1605 // is viable only if the (m+1)st parameter has a default argument
1606 // (8.3.6). For the purposes of overload resolution, the
1607 // parameter list is truncated on the right, so that there are
1608 // exactly m parameters.
1609 unsigned MinRequiredArgs = Function->getMinRequiredArguments();
1610 if (NumArgs < MinRequiredArgs) {
1611 // Not enough arguments.
1612 Candidate.Viable = false;
1613 return;
1614 }
1615
1616 // Determine the implicit conversion sequences for each of the
1617 // arguments.
1618 Candidate.Viable = true;
1619 Candidate.Conversions.resize(NumArgs);
1620 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
1621 if (ArgIdx < NumArgsInProto) {
1622 // (C++ 13.3.2p3): for F to be a viable function, there shall
1623 // exist for each argument an implicit conversion sequence
1624 // (13.3.3.1) that converts that argument to the corresponding
1625 // parameter of F.
1626 QualType ParamType = Proto->getArgType(ArgIdx);
1627 Candidate.Conversions[ArgIdx]
Douglas Gregora3b34bb2008-11-03 19:09:14 +00001628 = TryCopyInitialization(Args[ArgIdx], ParamType,
1629 SuppressUserConversions);
Douglas Gregord2baafd2008-10-21 16:13:35 +00001630 if (Candidate.Conversions[ArgIdx].ConversionKind
Douglas Gregor5ed15042008-11-18 23:14:02 +00001631 == ImplicitConversionSequence::BadConversion) {
Douglas Gregord2baafd2008-10-21 16:13:35 +00001632 Candidate.Viable = false;
Douglas Gregor5ed15042008-11-18 23:14:02 +00001633 break;
1634 }
Douglas Gregord2baafd2008-10-21 16:13:35 +00001635 } else {
1636 // (C++ 13.3.2p2): For the purposes of overload resolution, any
1637 // argument for which there is no corresponding parameter is
1638 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
1639 Candidate.Conversions[ArgIdx].ConversionKind
1640 = ImplicitConversionSequence::EllipsisConversion;
1641 }
1642 }
1643}
1644
Douglas Gregor5ed15042008-11-18 23:14:02 +00001645/// AddMethodCandidate - Adds the given C++ member function to the set
1646/// of candidate functions, using the given function call arguments
1647/// and the object argument (@c Object). For example, in a call
1648/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
1649/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
1650/// allow user-defined conversions via constructors or conversion
1651/// operators.
1652void
1653Sema::AddMethodCandidate(CXXMethodDecl *Method, Expr *Object,
1654 Expr **Args, unsigned NumArgs,
1655 OverloadCandidateSet& CandidateSet,
1656 bool SuppressUserConversions)
1657{
1658 const FunctionTypeProto* Proto
1659 = dyn_cast<FunctionTypeProto>(Method->getType()->getAsFunctionType());
1660 assert(Proto && "Methods without a prototype cannot be overloaded");
1661 assert(!isa<CXXConversionDecl>(Method) &&
1662 "Use AddConversionCandidate for conversion functions");
1663
1664 // Add this candidate
1665 CandidateSet.push_back(OverloadCandidate());
1666 OverloadCandidate& Candidate = CandidateSet.back();
1667 Candidate.Function = Method;
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00001668 Candidate.IsSurrogate = false;
Douglas Gregor5ed15042008-11-18 23:14:02 +00001669
1670 unsigned NumArgsInProto = Proto->getNumArgs();
1671
1672 // (C++ 13.3.2p2): A candidate function having fewer than m
1673 // parameters is viable only if it has an ellipsis in its parameter
1674 // list (8.3.5).
1675 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
1676 Candidate.Viable = false;
1677 return;
1678 }
1679
1680 // (C++ 13.3.2p2): A candidate function having more than m parameters
1681 // is viable only if the (m+1)st parameter has a default argument
1682 // (8.3.6). For the purposes of overload resolution, the
1683 // parameter list is truncated on the right, so that there are
1684 // exactly m parameters.
1685 unsigned MinRequiredArgs = Method->getMinRequiredArguments();
1686 if (NumArgs < MinRequiredArgs) {
1687 // Not enough arguments.
1688 Candidate.Viable = false;
1689 return;
1690 }
1691
1692 Candidate.Viable = true;
1693 Candidate.Conversions.resize(NumArgs + 1);
1694
1695 // Determine the implicit conversion sequence for the object
1696 // parameter.
1697 Candidate.Conversions[0] = TryObjectArgumentInitialization(Object, Method);
1698 if (Candidate.Conversions[0].ConversionKind
1699 == ImplicitConversionSequence::BadConversion) {
1700 Candidate.Viable = false;
1701 return;
1702 }
1703
1704 // Determine the implicit conversion sequences for each of the
1705 // arguments.
1706 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
1707 if (ArgIdx < NumArgsInProto) {
1708 // (C++ 13.3.2p3): for F to be a viable function, there shall
1709 // exist for each argument an implicit conversion sequence
1710 // (13.3.3.1) that converts that argument to the corresponding
1711 // parameter of F.
1712 QualType ParamType = Proto->getArgType(ArgIdx);
1713 Candidate.Conversions[ArgIdx + 1]
1714 = TryCopyInitialization(Args[ArgIdx], ParamType,
1715 SuppressUserConversions);
1716 if (Candidate.Conversions[ArgIdx + 1].ConversionKind
1717 == ImplicitConversionSequence::BadConversion) {
1718 Candidate.Viable = false;
1719 break;
1720 }
1721 } else {
1722 // (C++ 13.3.2p2): For the purposes of overload resolution, any
1723 // argument for which there is no corresponding parameter is
1724 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
1725 Candidate.Conversions[ArgIdx + 1].ConversionKind
1726 = ImplicitConversionSequence::EllipsisConversion;
1727 }
1728 }
1729}
1730
Douglas Gregor60714f92008-11-07 22:36:19 +00001731/// AddConversionCandidate - Add a C++ conversion function as a
1732/// candidate in the candidate set (C++ [over.match.conv],
1733/// C++ [over.match.copy]). From is the expression we're converting from,
1734/// and ToType is the type that we're eventually trying to convert to
1735/// (which may or may not be the same type as the type that the
1736/// conversion function produces).
1737void
1738Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
1739 Expr *From, QualType ToType,
1740 OverloadCandidateSet& CandidateSet) {
1741 // Add this candidate
1742 CandidateSet.push_back(OverloadCandidate());
1743 OverloadCandidate& Candidate = CandidateSet.back();
1744 Candidate.Function = Conversion;
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00001745 Candidate.IsSurrogate = false;
Douglas Gregor60714f92008-11-07 22:36:19 +00001746 Candidate.FinalConversion.setAsIdentityConversion();
1747 Candidate.FinalConversion.FromTypePtr
1748 = Conversion->getConversionType().getAsOpaquePtr();
1749 Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr();
1750
Douglas Gregor5ed15042008-11-18 23:14:02 +00001751 // Determine the implicit conversion sequence for the implicit
1752 // object parameter.
Douglas Gregor60714f92008-11-07 22:36:19 +00001753 Candidate.Viable = true;
1754 Candidate.Conversions.resize(1);
Douglas Gregor5ed15042008-11-18 23:14:02 +00001755 Candidate.Conversions[0] = TryObjectArgumentInitialization(From, Conversion);
Douglas Gregor60714f92008-11-07 22:36:19 +00001756
Douglas Gregor60714f92008-11-07 22:36:19 +00001757 if (Candidate.Conversions[0].ConversionKind
1758 == ImplicitConversionSequence::BadConversion) {
1759 Candidate.Viable = false;
1760 return;
1761 }
1762
1763 // To determine what the conversion from the result of calling the
1764 // conversion function to the type we're eventually trying to
1765 // convert to (ToType), we need to synthesize a call to the
1766 // conversion function and attempt copy initialization from it. This
1767 // makes sure that we get the right semantics with respect to
1768 // lvalues/rvalues and the type. Fortunately, we can allocate this
1769 // call on the stack and we don't need its arguments to be
1770 // well-formed.
1771 DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
1772 SourceLocation());
1773 ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
Douglas Gregor70d26122008-11-12 17:17:38 +00001774 &ConversionRef, false);
Douglas Gregor60714f92008-11-07 22:36:19 +00001775 CallExpr Call(&ConversionFn, 0, 0,
1776 Conversion->getConversionType().getNonReferenceType(),
1777 SourceLocation());
1778 ImplicitConversionSequence ICS = TryCopyInitialization(&Call, ToType, true);
1779 switch (ICS.ConversionKind) {
1780 case ImplicitConversionSequence::StandardConversion:
1781 Candidate.FinalConversion = ICS.Standard;
1782 break;
1783
1784 case ImplicitConversionSequence::BadConversion:
1785 Candidate.Viable = false;
1786 break;
1787
1788 default:
1789 assert(false &&
1790 "Can only end up with a standard conversion sequence or failure");
1791 }
1792}
1793
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00001794/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
1795/// converts the given @c Object to a function pointer via the
1796/// conversion function @c Conversion, and then attempts to call it
1797/// with the given arguments (C++ [over.call.object]p2-4). Proto is
1798/// the type of function that we'll eventually be calling.
1799void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
1800 const FunctionTypeProto *Proto,
1801 Expr *Object, Expr **Args, unsigned NumArgs,
1802 OverloadCandidateSet& CandidateSet) {
1803 CandidateSet.push_back(OverloadCandidate());
1804 OverloadCandidate& Candidate = CandidateSet.back();
1805 Candidate.Function = 0;
1806 Candidate.Surrogate = Conversion;
1807 Candidate.Viable = true;
1808 Candidate.IsSurrogate = true;
1809 Candidate.Conversions.resize(NumArgs + 1);
1810
1811 // Determine the implicit conversion sequence for the implicit
1812 // object parameter.
