blob: 5a12913c1c945a57971204d11c821a355dbfd07e [file] [log] [blame]
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001//===- ThreadSafety.cpp ----------------------------------------*- C++ --*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// A intra-procedural analysis for thread safety (e.g. deadlocks and race
11// conditions), based off of an annotation system.
12//
Caitlin Sadowski19903462011-09-14 20:05:09 +000013// See http://clang.llvm.org/docs/LanguageExtensions.html#threadsafety for more
14// information.
Caitlin Sadowski402aa062011-09-09 16:11:56 +000015//
16//===----------------------------------------------------------------------===//
17
18#include "clang/Analysis/Analyses/ThreadSafety.h"
Caitlin Sadowskid5b16052011-09-09 23:00:59 +000019#include "clang/Analysis/AnalysisContext.h"
20#include "clang/Analysis/CFG.h"
21#include "clang/Analysis/CFGStmtMap.h"
Caitlin Sadowski402aa062011-09-09 16:11:56 +000022#include "clang/AST/DeclCXX.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/StmtCXX.h"
25#include "clang/AST/StmtVisitor.h"
Caitlin Sadowskid5b16052011-09-09 23:00:59 +000026#include "clang/Basic/SourceManager.h"
27#include "clang/Basic/SourceLocation.h"
Caitlin Sadowski402aa062011-09-09 16:11:56 +000028#include "llvm/ADT/BitVector.h"
29#include "llvm/ADT/FoldingSet.h"
30#include "llvm/ADT/ImmutableMap.h"
31#include "llvm/ADT/PostOrderIterator.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/StringRef.h"
34#include <algorithm>
35#include <vector>
36
37using namespace clang;
38using namespace thread_safety;
39
Caitlin Sadowski19903462011-09-14 20:05:09 +000040// Key method definition
41ThreadSafetyHandler::~ThreadSafetyHandler() {}
42
DeLesley Hutchins9859ea02011-09-20 17:25:59 +000043// Helper function
Caitlin Sadowski99107eb2011-09-09 16:21:55 +000044static Expr *getParent(Expr *Exp) {
45 if (MemberExpr *ME = dyn_cast<MemberExpr>(Exp))
46 return ME->getBase();
47 if (CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Exp))
48 return CE->getImplicitObjectArgument();
49 return 0;
50}
51
Caitlin Sadowski402aa062011-09-09 16:11:56 +000052namespace {
53/// \brief Implements a set of CFGBlocks using a BitVector.
54///
55/// This class contains a minimal interface, primarily dictated by the SetType
56/// template parameter of the llvm::po_iterator template, as used with external
57/// storage. We also use this set to keep track of which CFGBlocks we visit
58/// during the analysis.
59class CFGBlockSet {
60 llvm::BitVector VisitedBlockIDs;
61
62public:
63 // po_iterator requires this iterator, but the only interface needed is the
64 // value_type typedef.
65 struct iterator {
66 typedef const CFGBlock *value_type;
67 };
68
69 CFGBlockSet() {}
70 CFGBlockSet(const CFG *G) : VisitedBlockIDs(G->getNumBlockIDs(), false) {}
71
72 /// \brief Set the bit associated with a particular CFGBlock.
73 /// This is the important method for the SetType template parameter.
74 bool insert(const CFGBlock *Block) {
75 // Note that insert() is called by po_iterator, which doesn't check to make
76 // sure that Block is non-null. Moreover, the CFGBlock iterator will
77 // occasionally hand out null pointers for pruned edges, so we catch those
78 // here.
79 if (Block == 0)
80 return false; // if an edge is trivially false.
81 if (VisitedBlockIDs.test(Block->getBlockID()))
82 return false;
83 VisitedBlockIDs.set(Block->getBlockID());
84 return true;
85 }
86
87 /// \brief Check if the bit for a CFGBlock has been already set.
88 /// This method is for tracking visited blocks in the main threadsafety loop.
89 /// Block must not be null.
90 bool alreadySet(const CFGBlock *Block) {
91 return VisitedBlockIDs.test(Block->getBlockID());
92 }
93};
94
95/// \brief We create a helper class which we use to iterate through CFGBlocks in
96/// the topological order.
97class TopologicallySortedCFG {
98 typedef llvm::po_iterator<const CFG*, CFGBlockSet, true> po_iterator;
99
100 std::vector<const CFGBlock*> Blocks;
101
102public:
103 typedef std::vector<const CFGBlock*>::reverse_iterator iterator;
104
105 TopologicallySortedCFG(const CFG *CFGraph) {
106 Blocks.reserve(CFGraph->getNumBlockIDs());
107 CFGBlockSet BSet(CFGraph);
108
109 for (po_iterator I = po_iterator::begin(CFGraph, BSet),
110 E = po_iterator::end(CFGraph, BSet); I != E; ++I) {
111 Blocks.push_back(*I);
112 }
113 }
114
115 iterator begin() {
116 return Blocks.rbegin();
117 }
118
119 iterator end() {
120 return Blocks.rend();
121 }
Caitlin Sadowskicb967512011-09-15 17:43:08 +0000122
123 bool empty() {
124 return begin() == end();
125 }
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000126};
127
128/// \brief A MutexID object uniquely identifies a particular mutex, and
129/// is built from an Expr* (i.e. calling a lock function).
