blob: 31b612cc7b64c9b4761776f3c53b719bf4a153c1 [file] [log] [blame]
Chris Lattner4b009652007-07-25 00:24:17 +00001//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/Builtins.h"
17#include "clang/AST/Decl.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/Type.h"
20#include "clang/Parse/DeclSpec.h"
21#include "clang/Parse/Scope.h"
22#include "clang/Lex/IdentifierTable.h"
23#include "clang/Basic/LangOptions.h"
24#include "clang/Basic/TargetInfo.h"
25#include "llvm/ADT/SmallSet.h"
26using namespace clang;
27
28// C99: 6.7.5p3: Used by ParseDeclarator/ParseField to make sure we have
29// a constant expression of type int with a value greater than zero.
30bool Sema::VerifyConstantArrayType(const ArrayType *Array,
31 SourceLocation DeclLoc) {
32 const Expr *Size = Array->getSizeExpr();
33 if (Size == 0) return false; // incomplete type.
34
35 if (!Size->getType()->isIntegerType()) {
36 Diag(Size->getLocStart(), diag::err_array_size_non_int,
37 Size->getType().getAsString(), Size->getSourceRange());
38 return true;
39 }
40
41 // Verify that the size of the array is an integer constant expr.
42 SourceLocation Loc;
43 llvm::APSInt SizeVal(32);
44 if (!Size->isIntegerConstantExpr(SizeVal, Context, &Loc)) {
45 // FIXME: This emits the diagnostic to enforce 6.7.2.1p8, but the message
46 // is wrong. It is also wrong for static variables.
47 // FIXME: This is also wrong for:
48 // int sub1(int i, char *pi) { typedef int foo[i];
49 // struct bar {foo f1; int f2:3; int f3:4} *p; }
50 Diag(DeclLoc, diag::err_typecheck_illegal_vla, Size->getSourceRange());
51 return true;
52 }
53
54 // We have a constant expression with an integer type, now make sure
55 // value greater than zero (C99 6.7.5.2p1).
56
57 // FIXME: This check isn't specific to static VLAs, this should be moved
58 // elsewhere or replicated. 'int X[-1];' inside a function should emit an
59 // error.
60 if (SizeVal.isSigned()) {
61 llvm::APSInt Zero(SizeVal.getBitWidth());
62 Zero.setIsUnsigned(false);
63 if (SizeVal < Zero) {
64 Diag(DeclLoc, diag::err_typecheck_negative_array_size,
65 Size->getSourceRange());
66 return true;
67 } else if (SizeVal == 0) {
68 // GCC accepts zero sized static arrays.
69 Diag(DeclLoc, diag::err_typecheck_zero_array_size,
70 Size->getSourceRange());
71 }
72 }
73 return false;
74}
75
76Sema::DeclTy *Sema::isTypeName(const IdentifierInfo &II, Scope *S) const {
77 return dyn_cast_or_null<TypedefDecl>(II.getFETokenInfo<Decl>());
78}
79
80void Sema::PopScope(SourceLocation Loc, Scope *S) {
81 for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
82 I != E; ++I) {
83 Decl *D = static_cast<Decl*>(*I);
84 assert(D && "This decl didn't get pushed??");
85 IdentifierInfo *II = D->getIdentifier();
86 if (!II) continue;
87
88 // Unlink this decl from the identifier. Because the scope contains decls
89 // in an unordered collection, and because we have multiple identifier
90 // namespaces (e.g. tag, normal, label),the decl may not be the first entry.
91 if (II->getFETokenInfo<Decl>() == D) {
92 // Normal case, no multiple decls in different namespaces.
93 II->setFETokenInfo(D->getNext());
94 } else {
95 // Scan ahead. There are only three namespaces in C, so this loop can
96 // never execute more than 3 times.
97 Decl *SomeDecl = II->getFETokenInfo<Decl>();
98 while (SomeDecl->getNext() != D) {
99 SomeDecl = SomeDecl->getNext();
100 assert(SomeDecl && "Didn't find this decl on its identifier's chain!");
101 }
102 SomeDecl->setNext(D->getNext());
103 }
104
105 // This will have to be revisited for C++: there we want to nest stuff in
106 // namespace decls etc. Even for C, we might want a top-level translation
107 // unit decl or something.
108 if (!CurFunctionDecl)
109 continue;
110
111 // Chain this decl to the containing function, it now owns the memory for
112 // the decl.
113 D->setNext(CurFunctionDecl->getDeclChain());
114 CurFunctionDecl->setDeclChain(D);
115 }
116}
117
118/// LookupScopedDecl - Look up the inner-most declaration in the specified
119/// namespace.
120Decl *Sema::LookupScopedDecl(IdentifierInfo *II, unsigned NSI,
121 SourceLocation IdLoc, Scope *S) {
122 if (II == 0) return 0;
123 Decl::IdentifierNamespace NS = (Decl::IdentifierNamespace)NSI;
124
125 // Scan up the scope chain looking for a decl that matches this identifier
126 // that is in the appropriate namespace. This search should not take long, as
127 // shadowing of names is uncommon, and deep shadowing is extremely uncommon.
128 for (Decl *D = II->getFETokenInfo<Decl>(); D; D = D->getNext())
129 if (D->getIdentifierNamespace() == NS)
130 return D;
131
132 // If we didn't find a use of this identifier, and if the identifier
133 // corresponds to a compiler builtin, create the decl object for the builtin
134 // now, injecting it into translation unit scope, and return it.
135 if (NS == Decl::IDNS_Ordinary) {
136 // If this is a builtin on some other target, or if this builtin varies
137 // across targets (e.g. in type), emit a diagnostic and mark the translation
138 // unit non-portable for using it.
139 if (II->isNonPortableBuiltin()) {
140 // Only emit this diagnostic once for this builtin.
141 II->setNonPortableBuiltin(false);
142 Context.Target.DiagnoseNonPortability(IdLoc,
143 diag::port_target_builtin_use);
144 }
145 // If this is a builtin on this (or all) targets, create the decl.