1813 ImplicitConversionSequence ObjectInit
1814 = TryObjectArgumentInitialization(Object, Conversion);
1815 if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) {
1816 Candidate.Viable = false;
1817 return;
1818 }
1819
1820 // The first conversion is actually a user-defined conversion whose
1821 // first conversion is ObjectInit's standard conversion (which is
1822 // effectively a reference binding). Record it as such.
1823 Candidate.Conversions[0].ConversionKind
1824 = ImplicitConversionSequence::UserDefinedConversion;
1825 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
1826 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
1827 Candidate.Conversions[0].UserDefined.After
1828 = Candidate.Conversions[0].UserDefined.Before;
1829 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
1830
1831 // Find the
1832 unsigned NumArgsInProto = Proto->getNumArgs();
1833
1834 // (C++ 13.3.2p2): A candidate function having fewer than m
1835 // parameters is viable only if it has an ellipsis in its parameter
1836 // list (8.3.5).
1837 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
1838 Candidate.Viable = false;
1839 return;
1840 }
1841
1842 // Function types don't have any default arguments, so just check if
1843 // we have enough arguments.
1844 if (NumArgs < NumArgsInProto) {
1845 // Not enough arguments.
1846 Candidate.Viable = false;
1847 return;
1848 }
1849
1850 // Determine the implicit conversion sequences for each of the
1851 // arguments.
1852 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
1853 if (ArgIdx < NumArgsInProto) {
1854 // (C++ 13.3.2p3): for F to be a viable function, there shall
1855 // exist for each argument an implicit conversion sequence
1856 // (13.3.3.1) that converts that argument to the corresponding
1857 // parameter of F.
1858 QualType ParamType = Proto->getArgType(ArgIdx);
1859 Candidate.Conversions[ArgIdx + 1]
1860 = TryCopyInitialization(Args[ArgIdx], ParamType,
1861 /*SuppressUserConversions=*/false);
1862 if (Candidate.Conversions[ArgIdx + 1].ConversionKind
1863 == ImplicitConversionSequence::BadConversion) {
1864 Candidate.Viable = false;
1865 break;
1866 }
1867 } else {
1868 // (C++ 13.3.2p2): For the purposes of overload resolution, any
1869 // argument for which there is no corresponding parameter is
1870 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
1871 Candidate.Conversions[ArgIdx + 1].ConversionKind
1872 = ImplicitConversionSequence::EllipsisConversion;
1873 }
1874 }
1875}
1876
Douglas Gregor849ea9c2008-11-19 03:25:36 +00001877/// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
1878/// an acceptable non-member overloaded operator for a call whose
1879/// arguments have types T1 (and, if non-empty, T2). This routine
1880/// implements the check in C++ [over.match.oper]p3b2 concerning
1881/// enumeration types.
1882static bool
1883IsAcceptableNonMemberOperatorCandidate(FunctionDecl *Fn,
1884 QualType T1, QualType T2,
1885 ASTContext &Context) {
1886 if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
1887 return true;
1888
1889 const FunctionTypeProto *Proto = Fn->getType()->getAsFunctionTypeProto();
1890 if (Proto->getNumArgs() < 1)
1891 return false;
1892
1893 if (T1->isEnumeralType()) {
1894 QualType ArgType = Proto->getArgType(0).getNonReferenceType();
1895 if (Context.getCanonicalType(T1).getUnqualifiedType()
1896 == Context.getCanonicalType(ArgType).getUnqualifiedType())
1897 return true;
1898 }
1899
1900 if (Proto->getNumArgs() < 2)
1901 return false;
1902
1903 if (!T2.isNull() && T2->isEnumeralType()) {
1904 QualType ArgType = Proto->getArgType(1).getNonReferenceType();
1905 if (Context.getCanonicalType(T2).getUnqualifiedType()
1906 == Context.getCanonicalType(ArgType).getUnqualifiedType())
1907 return true;
1908 }
1909
1910 return false;
1911}
1912
Douglas Gregor5ed15042008-11-18 23:14:02 +00001913/// AddOperatorCandidates - Add the overloaded operator candidates for
1914/// the operator Op that was used in an operator expression such as "x
1915/// Op y". S is the scope in which the expression occurred (used for
1916/// name lookup of the operator), Args/NumArgs provides the operator
1917/// arguments, and CandidateSet will store the added overload
1918/// candidates. (C++ [over.match.oper]).
1919void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
1920 Expr **Args, unsigned NumArgs,
1921 OverloadCandidateSet& CandidateSet) {
1922 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
1923
1924 // C++ [over.match.oper]p3:
1925 // For a unary operator @ with an operand of a type whose
1926 // cv-unqualified version is T1, and for a binary operator @ with
1927 // a left operand of a type whose cv-unqualified version is T1 and
1928 // a right operand of a type whose cv-unqualified version is T2,
1929 // three sets of candidate functions, designated member
1930 // candidates, non-member candidates and built-in candidates, are
1931 // constructed as follows:
1932 QualType T1 = Args[0]->getType();
1933 QualType T2;
1934 if (NumArgs > 1)
1935 T2 = Args[1]->getType();
1936
1937 // -- If T1 is a class type, the set of member candidates is the
1938 // result of the qualified lookup of T1::operator@
1939 // (13.3.1.1.1); otherwise, the set of member candidates is
1940 // empty.
1941 if (const RecordType *T1Rec = T1->getAsRecordType()) {
1942 IdentifierResolver::iterator I
1943 = IdResolver.begin(OpName, cast<CXXRecordType>(T1Rec)->getDecl(),
1944 /*LookInParentCtx=*/false);
1945 NamedDecl *MemberOps = (I == IdResolver.end())? 0 : *I;
1946 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(MemberOps))
1947 AddMethodCandidate(Method, Args[0], Args+1, NumArgs - 1, CandidateSet,
1948 /*SuppressUserConversions=*/false);
1949 else if (OverloadedFunctionDecl *Ovl
1950 = dyn_cast_or_null<OverloadedFunctionDecl>(MemberOps)) {
1951 for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
1952 FEnd = Ovl->function_end();
1953 F != FEnd; ++F) {
1954 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*F))
1955 AddMethodCandidate(Method, Args[0], Args+1, NumArgs - 1, CandidateSet,
1956 /*SuppressUserConversions=*/false);
1957 }
1958 }
1959 }
1960
1961 // -- The set of non-member candidates is the result of the
1962 // unqualified lookup of operator@ in the context of the
1963 // expression according to the usual rules for name lookup in
1964 // unqualified function calls (3.4.2) except that all member
1965 // functions are ignored. However, if no operand has a class
1966 // type, only those non-member functions in the lookup set
1967 // that have a first parameter of type T1 or “reference to
1968 // (possibly cv-qualified) T1”, when T1 is an enumeration
1969 // type, or (if there is a right operand) a second parameter
1970 // of type T2 or “reference to (possibly cv-qualified) T2”,
1971 // when T2 is an enumeration type, are candidate functions.
1972 {
1973 NamedDecl *NonMemberOps = 0;
1974 for (IdentifierResolver::iterator I
1975 = IdResolver.begin(OpName, CurContext, true/*LookInParentCtx*/);
1976 I != IdResolver.end(); ++I) {
1977 // We don't need to check the identifier namespace, because
1978 // operator names can only be ordinary identifiers.
1979
1980 // Ignore member functions.
1981 if (ScopedDecl *SD = dyn_cast<ScopedDecl>(*I)) {
1982 if (SD->getDeclContext()->isCXXRecord())
1983 continue;
1984 }
1985
1986 // We found something with this name. We're done.
1987 NonMemberOps = *I;
1988 break;
1989 }
1990
Douglas Gregor849ea9c2008-11-19 03:25:36 +00001991 if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(NonMemberOps)) {
1992 if (IsAcceptableNonMemberOperatorCandidate(FD, T1, T2, Context))
1993 AddOverloadCandidate(FD, Args, NumArgs, CandidateSet,
1994 /*SuppressUserConversions=*/false);
1995 } else if (OverloadedFunctionDecl *Ovl
1996 = dyn_cast_or_null<OverloadedFunctionDecl>(NonMemberOps)) {
Douglas Gregor5ed15042008-11-18 23:14:02 +00001997 for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
1998 FEnd = Ovl->function_end();
Douglas Gregor849ea9c2008-11-19 03:25:36 +00001999 F != FEnd; ++F) {
2000 if (IsAcceptableNonMemberOperatorCandidate(*F, T1, T2, Context))
2001 AddOverloadCandidate(*F, Args, NumArgs, CandidateSet,
2002 /*SuppressUserConversions=*/false);
2003 }
Douglas Gregor5ed15042008-11-18 23:14:02 +00002004 }
2005 }
2006
2007 // Add builtin overload candidates (C++ [over.built]).
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002008 AddBuiltinOperatorCandidates(Op, Args, NumArgs, CandidateSet);
Douglas Gregor5ed15042008-11-18 23:14:02 +00002009}
2010
Douglas Gregor70d26122008-11-12 17:17:38 +00002011/// AddBuiltinCandidate - Add a candidate for a built-in
2012/// operator. ResultTy and ParamTys are the result and parameter types
2013/// of the built-in candidate, respectively. Args and NumArgs are the
2014/// arguments being passed to the candidate.
2015void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
2016 Expr **Args, unsigned NumArgs,
2017 OverloadCandidateSet& CandidateSet) {
2018 // Add this candidate
2019 CandidateSet.push_back(OverloadCandidate());
2020 OverloadCandidate& Candidate = CandidateSet.back();
2021 Candidate.Function = 0;
2022 Candidate.BuiltinTypes.ResultTy = ResultTy;
2023 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2024 Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
2025
2026 // Determine the implicit conversion sequences for each of the
2027 // arguments.