130///
131/// Thread-safety analysis works by comparing lock expressions. Within the
132/// body of a function, an expression such as "x->foo->bar.mu" will resolve to
133/// a particular mutex object at run-time. Subsequent occurrences of the same
134/// expression (where "same" means syntactic equality) will refer to the same
135/// run-time object if three conditions hold:
136/// (1) Local variables in the expression, such as "x" have not changed.
137/// (2) Values on the heap that affect the expression have not changed.
138/// (3) The expression involves only pure function calls.
139/// The current implementation assumes, but does not verify, that multiple uses
140/// of the same lock expression satisfies these criteria.
141///
142/// Clang introduces an additional wrinkle, which is that it is difficult to
143/// derive canonical expressions, or compare expressions directly for equality.
144/// Thus, we identify a mutex not by an Expr, but by the set of named
145/// declarations that are referenced by the Expr. In other words,
146/// x->foo->bar.mu will be a four element vector with the Decls for
147/// mu, bar, and foo, and x. The vector will uniquely identify the expression
148/// for all practical purposes.
149///
150/// Note we will need to perform substitution on "this" and function parameter
151/// names when constructing a lock expression.
152///
153/// For example:
154/// class C { Mutex Mu; void lock() EXCLUSIVE_LOCK_FUNCTION(this->Mu); };
155/// void myFunc(C *X) { ... X->lock() ... }
156/// The original expression for the mutex acquired by myFunc is "this->Mu", but
157/// "X" is substituted for "this" so we get X->Mu();
158///
159/// For another example:
160/// foo(MyList *L) EXCLUSIVE_LOCKS_REQUIRED(L->Mu) { ... }
161/// MyList *MyL;
162/// foo(MyL); // requires lock MyL->Mu to be held
163class MutexID {
164 SmallVector<NamedDecl*, 2> DeclSeq;
165
166 /// Build a Decl sequence representing the lock from the given expression.
167 /// Recursive function that bottoms out when the final DeclRefExpr is reached.
Caitlin Sadowski1748b122011-09-16 00:35:54 +0000168 // FIXME: Lock expressions that involve array indices or function calls.
169 // FIXME: Deal with LockReturned attribute.
Caitlin Sadowski99107eb2011-09-09 16:21:55 +0000170 void buildMutexID(Expr *Exp, Expr *Parent) {
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000171 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp)) {
172 NamedDecl *ND = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
173 DeclSeq.push_back(ND);
174 } else if (MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) {
175 NamedDecl *ND = ME->getMemberDecl();
176 DeclSeq.push_back(ND);
Caitlin Sadowski99107eb2011-09-09 16:21:55 +0000177 buildMutexID(ME->getBase(), Parent);
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000178 } else if (isa<CXXThisExpr>(Exp)) {
Caitlin Sadowski194418f2011-09-14 20:00:24 +0000179 if (Parent)
180 buildMutexID(Parent, 0);
181 else
182 return; // mutexID is still valid in this case
Caitlin Sadowski99107eb2011-09-09 16:21:55 +0000183 } else if (CastExpr *CE = dyn_cast<CastExpr>(Exp))
184 buildMutexID(CE->getSubExpr(), Parent);
185 else
Caitlin Sadowski194418f2011-09-14 20:00:24 +0000186 DeclSeq.clear(); // invalid lock expression
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000187 }
188
189public:
Caitlin Sadowski194418f2011-09-14 20:00:24 +0000190 MutexID(Expr *LExpr, Expr *ParentExpr) {
Caitlin Sadowski99107eb2011-09-09 16:21:55 +0000191 buildMutexID(LExpr, ParentExpr);
Caitlin Sadowski194418f2011-09-14 20:00:24 +0000192 }
193
194 /// If we encounter part of a lock expression we cannot parse
195 bool isValid() const {
196 return !DeclSeq.empty();
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000197 }
198
199 bool operator==(const MutexID &other) const {
200 return DeclSeq == other.DeclSeq;
201 }
202
203 bool operator!=(const MutexID &other) const {
204 return !(*this == other);
205 }
206
207 // SmallVector overloads Operator< to do lexicographic ordering. Note that
208 // we use pointer equality (and <) to compare NamedDecls. This means the order
209 // of MutexIDs in a lockset is nondeterministic. In order to output
210 // diagnostics in a deterministic ordering, we must order all diagnostics to
211 // output by SourceLocation when iterating through this lockset.
