blob: 8c31e57578c5363f08b70e9e7ee6697301bcfdf2 [file] [log] [blame]
Guy Benyei7f92f2d2012-12-18 14:30:41 +00001//===--- MicrosoftMangle.cpp - Microsoft Visual C++ Name Mangling ---------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This provides C++ name mangling targeting the Microsoft Visual C++ ABI.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/Mangle.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/Attr.h"
17#include "clang/AST/CharUnits.h"
18#include "clang/AST/Decl.h"
19#include "clang/AST/DeclCXX.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/Basic/ABI.h"
24#include "clang/Basic/DiagnosticOptions.h"
25#include <map>
26
27using namespace clang;
28
29namespace {
30
Timur Iskhodzhanov59660c22013-02-13 08:37:51 +000031static const FunctionDecl *getStructor(const FunctionDecl *fn) {
32 if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
33 return ftd->getTemplatedDecl();
34
35 return fn;
36}
37
Guy Benyei7f92f2d2012-12-18 14:30:41 +000038/// MicrosoftCXXNameMangler - Manage the mangling of a single name for the
39/// Microsoft Visual C++ ABI.
40class MicrosoftCXXNameMangler {
41 MangleContext &Context;
42 raw_ostream &Out;
43
Timur Iskhodzhanov59660c22013-02-13 08:37:51 +000044 /// The "structor" is the top-level declaration being mangled, if
45 /// that's not a template specialization; otherwise it's the pattern
46 /// for that specialization.
47 const NamedDecl *Structor;
48 unsigned StructorType;
49
Guy Benyei7f92f2d2012-12-18 14:30:41 +000050 // FIXME: audit the performance of BackRefMap as it might do way too many
51 // copying of strings.
52 typedef std::map<std::string, unsigned> BackRefMap;
53 BackRefMap NameBackReferences;
54 bool UseNameBackReferences;
55
56 typedef llvm::DenseMap<void*, unsigned> ArgBackRefMap;
57 ArgBackRefMap TypeBackReferences;
58
59 ASTContext &getASTContext() const { return Context.getASTContext(); }
60
61public:
62 MicrosoftCXXNameMangler(MangleContext &C, raw_ostream &Out_)
Timur Iskhodzhanov59660c22013-02-13 08:37:51 +000063 : Context(C), Out(Out_),
64 Structor(0), StructorType(-1),
65 UseNameBackReferences(true) { }
66
67 MicrosoftCXXNameMangler(MangleContext &C, raw_ostream &Out_,
68 const CXXDestructorDecl *D, CXXDtorType Type)
69 : Context(C), Out(Out_),
70 Structor(getStructor(D)), StructorType(Type),
71 UseNameBackReferences(true) { }
Guy Benyei7f92f2d2012-12-18 14:30:41 +000072
73 raw_ostream &getStream() const { return Out; }
74
75 void mangle(const NamedDecl *D, StringRef Prefix = "\01?");
76 void mangleName(const NamedDecl *ND);
77 void mangleFunctionEncoding(const FunctionDecl *FD);
78 void mangleVariableEncoding(const VarDecl *VD);
79 void mangleNumber(int64_t Number);
80 void mangleNumber(const llvm::APSInt &Value);
81 void mangleType(QualType T, SourceRange Range, bool MangleQualifiers = true);
82
83private:
84 void disableBackReferences() { UseNameBackReferences = false; }
85 void mangleUnqualifiedName(const NamedDecl *ND) {
86 mangleUnqualifiedName(ND, ND->getDeclName());
87 }
88 void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name);
89 void mangleSourceName(const IdentifierInfo *II);
90 void manglePostfix(const DeclContext *DC, bool NoFunction=false);
91 void mangleOperatorName(OverloadedOperatorKind OO, SourceLocation Loc);
Timur Iskhodzhanov59660c22013-02-13 08:37:51 +000092 void mangleCXXDtorType(CXXDtorType T);
Guy Benyei7f92f2d2012-12-18 14:30:41 +000093 void mangleQualifiers(Qualifiers Quals, bool IsMember);
94 void manglePointerQualifiers(Qualifiers Quals);
95
96 void mangleUnscopedTemplateName(const TemplateDecl *ND);
97 void mangleTemplateInstantiationName(const TemplateDecl *TD,
98 const SmallVectorImpl<TemplateArgumentLoc> &TemplateArgs);
99 void mangleObjCMethodName(const ObjCMethodDecl *MD);
100 void mangleLocalName(const FunctionDecl *FD);
101
102 void mangleArgumentType(QualType T, SourceRange Range);
103
104 // Declare manglers for every type class.
105#define ABSTRACT_TYPE(CLASS, PARENT)
106#define NON_CANONICAL_TYPE(CLASS, PARENT)
107#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T, \
108 SourceRange Range);
109#include "clang/AST/TypeNodes.def"
110#undef ABSTRACT_TYPE
111#undef NON_CANONICAL_TYPE
112#undef TYPE
113
114 void mangleType(const TagType*);
115 void mangleType(const FunctionType *T, const FunctionDecl *D,
116 bool IsStructor, bool IsInstMethod);
117 void mangleType(const ArrayType *T, bool IsGlobal);
118 void mangleExtraDimensions(QualType T);
119 void mangleFunctionClass(const FunctionDecl *FD);
120 void mangleCallingConvention(const FunctionType *T, bool IsInstMethod = false);
121 void mangleIntegerLiteral(const llvm::APSInt &Number, bool IsBoolean);
122 void mangleExpression(const Expr *E);
123 void mangleThrowSpecification(const FunctionProtoType *T);
124
125 void mangleTemplateArgs(
126 const SmallVectorImpl<TemplateArgumentLoc> &TemplateArgs);
127
128};
129
130/// MicrosoftMangleContext - Overrides the default MangleContext for the
131/// Microsoft Visual C++ ABI.