146 if (unsigned BuiltinID = II->getBuiltinID())
147 return LazilyCreateBuiltin(II, BuiltinID, S);
148 }
149 return 0;
150}
151
152/// LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope.
153/// lazily create a decl for it.
154Decl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid, Scope *S) {
155 Builtin::ID BID = (Builtin::ID)bid;
156
157 QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context);
158 FunctionDecl *New = new FunctionDecl(SourceLocation(), II, R,
159 FunctionDecl::Extern, 0);
160
161 // Find translation-unit scope to insert this function into.
162 while (S->getParent())
163 S = S->getParent();
164 S->AddDecl(New);
165
166 // Add this decl to the end of the identifier info.
167 if (Decl *LastDecl = II->getFETokenInfo<Decl>()) {
168 // Scan until we find the last (outermost) decl in the id chain.
169 while (LastDecl->getNext())
170 LastDecl = LastDecl->getNext();
171 // Insert before (outside) it.
172 LastDecl->setNext(New);
173 } else {
174 II->setFETokenInfo(New);
175 }
176 // Make sure clients iterating over decls see this.
177 LastInGroupList.push_back(New);
178
179 return New;
180}
181
182/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the same name
183/// and scope as a previous declaration 'Old'. Figure out how to resolve this
184/// situation, merging decls or emitting diagnostics as appropriate.
185///
186TypedefDecl *Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
187 // Verify the old decl was also a typedef.
188 TypedefDecl *Old = dyn_cast<TypedefDecl>(OldD);
189 if (!Old) {
190 Diag(New->getLocation(), diag::err_redefinition_different_kind,
191 New->getName());
192 Diag(OldD->getLocation(), diag::err_previous_definition);
193 return New;
194 }
195
196 // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
197 // TODO: This is totally simplistic. It should handle merging functions
198 // together etc, merging extern int X; int X; ...
199 Diag(New->getLocation(), diag::err_redefinition, New->getName());
200 Diag(Old->getLocation(), diag::err_previous_definition);
201 return New;
202}
203
204/// MergeFunctionDecl - We just parsed a function 'New' which has the same name
205/// and scope as a previous declaration 'Old'. Figure out how to resolve this
206/// situation, merging decls or emitting diagnostics as appropriate.
207///
208FunctionDecl *Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
209 // Verify the old decl was also a function.
210 FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
211 if (!Old) {
212 Diag(New->getLocation(), diag::err_redefinition_different_kind,
213 New->getName());
214 Diag(OldD->getLocation(), diag::err_previous_definition);
215 return New;
216 }
217
218 // This is not right, but it's a start. If 'Old' is a function prototype with
219 // the same type as 'New', silently allow this. FIXME: We should link up decl
220 // objects here.
221 if (Old->getBody() == 0 &&
222 Old->getCanonicalType() == New->getCanonicalType()) {
223 return New;
224 }
225
226 // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
227 // TODO: This is totally simplistic. It should handle merging functions
228 // together etc, merging extern int X; int X; ...
229 Diag(New->getLocation(), diag::err_redefinition, New->getName());
230 Diag(Old->getLocation(), diag::err_previous_definition);
231 return New;
232}
233
234/// MergeVarDecl - We just parsed a variable 'New' which has the same name
235/// and scope as a previous declaration 'Old'. Figure out how to resolve this
236/// situation, merging decls or emitting diagnostics as appropriate.
237///
238/// FIXME: Need to carefully consider tentative definition rules (C99 6.9.2p2).
239/// For example, we incorrectly complain about i1, i4 from C99 6.9.2p4.
240///
241VarDecl *Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
242 // Verify the old decl was also a variable.
243 VarDecl *Old = dyn_cast<VarDecl>(OldD);
244 if (!Old) {
245 Diag(New->getLocation(), diag::err_redefinition_different_kind,
246 New->getName());
247 Diag(OldD->getLocation(), diag::err_previous_definition);
248 return New;
249 }
250 // Verify the types match.
251 if (Old->getCanonicalType() != New->getCanonicalType()) {
252 Diag(New->getLocation(), diag::err_redefinition, New->getName());
253 Diag(Old->getLocation(), diag::err_previous_definition);
254 return New;
255 }
256 // We've verified the types match, now check if Old is "extern".
257 if (Old->getStorageClass() != VarDecl::Extern) {
258 Diag(New->getLocation(), diag::err_redefinition, New->getName());
259 Diag(Old->getLocation(), diag::err_previous_definition);
260 }
261 return New;
262}
263
264/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
265/// no declarator (e.g. "struct foo;") is parsed.
266Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
267 // TODO: emit error on 'int;' or 'const enum foo;'.
268 // TODO: emit error on 'typedef int;'
269 // if (!DS.isMissingDeclaratorOk()) Diag(...);
270
271 return 0;
272}
273
274Sema::DeclTy *
275Sema::ParseDeclarator(Scope *S, Declarator &D, ExprTy *init,
276 DeclTy *lastDeclarator) {
277 Decl *LastDeclarator = (Decl*)lastDeclarator;
278 Expr *Init = static_cast<Expr*>(init);
279 IdentifierInfo *II = D.getIdentifier();
280
281 // All of these full declarators require an identifier. If it doesn't have
282 // one, the ParsedFreeStandingDeclSpec action should be used.
283 if (II == 0) {
284 Diag(D.getDeclSpec().getSourceRange().Begin(), diag::err_declarator_need_ident,
285 D.getDeclSpec().getSourceRange(), D.getSourceRange());
286 return 0;
287 }
288
289 // See if this is a redefinition of a variable in the same scope.