212 bool operator<(const MutexID &other) const {
213 return DeclSeq < other.DeclSeq;
214 }
215
216 /// \brief Returns the name of the first Decl in the list for a given MutexID;
217 /// e.g. the lock expression foo.bar() has name "bar".
218 /// The caret will point unambiguously to the lock expression, so using this
219 /// name in diagnostics is a way to get simple, and consistent, mutex names.
220 /// We do not want to output the entire expression text for security reasons.
221 StringRef getName() const {
Caitlin Sadowski194418f2011-09-14 20:00:24 +0000222 assert(isValid());
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000223 return DeclSeq.front()->getName();
224 }
225
226 void Profile(llvm::FoldingSetNodeID &ID) const {
227 for (SmallVectorImpl<NamedDecl*>::const_iterator I = DeclSeq.begin(),
228 E = DeclSeq.end(); I != E; ++I) {
229 ID.AddPointer(*I);
230 }
231 }
232};
233
234/// \brief This is a helper class that stores info about the most recent
235/// accquire of a Lock.
236///
237/// The main body of the analysis maps MutexIDs to LockDatas.
238struct LockData {
239 SourceLocation AcquireLoc;
240
241 /// \brief LKind stores whether a lock is held shared or exclusively.
242 /// Note that this analysis does not currently support either re-entrant
243 /// locking or lock "upgrading" and "downgrading" between exclusive and
244 /// shared.
245 ///
246 /// FIXME: add support for re-entrant locking and lock up/downgrading
247 LockKind LKind;
248
249 LockData(SourceLocation AcquireLoc, LockKind LKind)
250 : AcquireLoc(AcquireLoc), LKind(LKind) {}
251
252 bool operator==(const LockData &other) const {
253 return AcquireLoc == other.AcquireLoc && LKind == other.LKind;
254 }
255
256 bool operator!=(const LockData &other) const {
257 return !(*this == other);
258 }
259
260 void Profile(llvm::FoldingSetNodeID &ID) const {
261 ID.AddInteger(AcquireLoc.getRawEncoding());
262 ID.AddInteger(LKind);
263 }
264};
265
266/// A Lockset maps each MutexID (defined above) to information about how it has
267/// been locked.
268typedef llvm::ImmutableMap<MutexID, LockData> Lockset;
269
270/// \brief We use this class to visit different types of expressions in
271/// CFGBlocks, and build up the lockset.
272/// An expression may cause us to add or remove locks from the lockset, or else
273/// output error messages related to missing locks.
274/// FIXME: In future, we may be able to not inherit from a visitor.
275class BuildLockset : public StmtVisitor<BuildLockset> {
276 ThreadSafetyHandler &Handler;
277 Lockset LSet;
278 Lockset::Factory &LocksetFactory;
279
280 // Helper functions
Caitlin Sadowski99107eb2011-09-09 16:21:55 +0000281 void removeLock(SourceLocation UnlockLoc, Expr *LockExp, Expr *Parent);
282 void addLock(SourceLocation LockLoc, Expr *LockExp, Expr *Parent,
283 LockKind LK);
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000284 const ValueDecl *getValueDecl(Expr *Exp);
285 void warnIfMutexNotHeld (const NamedDecl *D, Expr *Exp, AccessKind AK,
286 Expr *MutexExp, ProtectedOperationKind POK);
287 void checkAccess(Expr *Exp, AccessKind AK);
288 void checkDereference(Expr *Exp, AccessKind AK);
289
290 template <class AttrType>
291 void addLocksToSet(LockKind LK, Attr *Attr, CXXMemberCallExpr *Exp);
292
293 /// \brief Returns true if the lockset contains a lock, regardless of whether
294 /// the lock is held exclusively or shared.
295 bool locksetContains(MutexID Lock) const {
296 return LSet.lookup(Lock);
297 }
298
299 /// \brief Returns true if the lockset contains a lock with the passed in
300 /// locktype.
301 bool locksetContains(MutexID Lock, LockKind KindRequested) const {
302 const LockData *LockHeld = LSet.lookup(Lock);
303 return (LockHeld && KindRequested == LockHeld->LKind);
304 }
305
306 /// \brief Returns true if the lockset contains a lock with at least the
307 /// passed in locktype. So for example, if we pass in LK_Shared, this function
308 /// returns true if the lock is held LK_Shared or LK_Exclusive. If we pass in
309 /// LK_Exclusive, this function returns true if the lock is held LK_Exclusive.
310 bool locksetContainsAtLeast(MutexID Lock, LockKind KindRequested) const {
311 switch (KindRequested) {
312 case LK_Shared:
313 return locksetContains(Lock);
314 case LK_Exclusive:
315 return locksetContains(Lock, KindRequested);
316 }
Benjamin Kramerafc5b152011-09-10 21:52:04 +0000317 llvm_unreachable("Unknown LockKind");
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000318 }
319
320public:
321 BuildLockset(ThreadSafetyHandler &Handler, Lockset LS, Lockset::Factory &F)
322 : StmtVisitor<BuildLockset>(), Handler(Handler), LSet(LS),
323 LocksetFactory(F) {}
324
325 Lockset getLockset() {
326 return LSet;
327 }
328
329 void VisitUnaryOperator(UnaryOperator *UO);
330 void VisitBinaryOperator(BinaryOperator *BO);
331 void VisitCastExpr(CastExpr *CE);
332 void VisitCXXMemberCallExpr(CXXMemberCallExpr *Exp);
333};
334
335/// \brief Add a new lock to the lockset, warning if the lock is already there.