2028 Candidate.Viable = true;
2029 Candidate.Conversions.resize(NumArgs);
2030 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2031 Candidate.Conversions[ArgIdx]
2032 = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx], false);
2033 if (Candidate.Conversions[ArgIdx].ConversionKind
Douglas Gregor5ed15042008-11-18 23:14:02 +00002034 == ImplicitConversionSequence::BadConversion) {
Douglas Gregor70d26122008-11-12 17:17:38 +00002035 Candidate.Viable = false;
Douglas Gregor5ed15042008-11-18 23:14:02 +00002036 break;
2037 }
Douglas Gregor70d26122008-11-12 17:17:38 +00002038 }
2039}
2040
2041/// BuiltinCandidateTypeSet - A set of types that will be used for the
2042/// candidate operator functions for built-in operators (C++
2043/// [over.built]). The types are separated into pointer types and
2044/// enumeration types.
2045class BuiltinCandidateTypeSet {
2046 /// TypeSet - A set of types.
Douglas Gregor3d4492e2008-11-13 20:12:29 +00002047 typedef llvm::SmallPtrSet<void*, 8> TypeSet;
Douglas Gregor70d26122008-11-12 17:17:38 +00002048
2049 /// PointerTypes - The set of pointer types that will be used in the
2050 /// built-in candidates.
2051 TypeSet PointerTypes;
2052
2053 /// EnumerationTypes - The set of enumeration types that will be
2054 /// used in the built-in candidates.
2055 TypeSet EnumerationTypes;
2056
2057 /// Context - The AST context in which we will build the type sets.
2058 ASTContext &Context;
2059
2060 bool AddWithMoreQualifiedTypeVariants(QualType Ty);
2061
2062public:
2063 /// iterator - Iterates through the types that are part of the set.
Douglas Gregor3d4492e2008-11-13 20:12:29 +00002064 class iterator {
2065 TypeSet::iterator Base;
2066
2067 public:
2068 typedef QualType value_type;
2069 typedef QualType reference;
2070 typedef QualType pointer;
2071 typedef std::ptrdiff_t difference_type;
2072 typedef std::input_iterator_tag iterator_category;
2073
2074 iterator(TypeSet::iterator B) : Base(B) { }
2075
2076 iterator& operator++() {
2077 ++Base;
2078 return *this;
2079 }
2080
2081 iterator operator++(int) {
2082 iterator tmp(*this);
2083 ++(*this);
2084 return tmp;
2085 }
2086
2087 reference operator*() const {
2088 return QualType::getFromOpaquePtr(*Base);
2089 }
2090
2091 pointer operator->() const {
2092 return **this;
2093 }
2094
2095 friend bool operator==(iterator LHS, iterator RHS) {
2096 return LHS.Base == RHS.Base;
2097 }
2098
2099 friend bool operator!=(iterator LHS, iterator RHS) {
2100 return LHS.Base != RHS.Base;
2101 }
2102 };
Douglas Gregor70d26122008-11-12 17:17:38 +00002103
2104 BuiltinCandidateTypeSet(ASTContext &Context) : Context(Context) { }
2105
2106 void AddTypesConvertedFrom(QualType Ty, bool AllowUserConversions = true);
2107
2108 /// pointer_begin - First pointer type found;
2109 iterator pointer_begin() { return PointerTypes.begin(); }
2110
2111 /// pointer_end - Last pointer type found;
2112 iterator pointer_end() { return PointerTypes.end(); }
2113
2114 /// enumeration_begin - First enumeration type found;
2115 iterator enumeration_begin() { return EnumerationTypes.begin(); }
2116
2117 /// enumeration_end - Last enumeration type found;
2118 iterator enumeration_end() { return EnumerationTypes.end(); }
2119};
2120
2121/// AddWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
2122/// the set of pointer types along with any more-qualified variants of
2123/// that type. For example, if @p Ty is "int const *", this routine
2124/// will add "int const *", "int const volatile *", "int const
2125/// restrict *", and "int const volatile restrict *" to the set of
2126/// pointer types. Returns true if the add of @p Ty itself succeeded,
2127/// false otherwise.
2128bool BuiltinCandidateTypeSet::AddWithMoreQualifiedTypeVariants(QualType Ty) {
2129 // Insert this type.
Douglas Gregor3d4492e2008-11-13 20:12:29 +00002130 if (!PointerTypes.insert(Ty.getAsOpaquePtr()))
Douglas Gregor70d26122008-11-12 17:17:38 +00002131 return false;
2132
2133 if (const PointerType *PointerTy = Ty->getAsPointerType()) {
2134 QualType PointeeTy = PointerTy->getPointeeType();
2135 // FIXME: Optimize this so that we don't keep trying to add the same types.
2136
2137 // FIXME: Do we have to add CVR qualifiers at *all* levels to deal
2138 // with all pointer conversions that don't cast away constness?
2139 if (!PointeeTy.isConstQualified())
2140 AddWithMoreQualifiedTypeVariants
2141 (Context.getPointerType(PointeeTy.withConst()));
2142 if (!PointeeTy.isVolatileQualified())
2143 AddWithMoreQualifiedTypeVariants
2144 (Context.getPointerType(PointeeTy.withVolatile()));
2145 if (!PointeeTy.isRestrictQualified())
2146 AddWithMoreQualifiedTypeVariants
2147 (Context.getPointerType(PointeeTy.withRestrict()));
2148 }
2149
2150 return true;
2151}
2152
2153/// AddTypesConvertedFrom - Add each of the types to which the type @p
2154/// Ty can be implicit converted to the given set of @p Types. We're
2155/// primarily interested in pointer types, enumeration types,
2156void BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
2157 bool AllowUserConversions) {
2158 // Only deal with canonical types.
2159 Ty = Context.getCanonicalType(Ty);
2160
2161 // Look through reference types; they aren't part of the type of an
2162 // expression for the purposes of conversions.
2163 if (const ReferenceType *RefTy = Ty->getAsReferenceType())
2164 Ty = RefTy->getPointeeType();
2165
2166 // We don't care about qualifiers on the type.
2167 Ty = Ty.getUnqualifiedType();
2168
2169 if (const PointerType *PointerTy = Ty->getAsPointerType()) {
2170 QualType PointeeTy = PointerTy->getPointeeType();
2171
2172 // Insert our type, and its more-qualified variants, into the set
2173 // of types.
2174 if (!AddWithMoreQualifiedTypeVariants(Ty))
2175 return;
2176
2177 // Add 'cv void*' to our set of types.
2178 if (!Ty->isVoidType()) {
2179 QualType QualVoid
2180 = Context.VoidTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2181 AddWithMoreQualifiedTypeVariants(Context.getPointerType(QualVoid));
2182 }
2183
2184 // If this is a pointer to a class type, add pointers to its bases
2185 // (with the same level of cv-qualification as the original
2186 // derived class, of course).
2187 if (const RecordType *PointeeRec = PointeeTy->getAsRecordType()) {
2188 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(PointeeRec->getDecl());
2189 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2190 Base != ClassDecl->bases_end(); ++Base) {
2191 QualType BaseTy = Context.getCanonicalType(Base->getType());
2192 BaseTy = BaseTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2193
2194 // Add the pointer type, recursively, so that we get all of
2195 // the indirect base classes, too.
2196 AddTypesConvertedFrom(Context.getPointerType(BaseTy), false);
2197 }
2198 }
2199 } else if (Ty->isEnumeralType()) {
Douglas Gregor3d4492e2008-11-13 20:12:29 +00002200 EnumerationTypes.insert(Ty.getAsOpaquePtr());
Douglas Gregor70d26122008-11-12 17:17:38 +00002201 } else if (AllowUserConversions) {
2202 if (const RecordType *TyRec = Ty->getAsRecordType()) {
2203 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
2204 // FIXME: Visit conversion functions in the base classes, too.
2205 OverloadedFunctionDecl *Conversions
2206 = ClassDecl->getConversionFunctions();
2207 for (OverloadedFunctionDecl::function_iterator Func
2208 = Conversions->function_begin();
2209 Func != Conversions->function_end(); ++Func) {
2210 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
2211 AddTypesConvertedFrom(Conv->getConversionType(), false);
2212 }
2213 }
2214 }
2215}
2216
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002217/// AddBuiltinOperatorCandidates - Add the appropriate built-in
2218/// operator overloads to the candidate set (C++ [over.built]), based
2219/// on the operator @p Op and the arguments given. For example, if the
2220/// operator is a binary '+', this routine might add "int
2221/// operator+(int, int)" to cover integer addition.
Douglas Gregor70d26122008-11-12 17:17:38 +00002222void
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002223Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
2224 Expr **Args, unsigned NumArgs,
2225 OverloadCandidateSet& CandidateSet) {
Douglas Gregor70d26122008-11-12 17:17:38 +00002226 // The set of "promoted arithmetic types", which are the arithmetic
2227 // types are that preserved by promotion (C++ [over.built]p2). Note
2228 // that the first few of these types are the promoted integral
2229 // types; these types need to be first.
2230 // FIXME: What about complex?