290 Decl *PrevDecl = LookupScopedDecl(II, Decl::IDNS_Ordinary,
291 D.getIdentifierLoc(), S);
292 if (PrevDecl && !S->isDeclScope(PrevDecl))
293 PrevDecl = 0; // If in outer scope, it isn't the same thing.
294
295 Decl *New;
296 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
297 assert(Init == 0 && "Can't have initializer for a typedef!");
298 TypedefDecl *NewTD = ParseTypedefDecl(S, D, LastDeclarator);
299 if (!NewTD) return 0;
300
301 // Handle attributes prior to checking for duplicates in MergeVarDecl
302 HandleDeclAttributes(NewTD, D.getDeclSpec().getAttributes(),
303 D.getAttributes());
304 // Merge the decl with the existing one if appropriate.
305 if (PrevDecl) {
306 NewTD = MergeTypeDefDecl(NewTD, PrevDecl);
307 if (NewTD == 0) return 0;
308 }
309 New = NewTD;
310 if (S->getParent() == 0) {
311 // C99 6.7.7p2: If a typedef name specifies a variably modified type
312 // then it shall have block scope.
313 if (ArrayType *ary = dyn_cast<ArrayType>(NewTD->getUnderlyingType())) {
314 if (VerifyConstantArrayType(ary, D.getIdentifierLoc()))
315 return 0;
316 }
317 }
318 } else if (D.isFunctionDeclarator()) {
319 assert(Init == 0 && "Can't have an initializer for a functiondecl!");
320 QualType R = GetTypeForDeclarator(D, S);
321 if (R.isNull()) return 0; // FIXME: "auto func();" passes through...
322
323 FunctionDecl::StorageClass SC;
324 switch (D.getDeclSpec().getStorageClassSpec()) {
325 default: assert(0 && "Unknown storage class!");
326 case DeclSpec::SCS_auto:
327 case DeclSpec::SCS_register:
328 Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func,
329 R.getAsString());
330 return 0;
331 case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
332 case DeclSpec::SCS_extern: SC = FunctionDecl::Extern; break;
333 case DeclSpec::SCS_static: SC = FunctionDecl::Static; break;
334 }
335
336 FunctionDecl *NewFD = new FunctionDecl(D.getIdentifierLoc(), II, R, SC,
337 LastDeclarator);
338
339 // Merge the decl with the existing one if appropriate.
340 if (PrevDecl) {
341 NewFD = MergeFunctionDecl(NewFD, PrevDecl);
342 if (NewFD == 0) return 0;
343 }
344 New = NewFD;
345 } else {
346 QualType R = GetTypeForDeclarator(D, S);
347 if (R.isNull()) return 0;
348
349 VarDecl *NewVD;
350 VarDecl::StorageClass SC;
351 switch (D.getDeclSpec().getStorageClassSpec()) {
352 default: assert(0 && "Unknown storage class!");
353 case DeclSpec::SCS_unspecified: SC = VarDecl::None; break;
354 case DeclSpec::SCS_extern: SC = VarDecl::Extern; break;
355 case DeclSpec::SCS_static: SC = VarDecl::Static; break;
356 case DeclSpec::SCS_auto: SC = VarDecl::Auto; break;
357 case DeclSpec::SCS_register: SC = VarDecl::Register; break;
358 }
359 if (S->getParent() == 0) {
360 // File scope. C99 6.9.2p2: A declaration of an identifier for and
361 // object that has file scope without an initializer, and without a
362 // storage-class specifier or with the storage-class specifier "static",
363 // constitutes a tentative definition. Note: A tentative definition with
364 // external linkage is valid (C99 6.2.2p5).
365 if (!Init && SC == VarDecl::Static) {
366 // C99 6.9.2p3: If the declaration of an identifier for an object is
367 // a tentative definition and has internal linkage (C99 6.2.2p3), the
368 // declared type shall not be an incomplete type.
369 if (R->isIncompleteType()) {
370 Diag(D.getIdentifierLoc(), diag::err_typecheck_decl_incomplete_type,
371 R.getAsString());
372 return 0;
373 }
374 }
375 // C99 6.9p2: The storage-class specifiers auto and register shall not
376 // appear in the declaration specifiers in an external declaration.
377 if (SC == VarDecl::Auto || SC == VarDecl::Register) {
378 Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope,
379 R.getAsString());
380 return 0;
381 }
382 // C99 6.7.5.2p2: If an identifier is declared to be an object with
383 // static storage duration, it shall not have a variable length array.
Chris Lattner36be3d82007-07-31 21:33:24 +0000384 if (const ArrayType *ary = R->getAsArrayType()) {
Chris Lattner4b009652007-07-25 00:24:17 +0000385 if (VerifyConstantArrayType(ary, D.getIdentifierLoc()))
386 return 0;
387 }
388 NewVD = new FileVarDecl(D.getIdentifierLoc(), II, R, SC, LastDeclarator);
389 } else {
390 // Block scope. C99 6.7p7: If an identifier for an object is declared with
391 // no linkage (C99 6.2.2p6), the type for the object shall be complete...
392 if (SC != VarDecl::Extern) {
393 if (R->isIncompleteType()) {
394 Diag(D.getIdentifierLoc(), diag::err_typecheck_decl_incomplete_type,
395 R.getAsString());
396 return 0;
397 }
398 }
399 if (SC == VarDecl::Static) {
400 // C99 6.7.5.2p2: If an identifier is declared to be an object with
401 // static storage duration, it shall not have a variable length array.
Chris Lattner36be3d82007-07-31 21:33:24 +0000402 if (const ArrayType *ary = R->getAsArrayType()) {
Chris Lattner4b009652007-07-25 00:24:17 +0000403 if (VerifyConstantArrayType(ary, D.getIdentifierLoc()))
404 return 0;
405 }
406 }
407 NewVD = new BlockVarDecl(D.getIdentifierLoc(), II, R, SC, LastDeclarator);
408 }
409 // Handle attributes prior to checking for duplicates in MergeVarDecl
410 HandleDeclAttributes(NewVD, D.getDeclSpec().getAttributes(),
411 D.getAttributes());
412
413 // Merge the decl with the existing one if appropriate.