336/// \param LockLoc The source location of the acquire
337/// \param LockExp The lock expression corresponding to the lock to be added
Caitlin Sadowski99107eb2011-09-09 16:21:55 +0000338void BuildLockset::addLock(SourceLocation LockLoc, Expr *LockExp, Expr *Parent,
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000339 LockKind LK) {
Caitlin Sadowski1748b122011-09-16 00:35:54 +0000340 // FIXME: deal with acquired before/after annotations. We can write a first
341 // pass that does the transitive lookup lazily, and refine afterwards.
Caitlin Sadowski194418f2011-09-14 20:00:24 +0000342 MutexID Mutex(LockExp, Parent);
343 if (!Mutex.isValid()) {
344 Handler.handleInvalidLockExp(LockExp->getExprLoc());
345 return;
346 }
347
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000348 LockData NewLock(LockLoc, LK);
349
350 // FIXME: Don't always warn when we have support for reentrant locks.
351 if (locksetContains(Mutex))
352 Handler.handleDoubleLock(Mutex.getName(), LockLoc);
353 LSet = LocksetFactory.add(LSet, Mutex, NewLock);
354}
355
356/// \brief Remove a lock from the lockset, warning if the lock is not there.
357/// \param LockExp The lock expression corresponding to the lock to be removed
358/// \param UnlockLoc The source location of the unlock (only used in error msg)
Caitlin Sadowski99107eb2011-09-09 16:21:55 +0000359void BuildLockset::removeLock(SourceLocation UnlockLoc, Expr *LockExp,
360 Expr *Parent) {
Caitlin Sadowski194418f2011-09-14 20:00:24 +0000361 MutexID Mutex(LockExp, Parent);
362 if (!Mutex.isValid()) {
363 Handler.handleInvalidLockExp(LockExp->getExprLoc());
364 return;
365 }
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000366
367 Lockset NewLSet = LocksetFactory.remove(LSet, Mutex);
368 if(NewLSet == LSet)
369 Handler.handleUnmatchedUnlock(Mutex.getName(), UnlockLoc);
370
371 LSet = NewLSet;
372}
373
374/// \brief Gets the value decl pointer from DeclRefExprs or MemberExprs
375const ValueDecl *BuildLockset::getValueDecl(Expr *Exp) {
376 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Exp))
377 return DR->getDecl();
378
379 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp))
380 return ME->getMemberDecl();
381
382 return 0;
383}
384
385/// \brief Warn if the LSet does not contain a lock sufficient to protect access
386/// of at least the passed in AccessType.
387void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, Expr *Exp,
388 AccessKind AK, Expr *MutexExp,
389 ProtectedOperationKind POK) {
390 LockKind LK = getLockKindFromAccessKind(AK);
Caitlin Sadowski99107eb2011-09-09 16:21:55 +0000391 Expr *Parent = getParent(Exp);
Caitlin Sadowski194418f2011-09-14 20:00:24 +0000392 MutexID Mutex(MutexExp, Parent);
393 if (!Mutex.isValid())
394 Handler.handleInvalidLockExp(MutexExp->getExprLoc());
395 else if (!locksetContainsAtLeast(Mutex, LK))
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000396 Handler.handleMutexNotHeld(D, POK, Mutex.getName(), LK, Exp->getExprLoc());
397}
398
399
400/// \brief This method identifies variable dereferences and checks pt_guarded_by
401/// and pt_guarded_var annotations. Note that we only check these annotations
402/// at the time a pointer is dereferenced.
403/// FIXME: We need to check for other types of pointer dereferences
404/// (e.g. [], ->) and deal with them here.
405/// \param Exp An expression that has been read or written.
406void BuildLockset::checkDereference(Expr *Exp, AccessKind AK) {
407 UnaryOperator *UO = dyn_cast<UnaryOperator>(Exp);
408 if (!UO || UO->getOpcode() != clang::UO_Deref)
409 return;
410 Exp = UO->getSubExpr()->IgnoreParenCasts();
411
412 const ValueDecl *D = getValueDecl(Exp);
413 if(!D || !D->hasAttrs())
414 return;
415
416 if (D->getAttr<PtGuardedVarAttr>() && LSet.isEmpty())
417 Handler.handleNoMutexHeld(D, POK_VarDereference, AK, Exp->getExprLoc());
418
419 const AttrVec &ArgAttrs = D->getAttrs();
420 for(unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i)
421 if (PtGuardedByAttr *PGBAttr = dyn_cast<PtGuardedByAttr>(ArgAttrs[i]))
422 warnIfMutexNotHeld(D, Exp, AK, PGBAttr->getArg(), POK_VarDereference);
423}
424
425/// \brief Checks guarded_by and guarded_var attributes.
