blob: 73d240829230c65759c7e74e46bf5458bd5b897e [file] [log] [blame]
Ted Kremenek97f75312007-08-21 21:42:03 +00001//===--- CFG.cpp - Classes for representing and building CFGs----*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by Ted Kremenek and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the CFG and CFGBuilder classes for representing and
11// building Control-Flow Graphs (CFGs) from ASTs.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/AST/CFG.h"
16#include "clang/AST/Expr.h"
17#include <iostream>
18#include <iomanip>
19#include <algorithm>
20using namespace clang;
21
22namespace {
23
24 // SaveAndRestore - A utility class that uses RIIA to save and restore
25 // the value of a variable.
26 template<typename T>
27 struct SaveAndRestore {
28 SaveAndRestore(T& x) : X(x), old_value(x) {}
29 ~SaveAndRestore() { X = old_value; }
30
31 T& X;
32 T old_value;
33 };
34}
35
36/// CFGBuilder - This class is implements CFG construction from an AST.
37/// The builder is stateful: an instance of the builder should be used to only
38/// construct a single CFG.
39///
40/// Example usage:
41///
42/// CFGBuilder builder;
43/// CFG* cfg = builder.BuildAST(stmt1);
44///
45class CFGBuilder {
46 CFG* cfg;
47 CFGBlock* Block;
48 CFGBlock* Exit;
49 CFGBlock* Succ;
50 unsigned NumBlocks;
51
52public:
53 explicit CFGBuilder() : cfg(NULL), Block(NULL), Exit(NULL), Succ(NULL),
54 NumBlocks(0) {
55 // Create an empty CFG.
56 cfg = new CFG();
57 }
58
59 ~CFGBuilder() { delete cfg; }
60
61 /// buildCFG - Constructs a CFG from an AST (a Stmt*). The AST can
62 /// represent an arbitrary statement. Examples include a single expression
63 /// or a function body (compound statement). The ownership of the returned
64 /// CFG is transferred to the caller. If CFG construction fails, this method
65 /// returns NULL.
66 CFG* buildCFG(Stmt* Statement) {
67 if (!Statement) return NULL;
68
69 assert (cfg && "CFGBuilder should only be used to construct one CFG");
70
71 // Create the exit block.
72 Block = createBlock();
73 Exit = Block;
74
75 // Visit the statements and create the CFG.
76 if (CFGBlock* B = visitStmt(Statement)) {
77 // Reverse the statements in the last constructed block. Statements
78 // are inserted into the blocks in reverse order.
79 B->reverseStmts();
80 // NULL out cfg so that repeated calls
81 CFG* t = cfg;
82 cfg = NULL;
83 return t;
84 }
85 else {
86 // Error occured while building CFG: Delete the partially constructed CFG.
87 delete cfg;
88 cfg = NULL;
89 return NULL;
90 }
91 }
92
93private:
94
95 // createBlock - Used to lazily create blocks that are connected
96 // to the current (global) succcessor.
97 CFGBlock* createBlock( bool add_successor = true ) {
98 CFGBlock* B = cfg->createBlock(NumBlocks++);
99 if (add_successor && Succ) B->addSuccessor(Succ);
100 return B;
101 }
102
103 // visitStmt - CFG construction is done via a recursive walk of an AST.
104 // We actually parse the AST in reverse order so that the successor
105 // of a basic block is constructed prior to its predecessor. This
106 // allows us to nicely capture implicit fall-throughs without extra
107 // basic blocks.
108 //
109 // The value returned from this function is the last created CFGBlock
110 // that represents the "entry" point for the translated AST node.
111 CFGBlock* visitStmt(Stmt* Statement) {
112 assert (Statement && "visitStmt does not accept NULL Stmt*");
113
114 switch (Statement->getStmtClass()) {
115 default:
116 assert (false && "statement case for CFGBuilder not yet implemented");
117 return NULL;
118
119 // Statements with no branching control flow.