414 if (PrevDecl) {
415 NewVD = MergeVarDecl(NewVD, PrevDecl);
416 if (NewVD == 0) return 0;
417 }
418
419 NewVD->setInit(Init);
420 New = NewVD;
421 }
422
423 // If this has an identifier, add it to the scope stack.
424 if (II) {
425 New->setNext(II->getFETokenInfo<Decl>());
426 II->setFETokenInfo(New);
427 S->AddDecl(New);
428 }
429
430 if (S->getParent() == 0)
431 AddTopLevelDecl(New, LastDeclarator);
432
433 return New;
434}
435
436/// The declarators are chained together backwards, reverse the list.
437Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
438 // Often we have single declarators, handle them quickly.
439 Decl *Group = static_cast<Decl*>(group);
440 if (Group == 0 || Group->getNextDeclarator() == 0) return Group;
441
442 Decl *NewGroup = 0;
443 while (Group) {
444 Decl *Next = Group->getNextDeclarator();
445 Group->setNextDeclarator(NewGroup);
446 NewGroup = Group;
447 Group = Next;
448 }
449 return NewGroup;
450}
451
452ParmVarDecl *
453Sema::ParseParamDeclarator(DeclaratorChunk &FTI, unsigned ArgNo,
454 Scope *FnScope) {
455 const DeclaratorChunk::ParamInfo &PI = FTI.Fun.ArgInfo[ArgNo];
456
457 IdentifierInfo *II = PI.Ident;
458 // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
459 // Can this happen for params? We already checked that they don't conflict
460 // among each other. Here they can only shadow globals, which is ok.
461 if (/*Decl *PrevDecl = */LookupScopedDecl(II, Decl::IDNS_Ordinary,
462 PI.IdentLoc, FnScope)) {
463
464 }
465
466 // FIXME: Handle storage class (auto, register). No declarator?
467 // TODO: Chain to previous parameter with the prevdeclarator chain?
Steve Naroff94cd93f2007-08-07 22:44:21 +0000468
469 // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
470 // Doing the promotion here has a win and a loss. The win is the type for
471 // both Decl's and DeclRefExpr's will match (a convenient invariant for the
472 // code generator). The loss is the orginal type isn't preserved. For example:
473 //
474 // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
475 // int blockvardecl[5];
476 // sizeof(parmvardecl); // size == 4
477 // sizeof(blockvardecl); // size == 20
478 // }
479 //
480 // For expressions, all implicit conversions are captured using the
481 // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
482 //
483 // FIXME: If a source translation tool needs to see the original type, then
484 // we need to consider storing both types (in ParmVarDecl)...
485 //
486 QualType parmDeclType = QualType::getFromOpaquePtr(PI.TypeInfo);
487 if (const ArrayType *AT = parmDeclType->getAsArrayType())
488 parmDeclType = Context.getPointerType(AT->getElementType());
489 else if (parmDeclType->isFunctionType())
490 parmDeclType = Context.getPointerType(parmDeclType);
491
492 ParmVarDecl *New = new ParmVarDecl(PI.IdentLoc, II, parmDeclType,
Chris Lattner4b009652007-07-25 00:24:17 +0000493 VarDecl::None, 0);
494
495 // If this has an identifier, add it to the scope stack.
496 if (II) {
497 New->setNext(II->getFETokenInfo<Decl>());
498 II->setFETokenInfo(New);
499 FnScope->AddDecl(New);
500 }
501
502 return New;
503}
504
505
506Sema::DeclTy *Sema::ParseStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
507 assert(CurFunctionDecl == 0 && "Function parsing confused");
508 assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
509 "Not a function declarator!");
510 DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
511
512 // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
513 // for a K&R function.
514 if (!FTI.hasPrototype) {
515 for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
516 if (FTI.ArgInfo[i].TypeInfo == 0) {
517 Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared,
518 FTI.ArgInfo[i].Ident->getName());
519 // Implicitly declare the argument as type 'int' for lack of a better
520 // type.
521 FTI.ArgInfo[i].TypeInfo = Context.IntTy.getAsOpaquePtr();
522 }
523 }
524
525 // Since this is a function definition, act as though we have information
526 // about the arguments.
527 FTI.hasPrototype = true;
528 } else {
529 // FIXME: Diagnose arguments without names in C.
530
531 }
532
533 Scope *GlobalScope = FnBodyScope->getParent();
534
535 FunctionDecl *FD =
536 static_cast<FunctionDecl*>(ParseDeclarator(GlobalScope, D, 0, 0));
537 CurFunctionDecl = FD;
538
539 // Create Decl objects for each parameter, adding them to the FunctionDecl.
540 llvm::SmallVector<ParmVarDecl*, 16> Params;
541
542 // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes
543 // no arguments, not a function that takes a single void argument.
544 if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
545 FTI.ArgInfo[0].TypeInfo == Context.VoidTy.getAsOpaquePtr()) {
546 // empty arg list, don't push any params.
547 } else {
548 for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
549 Params.push_back(ParseParamDeclarator(D.getTypeObject(0), i,FnBodyScope));
550 }
551
552 FD->setParams(&Params[0], Params.size());
553
554 return FD;
555}
556
557Sema::DeclTy *Sema::ParseFunctionDefBody(DeclTy *D, StmtTy *Body) {
558 FunctionDecl *FD = static_cast<FunctionDecl*>(D);
559 FD->setBody((Stmt*)Body);
560
561 assert(FD == CurFunctionDecl && "Function parsing confused");
562 CurFunctionDecl = 0;
563
564 // Verify and clean out per-function state.
565
566 // Check goto/label use.
567 for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
568 I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
569 // Verify that we have no forward references left. If so, there was a goto
570 // or address of a label taken, but no definition of it. Label fwd
571 // definitions are indicated with a null substmt.
572 if (I->second->getSubStmt() == 0) {
573 LabelStmt *L = I->second;
574 // Emit error.