426/// Whenever we identify an access (read or write) of a DeclRefExpr or
427/// MemberExpr, we need to check whether there are any guarded_by or
428/// guarded_var attributes, and make sure we hold the appropriate mutexes.
429void BuildLockset::checkAccess(Expr *Exp, AccessKind AK) {
430 const ValueDecl *D = getValueDecl(Exp);
431 if(!D || !D->hasAttrs())
432 return;
433
434 if (D->getAttr<GuardedVarAttr>() && LSet.isEmpty())
435 Handler.handleNoMutexHeld(D, POK_VarAccess, AK, Exp->getExprLoc());
436
437 const AttrVec &ArgAttrs = D->getAttrs();
438 for(unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i)
439 if (GuardedByAttr *GBAttr = dyn_cast<GuardedByAttr>(ArgAttrs[i]))
440 warnIfMutexNotHeld(D, Exp, AK, GBAttr->getArg(), POK_VarAccess);
441}
442
443/// \brief For unary operations which read and write a variable, we need to
444/// check whether we hold any required mutexes. Reads are checked in
445/// VisitCastExpr.
446void BuildLockset::VisitUnaryOperator(UnaryOperator *UO) {
447 switch (UO->getOpcode()) {
448 case clang::UO_PostDec:
449 case clang::UO_PostInc:
450 case clang::UO_PreDec:
451 case clang::UO_PreInc: {
452 Expr *SubExp = UO->getSubExpr()->IgnoreParenCasts();
453 checkAccess(SubExp, AK_Written);
454 checkDereference(SubExp, AK_Written);
455 break;
456 }
457 default:
458 break;
459 }
460}
461
462/// For binary operations which assign to a variable (writes), we need to check
463/// whether we hold any required mutexes.
464/// FIXME: Deal with non-primitive types.
465void BuildLockset::VisitBinaryOperator(BinaryOperator *BO) {
466 if (!BO->isAssignmentOp())
467 return;
468 Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
469 checkAccess(LHSExp, AK_Written);
470 checkDereference(LHSExp, AK_Written);
471}
472
473/// Whenever we do an LValue to Rvalue cast, we are reading a variable and
474/// need to ensure we hold any required mutexes.
475/// FIXME: Deal with non-primitive types.
476void BuildLockset::VisitCastExpr(CastExpr *CE) {
477 if (CE->getCastKind() != CK_LValueToRValue)
478 return;
479 Expr *SubExp = CE->getSubExpr()->IgnoreParenCasts();
480 checkAccess(SubExp, AK_Read);
481 checkDereference(SubExp, AK_Read);
482}
483
484/// \brief This function, parameterized by an attribute type, is used to add a
485/// set of locks specified as attribute arguments to the lockset.
486template <typename AttrType>
487void BuildLockset::addLocksToSet(LockKind LK, Attr *Attr,
488 CXXMemberCallExpr *Exp) {
489 typedef typename AttrType::args_iterator iterator_type;
490 SourceLocation ExpLocation = Exp->getExprLoc();
491 Expr *Parent = Exp->getImplicitObjectArgument();
492 AttrType *SpecificAttr = cast<AttrType>(Attr);
493
494 if (SpecificAttr->args_size() == 0) {
495 // The mutex held is the "this" object.
Caitlin Sadowski194418f2011-09-14 20:00:24 +0000496 addLock(ExpLocation, Parent, 0, LK);
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000497 return;
498 }
499
500 for (iterator_type I = SpecificAttr->args_begin(),
501 E = SpecificAttr->args_end(); I != E; ++I)
Caitlin Sadowski99107eb2011-09-09 16:21:55 +0000502 addLock(ExpLocation, *I, Parent, LK);
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000503}
504
505/// \brief When visiting CXXMemberCallExprs we need to examine the attributes on
506/// the method that is being called and add, remove or check locks in the
507/// lockset accordingly.
508///
509/// FIXME: For classes annotated with one of the guarded annotations, we need
510/// to treat const method calls as reads and non-const method calls as writes,
511/// and check that the appropriate locks are held. Non-const method calls with
512/// the same signature as const method calls can be also treated as reads.
513///
514/// FIXME: We need to also visit CallExprs to catch/check global functions.