2231 const unsigned FirstIntegralType = 0;
2232 const unsigned LastIntegralType = 13;
2233 const unsigned FirstPromotedIntegralType = 7,
2234 LastPromotedIntegralType = 13;
2235 const unsigned FirstPromotedArithmeticType = 7,
2236 LastPromotedArithmeticType = 16;
2237 const unsigned NumArithmeticTypes = 16;
2238 QualType ArithmeticTypes[NumArithmeticTypes] = {
2239 Context.BoolTy, Context.CharTy, Context.WCharTy,
2240 Context.SignedCharTy, Context.ShortTy,
2241 Context.UnsignedCharTy, Context.UnsignedShortTy,
2242 Context.IntTy, Context.LongTy, Context.LongLongTy,
2243 Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
2244 Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
2245 };
2246
2247 // Find all of the types that the arguments can convert to, but only
2248 // if the operator we're looking at has built-in operator candidates
2249 // that make use of these types.
2250 BuiltinCandidateTypeSet CandidateTypes(Context);
2251 if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
2252 Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002253 Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
Douglas Gregor70d26122008-11-12 17:17:38 +00002254 Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002255 Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
2256 (Op == OO_Star && NumArgs == 1)) {
2257 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
Douglas Gregor70d26122008-11-12 17:17:38 +00002258 CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType());
2259 }
2260
2261 bool isComparison = false;
2262 switch (Op) {
2263 case OO_None:
2264 case NUM_OVERLOADED_OPERATORS:
2265 assert(false && "Expected an overloaded operator");
2266 break;
2267
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002268 case OO_Star: // '*' is either unary or binary
2269 if (NumArgs == 1)
2270 goto UnaryStar;
2271 else
2272 goto BinaryStar;
2273 break;
2274
2275 case OO_Plus: // '+' is either unary or binary
2276 if (NumArgs == 1)
2277 goto UnaryPlus;
2278 else
2279 goto BinaryPlus;
2280 break;
2281
2282 case OO_Minus: // '-' is either unary or binary
2283 if (NumArgs == 1)
2284 goto UnaryMinus;
2285 else
2286 goto BinaryMinus;
2287 break;
2288
2289 case OO_Amp: // '&' is either unary or binary
2290 if (NumArgs == 1)
2291 goto UnaryAmp;
2292 else
2293 goto BinaryAmp;
2294
2295 case OO_PlusPlus:
2296 case OO_MinusMinus:
2297 // C++ [over.built]p3:
2298 //
2299 // For every pair (T, VQ), where T is an arithmetic type, and VQ
2300 // is either volatile or empty, there exist candidate operator
2301 // functions of the form
2302 //
2303 // VQ T& operator++(VQ T&);
2304 // T operator++(VQ T&, int);
2305 //
2306 // C++ [over.built]p4:
2307 //
2308 // For every pair (T, VQ), where T is an arithmetic type other
2309 // than bool, and VQ is either volatile or empty, there exist
2310 // candidate operator functions of the form
2311 //
2312 // VQ T& operator--(VQ T&);
2313 // T operator--(VQ T&, int);
2314 for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
2315 Arith < NumArithmeticTypes; ++Arith) {
2316 QualType ArithTy = ArithmeticTypes[Arith];
2317 QualType ParamTypes[2]
2318 = { Context.getReferenceType(ArithTy), Context.IntTy };
2319
2320 // Non-volatile version.
2321 if (NumArgs == 1)
2322 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2323 else
2324 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2325
2326 // Volatile version
2327 ParamTypes[0] = Context.getReferenceType(ArithTy.withVolatile());
2328 if (NumArgs == 1)
2329 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2330 else
2331 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2332 }
2333
2334 // C++ [over.built]p5:
2335 //
2336 // For every pair (T, VQ), where T is a cv-qualified or
2337 // cv-unqualified object type, and VQ is either volatile or
2338 // empty, there exist candidate operator functions of the form
2339 //
2340 // T*VQ& operator++(T*VQ&);
2341 // T*VQ& operator--(T*VQ&);
2342 // T* operator++(T*VQ&, int);
2343 // T* operator--(T*VQ&, int);
2344 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2345 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2346 // Skip pointer types that aren't pointers to object types.
Douglas Gregor24a90a52008-11-26 23:31:11 +00002347 if (!(*Ptr)->getAsPointerType()->getPointeeType()->isIncompleteOrObjectType())
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002348 continue;
2349
2350 QualType ParamTypes[2] = {
2351 Context.getReferenceType(*Ptr), Context.IntTy
2352 };
2353
2354 // Without volatile
2355 if (NumArgs == 1)
2356 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2357 else
2358 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2359
2360 if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
2361 // With volatile
2362 ParamTypes[0] = Context.getReferenceType((*Ptr).withVolatile());
2363 if (NumArgs == 1)
2364 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2365 else
2366 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2367 }
2368 }
2369 break;
2370
2371 UnaryStar:
2372 // C++ [over.built]p6:
2373 // For every cv-qualified or cv-unqualified object type T, there
2374 // exist candidate operator functions of the form
2375 //
2376 // T& operator*(T*);
2377 //
2378 // C++ [over.built]p7:
2379 // For every function type T, there exist candidate operator
2380 // functions of the form
2381 // T& operator*(T*);
2382 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2383 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2384 QualType ParamTy = *Ptr;
2385 QualType PointeeTy = ParamTy->getAsPointerType()->getPointeeType();
2386 AddBuiltinCandidate(Context.getReferenceType(PointeeTy),
2387 &ParamTy, Args, 1, CandidateSet);
2388 }
2389 break;
2390
2391 UnaryPlus:
2392 // C++ [over.built]p8:
2393 // For every type T, there exist candidate operator functions of
2394 // the form
2395 //
2396 // T* operator+(T*);
2397 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2398 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2399 QualType ParamTy = *Ptr;
2400 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
2401 }
2402
2403 // Fall through
2404
2405 UnaryMinus:
2406 // C++ [over.built]p9:
2407 // For every promoted arithmetic type T, there exist candidate
2408 // operator functions of the form
2409 //
2410 // T operator+(T);
2411 // T operator-(T);
2412 for (unsigned Arith = FirstPromotedArithmeticType;
2413 Arith < LastPromotedArithmeticType; ++Arith) {
2414 QualType ArithTy = ArithmeticTypes[Arith];
2415 AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
2416 }
2417 break;
2418
2419 case OO_Tilde:
2420 // C++ [over.built]p10:
2421 // For every promoted integral type T, there exist candidate
2422 // operator functions of the form
2423 //
2424 // T operator~(T);
2425 for (unsigned Int = FirstPromotedIntegralType;
2426 Int < LastPromotedIntegralType; ++Int) {
2427 QualType IntTy = ArithmeticTypes[Int];
2428 AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
2429 }
2430 break;
2431
Douglas Gregor70d26122008-11-12 17:17:38 +00002432 case OO_New:
2433 case OO_Delete:
2434 case OO_Array_New:
2435 case OO_Array_Delete:
Douglas Gregor70d26122008-11-12 17:17:38 +00002436 case OO_Call:
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002437 assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
Douglas Gregor70d26122008-11-12 17:17:38 +00002438 break;
2439
2440 case OO_Comma:
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002441 UnaryAmp:
2442 case OO_Arrow:
Douglas Gregor70d26122008-11-12 17:17:38 +00002443 // C++ [over.match.oper]p3:
2444 // -- For the operator ',', the unary operator '&', or the
2445 // operator '->', the built-in candidates set is empty.
Douglas Gregor70d26122008-11-12 17:17:38 +00002446 break;
2447
2448 case OO_Less:
2449 case OO_Greater:
2450 case OO_LessEqual:
2451 case OO_GreaterEqual:
2452 case OO_EqualEqual:
2453 case OO_ExclaimEqual:
2454 // C++ [over.built]p15:
2455 //
2456 // For every pointer or enumeration type T, there exist
2457 // candidate operator functions of the form
2458 //
2459 // bool operator<(T, T);
2460 // bool operator>(T, T);
2461 // bool operator<=(T, T);
2462 // bool operator>=(T, T);
2463 // bool operator==(T, T);
2464 // bool operator!=(T, T);
2465 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2466 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2467 QualType ParamTypes[2] = { *Ptr, *Ptr };
2468 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
2469 }
2470 for (BuiltinCandidateTypeSet::iterator Enum
2471 = CandidateTypes.enumeration_begin();
2472 Enum != CandidateTypes.enumeration_end(); ++Enum) {
2473 QualType ParamTypes[2] = { *Enum, *Enum };
2474 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
2475 }
2476
2477 // Fall through.
2478 isComparison = true;
2479
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002480 BinaryPlus:
2481 BinaryMinus:
Douglas Gregor70d26122008-11-12 17:17:38 +00002482 if (!isComparison) {
2483 // We didn't fall through, so we must have OO_Plus or OO_Minus.
2484
2485 // C++ [over.built]p13:
2486 //
2487 // For every cv-qualified or cv-unqualified object type T
2488 // there exist candidate operator functions of the form
2489 //
2490 // T* operator+(T*, ptrdiff_t);
2491 // T& operator[](T*, ptrdiff_t); [BELOW]
2492 // T* operator-(T*, ptrdiff_t);
2493 // T* operator+(ptrdiff_t, T*);
2494 // T& operator[](ptrdiff_t, T*); [BELOW]
2495 //
2496 // C++ [over.built]p14:
2497 //
2498 // For every T, where T is a pointer to object type, there
2499 // exist candidate operator functions of the form
2500 //
2501 // ptrdiff_t operator-(T, T);
2502 for (BuiltinCandidateTypeSet::iterator Ptr
2503 = CandidateTypes.pointer_begin();
2504 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2505 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
2506
2507 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
2508 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2509
2510 if (Op == OO_Plus) {
2511 // T* operator+(ptrdiff_t, T*);
2512 ParamTypes[0] = ParamTypes[1];
2513 ParamTypes[1] = *Ptr;
2514 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2515 } else {
2516 // ptrdiff_t operator-(T, T);
2517 ParamTypes[1] = *Ptr;
2518 AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
2519 Args, 2, CandidateSet);
2520 }
2521 }
2522 }
2523 // Fall through
2524
Douglas Gregor70d26122008-11-12 17:17:38 +00002525 case OO_Slash:
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002526 BinaryStar:
Douglas Gregor70d26122008-11-12 17:17:38 +00002527 // C++ [over.built]p12:
2528 //
2529 // For every pair of promoted arithmetic types L and R, there
2530 // exist candidate operator functions of the form
2531 //
2532 // LR operator*(L, R);
2533 // LR operator/(L, R);
2534 // LR operator+(L, R);
2535 // LR operator-(L, R);
2536 // bool operator<(L, R);
2537 // bool operator>(L, R);
2538 // bool operator<=(L, R);
2539 // bool operator>=(L, R);
2540 // bool operator==(L, R);
2541 // bool operator!=(L, R);
2542 //
2543 // where LR is the result of the usual arithmetic conversions
2544 // between types L and R.