575 Diag(L->getIdentLoc(), diag::err_undeclared_label_use, L->getName());
576
577 // At this point, we have gotos that use the bogus label. Stitch it into
578 // the function body so that they aren't leaked and that the AST is well
579 // formed.
580 L->setSubStmt(new NullStmt(L->getIdentLoc()));
581 cast<CompoundStmt>((Stmt*)Body)->push_back(L);
582 }
583 }
584 LabelMap.clear();
585
586 return FD;
587}
588
589
590/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
591/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
592Decl *Sema::ImplicitlyDefineFunction(SourceLocation Loc, IdentifierInfo &II,
593 Scope *S) {
594 if (getLangOptions().C99) // Extension in C99.
595 Diag(Loc, diag::ext_implicit_function_decl, II.getName());
596 else // Legal in C90, but warn about it.
597 Diag(Loc, diag::warn_implicit_function_decl, II.getName());
598
599 // FIXME: handle stuff like:
600 // void foo() { extern float X(); }
601 // void bar() { X(); } <-- implicit decl for X in another scope.
602
603 // Set a Declarator for the implicit definition: int foo();
604 const char *Dummy;
605 DeclSpec DS;
606 bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
607 Error = Error; // Silence warning.
608 assert(!Error && "Error setting up implicit decl!");
609 Declarator D(DS, Declarator::BlockContext);
610 D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, Loc));
611 D.SetIdentifier(&II, Loc);
612
613 // Find translation-unit scope to insert this function into.
614 while (S->getParent())
615 S = S->getParent();
616
617 return static_cast<Decl*>(ParseDeclarator(S, D, 0, 0));
618}
619
620
621TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D,
622 Decl *LastDeclarator) {
623 assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
624
625 QualType T = GetTypeForDeclarator(D, S);
626 if (T.isNull()) return 0;
627
628 // Scope manipulation handled by caller.
629 return new TypedefDecl(D.getIdentifierLoc(), D.getIdentifier(), T,
630 LastDeclarator);
631}
632
633
634/// ParseTag - This is invoked when we see 'struct foo' or 'struct {'. In the
635/// former case, Name will be non-null. In the later case, Name will be null.
636/// TagType indicates what kind of tag this is. TK indicates whether this is a
637/// reference/declaration/definition of a tag.
638Sema::DeclTy *Sema::ParseTag(Scope *S, unsigned TagType, TagKind TK,
639 SourceLocation KWLoc, IdentifierInfo *Name,
640 SourceLocation NameLoc, AttributeList *Attr) {
641 // If this is a use of an existing tag, it must have a name.
642 assert((Name != 0 || TK == TK_Definition) &&
643 "Nameless record must be a definition!");
644
645 Decl::Kind Kind;
646 switch (TagType) {
647 default: assert(0 && "Unknown tag type!");
648 case DeclSpec::TST_struct: Kind = Decl::Struct; break;
649 case DeclSpec::TST_union: Kind = Decl::Union; break;
650//case DeclSpec::TST_class: Kind = Decl::Class; break;
651 case DeclSpec::TST_enum: Kind = Decl::Enum; break;
652 }
653
654 // If this is a named struct, check to see if there was a previous forward
655 // declaration or definition.
656 if (TagDecl *PrevDecl =
657 dyn_cast_or_null<TagDecl>(LookupScopedDecl(Name, Decl::IDNS_Tag,
658 NameLoc, S))) {
659
660 // If this is a use of a previous tag, or if the tag is already declared in
661 // the same scope (so that the definition/declaration completes or
662 // rementions the tag), reuse the decl.
663 if (TK == TK_Reference || S->isDeclScope(PrevDecl)) {
664 // Make sure that this wasn't declared as an enum and now used as a struct
665 // or something similar.
666 if (PrevDecl->getKind() != Kind) {
667 Diag(KWLoc, diag::err_use_with_wrong_tag, Name->getName());
668 Diag(PrevDecl->getLocation(), diag::err_previous_use);
669 }
670
671 // If this is a use or a forward declaration, we're good.
672 if (TK != TK_Definition)
673 return PrevDecl;
674
675 // Diagnose attempts to redefine a tag.
676 if (PrevDecl->isDefinition()) {
677 Diag(NameLoc, diag::err_redefinition, Name->getName());
678 Diag(PrevDecl->getLocation(), diag::err_previous_definition);
679 // If this is a redefinition, recover by making this struct be
680 // anonymous, which will make any later references get the previous
681 // definition.
682 Name = 0;
683 } else {
684 // Okay, this is definition of a previously declared or referenced tag.
685 // Move the location of the decl to be the definition site.
686 PrevDecl->setLocation(NameLoc);
687 return PrevDecl;
688 }
689 }
690 // If we get here, this is a definition of a new struct type in a nested
691 // scope, e.g. "struct foo; void bar() { struct foo; }", just create a new
692 // type.
693 }
694
695 // If there is an identifier, use the location of the identifier as the
696 // location of the decl, otherwise use the location of the struct/union
697 // keyword.
698 SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
699
700 // Otherwise, if this is the first time we've seen this tag, create the decl.
701 TagDecl *New;
702 switch (Kind) {
703 default: assert(0 && "Unknown tag kind!");
704 case Decl::Enum:
705 // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
706 // enum X { A, B, C } D; D should chain to X.
707 New = new EnumDecl(Loc, Name, 0);
708 // If this is an undefined enum, warn.
709 if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
710 break;
711 case Decl::Union:
712 case Decl::Struct:
713 case Decl::Class:
714 // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
715 // struct X { int A; } D; D should chain to X.
716 New = new RecordDecl(Kind, Loc, Name, 0);
717 break;
718 }
719
720 // If this has an identifier, add it to the scope stack.
721 if (Name) {
722 New->setNext(Name->getFETokenInfo<Decl>());
723 Name->setFETokenInfo(New);
724 S->AddDecl(New);
725 }
726
727 return New;
728}
729
730/// ParseField - Each field of a struct/union/class is passed into this in order
731/// to create a FieldDecl object for it.