132class MicrosoftMangleContext : public MangleContext {
133public:
134 MicrosoftMangleContext(ASTContext &Context,
135 DiagnosticsEngine &Diags) : MangleContext(Context, Diags) { }
136 virtual bool shouldMangleDeclName(const NamedDecl *D);
137 virtual void mangleName(const NamedDecl *D, raw_ostream &Out);
138 virtual void mangleThunk(const CXXMethodDecl *MD,
139 const ThunkInfo &Thunk,
140 raw_ostream &);
141 virtual void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
142 const ThisAdjustment &ThisAdjustment,
143 raw_ostream &);
144 virtual void mangleCXXVTable(const CXXRecordDecl *RD,
145 raw_ostream &);
146 virtual void mangleCXXVTT(const CXXRecordDecl *RD,
147 raw_ostream &);
148 virtual void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
149 const CXXRecordDecl *Type,
150 raw_ostream &);
151 virtual void mangleCXXRTTI(QualType T, raw_ostream &);
152 virtual void mangleCXXRTTIName(QualType T, raw_ostream &);
153 virtual void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
154 raw_ostream &);
155 virtual void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
156 raw_ostream &);
157 virtual void mangleReferenceTemporary(const clang::VarDecl *,
158 raw_ostream &);
159};
160
161}
162
163static bool isInCLinkageSpecification(const Decl *D) {
164 D = D->getCanonicalDecl();
165 for (const DeclContext *DC = D->getDeclContext();
166 !DC->isTranslationUnit(); DC = DC->getParent()) {
167 if (const LinkageSpecDecl *Linkage = dyn_cast<LinkageSpecDecl>(DC))
168 return Linkage->getLanguage() == LinkageSpecDecl::lang_c;
169 }
170
171 return false;
172}
173
174bool MicrosoftMangleContext::shouldMangleDeclName(const NamedDecl *D) {
175 // In C, functions with no attributes never need to be mangled. Fastpath them.
176 if (!getASTContext().getLangOpts().CPlusPlus && !D->hasAttrs())
177 return false;
178
179 // Any decl can be declared with __asm("foo") on it, and this takes precedence
180 // over all other naming in the .o file.
181 if (D->hasAttr<AsmLabelAttr>())
182 return true;
183
184 // Clang's "overloadable" attribute extension to C/C++ implies name mangling
185 // (always) as does passing a C++ member function and a function
186 // whose name is not a simple identifier.
187 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
188 if (FD && (FD->hasAttr<OverloadableAttr>() || isa<CXXMethodDecl>(FD) ||
189 !FD->getDeclName().isIdentifier()))
190 return true;
191
192 // Otherwise, no mangling is done outside C++ mode.
193 if (!getASTContext().getLangOpts().CPlusPlus)
194 return false;
195
196 // Variables at global scope with internal linkage are not mangled.
197 if (!FD) {
198 const DeclContext *DC = D->getDeclContext();
199 if (DC->isTranslationUnit() && D->getLinkage() == InternalLinkage)
200 return false;
201 }
202
203 // C functions and "main" are not mangled.
204 if ((FD && FD->isMain()) || isInCLinkageSpecification(D))
205 return false;
206
207 return true;
208}
209
210void MicrosoftCXXNameMangler::mangle(const NamedDecl *D,
211 StringRef Prefix) {
212 // MSVC doesn't mangle C++ names the same way it mangles extern "C" names.
213 // Therefore it's really important that we don't decorate the
214 // name with leading underscores or leading/trailing at signs. So, by
215 // default, we emit an asm marker at the start so we get the name right.
216 // Callers can override this with a custom prefix.
217
218 // Any decl can be declared with __asm("foo") on it, and this takes precedence
219 // over all other naming in the .o file.
220 if (const AsmLabelAttr *ALA = D->getAttr<AsmLabelAttr>()) {
221 // If we have an asm name, then we use it as the mangling.
222 Out << '\01' << ALA->getLabel();
223 return;
224 }
225
226 // <mangled-name> ::= ? <name> <type-encoding>
227 Out << Prefix;
228 mangleName(D);
229 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
230 mangleFunctionEncoding(FD);
231 else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
232 mangleVariableEncoding(VD);
233 else {
234 // TODO: Fields? Can MSVC even mangle them?
235 // Issue a diagnostic for now.
236 DiagnosticsEngine &Diags = Context.getDiags();
237 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
238 "cannot mangle this declaration yet");
239 Diags.Report(D->getLocation(), DiagID)
240 << D->getSourceRange();
241 }
242}
243
244void MicrosoftCXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
245 // <type-encoding> ::= <function-class> <function-type>
246
247 // Don't mangle in the type if this isn't a decl we should typically mangle.
248 if (!Context.shouldMangleDeclName(FD))
249 return;
250
251 // We should never ever see a FunctionNoProtoType at this point.
252 // We don't even know how to mangle their types anyway :).
253 const FunctionProtoType *FT = FD->getType()->castAs<FunctionProtoType>();
254
255 bool InStructor = false, InInstMethod = false;
256 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
257 if (MD) {
258 if (MD->isInstance())
259 InInstMethod = true;
260 if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))
261 InStructor = true;
262 }
263
264 // First, the function class.