Caitlin Sadowski1748b122011-09-16 00:35:54 +0000515///
516/// FIXME: Do not flag an error for member variables accessed in constructors/
517/// destructors
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000518void BuildLockset::VisitCXXMemberCallExpr(CXXMemberCallExpr *Exp) {
519 NamedDecl *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
520
521 SourceLocation ExpLocation = Exp->getExprLoc();
522 Expr *Parent = Exp->getImplicitObjectArgument();
523
524 if(!D || !D->hasAttrs())
525 return;
526
527 AttrVec &ArgAttrs = D->getAttrs();
528 for(unsigned i = 0; i < ArgAttrs.size(); ++i) {
529 Attr *Attr = ArgAttrs[i];
530 switch (Attr->getKind()) {
531 // When we encounter an exclusive lock function, we need to add the lock
532 // to our lockset with kind exclusive.
533 case attr::ExclusiveLockFunction:
534 addLocksToSet<ExclusiveLockFunctionAttr>(LK_Exclusive, Attr, Exp);
535 break;
536
537 // When we encounter a shared lock function, we need to add the lock
538 // to our lockset with kind shared.
539 case attr::SharedLockFunction:
540 addLocksToSet<SharedLockFunctionAttr>(LK_Shared, Attr, Exp);
541 break;
542
543 // When we encounter an unlock function, we need to remove unlocked
544 // mutexes from the lockset, and flag a warning if they are not there.
545 case attr::UnlockFunction: {
546 UnlockFunctionAttr *UFAttr = cast<UnlockFunctionAttr>(Attr);
547
548 if (UFAttr->args_size() == 0) { // The lock held is the "this" object.
Caitlin Sadowski194418f2011-09-14 20:00:24 +0000549 removeLock(ExpLocation, Parent, 0);
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000550 break;
551 }
552
553 for (UnlockFunctionAttr::args_iterator I = UFAttr->args_begin(),
554 E = UFAttr->args_end(); I != E; ++I)
Caitlin Sadowski99107eb2011-09-09 16:21:55 +0000555 removeLock(ExpLocation, *I, Parent);
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000556 break;
557 }
558
559 case attr::ExclusiveLocksRequired: {
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000560 ExclusiveLocksRequiredAttr *ELRAttr =
561 cast<ExclusiveLocksRequiredAttr>(Attr);
562
563 for (ExclusiveLocksRequiredAttr::args_iterator
564 I = ELRAttr->args_begin(), E = ELRAttr->args_end(); I != E; ++I)
565 warnIfMutexNotHeld(D, Exp, AK_Written, *I, POK_FunctionCall);
566 break;
567 }
568
569 case attr::SharedLocksRequired: {
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000570 SharedLocksRequiredAttr *SLRAttr = cast<SharedLocksRequiredAttr>(Attr);
571
572 for (SharedLocksRequiredAttr::args_iterator I = SLRAttr->args_begin(),
573 E = SLRAttr->args_end(); I != E; ++I)
574 warnIfMutexNotHeld(D, Exp, AK_Read, *I, POK_FunctionCall);
575 break;
576 }
577
578 case attr::LocksExcluded: {
579 LocksExcludedAttr *LEAttr = cast<LocksExcludedAttr>(Attr);
580 for (LocksExcludedAttr::args_iterator I = LEAttr->args_begin(),
581 E = LEAttr->args_end(); I != E; ++I) {
Caitlin Sadowski194418f2011-09-14 20:00:24 +0000582 MutexID Mutex(*I, Parent);
583 if (!Mutex.isValid())
584 Handler.handleInvalidLockExp((*I)->getExprLoc());
585 else if (locksetContains(Mutex))
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000586 Handler.handleFunExcludesLock(D->getName(), Mutex.getName(),
587 ExpLocation);
588 }
589 break;
590 }
591
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000592 // Ignore other (non thread-safety) attributes
593 default:
594 break;
595 }
596 }
597}
598
599} // end anonymous namespace
600
Caitlin Sadowski4e4bc752011-09-15 17:25:19 +0000601/// \brief Compute the intersection of two locksets and issue warnings for any
602/// locks in the symmetric difference.
603///
604/// This function is used at a merge point in the CFG when comparing the lockset
605/// of each branch being merged. For example, given the following sequence:
606/// A; if () then B; else C; D; we need to check that the lockset after B and C
607/// are the same. In the event of a difference, we use the intersection of these
608/// two locksets at the start of D.