732Sema::DeclTy *Sema::ParseField(Scope *S, DeclTy *TagDecl,
733 SourceLocation DeclStart,
734 Declarator &D, ExprTy *BitfieldWidth) {
735 IdentifierInfo *II = D.getIdentifier();
736 Expr *BitWidth = (Expr*)BitfieldWidth;
737
738 SourceLocation Loc = DeclStart;
739 if (II) Loc = D.getIdentifierLoc();
740
741 // FIXME: Unnamed fields can be handled in various different ways, for
742 // example, unnamed unions inject all members into the struct namespace!
743
744
745 if (BitWidth) {
746 // TODO: Validate.
747 //printf("WARNING: BITFIELDS IGNORED!\n");
748
749 // 6.7.2.1p3
750 // 6.7.2.1p4
751
752 } else {
753 // Not a bitfield.
754
755 // validate II.
756
757 }
758
759 QualType T = GetTypeForDeclarator(D, S);
760 if (T.isNull()) return 0;
761
762 // C99 6.7.2.1p8: A member of a structure or union may have any type other
763 // than a variably modified type.
Chris Lattner36be3d82007-07-31 21:33:24 +0000764 if (const ArrayType *ary = T->getAsArrayType()) {
Chris Lattner4b009652007-07-25 00:24:17 +0000765 if (VerifyConstantArrayType(ary, Loc))
766 return 0;
767 }
768
769 // FIXME: Chain fielddecls together.
770 return new FieldDecl(Loc, II, T, 0);
771}
772
773void Sema::ParseRecordBody(SourceLocation RecLoc, DeclTy *RecDecl,
774 DeclTy **Fields, unsigned NumFields) {
775 RecordDecl *Record = cast<RecordDecl>(static_cast<Decl*>(RecDecl));
776 if (Record->isDefinition()) {
777 // Diagnose code like:
778 // struct S { struct S {} X; };
779 // We discover this when we complete the outer S. Reject and ignore the
780 // outer S.
781 Diag(Record->getLocation(), diag::err_nested_redefinition,
782 Record->getKindName());
783 Diag(RecLoc, diag::err_previous_definition);
784 return;
785 }
786
787 // Verify that all the fields are okay.
788 unsigned NumNamedMembers = 0;
789 llvm::SmallVector<FieldDecl*, 32> RecFields;
790 llvm::SmallSet<const IdentifierInfo*, 32> FieldIDs;
791
792 for (unsigned i = 0; i != NumFields; ++i) {
793 FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
794 if (!FD) continue; // Already issued a diagnostic.
795
796 // Get the type for the field.
Chris Lattner36be3d82007-07-31 21:33:24 +0000797 Type *FDTy = FD->getType().getTypePtr();
Chris Lattner4b009652007-07-25 00:24:17 +0000798
799 // C99 6.7.2.1p2 - A field may not be a function type.
Chris Lattner36be3d82007-07-31 21:33:24 +0000800 if (FDTy->isFunctionType()) {
Chris Lattner4b009652007-07-25 00:24:17 +0000801 Diag(FD->getLocation(), diag::err_field_declared_as_function,
802 FD->getName());
803 delete FD;
804 continue;
805 }
806
807 // C99 6.7.2.1p2 - A field may not be an incomplete type except...
808 if (FDTy->isIncompleteType()) {
809 if (i != NumFields-1 || // ... that the last member ...
810 Record->getKind() != Decl::Struct || // ... of a structure ...
Chris Lattner36be3d82007-07-31 21:33:24 +0000811 !FDTy->isArrayType()) { //... may have incomplete array type.
Chris Lattner4b009652007-07-25 00:24:17 +0000812 Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
813 delete FD;
814 continue;
815 }
816 if (NumNamedMembers < 1) { //... must have more than named member ...
817 Diag(FD->getLocation(), diag::err_flexible_array_empty_struct,
818 FD->getName());
819 delete FD;
820 continue;
821 }
822
823 // Okay, we have a legal flexible array member at the end of the struct.
824 Record->setHasFlexibleArrayMember(true);
825 }
826
827
828 /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
829 /// field of another structure or the element of an array.
Chris Lattner36be3d82007-07-31 21:33:24 +0000830 if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
Chris Lattner4b009652007-07-25 00:24:17 +0000831 if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
832 // If this is a member of a union, then entire union becomes "flexible".
833 if (Record->getKind() == Decl::Union) {
834 Record->setHasFlexibleArrayMember(true);
835 } else {
836 // If this is a struct/class and this is not the last element, reject
837 // it. Note that GCC supports variable sized arrays in the middle of
838 // structures.
839 if (i != NumFields-1) {
840 Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct,
841 FD->getName());
842 delete FD;
843 continue;
844 }
845
846 // We support flexible arrays at the end of structs in other structs
847 // as an extension.
848 Diag(FD->getLocation(), diag::ext_flexible_array_in_struct,
849 FD->getName());
850 Record->setHasFlexibleArrayMember(true);
851 }
852 }
853 }
854
855 // Keep track of the number of named members.
856 if (IdentifierInfo *II = FD->getIdentifier()) {
857 // Detect duplicate member names.
858 if (!FieldIDs.insert(II)) {
859 Diag(FD->getLocation(), diag::err_duplicate_member, II->getName());
860 // Find the previous decl.
861 SourceLocation PrevLoc;
862 for (unsigned i = 0, e = RecFields.size(); ; ++i) {
863 assert(i != e && "Didn't find previous def!");
864 if (RecFields[i]->getIdentifier() == II) {
865 PrevLoc = RecFields[i]->getLocation();
866 break;
867 }
868 }
869 Diag(PrevLoc, diag::err_previous_definition);
870 delete FD;
871 continue;
872 }
873 ++NumNamedMembers;
874 }
875
876 // Remember good fields.