265 mangleFunctionClass(FD);
266
267 mangleType(FT, FD, InStructor, InInstMethod);
268}
269
270void MicrosoftCXXNameMangler::mangleVariableEncoding(const VarDecl *VD) {
271 // <type-encoding> ::= <storage-class> <variable-type>
272 // <storage-class> ::= 0 # private static member
273 // ::= 1 # protected static member
274 // ::= 2 # public static member
275 // ::= 3 # global
276 // ::= 4 # static local
277
278 // The first character in the encoding (after the name) is the storage class.
279 if (VD->isStaticDataMember()) {
280 // If it's a static member, it also encodes the access level.
281 switch (VD->getAccess()) {
282 default:
283 case AS_private: Out << '0'; break;
284 case AS_protected: Out << '1'; break;
285 case AS_public: Out << '2'; break;
286 }
287 }
288 else if (!VD->isStaticLocal())
289 Out << '3';
290 else
291 Out << '4';
292 // Now mangle the type.
293 // <variable-type> ::= <type> <cvr-qualifiers>
294 // ::= <type> <pointee-cvr-qualifiers> # pointers, references
295 // Pointers and references are odd. The type of 'int * const foo;' gets
296 // mangled as 'QAHA' instead of 'PAHB', for example.
297 TypeLoc TL = VD->getTypeSourceInfo()->getTypeLoc();
298 QualType Ty = TL.getType();
299 if (Ty->isPointerType() || Ty->isReferenceType()) {
300 mangleType(Ty, TL.getSourceRange());
301 mangleQualifiers(Ty->getPointeeType().getQualifiers(), false);
302 } else if (const ArrayType *AT = getASTContext().getAsArrayType(Ty)) {
303 // Global arrays are funny, too.
304 mangleType(AT, true);
305 mangleQualifiers(Ty.getQualifiers(), false);
306 } else {
307 mangleType(Ty.getLocalUnqualifiedType(), TL.getSourceRange());
308 mangleQualifiers(Ty.getLocalQualifiers(), false);
309 }
310}
311
312void MicrosoftCXXNameMangler::mangleName(const NamedDecl *ND) {
313 // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @
314 const DeclContext *DC = ND->getDeclContext();
315
316 // Always start with the unqualified name.
317 mangleUnqualifiedName(ND);
318
319 // If this is an extern variable declared locally, the relevant DeclContext
320 // is that of the containing namespace, or the translation unit.
321 if (isa<FunctionDecl>(DC) && ND->hasLinkage())
322 while (!DC->isNamespace() && !DC->isTranslationUnit())
323 DC = DC->getParent();
324
325 manglePostfix(DC);
326
327 // Terminate the whole name with an '@'.
328 Out << '@';
329}
330
331void MicrosoftCXXNameMangler::mangleNumber(int64_t Number) {
332 llvm::APSInt APSNumber(/*BitWidth=*/64, /*isUnsigned=*/false);
333 APSNumber = Number;
334 mangleNumber(APSNumber);
335}
336
337void MicrosoftCXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
338 // <number> ::= [?] <decimal digit> # 1 <= Number <= 10
339 // ::= [?] <hex digit>+ @ # 0 or > 9; A = 0, B = 1, etc...
340 // ::= [?] @ # 0 (alternate mangling, not emitted by VC)
341 if (Value.isSigned() && Value.isNegative()) {
342 Out << '?';
343 mangleNumber(llvm::APSInt(Value.abs()));
344 return;
345 }
346 llvm::APSInt Temp(Value);
347 // There's a special shorter mangling for 0, but Microsoft
348 // chose not to use it. Instead, 0 gets mangled as "A@". Oh well...
349 if (Value.uge(1) && Value.ule(10)) {
350 --Temp;
351 Temp.print(Out, false);
352 } else {
353 // We have to build up the encoding in reverse order, so it will come
354 // out right when we write it out.
355 char Encoding[64];
356 char *EndPtr = Encoding+sizeof(Encoding);
357 char *CurPtr = EndPtr;
358 llvm::APSInt NibbleMask(Value.getBitWidth(), Value.isUnsigned());
359 NibbleMask = 0xf;
360 do {
361 *--CurPtr = 'A' + Temp.And(NibbleMask).getLimitedValue(0xf);
362 Temp = Temp.lshr(4);
363 } while (Temp != 0);
364 Out.write(CurPtr, EndPtr-CurPtr);
365 Out << '@';
366 }
367}
368
369static const TemplateDecl *
370isTemplate(const NamedDecl *ND,
371 SmallVectorImpl<TemplateArgumentLoc> &TemplateArgs) {
372 // Check if we have a function template.
373 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)){
374 if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
375 if (FD->getTemplateSpecializationArgsAsWritten()) {
376 const ASTTemplateArgumentListInfo *ArgList =
377 FD->getTemplateSpecializationArgsAsWritten();
378 TemplateArgs.append(ArgList->getTemplateArgs(),
379 ArgList->getTemplateArgs() +
380 ArgList->NumTemplateArgs);
381 } else {
382 const TemplateArgumentList *ArgList =
383 FD->getTemplateSpecializationArgs();
384 TemplateArgumentListInfo LI;
385 for (unsigned i = 0, e = ArgList->size(); i != e; ++i)
386 TemplateArgs.push_back(TemplateArgumentLoc(ArgList->get(i),
387 FD->getTypeSourceInfo()));
388 }
389 return TD;
390 }
391 }
392
393 // Check if we have a class template.