2545 for (unsigned Left = FirstPromotedArithmeticType;
2546 Left < LastPromotedArithmeticType; ++Left) {
2547 for (unsigned Right = FirstPromotedArithmeticType;
2548 Right < LastPromotedArithmeticType; ++Right) {
2549 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
2550 QualType Result
2551 = isComparison? Context.BoolTy
2552 : UsualArithmeticConversionsType(LandR[0], LandR[1]);
2553 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
2554 }
2555 }
2556 break;
2557
2558 case OO_Percent:
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002559 BinaryAmp:
Douglas Gregor70d26122008-11-12 17:17:38 +00002560 case OO_Caret:
2561 case OO_Pipe:
2562 case OO_LessLess:
2563 case OO_GreaterGreater:
2564 // C++ [over.built]p17:
2565 //
2566 // For every pair of promoted integral types L and R, there
2567 // exist candidate operator functions of the form
2568 //
2569 // LR operator%(L, R);
2570 // LR operator&(L, R);
2571 // LR operator^(L, R);
2572 // LR operator|(L, R);
2573 // L operator<<(L, R);
2574 // L operator>>(L, R);
2575 //
2576 // where LR is the result of the usual arithmetic conversions
2577 // between types L and R.
2578 for (unsigned Left = FirstPromotedIntegralType;
2579 Left < LastPromotedIntegralType; ++Left) {
2580 for (unsigned Right = FirstPromotedIntegralType;
2581 Right < LastPromotedIntegralType; ++Right) {
2582 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
2583 QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
2584 ? LandR[0]
2585 : UsualArithmeticConversionsType(LandR[0], LandR[1]);
2586 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
2587 }
2588 }
2589 break;
2590
2591 case OO_Equal:
2592 // C++ [over.built]p20:
2593 //
2594 // For every pair (T, VQ), where T is an enumeration or
2595 // (FIXME:) pointer to member type and VQ is either volatile or
2596 // empty, there exist candidate operator functions of the form
2597 //
2598 // VQ T& operator=(VQ T&, T);
2599 for (BuiltinCandidateTypeSet::iterator Enum
2600 = CandidateTypes.enumeration_begin();
2601 Enum != CandidateTypes.enumeration_end(); ++Enum) {
2602 QualType ParamTypes[2];
2603
2604 // T& operator=(T&, T)
2605 ParamTypes[0] = Context.getReferenceType(*Enum);
2606 ParamTypes[1] = *Enum;
2607 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2608
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002609 if (!Context.getCanonicalType(*Enum).isVolatileQualified()) {
2610 // volatile T& operator=(volatile T&, T)
2611 ParamTypes[0] = Context.getReferenceType((*Enum).withVolatile());
2612 ParamTypes[1] = *Enum;
2613 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2614 }
Douglas Gregor70d26122008-11-12 17:17:38 +00002615 }
2616 // Fall through.
2617
2618 case OO_PlusEqual:
2619 case OO_MinusEqual:
2620 // C++ [over.built]p19:
2621 //
2622 // For every pair (T, VQ), where T is any type and VQ is either
2623 // volatile or empty, there exist candidate operator functions
2624 // of the form
2625 //
2626 // T*VQ& operator=(T*VQ&, T*);
2627 //
2628 // C++ [over.built]p21:
2629 //
2630 // For every pair (T, VQ), where T is a cv-qualified or
2631 // cv-unqualified object type and VQ is either volatile or
2632 // empty, there exist candidate operator functions of the form
2633 //
2634 // T*VQ& operator+=(T*VQ&, ptrdiff_t);
2635 // T*VQ& operator-=(T*VQ&, ptrdiff_t);
2636 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2637 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2638 QualType ParamTypes[2];
2639 ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
2640
2641 // non-volatile version
2642 ParamTypes[0] = Context.getReferenceType(*Ptr);
2643 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2644
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002645 if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
2646 // volatile version
2647 ParamTypes[0] = Context.getReferenceType((*Ptr).withVolatile());
2648 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2649 }
Douglas Gregor70d26122008-11-12 17:17:38 +00002650 }
2651 // Fall through.
2652
2653 case OO_StarEqual:
2654 case OO_SlashEqual:
2655 // C++ [over.built]p18:
2656 //
2657 // For every triple (L, VQ, R), where L is an arithmetic type,
2658 // VQ is either volatile or empty, and R is a promoted
2659 // arithmetic type, there exist candidate operator functions of
2660 // the form
2661 //
2662 // VQ L& operator=(VQ L&, R);
2663 // VQ L& operator*=(VQ L&, R);
2664 // VQ L& operator/=(VQ L&, R);
2665 // VQ L& operator+=(VQ L&, R);
2666 // VQ L& operator-=(VQ L&, R);
2667 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
2668 for (unsigned Right = FirstPromotedArithmeticType;
2669 Right < LastPromotedArithmeticType; ++Right) {
2670 QualType ParamTypes[2];
2671 ParamTypes[1] = ArithmeticTypes[Right];
2672
2673 // Add this built-in operator as a candidate (VQ is empty).
2674 ParamTypes[0] = Context.getReferenceType(ArithmeticTypes[Left]);
2675 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2676
2677 // Add this built-in operator as a candidate (VQ is 'volatile').
2678 ParamTypes[0] = ArithmeticTypes[Left].withVolatile();
2679 ParamTypes[0] = Context.getReferenceType(ParamTypes[0]);
2680 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2681 }
2682 }
2683 break;
2684
2685 case OO_PercentEqual:
2686 case OO_LessLessEqual:
2687 case OO_GreaterGreaterEqual:
2688 case OO_AmpEqual:
2689 case OO_CaretEqual:
2690 case OO_PipeEqual:
2691 // C++ [over.built]p22:
2692 //
2693 // For every triple (L, VQ, R), where L is an integral type, VQ
2694 // is either volatile or empty, and R is a promoted integral
2695 // type, there exist candidate operator functions of the form
2696 //
2697 // VQ L& operator%=(VQ L&, R);
2698 // VQ L& operator<<=(VQ L&, R);
2699 // VQ L& operator>>=(VQ L&, R);
2700 // VQ L& operator&=(VQ L&, R);
2701 // VQ L& operator^=(VQ L&, R);
2702 // VQ L& operator|=(VQ L&, R);
2703 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
2704 for (unsigned Right = FirstPromotedIntegralType;
2705 Right < LastPromotedIntegralType; ++Right) {
2706 QualType ParamTypes[2];
2707 ParamTypes[1] = ArithmeticTypes[Right];
2708
2709 // Add this built-in operator as a candidate (VQ is empty).
2710 // FIXME: We should be caching these declarations somewhere,
2711 // rather than re-building them every time.
2712 ParamTypes[0] = Context.getReferenceType(ArithmeticTypes[Left]);
2713 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2714
2715 // Add this built-in operator as a candidate (VQ is 'volatile').
2716 ParamTypes[0] = ArithmeticTypes[Left];
2717 ParamTypes[0].addVolatile();
2718 ParamTypes[0] = Context.getReferenceType(ParamTypes[0]);
2719 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2720 }
2721 }
2722 break;
2723
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002724 case OO_Exclaim: {
2725 // C++ [over.operator]p23:
2726 //
2727 // There also exist candidate operator functions of the form
2728 //
2729 // bool operator!(bool);
2730 // bool operator&&(bool, bool); [BELOW]
2731 // bool operator||(bool, bool); [BELOW]
2732 QualType ParamTy = Context.BoolTy;
2733 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
2734 break;
2735 }
2736
Douglas Gregor70d26122008-11-12 17:17:38 +00002737 case OO_AmpAmp:
2738 case OO_PipePipe: {
2739 // C++ [over.operator]p23:
2740 //
2741 // There also exist candidate operator functions of the form
2742 //
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002743 // bool operator!(bool); [ABOVE]
Douglas Gregor70d26122008-11-12 17:17:38 +00002744 // bool operator&&(bool, bool);
2745 // bool operator||(bool, bool);
2746 QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
2747 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
2748 break;
2749 }
2750
2751 case OO_Subscript:
2752 // C++ [over.built]p13:
2753 //
2754 // For every cv-qualified or cv-unqualified object type T there
2755 // exist candidate operator functions of the form
2756 //
2757 // T* operator+(T*, ptrdiff_t); [ABOVE]
2758 // T& operator[](T*, ptrdiff_t);
2759 // T* operator-(T*, ptrdiff_t); [ABOVE]
2760 // T* operator+(ptrdiff_t, T*); [ABOVE]
2761 // T& operator[](ptrdiff_t, T*);
2762 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2763 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2764 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
2765 QualType PointeeType = (*Ptr)->getAsPointerType()->getPointeeType();
2766 QualType ResultTy = Context.getReferenceType(PointeeType);
2767
2768 // T& operator[](T*, ptrdiff_t)
2769 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
2770
2771 // T& operator[](ptrdiff_t, T*);
2772 ParamTypes[0] = ParamTypes[1];
2773 ParamTypes[1] = *Ptr;
2774 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
2775 }
2776 break;
2777
2778 case OO_ArrowStar:
2779 // FIXME: No support for pointer-to-members yet.