877 RecFields.push_back(FD);
878 }
879
880
881 // Okay, we successfully defined 'Record'.
882 Record->defineBody(&RecFields[0], RecFields.size());
883}
884
885Sema::DeclTy *Sema::ParseEnumConstant(Scope *S, DeclTy *theEnumDecl,
886 DeclTy *lastEnumConst,
887 SourceLocation IdLoc, IdentifierInfo *Id,
888 SourceLocation EqualLoc, ExprTy *val) {
889 theEnumDecl = theEnumDecl; // silence unused warning.
890 EnumConstantDecl *LastEnumConst =
891 cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
892 Expr *Val = static_cast<Expr*>(val);
893
894 // Verify that there isn't already something declared with this name in this
895 // scope.
896 if (Decl *PrevDecl = LookupScopedDecl(Id, Decl::IDNS_Ordinary, IdLoc, S)) {
897 if (S->isDeclScope(PrevDecl)) {
898 if (isa<EnumConstantDecl>(PrevDecl))
899 Diag(IdLoc, diag::err_redefinition_of_enumerator, Id->getName());
900 else
901 Diag(IdLoc, diag::err_redefinition, Id->getName());
902 Diag(PrevDecl->getLocation(), diag::err_previous_definition);
903 // FIXME: Don't leak memory: delete Val;
904 return 0;
905 }
906 }
907
908 llvm::APSInt EnumVal(32);
909 QualType EltTy;
910 if (Val) {
911 // C99 6.7.2.2p2: Make sure we have an integer constant expression.
912 SourceLocation ExpLoc;
913 if (!Val->isIntegerConstantExpr(EnumVal, Context, &ExpLoc)) {
914 Diag(ExpLoc, diag::err_enum_value_not_integer_constant_expr,
915 Id->getName());
916 // FIXME: Don't leak memory: delete Val;
917 return 0;
918 }
919 EltTy = Val->getType();
920 } else if (LastEnumConst) {
921 // Assign the last value + 1.
922 EnumVal = LastEnumConst->getInitVal();
923 ++EnumVal;
924 // FIXME: detect overflow!
925 EltTy = LastEnumConst->getType();
926 } else {
927 // First value, set to zero.
928 EltTy = Context.IntTy;
929 // FIXME: Resize EnumVal to the size of int.
930 }
931
932 // TODO: Default promotions to int/uint.
933
934 // TODO: If the result value doesn't fit in an int, it must be a long or long
935 // long value. ISO C does not support this, but GCC does as an extension,
936 // emit a warning.
937
938 EnumConstantDecl *New = new EnumConstantDecl(IdLoc, Id, EltTy, Val, EnumVal,
939 LastEnumConst);
940
941 // Register this decl in the current scope stack.
942 New->setNext(Id->getFETokenInfo<Decl>());
943 Id->setFETokenInfo(New);
944 S->AddDecl(New);
945 return New;
946}
947
948void Sema::ParseEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
949 DeclTy **Elements, unsigned NumElements) {
950 EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
951 assert(!Enum->isDefinition() && "Enum redefinitions can't reach here");
952
953 // Verify that all the values are okay, and reverse the list.
954 EnumConstantDecl *EltList = 0;
955 for (unsigned i = 0; i != NumElements; ++i) {
956 EnumConstantDecl *ECD =
957 cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
958 if (!ECD) continue; // Already issued a diagnostic.
959
960 ECD->setNextDeclarator(EltList);
961 EltList = ECD;
962 }
963
964 Enum->defineElements(EltList);
965}
966
967void Sema::AddTopLevelDecl(Decl *current, Decl *last) {
968 if (!current) return;
969
970 // If this is a top-level decl that is chained to some other (e.g. int A,B,C;)
971 // remember this in the LastInGroupList list.
972 if (last)
973 LastInGroupList.push_back((Decl*)last);
974}
975
976void Sema::HandleDeclAttribute(Decl *New, AttributeList *rawAttr) {
977 if (strcmp(rawAttr->getAttributeName()->getName(), "vector_size") == 0) {
978 if (ValueDecl *vDecl = dyn_cast<ValueDecl>(New)) {
979 QualType newType = HandleVectorTypeAttribute(vDecl->getType(), rawAttr);
980 if (!newType.isNull()) // install the new vector type into the decl
981 vDecl->setType(newType);
982 }
983 if (TypedefDecl *tDecl = dyn_cast<TypedefDecl>(New)) {
984 QualType newType = HandleVectorTypeAttribute(tDecl->getUnderlyingType(),
985 rawAttr);
986 if (!newType.isNull()) // install the new vector type into the decl
987 tDecl->setUnderlyingType(newType);
988 }
989 }
990 if (strcmp(rawAttr->getAttributeName()->getName(), "ocu_vector_type") == 0) {
Steve Naroff82113e32007-07-29 16:33:31 +0000991 if (TypedefDecl *tDecl = dyn_cast<TypedefDecl>(New))
992 HandleOCUVectorTypeAttribute(tDecl, rawAttr);
993 else
Chris Lattner4b009652007-07-25 00:24:17 +0000994 Diag(rawAttr->getAttributeLoc(),
995 diag::err_typecheck_ocu_vector_not_typedef);
Chris Lattner4b009652007-07-25 00:24:17 +0000996 }
997 // FIXME: add other attributes...
998}
999
1000void Sema::HandleDeclAttributes(Decl *New, AttributeList *declspec_prefix,
1001 AttributeList *declarator_postfix) {
1002 while (declspec_prefix) {
1003 HandleDeclAttribute(New, declspec_prefix);
1004 declspec_prefix = declspec_prefix->getNext();
1005 }
1006 while (declarator_postfix) {
1007 HandleDeclAttribute(New, declarator_postfix);
1008 declarator_postfix = declarator_postfix->getNext();
1009 }
1010}
1011
Steve Naroff82113e32007-07-29 16:33:31 +00001012void Sema::HandleOCUVectorTypeAttribute(TypedefDecl *tDecl,
1013 AttributeList *rawAttr) {
1014 QualType curType = tDecl->getUnderlyingType();
Chris Lattner4b009652007-07-25 00:24:17 +00001015 // check the attribute arugments.