394 if (const ClassTemplateSpecializationDecl *Spec =
395 dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
396 TypeSourceInfo *TSI = Spec->getTypeAsWritten();
397 if (TSI) {
398 TemplateSpecializationTypeLoc TSTL =
David Blaikie39e6ab42013-02-18 22:06:02 +0000399 TSI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>();
Guy Benyei7f92f2d2012-12-18 14:30:41 +0000400 TemplateArgumentListInfo LI(TSTL.getLAngleLoc(), TSTL.getRAngleLoc());
401 for (unsigned i = 0, e = TSTL.getNumArgs(); i != e; ++i)
402 TemplateArgs.push_back(TSTL.getArgLoc(i));
403 } else {
404 TemplateArgumentListInfo LI;
405 const TemplateArgumentList &ArgList =
406 Spec->getTemplateArgs();
407 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
408 TemplateArgs.push_back(TemplateArgumentLoc(ArgList[i],
409 TemplateArgumentLocInfo()));
410 }
411 return Spec->getSpecializedTemplate();
412 }
413
414 return 0;
415}
416
417void
418MicrosoftCXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
419 DeclarationName Name) {
420 // <unqualified-name> ::= <operator-name>
421 // ::= <ctor-dtor-name>
422 // ::= <source-name>
423 // ::= <template-name>
424 SmallVector<TemplateArgumentLoc, 2> TemplateArgs;
425 // Check if we have a template.
426 if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
427 // We have a template.
428 // Here comes the tricky thing: if we need to mangle something like
429 // void foo(A::X<Y>, B::X<Y>),
430 // the X<Y> part is aliased. However, if you need to mangle
431 // void foo(A::X<A::Y>, A::X<B::Y>),
432 // the A::X<> part is not aliased.
433 // That said, from the mangler's perspective we have a structure like this:
434 // namespace[s] -> type[ -> template-parameters]
435 // but from the Clang perspective we have
436 // type [ -> template-parameters]
437 // \-> namespace[s]
438 // What we do is we create a new mangler, mangle the same type (without
439 // a namespace suffix) using the extra mangler with back references
440 // disabled (to avoid infinite recursion) and then use the mangled type
441 // name as a key to check the mangling of different types for aliasing.
442
443 std::string BackReferenceKey;
444 BackRefMap::iterator Found;
445 if (UseNameBackReferences) {
446 llvm::raw_string_ostream Stream(BackReferenceKey);
447 MicrosoftCXXNameMangler Extra(Context, Stream);
448 Extra.disableBackReferences();
449 Extra.mangleUnqualifiedName(ND, Name);
450 Stream.flush();
451
452 Found = NameBackReferences.find(BackReferenceKey);
453 }
454 if (!UseNameBackReferences || Found == NameBackReferences.end()) {
455 mangleTemplateInstantiationName(TD, TemplateArgs);
456 if (UseNameBackReferences && NameBackReferences.size() < 10) {
457 size_t Size = NameBackReferences.size();
458 NameBackReferences[BackReferenceKey] = Size;
459 }
460 } else {
461 Out << Found->second;
462 }
463 return;
464 }
465
466 switch (Name.getNameKind()) {
467 case DeclarationName::Identifier: {
468 if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
469 mangleSourceName(II);
470 break;
471 }
472
473 // Otherwise, an anonymous entity. We must have a declaration.
474 assert(ND && "mangling empty name without declaration");
475
476 if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
477 if (NS->isAnonymousNamespace()) {
478 Out << "?A@";
479 break;
480 }
481 }
482
483 // We must have an anonymous struct.
484 const TagDecl *TD = cast<TagDecl>(ND);
485 if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
486 assert(TD->getDeclContext() == D->getDeclContext() &&
487 "Typedef should not be in another decl context!");
488 assert(D->getDeclName().getAsIdentifierInfo() &&
489 "Typedef was not named!");
490 mangleSourceName(D->getDeclName().getAsIdentifierInfo());
491 break;
492 }
493
494 // When VC encounters an anonymous type with no tag and no typedef,
495 // it literally emits '<unnamed-tag>'.
496 Out << "<unnamed-tag>";
497 break;
498 }
499
500 case DeclarationName::ObjCZeroArgSelector:
501 case DeclarationName::ObjCOneArgSelector:
502 case DeclarationName::ObjCMultiArgSelector:
503 llvm_unreachable("Can't mangle Objective-C selector names here!");
504
505 case DeclarationName::CXXConstructorName:
Timur Iskhodzhanov1d4fff52013-02-27 13:46:31 +0000506 if (ND == Structor) {
507 assert(StructorType == Ctor_Complete &&
508 "Should never be asked to mangle a ctor other than complete");
509 }
Guy Benyei7f92f2d2012-12-18 14:30:41 +0000510 Out << "?0";
511 break;
512
513 case DeclarationName::CXXDestructorName:
Timur Iskhodzhanov59660c22013-02-13 08:37:51 +0000514 if (ND == Structor)
515 // If the named decl is the C++ destructor we're mangling,
516 // use the type we were given.
517 mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
518 else
519 // Otherwise, use the complete destructor name. This is relevant if a
520 // class with a destructor is declared within a destructor.
521 mangleCXXDtorType(Dtor_Complete);
Guy Benyei7f92f2d2012-12-18 14:30:41 +0000522 break;
523
524 case DeclarationName::CXXConversionFunctionName:
525 // <operator-name> ::= ?B # (cast)
526 // The target type is encoded as the return type.
527 Out << "?B";
528 break;
529
530 case DeclarationName::CXXOperatorName:
531 mangleOperatorName(Name.getCXXOverloadedOperator(), ND->getLocation());
532 break;
533
534 case DeclarationName::CXXLiteralOperatorName: {
535 // FIXME: Was this added in VS2010? Does MS even know how to mangle this?