2780 break;
2781 }
2782}
2783
Douglas Gregord2baafd2008-10-21 16:13:35 +00002784/// AddOverloadCandidates - Add all of the function overloads in Ovl
2785/// to the candidate set.
2786void
Douglas Gregor5870a952008-11-03 20:45:27 +00002787Sema::AddOverloadCandidates(const OverloadedFunctionDecl *Ovl,
Douglas Gregord2baafd2008-10-21 16:13:35 +00002788 Expr **Args, unsigned NumArgs,
Douglas Gregora3b34bb2008-11-03 19:09:14 +00002789 OverloadCandidateSet& CandidateSet,
2790 bool SuppressUserConversions)
Douglas Gregord2baafd2008-10-21 16:13:35 +00002791{
Douglas Gregor5870a952008-11-03 20:45:27 +00002792 for (OverloadedFunctionDecl::function_const_iterator Func
2793 = Ovl->function_begin();
Douglas Gregord2baafd2008-10-21 16:13:35 +00002794 Func != Ovl->function_end(); ++Func)
Douglas Gregora3b34bb2008-11-03 19:09:14 +00002795 AddOverloadCandidate(*Func, Args, NumArgs, CandidateSet,
2796 SuppressUserConversions);
Douglas Gregord2baafd2008-10-21 16:13:35 +00002797}
2798
2799/// isBetterOverloadCandidate - Determines whether the first overload
2800/// candidate is a better candidate than the second (C++ 13.3.3p1).
2801bool
2802Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
2803 const OverloadCandidate& Cand2)
2804{
2805 // Define viable functions to be better candidates than non-viable
2806 // functions.
2807 if (!Cand2.Viable)
2808 return Cand1.Viable;
2809 else if (!Cand1.Viable)
2810 return false;
2811
2812 // FIXME: Deal with the implicit object parameter for static member
2813 // functions. (C++ 13.3.3p1).
2814
2815 // (C++ 13.3.3p1): a viable function F1 is defined to be a better
2816 // function than another viable function F2 if for all arguments i,
2817 // ICSi(F1) is not a worse conversion sequence than ICSi(F2), and
2818 // then...
2819 unsigned NumArgs = Cand1.Conversions.size();
2820 assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
2821 bool HasBetterConversion = false;
2822 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2823 switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
2824 Cand2.Conversions[ArgIdx])) {
2825 case ImplicitConversionSequence::Better:
2826 // Cand1 has a better conversion sequence.
2827 HasBetterConversion = true;
2828 break;
2829
2830 case ImplicitConversionSequence::Worse:
2831 // Cand1 can't be better than Cand2.
2832 return false;
2833
2834 case ImplicitConversionSequence::Indistinguishable:
2835 // Do nothing.
2836 break;
2837 }
2838 }
2839
2840 if (HasBetterConversion)
2841 return true;
2842
Douglas Gregor70d26122008-11-12 17:17:38 +00002843 // FIXME: Several other bullets in (C++ 13.3.3p1) need to be
2844 // implemented, but they require template support.
Douglas Gregord2baafd2008-10-21 16:13:35 +00002845
Douglas Gregor60714f92008-11-07 22:36:19 +00002846 // C++ [over.match.best]p1b4:
2847 //
2848 // -- the context is an initialization by user-defined conversion
2849 // (see 8.5, 13.3.1.5) and the standard conversion sequence
2850 // from the return type of F1 to the destination type (i.e.,
2851 // the type of the entity being initialized) is a better
2852 // conversion sequence than the standard conversion sequence
2853 // from the return type of F2 to the destination type.
Douglas Gregor849ea9c2008-11-19 03:25:36 +00002854 if (Cand1.Function && Cand2.Function &&
2855 isa<CXXConversionDecl>(Cand1.Function) &&
Douglas Gregor60714f92008-11-07 22:36:19 +00002856 isa<CXXConversionDecl>(Cand2.Function)) {
2857 switch (CompareStandardConversionSequences(Cand1.FinalConversion,
2858 Cand2.FinalConversion)) {
2859 case ImplicitConversionSequence::Better:
2860 // Cand1 has a better conversion sequence.
2861 return true;
2862
2863 case ImplicitConversionSequence::Worse:
2864 // Cand1 can't be better than Cand2.
2865 return false;
2866
2867 case ImplicitConversionSequence::Indistinguishable:
2868 // Do nothing
2869 break;
2870 }
2871 }
2872
Douglas Gregord2baafd2008-10-21 16:13:35 +00002873 return false;
2874}
2875
2876/// BestViableFunction - Computes the best viable function (C++ 13.3.3)
2877/// within an overload candidate set. If overloading is successful,
2878/// the result will be OR_Success and Best will be set to point to the
2879/// best viable function within the candidate set. Otherwise, one of
2880/// several kinds of errors will be returned; see
2881/// Sema::OverloadingResult.
2882Sema::OverloadingResult
2883Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
2884 OverloadCandidateSet::iterator& Best)
2885{
2886 // Find the best viable function.
2887 Best = CandidateSet.end();
2888 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
2889 Cand != CandidateSet.end(); ++Cand) {
2890 if (Cand->Viable) {
2891 if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
2892 Best = Cand;
2893 }
2894 }
2895
2896 // If we didn't find any viable functions, abort.
2897 if (Best == CandidateSet.end())
2898 return OR_No_Viable_Function;
2899
2900 // Make sure that this function is better than every other viable
2901 // function. If not, we have an ambiguity.
2902 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
2903 Cand != CandidateSet.end(); ++Cand) {
2904 if (Cand->Viable &&
2905 Cand != Best &&
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00002906 !isBetterOverloadCandidate(*Best, *Cand)) {
2907 Best = CandidateSet.end();
Douglas Gregord2baafd2008-10-21 16:13:35 +00002908 return OR_Ambiguous;
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00002909 }
Douglas Gregord2baafd2008-10-21 16:13:35 +00002910 }
2911
2912 // Best is the best viable function.
2913 return OR_Success;
2914}
2915
2916/// PrintOverloadCandidates - When overload resolution fails, prints
2917/// diagnostic messages containing the candidates in the candidate
2918/// set. If OnlyViable is true, only viable candidates will be printed.
2919void
2920Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
2921 bool OnlyViable)
2922{
2923 OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
2924 LastCand = CandidateSet.end();
2925 for (; Cand != LastCand; ++Cand) {
Douglas Gregor70d26122008-11-12 17:17:38 +00002926 if (Cand->Viable || !OnlyViable) {
2927 if (Cand->Function) {
2928 // Normal function
2929 Diag(Cand->Function->getLocation(), diag::err_ovl_candidate);
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00002930 } else if (Cand->IsSurrogate) {
Douglas Gregor30c8ddf2008-11-21 02:54:28 +00002931 // Desugar the type of the surrogate down to a function type,
2932 // retaining as many typedefs as possible while still showing
2933 // the function type (and, therefore, its parameter types).
2934 QualType FnType = Cand->Surrogate->getConversionType();
2935 bool isReference = false;
2936 bool isPointer = false;
2937 if (const ReferenceType *FnTypeRef = FnType->getAsReferenceType()) {
2938 FnType = FnTypeRef->getPointeeType();
2939 isReference = true;
2940 }
2941 if (const PointerType *FnTypePtr = FnType->getAsPointerType()) {
2942 FnType = FnTypePtr->getPointeeType();
2943 isPointer = true;
2944 }
2945 // Desugar down to a function type.
2946 FnType = QualType(FnType->getAsFunctionType(), 0);
2947 // Reconstruct the pointer/reference as appropriate.
2948 if (isPointer) FnType = Context.getPointerType(FnType);
2949 if (isReference) FnType = Context.getReferenceType(FnType);
2950
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00002951 Diag(Cand->Surrogate->getLocation(), diag::err_ovl_surrogate_cand)
Chris Lattner4bfd2232008-11-24 06:25:27 +00002952 << FnType;
Douglas Gregor70d26122008-11-12 17:17:38 +00002953 } else {
2954 // FIXME: We need to get the identifier in here
2955 // FIXME: Do we want the error message to point at the
2956 // operator? (built-ins won't have a location)
2957 QualType FnType
2958 = Context.getFunctionType(Cand->BuiltinTypes.ResultTy,
2959 Cand->BuiltinTypes.ParamTypes,
2960 Cand->Conversions.size(),
2961 false, 0);
2962
Chris Lattner4bfd2232008-11-24 06:25:27 +00002963 Diag(SourceLocation(), diag::err_ovl_builtin_candidate) << FnType;
Douglas Gregor70d26122008-11-12 17:17:38 +00002964 }
2965 }
Douglas Gregord2baafd2008-10-21 16:13:35 +00002966 }
2967}
2968
Douglas Gregor45014fd2008-11-10 20:40:00 +00002969/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
2970/// an overloaded function (C++ [over.over]), where @p From is an
2971/// expression with overloaded function type and @p ToType is the type
2972/// we're trying to resolve to. For example:
2973///
2974/// @code
2975/// int f(double);
2976/// int f(int);
2977///
2978/// int (*pfd)(double) = f; // selects f(double)
2979/// @endcode
2980///
2981/// This routine returns the resulting FunctionDecl if it could be
2982/// resolved, and NULL otherwise. When @p Complain is true, this
2983/// routine will emit diagnostics if there is an error.