1016 if (rawAttr->getNumArgs() != 1) {
1017 Diag(rawAttr->getAttributeLoc(), diag::err_attribute_wrong_number_arguments,
1018 std::string("1"));
Steve Naroff82113e32007-07-29 16:33:31 +00001019 return;
Chris Lattner4b009652007-07-25 00:24:17 +00001020 }
1021 Expr *sizeExpr = static_cast<Expr *>(rawAttr->getArg(0));
1022 llvm::APSInt vecSize(32);
1023 if (!sizeExpr->isIntegerConstantExpr(vecSize, Context)) {
1024 Diag(rawAttr->getAttributeLoc(), diag::err_attribute_vector_size_not_int,
1025 sizeExpr->getSourceRange());
Steve Naroff82113e32007-07-29 16:33:31 +00001026 return;
Chris Lattner4b009652007-07-25 00:24:17 +00001027 }
1028 // unlike gcc's vector_size attribute, we do not allow vectors to be defined
1029 // in conjunction with complex types (pointers, arrays, functions, etc.).
1030 Type *canonType = curType.getCanonicalType().getTypePtr();
1031 if (!(canonType->isIntegerType() || canonType->isRealFloatingType())) {
1032 Diag(rawAttr->getAttributeLoc(), diag::err_attribute_invalid_vector_type,
1033 curType.getCanonicalType().getAsString());
Steve Naroff82113e32007-07-29 16:33:31 +00001034 return;
Chris Lattner4b009652007-07-25 00:24:17 +00001035 }
1036 // unlike gcc's vector_size attribute, the size is specified as the
1037 // number of elements, not the number of bytes.
1038 unsigned vectorSize = vecSize.getZExtValue();
1039
1040 if (vectorSize == 0) {
1041 Diag(rawAttr->getAttributeLoc(), diag::err_attribute_zero_size,
1042 sizeExpr->getSourceRange());
Steve Naroff82113e32007-07-29 16:33:31 +00001043 return;
Chris Lattner4b009652007-07-25 00:24:17 +00001044 }
Steve Naroff82113e32007-07-29 16:33:31 +00001045 // Instantiate/Install the vector type, the number of elements is > 0.
1046 tDecl->setUnderlyingType(Context.getOCUVectorType(curType, vectorSize));
1047 // Remember this typedef decl, we will need it later for diagnostics.
1048 OCUVectorDecls.push_back(tDecl);
Chris Lattner4b009652007-07-25 00:24:17 +00001049}
1050
1051QualType Sema::HandleVectorTypeAttribute(QualType curType,
1052 AttributeList *rawAttr) {
1053 // check the attribute arugments.
1054 if (rawAttr->getNumArgs() != 1) {
1055 Diag(rawAttr->getAttributeLoc(), diag::err_attribute_wrong_number_arguments,
1056 std::string("1"));
1057 return QualType();
1058 }
1059 Expr *sizeExpr = static_cast<Expr *>(rawAttr->getArg(0));
1060 llvm::APSInt vecSize(32);
1061 if (!sizeExpr->isIntegerConstantExpr(vecSize, Context)) {
1062 Diag(rawAttr->getAttributeLoc(), diag::err_attribute_vector_size_not_int,
1063 sizeExpr->getSourceRange());
1064 return QualType();
1065 }
1066 // navigate to the base type - we need to provide for vector pointers,
1067 // vector arrays, and functions returning vectors.
1068 Type *canonType = curType.getCanonicalType().getTypePtr();
1069
1070 if (canonType->isPointerType() || canonType->isArrayType() ||
1071 canonType->isFunctionType()) {
1072 assert(1 && "HandleVector(): Complex type construction unimplemented");
1073 /* FIXME: rebuild the type from the inside out, vectorizing the inner type.
1074 do {
1075 if (PointerType *PT = dyn_cast<PointerType>(canonType))
1076 canonType = PT->getPointeeType().getTypePtr();
1077 else if (ArrayType *AT = dyn_cast<ArrayType>(canonType))
1078 canonType = AT->getElementType().getTypePtr();
1079 else if (FunctionType *FT = dyn_cast<FunctionType>(canonType))
1080 canonType = FT->getResultType().getTypePtr();
1081 } while (canonType->isPointerType() || canonType->isArrayType() ||
1082 canonType->isFunctionType());
1083 */
1084 }
1085 // the base type must be integer or float.
1086 if (!(canonType->isIntegerType() || canonType->isRealFloatingType())) {
1087 Diag(rawAttr->getAttributeLoc(), diag::err_attribute_invalid_vector_type,
1088 curType.getCanonicalType().getAsString());
1089 return QualType();
1090 }
1091 unsigned typeSize = Context.getTypeSize(curType, rawAttr->getAttributeLoc());
1092 // vecSize is specified in bytes - convert to bits.
1093 unsigned vectorSize = vecSize.getZExtValue() * 8;
1094
1095 // the vector size needs to be an integral multiple of the type size.
1096 if (vectorSize % typeSize) {
1097 Diag(rawAttr->getAttributeLoc(), diag::err_attribute_invalid_size,
1098 sizeExpr->getSourceRange());
1099 return QualType();
1100 }
1101 if (vectorSize == 0) {
1102 Diag(rawAttr->getAttributeLoc(), diag::err_attribute_zero_size,
1103 sizeExpr->getSourceRange());
1104 return QualType();
1105 }
1106 // Since OpenCU requires 3 element vectors (OpenCU 5.1.2), we don't restrict
1107 // the number of elements to be a power of two (unlike GCC).
1108 // Instantiate the vector type, the number of elements is > 0.
1109 return Context.getVectorType(curType, vectorSize/typeSize);
1110}
1111