536 DiagnosticsEngine Diags = Context.getDiags();
537 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
538 "cannot mangle this literal operator yet");
539 Diags.Report(ND->getLocation(), DiagID);
540 break;
541 }
542
543 case DeclarationName::CXXUsingDirective:
544 llvm_unreachable("Can't mangle a using directive name!");
545 }
546}
547
548void MicrosoftCXXNameMangler::manglePostfix(const DeclContext *DC,
549 bool NoFunction) {
550 // <postfix> ::= <unqualified-name> [<postfix>]
551 // ::= <substitution> [<postfix>]
552
553 if (!DC) return;
554
555 while (isa<LinkageSpecDecl>(DC))
556 DC = DC->getParent();
557
558 if (DC->isTranslationUnit())
559 return;
560
561 if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) {
562 Context.mangleBlock(BD, Out);
563 Out << '@';
564 return manglePostfix(DC->getParent(), NoFunction);
565 }
566
567 if (NoFunction && (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)))
568 return;
569 else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(DC))
570 mangleObjCMethodName(Method);
571 else if (const FunctionDecl *Func = dyn_cast<FunctionDecl>(DC))
572 mangleLocalName(Func);
573 else {
574 mangleUnqualifiedName(cast<NamedDecl>(DC));
575 manglePostfix(DC->getParent(), NoFunction);
576 }
577}
578
Timur Iskhodzhanov59660c22013-02-13 08:37:51 +0000579void MicrosoftCXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
580 switch (T) {
581 case Dtor_Deleting:
582 Out << "?_G";
583 return;
584 case Dtor_Base:
585 // FIXME: We should be asked to mangle base dtors.
586 // However, fixing this would require larger changes to the CodeGenModule.
587 // Please put llvm_unreachable here when CGM is changed.
588 // For now, just mangle a base dtor the same way as a complete dtor...
589 case Dtor_Complete:
590 Out << "?1";
591 return;
592 }
593 llvm_unreachable("Unsupported dtor type?");
594}
595
Guy Benyei7f92f2d2012-12-18 14:30:41 +0000596void MicrosoftCXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO,
597 SourceLocation Loc) {
598 switch (OO) {
599 // ?0 # constructor
600 // ?1 # destructor
601 // <operator-name> ::= ?2 # new
602 case OO_New: Out << "?2"; break;
603 // <operator-name> ::= ?3 # delete
604 case OO_Delete: Out << "?3"; break;
605 // <operator-name> ::= ?4 # =
606 case OO_Equal: Out << "?4"; break;
607 // <operator-name> ::= ?5 # >>
608 case OO_GreaterGreater: Out << "?5"; break;
609 // <operator-name> ::= ?6 # <<
610 case OO_LessLess: Out << "?6"; break;
611 // <operator-name> ::= ?7 # !
612 case OO_Exclaim: Out << "?7"; break;
613 // <operator-name> ::= ?8 # ==
614 case OO_EqualEqual: Out << "?8"; break;
615 // <operator-name> ::= ?9 # !=
616 case OO_ExclaimEqual: Out << "?9"; break;
617 // <operator-name> ::= ?A # []
618 case OO_Subscript: Out << "?A"; break;
619 // ?B # conversion
620 // <operator-name> ::= ?C # ->
621 case OO_Arrow: Out << "?C"; break;
622 // <operator-name> ::= ?D # *
623 case OO_Star: Out << "?D"; break;
624 // <operator-name> ::= ?E # ++
625 case OO_PlusPlus: Out << "?E"; break;
626 // <operator-name> ::= ?F # --
627 case OO_MinusMinus: Out << "?F"; break;
628 // <operator-name> ::= ?G # -
629 case OO_Minus: Out << "?G"; break;
630 // <operator-name> ::= ?H # +
631 case OO_Plus: Out << "?H"; break;
632 // <operator-name> ::= ?I # &
633 case OO_Amp: Out << "?I"; break;
634 // <operator-name> ::= ?J # ->*
635 case OO_ArrowStar: Out << "?J"; break;
636 // <operator-name> ::= ?K # /
637 case OO_Slash: Out << "?K"; break;
638 // <operator-name> ::= ?L # %
639 case OO_Percent: Out << "?L"; break;
640 // <operator-name> ::= ?M # <
641 case OO_Less: Out << "?M"; break;
642 // <operator-name> ::= ?N # <=
643 case OO_LessEqual: Out << "?N"; break;
644 // <operator-name> ::= ?O # >
645 case OO_Greater: Out << "?O"; break;
646 // <operator-name> ::= ?P # >=
647 case OO_GreaterEqual: Out << "?P"; break;
648 // <operator-name> ::= ?Q # ,
649 case OO_Comma: Out << "?Q"; break;
650 // <operator-name> ::= ?R # ()
651 case OO_Call: Out << "?R"; break;
652 // <operator-name> ::= ?S # ~
653 case OO_Tilde: Out << "?S"; break;
654 // <operator-name> ::= ?T # ^
655 case OO_Caret: Out << "?T"; break;
656 // <operator-name> ::= ?U # |
657 case OO_Pipe: Out << "?U"; break;
658 // <operator-name> ::= ?V # &&
659 case OO_AmpAmp: Out << "?V"; break;
660 // <operator-name> ::= ?W # ||
661 case OO_PipePipe: Out << "?W"; break;
662 // <operator-name> ::= ?X # *=
663 case OO_StarEqual: Out << "?X"; break;
664 // <operator-name> ::= ?Y # +=
665 case OO_PlusEqual: Out << "?Y"; break;
666 // <operator-name> ::= ?Z # -=
667 case OO_MinusEqual: Out << "?Z"; break;
668 // <operator-name> ::= ?_0 # /=
669 case OO_SlashEqual: Out << "?_0"; break;