2984FunctionDecl *
2985Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
2986 bool Complain) {
2987 QualType FunctionType = ToType;
2988 if (const PointerLikeType *ToTypePtr = ToType->getAsPointerLikeType())
2989 FunctionType = ToTypePtr->getPointeeType();
2990
2991 // We only look at pointers or references to functions.
2992 if (!FunctionType->isFunctionType())
2993 return 0;
2994
2995 // Find the actual overloaded function declaration.
2996 OverloadedFunctionDecl *Ovl = 0;
2997
2998 // C++ [over.over]p1:
2999 // [...] [Note: any redundant set of parentheses surrounding the
3000 // overloaded function name is ignored (5.1). ]
3001 Expr *OvlExpr = From->IgnoreParens();
3002
3003 // C++ [over.over]p1:
3004 // [...] The overloaded function name can be preceded by the &
3005 // operator.
3006 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) {
3007 if (UnOp->getOpcode() == UnaryOperator::AddrOf)
3008 OvlExpr = UnOp->getSubExpr()->IgnoreParens();
3009 }
3010
3011 // Try to dig out the overloaded function.
3012 if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(OvlExpr))
3013 Ovl = dyn_cast<OverloadedFunctionDecl>(DR->getDecl());
3014
3015 // If there's no overloaded function declaration, we're done.
3016 if (!Ovl)
3017 return 0;
3018
3019 // Look through all of the overloaded functions, searching for one
3020 // whose type matches exactly.
3021 // FIXME: When templates or using declarations come along, we'll actually
3022 // have to deal with duplicates, partial ordering, etc. For now, we
3023 // can just do a simple search.
3024 FunctionType = Context.getCanonicalType(FunctionType.getUnqualifiedType());
3025 for (OverloadedFunctionDecl::function_iterator Fun = Ovl->function_begin();
3026 Fun != Ovl->function_end(); ++Fun) {
3027 // C++ [over.over]p3:
3028 // Non-member functions and static member functions match
3029 // targets of type “pointer-to-function”or
3030 // “reference-to-function.”
3031 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Fun))
3032 if (!Method->isStatic())
3033 continue;
3034
3035 if (FunctionType == Context.getCanonicalType((*Fun)->getType()))
3036 return *Fun;
3037 }
3038
3039 return 0;
3040}
3041
Douglas Gregor3ed006b2008-11-26 05:54:23 +00003042/// ResolveOverloadedCallFn - Given the call expression that calls Fn
3043/// (which eventually refers to the set of overloaded functions in
3044/// Ovl) and the call arguments Args/NumArgs, attempt to resolve the
3045/// function call down to a specific function. If overload resolution
Douglas Gregorbf4f0582008-11-26 06:01:48 +00003046/// succeeds, returns the function declaration produced by overload
3047/// resolution. Otherwise, emits diagnostics, deletes all of the
Douglas Gregor3ed006b2008-11-26 05:54:23 +00003048/// arguments and Fn, and returns NULL.
Douglas Gregorbf4f0582008-11-26 06:01:48 +00003049FunctionDecl *Sema::ResolveOverloadedCallFn(Expr *Fn, OverloadedFunctionDecl *Ovl,
3050 SourceLocation LParenLoc,
3051 Expr **Args, unsigned NumArgs,
3052 SourceLocation *CommaLocs,
3053 SourceLocation RParenLoc) {
Douglas Gregor3ed006b2008-11-26 05:54:23 +00003054 OverloadCandidateSet CandidateSet;
3055 AddOverloadCandidates(Ovl, Args, NumArgs, CandidateSet);
3056 OverloadCandidateSet::iterator Best;
3057 switch (BestViableFunction(CandidateSet, Best)) {
Douglas Gregorbf4f0582008-11-26 06:01:48 +00003058 case OR_Success:
3059 return Best->Function;
Douglas Gregor3ed006b2008-11-26 05:54:23 +00003060
3061 case OR_No_Viable_Function:
3062 Diag(Fn->getSourceRange().getBegin(),
3063 diag::err_ovl_no_viable_function_in_call)
3064 << Ovl->getDeclName() << (unsigned)CandidateSet.size()
3065 << Fn->getSourceRange();
3066 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3067 break;
3068
3069 case OR_Ambiguous:
3070 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
3071 << Ovl->getDeclName() << Fn->getSourceRange();
3072 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3073 break;
3074 }
3075
3076 // Overload resolution failed. Destroy all of the subexpressions and
3077 // return NULL.
3078 Fn->Destroy(Context);
3079 for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
3080 Args[Arg]->Destroy(Context);
3081 return 0;
3082}
3083
Douglas Gregor10f3c502008-11-19 21:05:33 +00003084/// BuildCallToObjectOfClassType - Build a call to an object of class
3085/// type (C++ [over.call.object]), which can end up invoking an
3086/// overloaded function call operator (@c operator()) or performing a
3087/// user-defined conversion on the object argument.
3088Action::ExprResult
3089Sema::BuildCallToObjectOfClassType(Expr *Object, SourceLocation LParenLoc,
3090 Expr **Args, unsigned NumArgs,
3091 SourceLocation *CommaLocs,
3092 SourceLocation RParenLoc) {
3093 assert(Object->getType()->isRecordType() && "Requires object type argument");
3094 const RecordType *Record = Object->getType()->getAsRecordType();
3095
3096 // C++ [over.call.object]p1:
3097 // If the primary-expression E in the function call syntax
3098 // evaluates to a class object of type “cv T”, then the set of
3099 // candidate functions includes at least the function call
3100 // operators of T. The function call operators of T are obtained by
3101 // ordinary lookup of the name operator() in the context of
3102 // (E).operator().
3103 OverloadCandidateSet CandidateSet;
3104 IdentifierResolver::iterator I
3105 = IdResolver.begin(Context.DeclarationNames.getCXXOperatorName(OO_Call),
3106 cast<CXXRecordType>(Record)->getDecl(),
3107 /*LookInParentCtx=*/false);
3108 NamedDecl *MemberOps = (I == IdResolver.end())? 0 : *I;
3109 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(MemberOps))
3110 AddMethodCandidate(Method, Object, Args, NumArgs, CandidateSet,
3111 /*SuppressUserConversions=*/false);
3112 else if (OverloadedFunctionDecl *Ovl
3113 = dyn_cast_or_null<OverloadedFunctionDecl>(MemberOps)) {
3114 for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
3115 FEnd = Ovl->function_end();
3116 F != FEnd; ++F) {
3117 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*F))
3118 AddMethodCandidate(Method, Object, Args, NumArgs, CandidateSet,
3119 /*SuppressUserConversions=*/false);
3120 }
3121 }
3122
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00003123 // C++ [over.call.object]p2:
3124 // In addition, for each conversion function declared in T of the
3125 // form
3126 //
3127 // operator conversion-type-id () cv-qualifier;
3128 //
3129 // where cv-qualifier is the same cv-qualification as, or a
3130 // greater cv-qualification than, cv, and where conversion-type-id
Douglas Gregor261afa72008-11-20 13:33:37 +00003131 // denotes the type "pointer to function of (P1,...,Pn) returning
3132 // R", or the type "reference to pointer to function of
3133 // (P1,...,Pn) returning R", or the type "reference to function
3134 // of (P1,...,Pn) returning R", a surrogate call function [...]
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00003135 // is also considered as a candidate function. Similarly,
3136 // surrogate call functions are added to the set of candidate
3137 // functions for each conversion function declared in an
3138 // accessible base class provided the function is not hidden
3139 // within T by another intervening declaration.
3140 //
3141 // FIXME: Look in base classes for more conversion operators!
3142 OverloadedFunctionDecl *Conversions
3143 = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions();
Douglas Gregor30c8ddf2008-11-21 02:54:28 +00003144 for (OverloadedFunctionDecl::function_iterator
3145 Func = Conversions->function_begin(),
3146 FuncEnd = Conversions->function_end();
3147 Func != FuncEnd; ++Func) {
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00003148 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
3149
3150 // Strip the reference type (if any) and then the pointer type (if
3151 // any) to get down to what might be a function type.
3152 QualType ConvType = Conv->getConversionType().getNonReferenceType();
3153 if (const PointerType *ConvPtrType = ConvType->getAsPointerType())
3154 ConvType = ConvPtrType->getPointeeType();
3155
3156 if (const FunctionTypeProto *Proto = ConvType->getAsFunctionTypeProto())
3157 AddSurrogateCandidate(Conv, Proto, Object, Args, NumArgs, CandidateSet);
3158 }
Douglas Gregor10f3c502008-11-19 21:05:33 +00003159
3160 // Perform overload resolution.
3161 OverloadCandidateSet::iterator Best;
3162 switch (BestViableFunction(CandidateSet, Best)) {
3163 case OR_Success:
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00003164 // Overload resolution succeeded; we'll build the appropriate call
3165 // below.
Douglas Gregor10f3c502008-11-19 21:05:33 +00003166 break;
3167
3168 case OR_No_Viable_Function:
Sebastian Redlfd9f2ac2008-11-22 13:44:36 +00003169 Diag(Object->getSourceRange().getBegin(),
3170 diag::err_ovl_no_viable_object_call)
Chris Lattner4bfd2232008-11-24 06:25:27 +00003171 << Object->getType() << (unsigned)CandidateSet.size()
Sebastian Redlfd9f2ac2008-11-22 13:44:36 +00003172 << Object->getSourceRange();
3173 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
Douglas Gregor10f3c502008-11-19 21:05:33 +00003174 break;
3175
3176 case OR_Ambiguous:
3177 Diag(Object->getSourceRange().getBegin(),
3178 diag::err_ovl_ambiguous_object_call)
Chris Lattner4bfd2232008-11-24 06:25:27 +00003179 << Object->getType() << Object->getSourceRange();
Douglas Gregor10f3c502008-11-19 21:05:33 +00003180 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3181 break;
3182 }
3183
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00003184 if (Best == CandidateSet.end()) {
Douglas Gregor10f3c502008-11-19 21:05:33 +00003185 // We had an error; delete all of the subexpressions and return
3186 // the error.