609static Lockset intersectAndWarn(ThreadSafetyHandler &Handler,
610 const Lockset LSet1, const Lockset LSet2,
611 Lockset::Factory &Fact, LockErrorKind LEK) {
612 Lockset Intersection = LSet1;
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000613 for (Lockset::iterator I = LSet2.begin(), E = LSet2.end(); I != E; ++I) {
614 const MutexID &LSet2Mutex = I.getKey();
615 const LockData &LSet2LockData = I.getData();
616 if (const LockData *LD = LSet1.lookup(LSet2Mutex)) {
617 if (LD->LKind != LSet2LockData.LKind) {
618 Handler.handleExclusiveAndShared(LSet2Mutex.getName(),
619 LSet2LockData.AcquireLoc,
620 LD->AcquireLoc);
621 if (LD->LKind != LK_Exclusive)
622 Intersection = Fact.add(Intersection, LSet2Mutex, LSet2LockData);
623 }
624 } else {
625 Handler.handleMutexHeldEndOfScope(LSet2Mutex.getName(),
Caitlin Sadowski4e4bc752011-09-15 17:25:19 +0000626 LSet2LockData.AcquireLoc, LEK);
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000627 }
628 }
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000629
630 for (Lockset::iterator I = LSet1.begin(), E = LSet1.end(); I != E; ++I) {
631 if (!LSet2.contains(I.getKey())) {
632 const MutexID &Mutex = I.getKey();
633 const LockData &MissingLock = I.getData();
634 Handler.handleMutexHeldEndOfScope(Mutex.getName(),
Caitlin Sadowski4e4bc752011-09-15 17:25:19 +0000635 MissingLock.AcquireLoc, LEK);
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000636 Intersection = Fact.remove(Intersection, Mutex);
637 }
638 }
639 return Intersection;
640}
641
Caitlin Sadowskicb967512011-09-15 17:43:08 +0000642static Lockset addLock(ThreadSafetyHandler &Handler,
643 Lockset::Factory &LocksetFactory,
644 Lockset &LSet, Expr *LockExp, LockKind LK,
645 SourceLocation Loc) {
646 MutexID Mutex(LockExp, 0);
647 if (!Mutex.isValid()) {
648 Handler.handleInvalidLockExp(LockExp->getExprLoc());
649 return LSet;
650 }
651 LockData NewLock(Loc, LK);
652 return LocksetFactory.add(LSet, Mutex, NewLock);
653}
654
Caitlin Sadowski7613c732011-09-12 22:28:41 +0000655namespace clang {
656namespace thread_safety {
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000657/// \brief Check a function's CFG for thread-safety violations.
658///
659/// We traverse the blocks in the CFG, compute the set of mutexes that are held
660/// at the end of each block, and issue warnings for thread safety violations.
661/// Each block in the CFG is traversed exactly once.
662void runThreadSafetyAnalysis(AnalysisContext &AC,
663 ThreadSafetyHandler &Handler) {
664 CFG *CFGraph = AC.getCFG();
665 if (!CFGraph) return;
666 const Decl *D = AC.getDecl();
667 if (D && D->getAttr<NoThreadSafetyAnalysisAttr>()) return;
668
669 Lockset::Factory LocksetFactory;
670
671 // FIXME: Swith to SmallVector? Otherwise improve performance impact?
672 std::vector<Lockset> EntryLocksets(CFGraph->getNumBlockIDs(),
673 LocksetFactory.getEmptyMap());
674 std::vector<Lockset> ExitLocksets(CFGraph->getNumBlockIDs(),
675 LocksetFactory.getEmptyMap());
676
677 // We need to explore the CFG via a "topological" ordering.
678 // That way, we will be guaranteed to have information about required
679 // predecessor locksets when exploring a new block.
680 TopologicallySortedCFG SortedGraph(CFGraph);
681 CFGBlockSet VisitedBlocks(CFGraph);
682
Caitlin Sadowskicb967512011-09-15 17:43:08 +0000683 if (!SortedGraph.empty() && D->hasAttrs()) {
684 const CFGBlock *FirstBlock = *SortedGraph.begin();
685 Lockset &InitialLockset = EntryLocksets[FirstBlock->getBlockID()];
686 const AttrVec &ArgAttrs = D->getAttrs();
687 for(unsigned i = 0; i < ArgAttrs.size(); ++i) {
688 Attr *Attr = ArgAttrs[i];
Caitlin Sadowski1748b122011-09-16 00:35:54 +0000689 SourceLocation AttrLoc = Attr->getLocation();
Caitlin Sadowskicb967512011-09-15 17:43:08 +0000690 if (SharedLocksRequiredAttr *SLRAttr
691 = dyn_cast<SharedLocksRequiredAttr>(Attr)) {
692 for (SharedLocksRequiredAttr::args_iterator
693 SLRIter = SLRAttr->args_begin(),
694 SLREnd = SLRAttr->args_end(); SLRIter != SLREnd; ++SLRIter)
695 InitialLockset = addLock(Handler, LocksetFactory, InitialLockset,
696 *SLRIter, LK_Shared,
Caitlin Sadowski1748b122011-09-16 00:35:54 +0000697 AttrLoc);
Caitlin Sadowskicb967512011-09-15 17:43:08 +0000698 } else if (ExclusiveLocksRequiredAttr *ELRAttr
699 = dyn_cast<ExclusiveLocksRequiredAttr>(Attr)) {
700 for (ExclusiveLocksRequiredAttr::args_iterator
701 ELRIter = ELRAttr->args_begin(),
702 ELREnd = ELRAttr->args_end(); ELRIter != ELREnd; ++ELRIter)
703 InitialLockset = addLock(Handler, LocksetFactory, InitialLockset,
704 *ELRIter, LK_Exclusive,
Caitlin Sadowski1748b122011-09-16 00:35:54 +0000705 AttrLoc);
Caitlin Sadowskicb967512011-09-15 17:43:08 +0000706 }
707 }
708 }
709
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000710 for (TopologicallySortedCFG::iterator I = SortedGraph.begin(),
711 E = SortedGraph.end(); I!= E; ++I) {
712 const CFGBlock *CurrBlock = *I;
713 int CurrBlockID = CurrBlock->getBlockID();
714
715 VisitedBlocks.insert(CurrBlock);
716
717 // Use the default initial lockset in case there are no predecessors.