670 // <operator-name> ::= ?_1 # %=
671 case OO_PercentEqual: Out << "?_1"; break;
672 // <operator-name> ::= ?_2 # >>=
673 case OO_GreaterGreaterEqual: Out << "?_2"; break;
674 // <operator-name> ::= ?_3 # <<=
675 case OO_LessLessEqual: Out << "?_3"; break;
676 // <operator-name> ::= ?_4 # &=
677 case OO_AmpEqual: Out << "?_4"; break;
678 // <operator-name> ::= ?_5 # |=
679 case OO_PipeEqual: Out << "?_5"; break;
680 // <operator-name> ::= ?_6 # ^=
681 case OO_CaretEqual: Out << "?_6"; break;
682 // ?_7 # vftable
683 // ?_8 # vbtable
684 // ?_9 # vcall
685 // ?_A # typeof
686 // ?_B # local static guard
687 // ?_C # string
688 // ?_D # vbase destructor
689 // ?_E # vector deleting destructor
690 // ?_F # default constructor closure
691 // ?_G # scalar deleting destructor
692 // ?_H # vector constructor iterator
693 // ?_I # vector destructor iterator
694 // ?_J # vector vbase constructor iterator
695 // ?_K # virtual displacement map
696 // ?_L # eh vector constructor iterator
697 // ?_M # eh vector destructor iterator
698 // ?_N # eh vector vbase constructor iterator
699 // ?_O # copy constructor closure
700 // ?_P<name> # udt returning <name>
701 // ?_Q # <unknown>
702 // ?_R0 # RTTI Type Descriptor
703 // ?_R1 # RTTI Base Class Descriptor at (a,b,c,d)
704 // ?_R2 # RTTI Base Class Array
705 // ?_R3 # RTTI Class Hierarchy Descriptor
706 // ?_R4 # RTTI Complete Object Locator
707 // ?_S # local vftable
708 // ?_T # local vftable constructor closure
709 // <operator-name> ::= ?_U # new[]
710 case OO_Array_New: Out << "?_U"; break;
711 // <operator-name> ::= ?_V # delete[]
712 case OO_Array_Delete: Out << "?_V"; break;
713
714 case OO_Conditional: {
715 DiagnosticsEngine &Diags = Context.getDiags();
716 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
717 "cannot mangle this conditional operator yet");
718 Diags.Report(Loc, DiagID);
719 break;
720 }
721
722 case OO_None:
723 case NUM_OVERLOADED_OPERATORS:
724 llvm_unreachable("Not an overloaded operator");
725 }
726}
727
728void MicrosoftCXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
729 // <source name> ::= <identifier> @
730 std::string key = II->getNameStart();
731 BackRefMap::iterator Found;
732 if (UseNameBackReferences)
733 Found = NameBackReferences.find(key);
734 if (!UseNameBackReferences || Found == NameBackReferences.end()) {
735 Out << II->getName() << '@';
736 if (UseNameBackReferences && NameBackReferences.size() < 10) {
737 size_t Size = NameBackReferences.size();
738 NameBackReferences[key] = Size;
739 }
740 } else {
741 Out << Found->second;
742 }
743}
744
745void MicrosoftCXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
746 Context.mangleObjCMethodName(MD, Out);
747}
748
749// Find out how many function decls live above this one and return an integer
750// suitable for use as the number in a numbered anonymous scope.
751// TODO: Memoize.
752static unsigned getLocalNestingLevel(const FunctionDecl *FD) {
753 const DeclContext *DC = FD->getParent();
754 int level = 1;
755
756 while (DC && !DC->isTranslationUnit()) {
757 if (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)) level++;
758 DC = DC->getParent();
759 }
760
761 return 2*level;
762}
763
764void MicrosoftCXXNameMangler::mangleLocalName(const FunctionDecl *FD) {
765 // <nested-name> ::= <numbered-anonymous-scope> ? <mangled-name>
766 // <numbered-anonymous-scope> ::= ? <number>
767 // Even though the name is rendered in reverse order (e.g.
768 // A::B::C is rendered as C@B@A), VC numbers the scopes from outermost to
769 // innermost. So a method bar in class C local to function foo gets mangled
770 // as something like:
771 // ?bar@C@?1??foo@@YAXXZ@QAEXXZ
772 // This is more apparent when you have a type nested inside a method of a
773 // type nested inside a function. A method baz in class D local to method
774 // bar of class C local to function foo gets mangled as:
775 // ?baz@D@?3??bar@C@?1??foo@@YAXXZ@QAEXXZ@QAEXXZ
776 // This scheme is general enough to support GCC-style nested
777 // functions. You could have a method baz of class C inside a function bar
778 // inside a function foo, like so:
779 // ?baz@C@?3??bar@?1??foo@@YAXXZ@YAXXZ@QAEXXZ
780 int NestLevel = getLocalNestingLevel(FD);
781 Out << '?';
782 mangleNumber(NestLevel);
783 Out << '?';
784 mangle(FD, "?");
785}
786
787void MicrosoftCXXNameMangler::mangleTemplateInstantiationName(
788 const TemplateDecl *TD,
789 const SmallVectorImpl<TemplateArgumentLoc> &TemplateArgs) {
790 // <template-name> ::= <unscoped-template-name> <template-args>
791 // ::= <substitution>
792 // Always start with the unqualified name.
793
794 // Templates have their own context for back references.