120 case Stmt::NullStmtClass:
121 case Stmt::DeclStmtClass:
122 case Stmt::PreDefinedExprClass:
123 case Stmt::DeclRefExprClass:
124 case Stmt::IntegerLiteralClass:
125 case Stmt::FloatingLiteralClass:
126 case Stmt::StringLiteralClass:
127 case Stmt::CharacterLiteralClass:
128 case Stmt::ParenExprClass:
129 case Stmt::UnaryOperatorClass:
130 case Stmt::SizeOfAlignOfTypeExprClass:
131 case Stmt::ArraySubscriptExprClass:
132 case Stmt::CallExprClass:
133 case Stmt::BinaryOperatorClass:
134 case Stmt::ImplicitCastExprClass:
135 case Stmt::CompoundLiteralExprClass:
136 case Stmt::OCUVectorElementExprClass:
137 // We cannot assume that we are in the middle of a basic block, since
138 // the CFG might only be constructed for this single statement. If
139 // we have no current basic block, just create one lazily.
140 if (!Block) Block = createBlock();
141
142 // Simply add the statement to the current block. We actually
143 // insert statements in reverse order; this order is reversed later
144 // when processing the containing element in the AST.
145 Block->appendStmt(Statement);
146 break;
147
148 case Stmt::CompoundStmtClass: {
149 // Iterate through the statements of the compound statement in reverse
150 // order. Because this statement may contain statements that have
151 // complicated control flow, the value of "Block" may change at any
152 // time. This means that statements in the compound statement will
153 // automatically be distributed across multiple basic blocks when
154 // necessary.
155 CompoundStmt* C = cast<CompoundStmt>(Statement);
156
157 for (CompoundStmt::reverse_body_iterator I = C->body_rbegin(),
158 E = C->body_rend(); I != E; ++I )
159 // Add the statement to the current block.
160 if (!visitStmt(*I)) return NULL;
161
162 break;
163 }
164
165 case Stmt::IfStmtClass: {
166 IfStmt* I = cast<IfStmt>(Statement);
167
168 // We may see an if statement in the middle of a basic block, or
169 // it may be the first statement we are processing. In either case,
170 // we create a new basic block. First, we create the blocks for
171 // the then...else statements, and then we create the block containing
172 // the if statement. If we were in the middle of a block, we
173 // stop processing that block and reverse its statements. That block
174 // is then the implicit successor for the "then" and "else" clauses.
175
176 // The block we were proccessing is now finished. Make it the
177 // successor block.
178 if (Block) {
179 Succ = Block;
180 Block->reverseStmts();
181 }
182
183 // Process the false branch. NULL out Block so that the recursive
184 // call to visitStmt will create a new basic block.
185 // Null out Block so that all successor
186 CFGBlock* ElseBlock = Succ;
187
188 if (Stmt* Else = I->getElse()) {
189 SaveAndRestore<CFGBlock*> sv(Succ);
190
191 // NULL out Block so that the recursive call to visitStmt will
192 // create a new basic block.
193 Block = NULL;
194 ElseBlock = visitStmt(Else);
195 if (!ElseBlock) return NULL;
196 ElseBlock->reverseStmts();
197 }
198
199 // Process the true branch. NULL out Block so that the recursive
200 // call to visitStmt will create a new basic block.
201 // Null out Block so that all successor
202 CFGBlock* ThenBlock;
203 {
204 Stmt* Then = I->getThen();
205 assert (Then);
206 SaveAndRestore<CFGBlock*> sv(Succ);
207 Block = NULL;
208 ThenBlock = visitStmt(Then);
209 if (!ThenBlock) return NULL;
210 ThenBlock->reverseStmts();
211 }
212
213 // Now create a new block containing the if statement.
214 Block = createBlock(false);
215
216 // Add the condition as the last statement in the new block.
217 Block->appendStmt(I->getCond());
218
219 // Set the terminator of the new block to the If statement.
220 Block->setTerminator(I);
221
222 // Now add the successors.
223 Block->addSuccessor(ThenBlock);
224 Block->addSuccessor(ElseBlock);
225
226 break;
227 }
228
229 case Stmt::ReturnStmtClass: {
230 ReturnStmt* R = cast<ReturnStmt>(Statement);
231
232 // If we were in the middle of a block we stop processing that block
233 // and reverse its statements.