718 Lockset &Entryset = EntryLocksets[CurrBlockID];
719 Lockset &Exitset = ExitLocksets[CurrBlockID];
720
721 // Iterate through the predecessor blocks and warn if the lockset for all
722 // predecessors is not the same. We take the entry lockset of the current
723 // block to be the intersection of all previous locksets.
724 // FIXME: By keeping the intersection, we may output more errors in future
725 // for a lock which is not in the intersection, but was in the union. We
726 // may want to also keep the union in future. As an example, let's say
727 // the intersection contains Mutex L, and the union contains L and M.
728 // Later we unlock M. At this point, we would output an error because we
729 // never locked M; although the real error is probably that we forgot to
730 // lock M on all code paths. Conversely, let's say that later we lock M.
731 // In this case, we should compare against the intersection instead of the
732 // union because the real error is probably that we forgot to unlock M on
733 // all code paths.
734 bool LocksetInitialized = false;
735 for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
736 PE = CurrBlock->pred_end(); PI != PE; ++PI) {
737
738 // if *PI -> CurrBlock is a back edge
739 if (*PI == 0 || !VisitedBlocks.alreadySet(*PI))
740 continue;
741
742 int PrevBlockID = (*PI)->getBlockID();
743 if (!LocksetInitialized) {
744 Entryset = ExitLocksets[PrevBlockID];
745 LocksetInitialized = true;
746 } else {
747 Entryset = intersectAndWarn(Handler, Entryset,
Caitlin Sadowski4e4bc752011-09-15 17:25:19 +0000748 ExitLocksets[PrevBlockID], LocksetFactory,
749 LEK_LockedSomePredecessors);
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000750 }
751 }
752
753 BuildLockset LocksetBuilder(Handler, Entryset, LocksetFactory);
754 for (CFGBlock::const_iterator BI = CurrBlock->begin(),
755 BE = CurrBlock->end(); BI != BE; ++BI) {
756 if (const CFGStmt *CfgStmt = dyn_cast<CFGStmt>(&*BI))
757 LocksetBuilder.Visit(const_cast<Stmt*>(CfgStmt->getStmt()));
758 }
759 Exitset = LocksetBuilder.getLockset();
760
761 // For every back edge from CurrBlock (the end of the loop) to another block
762 // (FirstLoopBlock) we need to check that the Lockset of Block is equal to
763 // the one held at the beginning of FirstLoopBlock. We can look up the
764 // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map.
765 for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
766 SE = CurrBlock->succ_end(); SI != SE; ++SI) {
767
768 // if CurrBlock -> *SI is *not* a back edge
769 if (*SI == 0 || !VisitedBlocks.alreadySet(*SI))
770 continue;
771
772 CFGBlock *FirstLoopBlock = *SI;
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000773 Lockset PreLoop = EntryLocksets[FirstLoopBlock->getBlockID()];
774 Lockset LoopEnd = ExitLocksets[CurrBlockID];
Caitlin Sadowski4e4bc752011-09-15 17:25:19 +0000775 intersectAndWarn(Handler, LoopEnd, PreLoop, LocksetFactory,
776 LEK_LockedSomeLoopIterations);
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000777 }
778 }
779
Caitlin Sadowski4e4bc752011-09-15 17:25:19 +0000780 Lockset InitialLockset = EntryLocksets[CFGraph->getEntry().getBlockID()];
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000781 Lockset FinalLockset = ExitLocksets[CFGraph->getExit().getBlockID()];
Caitlin Sadowski1748b122011-09-16 00:35:54 +0000782
783 // FIXME: Should we call this function for all blocks which exit the function?
Caitlin Sadowski4e4bc752011-09-15 17:25:19 +0000784 intersectAndWarn(Handler, InitialLockset, FinalLockset, LocksetFactory,
785 LEK_LockedAtEndOfFunction);
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000786}
787
788/// \brief Helper function that returns a LockKind required for the given level
789/// of access.
790LockKind getLockKindFromAccessKind(AccessKind AK) {
791 switch (AK) {
792 case AK_Read :
793 return LK_Shared;
794 case AK_Written :
795 return LK_Exclusive;
796 }
Benjamin Kramerafc5b152011-09-10 21:52:04 +0000797 llvm_unreachable("Unknown AccessKind");
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000798}
799}} // end namespace clang::thread_safety