795 ArgBackRefMap OuterArgsContext;
796 BackRefMap OuterTemplateContext;
797 NameBackReferences.swap(OuterTemplateContext);
798 TypeBackReferences.swap(OuterArgsContext);
799
800 mangleUnscopedTemplateName(TD);
801 mangleTemplateArgs(TemplateArgs);
802
803 // Restore the previous back reference contexts.
804 NameBackReferences.swap(OuterTemplateContext);
805 TypeBackReferences.swap(OuterArgsContext);
806}
807
808void
809MicrosoftCXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *TD) {
810 // <unscoped-template-name> ::= ?$ <unqualified-name>
811 Out << "?$";
812 mangleUnqualifiedName(TD);
813}
814
815void
816MicrosoftCXXNameMangler::mangleIntegerLiteral(const llvm::APSInt &Value,
817 bool IsBoolean) {
818 // <integer-literal> ::= $0 <number>
819 Out << "$0";
820 // Make sure booleans are encoded as 0/1.
821 if (IsBoolean && Value.getBoolValue())
822 mangleNumber(1);
823 else
824 mangleNumber(Value);
825}
826
827void
828MicrosoftCXXNameMangler::mangleExpression(const Expr *E) {
829 // See if this is a constant expression.
830 llvm::APSInt Value;
831 if (E->isIntegerConstantExpr(Value, Context.getASTContext())) {
832 mangleIntegerLiteral(Value, E->getType()->isBooleanType());
833 return;
834 }
835
836 // As bad as this diagnostic is, it's better than crashing.
837 DiagnosticsEngine &Diags = Context.getDiags();
838 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
839 "cannot yet mangle expression type %0");
840 Diags.Report(E->getExprLoc(), DiagID)
841 << E->getStmtClassName() << E->getSourceRange();
842}
843
844void
845MicrosoftCXXNameMangler::mangleTemplateArgs(
846 const SmallVectorImpl<TemplateArgumentLoc> &TemplateArgs) {
847 // <template-args> ::= {<type> | <integer-literal>}+ @
848 unsigned NumTemplateArgs = TemplateArgs.size();
849 for (unsigned i = 0; i < NumTemplateArgs; ++i) {
850 const TemplateArgumentLoc &TAL = TemplateArgs[i];
851 const TemplateArgument &TA = TAL.getArgument();
852 switch (TA.getKind()) {
853 case TemplateArgument::Null:
854 llvm_unreachable("Can't mangle null template arguments!");
855 case TemplateArgument::Type:
856 mangleType(TA.getAsType(), TAL.getSourceRange());
857 break;
858 case TemplateArgument::Integral:
859 mangleIntegerLiteral(TA.getAsIntegral(),
860 TA.getIntegralType()->isBooleanType());
861 break;
862 case TemplateArgument::Expression:
863 mangleExpression(TA.getAsExpr());
864 break;
865 case TemplateArgument::Template:
866 case TemplateArgument::TemplateExpansion:
867 case TemplateArgument::Declaration:
868 case TemplateArgument::NullPtr:
869 case TemplateArgument::Pack: {
870 // Issue a diagnostic.
871 DiagnosticsEngine &Diags = Context.getDiags();
872 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
873 "cannot mangle this %select{ERROR|ERROR|pointer/reference|nullptr|"
874 "integral|template|template pack expansion|ERROR|parameter pack}0 "
875 "template argument yet");
876 Diags.Report(TAL.getLocation(), DiagID)
877 << TA.getKind()
878 << TAL.getSourceRange();
879 }
880 }
881 }
882 Out << '@';
883}
884
885void MicrosoftCXXNameMangler::mangleQualifiers(Qualifiers Quals,
886 bool IsMember) {
887 // <cvr-qualifiers> ::= [E] [F] [I] <base-cvr-qualifiers>
888 // 'E' means __ptr64 (32-bit only); 'F' means __unaligned (32/64-bit only);
889 // 'I' means __restrict (32/64-bit).
890 // Note that the MSVC __restrict keyword isn't the same as the C99 restrict
891 // keyword!
892 // <base-cvr-qualifiers> ::= A # near
893 // ::= B # near const
894 // ::= C # near volatile
895 // ::= D # near const volatile
896 // ::= E # far (16-bit)
897 // ::= F # far const (16-bit)
898 // ::= G # far volatile (16-bit)
899 // ::= H # far const volatile (16-bit)
900 // ::= I # huge (16-bit)
901 // ::= J # huge const (16-bit)
902 // ::= K # huge volatile (16-bit)
903 // ::= L # huge const volatile (16-bit)
904 // ::= M <basis> # based
905 // ::= N <basis> # based const
906 // ::= O <basis> # based volatile
907 // ::= P <basis> # based const volatile
908 // ::= Q # near member
909 // ::= R # near const member
910 // ::= S # near volatile member
911 // ::= T # near const volatile member
912 // ::= U # far member (16-bit)
913 // ::= V # far const member (16-bit)
914 // ::= W # far volatile member (16-bit)
915 // ::= X # far const volatile member (16-bit)
916 // ::= Y # huge member (16-bit)
917 // ::= Z # huge const member (16-bit)
918 // ::= 0 # huge volatile member (16-bit)
919 // ::= 1 # huge const volatile member (16-bit)
920 // ::= 2 <basis> # based member
921 // ::= 3 <basis> # based const member
922 // ::= 4 <basis> # based volatile member
923 // ::= 5 <basis> # based const volatile member
924 // ::= 6 # near function (pointers only)
925 // ::= 7 # far function (pointers only)
926 // ::= 8 # near method (pointers only)
927 // ::= 9 # far method (pointers only)
928 // ::= _A <basis> # based function (pointers only)
929 // ::= _B <basis> # based function (far?) (pointers only)
930 // ::= _C <basis> # based method (pointers only)
931 // ::= _D <basis> # based method (far?) (pointers only)
932 // ::= _E # block (Clang)
933 // <basis> ::= 0 # __based(void)
934 // ::= 1 # __based(segment)?