3187 delete Object;
3188 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3189 delete Args[ArgIdx];
3190 return true;
3191 }
3192
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00003193 if (Best->Function == 0) {
3194 // Since there is no function declaration, this is one of the
3195 // surrogate candidates. Dig out the conversion function.
3196 CXXConversionDecl *Conv
3197 = cast<CXXConversionDecl>(
3198 Best->Conversions[0].UserDefined.ConversionFunction);
3199
3200 // We selected one of the surrogate functions that converts the
3201 // object parameter to a function pointer. Perform the conversion
3202 // on the object argument, then let ActOnCallExpr finish the job.
3203 // FIXME: Represent the user-defined conversion in the AST!
3204 ImpCastExprToType(Object,
3205 Conv->getConversionType().getNonReferenceType(),
3206 Conv->getConversionType()->isReferenceType());
3207 return ActOnCallExpr((ExprTy*)Object, LParenLoc, (ExprTy**)Args, NumArgs,
3208 CommaLocs, RParenLoc);
3209 }
3210
3211 // We found an overloaded operator(). Build a CXXOperatorCallExpr
3212 // that calls this method, using Object for the implicit object
3213 // parameter and passing along the remaining arguments.
3214 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
Douglas Gregor10f3c502008-11-19 21:05:33 +00003215 const FunctionTypeProto *Proto = Method->getType()->getAsFunctionTypeProto();
3216
3217 unsigned NumArgsInProto = Proto->getNumArgs();
3218 unsigned NumArgsToCheck = NumArgs;
3219
3220 // Build the full argument list for the method call (the
3221 // implicit object parameter is placed at the beginning of the
3222 // list).
3223 Expr **MethodArgs;
3224 if (NumArgs < NumArgsInProto) {
3225 NumArgsToCheck = NumArgsInProto;
3226 MethodArgs = new Expr*[NumArgsInProto + 1];
3227 } else {
3228 MethodArgs = new Expr*[NumArgs + 1];
3229 }
3230 MethodArgs[0] = Object;
3231 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3232 MethodArgs[ArgIdx + 1] = Args[ArgIdx];
3233
3234 Expr *NewFn = new DeclRefExpr(Method, Method->getType(),
3235 SourceLocation());
3236 UsualUnaryConversions(NewFn);
3237
3238 // Once we've built TheCall, all of the expressions are properly
3239 // owned.
3240 QualType ResultTy = Method->getResultType().getNonReferenceType();
3241 llvm::OwningPtr<CXXOperatorCallExpr>
3242 TheCall(new CXXOperatorCallExpr(NewFn, MethodArgs, NumArgs + 1,
3243 ResultTy, RParenLoc));
3244 delete [] MethodArgs;
3245
3246 // Initialize the implicit object parameter.
3247 if (!PerformObjectArgumentInitialization(Object, Method))
3248 return true;
3249 TheCall->setArg(0, Object);
3250
3251 // Check the argument types.
3252 for (unsigned i = 0; i != NumArgsToCheck; i++) {
3253 QualType ProtoArgType = Proto->getArgType(i);
3254
3255 Expr *Arg;
3256 if (i < NumArgs)
3257 Arg = Args[i];
3258 else
3259 Arg = new CXXDefaultArgExpr(Method->getParamDecl(i));
3260 QualType ArgType = Arg->getType();
3261
3262 // Pass the argument.
3263 if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
3264 return true;
3265
3266 TheCall->setArg(i + 1, Arg);
3267 }
3268
3269 // If this is a variadic call, handle args passed through "...".
3270 if (Proto->isVariadic()) {
3271 // Promote the arguments (C99 6.5.2.2p7).
3272 for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
3273 Expr *Arg = Args[i];
3274 DefaultArgumentPromotion(Arg);
3275 TheCall->setArg(i + 1, Arg);
3276 }
3277 }
3278
3279 return CheckFunctionCall(Method, TheCall.take());
3280}
3281
Douglas Gregor7f3fec52008-11-20 16:27:02 +00003282/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
3283/// (if one exists), where @c Base is an expression of class type and
3284/// @c Member is the name of the member we're trying to find.
3285Action::ExprResult
3286Sema::BuildOverloadedArrowExpr(Expr *Base, SourceLocation OpLoc,
3287 SourceLocation MemberLoc,
3288 IdentifierInfo &Member) {
3289 assert(Base->getType()->isRecordType() && "left-hand side must have class type");
3290
3291 // C++ [over.ref]p1:
3292 //
3293 // [...] An expression x->m is interpreted as (x.operator->())->m
3294 // for a class object x of type T if T::operator->() exists and if
3295 // the operator is selected as the best match function by the
3296 // overload resolution mechanism (13.3).
3297 // FIXME: look in base classes.
3298 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
3299 OverloadCandidateSet CandidateSet;
3300 const RecordType *BaseRecord = Base->getType()->getAsRecordType();
3301 IdentifierResolver::iterator I
3302 = IdResolver.begin(OpName, cast<CXXRecordType>(BaseRecord)->getDecl(),
3303 /*LookInParentCtx=*/false);
3304 NamedDecl *MemberOps = (I == IdResolver.end())? 0 : *I;
3305 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(MemberOps))
3306 AddMethodCandidate(Method, Base, 0, 0, CandidateSet,
3307 /*SuppressUserConversions=*/false);
3308 else if (OverloadedFunctionDecl *Ovl
3309 = dyn_cast_or_null<OverloadedFunctionDecl>(MemberOps)) {
3310 for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
3311 FEnd = Ovl->function_end();
3312 F != FEnd; ++F) {
3313 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*F))
3314 AddMethodCandidate(Method, Base, 0, 0, CandidateSet,
3315 /*SuppressUserConversions=*/false);
3316 }
3317 }
3318
Douglas Gregor9c690e92008-11-21 03:04:22 +00003319 llvm::OwningPtr<Expr> BasePtr(Base);
3320
Douglas Gregor7f3fec52008-11-20 16:27:02 +00003321 // Perform overload resolution.
3322 OverloadCandidateSet::iterator Best;
3323 switch (BestViableFunction(CandidateSet, Best)) {
3324 case OR_Success:
3325 // Overload resolution succeeded; we'll build the call below.
3326 break;
3327
3328 case OR_No_Viable_Function:
3329 if (CandidateSet.empty())
3330 Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
Chris Lattner4bfd2232008-11-24 06:25:27 +00003331 << BasePtr->getType() << BasePtr->getSourceRange();
Douglas Gregor7f3fec52008-11-20 16:27:02 +00003332 else
3333 Diag(OpLoc, diag::err_ovl_no_viable_oper)
Sebastian Redlfd9f2ac2008-11-22 13:44:36 +00003334 << "operator->" << (unsigned)CandidateSet.size()
3335 << BasePtr->getSourceRange();
Douglas Gregor7f3fec52008-11-20 16:27:02 +00003336 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
Douglas Gregor7f3fec52008-11-20 16:27:02 +00003337 return true;
3338
3339 case OR_Ambiguous:
3340 Diag(OpLoc, diag::err_ovl_ambiguous_oper)
Chris Lattner4bfd2232008-11-24 06:25:27 +00003341 << "operator->" << BasePtr->getSourceRange();
Douglas Gregor7f3fec52008-11-20 16:27:02 +00003342 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
Douglas Gregor7f3fec52008-11-20 16:27:02 +00003343 return true;
3344 }
3345
3346 // Convert the object parameter.
3347 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
Douglas Gregor9c690e92008-11-21 03:04:22 +00003348 if (PerformObjectArgumentInitialization(Base, Method))
Douglas Gregor7f3fec52008-11-20 16:27:02 +00003349 return true;
Douglas Gregor9c690e92008-11-21 03:04:22 +00003350
3351 // No concerns about early exits now.
3352 BasePtr.take();
Douglas Gregor7f3fec52008-11-20 16:27:02 +00003353
3354 // Build the operator call.
3355 Expr *FnExpr = new DeclRefExpr(Method, Method->getType(), SourceLocation());
3356 UsualUnaryConversions(FnExpr);
3357 Base = new CXXOperatorCallExpr(FnExpr, &Base, 1,
3358 Method->getResultType().getNonReferenceType(),
3359 OpLoc);
3360 return ActOnMemberReferenceExpr(Base, OpLoc, tok::arrow, MemberLoc, Member);
3361}
3362
Douglas Gregor45014fd2008-11-10 20:40:00 +00003363/// FixOverloadedFunctionReference - E is an expression that refers to
3364/// a C++ overloaded function (possibly with some parentheses and
3365/// perhaps a '&' around it). We have resolved the overloaded function
3366/// to the function declaration Fn, so patch up the expression E to
3367/// refer (possibly indirectly) to Fn.
3368void Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
3369 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
3370 FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
3371 E->setType(PE->getSubExpr()->getType());
3372 } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
3373 assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
3374 "Can only take the address of an overloaded function");
3375 FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
3376 E->setType(Context.getPointerType(E->getType()));
3377 } else if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
3378 assert(isa<OverloadedFunctionDecl>(DR->getDecl()) &&
3379 "Expected overloaded function");
3380 DR->setDecl(Fn);
3381 E->setType(Fn->getType());
3382 } else {
3383 assert(false && "Invalid reference to overloaded function");
3384 }
3385}
3386
Douglas Gregord2baafd2008-10-21 16:13:35 +00003387} // end namespace clang