234 //
235 // NOTE: If a "return" appears in the middle of a block, this means
236 // that the code afterwards is DEAD (unreachable). We still
237 // keep a basic block for that code; a simple "mark-and-sweep"
238 // from the entry block will be able to report such dead
239 // blocks.
240 if (Block) Block->reverseStmts();
241
242 // Create the new block.
243 Block = createBlock(false);
244
245 // The Exit block is the only successor.
246 Block->addSuccessor(Exit);
247
248 // Add the return expression to the block.
249 Block->appendStmt(R);
250
251 // Add the return statement itself to the block.
252 if (R->getRetValue()) Block->appendStmt(R->getRetValue());
253
254 break;
255 }
256 } // end dispatch on statement class
257
258 return Block;
259 }
260
261};
262
263// BuildCFG - A helper function that builds CFGs from ASTS.
264CFG* CFG::BuildCFG( Stmt* Statement ) {
265 CFGBuilder Builder;
266 return Builder.buildCFG(Statement);
267}
268
269// reverseStmts - A method that reverses the order of the statements within
270// a CFGBlock.
271void CFGBlock::reverseStmts() { std::reverse(Stmts.begin(),Stmts.end()); }
272
273// dump - A simple pretty printer of a CFG that outputs to stderr.
274void CFG::dump() { print(std::cerr); }
275
276// print - A simple pretty printer of a CFG that outputs to an ostream.
277void CFG::print(std::ostream& OS) {
278 // Iterate through the CFGBlocks and print them one by one. Specially
279 // designate the Entry and Exit blocks.
280 for (iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) {
281 OS << "\n [ B" << I->getBlockID();
282 if (&(*I) == getExit()) OS << " (EXIT) ]\n";
283 else if (&(*I) == getEntry()) OS << " (ENTRY) ]\n";
284 else OS << " ]\n";
285 I->print(OS);
286 }
287 OS << "\n";
288}
289
290// dump - A simply pretty printer of a CFGBlock that outputs to stderr.
291void CFGBlock::dump() { print(std::cerr); }
292
293// print - A simple pretty printer of a CFGBlock that outputs to an ostream.
294// Generally this will only be called from CFG::print.
295void CFGBlock::print(std::ostream& OS) {
296
297 // Iterate through the statements in the block and print them.
298 OS << " ------------------------\n";
299 unsigned j = 1;
300 for (iterator I = Stmts.begin(), E = Stmts.end() ; I != E ; ++I, ++j ) {
301 OS << " " << std::setw(3) << j << ": ";
302 (*I)->printPretty(OS);
303 if (isa<Expr>(*I)) OS << '\n';
304 }
305 OS << " ------------------------\n";
306
307 // Print the predecessors of this block.
308 OS << " Predecessors (" << pred_size() << "):";
309 unsigned i = 0;
310 for (pred_iterator I = pred_begin(), E = pred_end(); I != E; ++I, ++i ) {
311 if (i == 8 || (i-8) == 0) {
312 OS << "\n ";
313 }
314 OS << " B" << (*I)->getBlockID();
315 }
316
317 // Print the terminator of this block.
318 OS << "\n Terminator: ";
319 if (ControlFlowStmt) {
320 switch (ControlFlowStmt->getStmtClass()) {
321 case Stmt::IfStmtClass: {
322 IfStmt* I = cast<IfStmt>(ControlFlowStmt);
323 OS << "if ";
324 I->getCond()->printPretty(std::cerr);
325 OS << "\n";
326 break;
327 }
328
329 case Stmt::ReturnStmtClass: {
330 ReturnStmt* R = cast<ReturnStmt>(ControlFlowStmt);
331 R->printPretty(std::cerr);
332 break;
333 }
334
335 default:
336 assert(false && "terminator print not fully implemented");
337 }
338 }
339 else OS << "<NULL>\n";
340
341 // Print the successors of this block.
342 OS << " Successors (" << succ_size() << "):";
343 i = 0;
344 for (succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I, ++i ) {
345 if (i == 8 || (i-8) % 10 == 0) {
346 OS << "\n ";
347 }
348 OS << " B" << (*I)->getBlockID();
349 }
350 OS << '\n';
351}