935 // ::= 2 <name> # __based(name)
936 // ::= 3 # ?
937 // ::= 4 # ?
938 // ::= 5 # not really based
939 bool HasConst = Quals.hasConst(),
940 HasVolatile = Quals.hasVolatile();
941 if (!IsMember) {
942 if (HasConst && HasVolatile) {
943 Out << 'D';
944 } else if (HasVolatile) {
945 Out << 'C';
946 } else if (HasConst) {
947 Out << 'B';
948 } else {
949 Out << 'A';
950 }
951 } else {
952 if (HasConst && HasVolatile) {
953 Out << 'T';
954 } else if (HasVolatile) {
955 Out << 'S';
956 } else if (HasConst) {
957 Out << 'R';
958 } else {
959 Out << 'Q';
960 }
961 }
962
963 // FIXME: For now, just drop all extension qualifiers on the floor.
964}
965
966void MicrosoftCXXNameMangler::manglePointerQualifiers(Qualifiers Quals) {
967 // <pointer-cvr-qualifiers> ::= P # no qualifiers
968 // ::= Q # const
969 // ::= R # volatile
970 // ::= S # const volatile
971 bool HasConst = Quals.hasConst(),
972 HasVolatile = Quals.hasVolatile();
973 if (HasConst && HasVolatile) {
974 Out << 'S';
975 } else if (HasVolatile) {
976 Out << 'R';
977 } else if (HasConst) {
978 Out << 'Q';
979 } else {
980 Out << 'P';
981 }
982}
983
984void MicrosoftCXXNameMangler::mangleArgumentType(QualType T,
985 SourceRange Range) {
986 void *TypePtr = getASTContext().getCanonicalType(T).getAsOpaquePtr();
987 ArgBackRefMap::iterator Found = TypeBackReferences.find(TypePtr);
988
989 if (Found == TypeBackReferences.end()) {
990 size_t OutSizeBefore = Out.GetNumBytesInBuffer();
991
992 mangleType(T, Range, false);
993
994 // See if it's worth creating a back reference.
995 // Only types longer than 1 character are considered
996 // and only 10 back references slots are available:
997 bool LongerThanOneChar = (Out.GetNumBytesInBuffer() - OutSizeBefore > 1);
998 if (LongerThanOneChar && TypeBackReferences.size() < 10) {
999 size_t Size = TypeBackReferences.size();
1000 TypeBackReferences[TypePtr] = Size;
1001 }
1002 } else {
1003 Out << Found->second;
1004 }
1005}
1006
1007void MicrosoftCXXNameMangler::mangleType(QualType T, SourceRange Range,
1008 bool MangleQualifiers) {
1009 // Only operate on the canonical type!
1010 T = getASTContext().getCanonicalType(T);
1011
1012 Qualifiers Quals = T.getLocalQualifiers();
1013 // We have to mangle these now, while we still have enough information.
1014 if (T->isAnyPointerType() || T->isMemberPointerType() ||
1015 T->isBlockPointerType()) {
1016 manglePointerQualifiers(Quals);
1017 } else if (Quals && MangleQualifiers) {
1018 mangleQualifiers(Quals, false);
1019 }
1020
1021 SplitQualType split = T.split();
1022 const Type *ty = split.Ty;
1023
1024 // If we're mangling a qualified array type, push the qualifiers to
1025 // the element type.
1026 if (split.Quals && isa<ArrayType>(T)) {
1027 ty = Context.getASTContext().getAsArrayType(T);
1028 }
1029
1030 switch (ty->getTypeClass()) {
1031#define ABSTRACT_TYPE(CLASS, PARENT)
1032#define NON_CANONICAL_TYPE(CLASS, PARENT) \
1033 case Type::CLASS: \
1034 llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
1035 return;
1036#define TYPE(CLASS, PARENT) \
1037 case Type::CLASS: \
1038 mangleType(cast<CLASS##Type>(ty), Range); \
1039 break;
1040#include "clang/AST/TypeNodes.def"
1041#undef ABSTRACT_TYPE
1042#undef NON_CANONICAL_TYPE
1043#undef TYPE
1044 }
1045}
1046
1047void MicrosoftCXXNameMangler::mangleType(const BuiltinType *T,
1048 SourceRange Range) {
1049 // <type> ::= <builtin-type>
1050 // <builtin-type> ::= X # void
1051 // ::= C # signed char
1052 // ::= D # char
1053 // ::= E # unsigned char
1054 // ::= F # short
1055 // ::= G # unsigned short (or wchar_t if it's not a builtin)
1056 // ::= H # int
1057 // ::= I # unsigned int
1058 // ::= J # long
1059 // ::= K # unsigned long
1060 // L # <none>
1061 // ::= M # float
1062 // ::= N # double
1063 // ::= O # long double (__float80 is mangled differently)
1064 // ::= _J # long long, __int64
1065 // ::= _K # unsigned long long, __int64
1066 // ::= _L # __int128
1067 // ::= _M # unsigned __int128
1068 // ::= _N # bool
1069 // _O # <array in parameter>
1070 // ::= _T # __float80 (Intel)
1071 // ::= _W # wchar_t
1072 // ::= _Z # __float80 (Digital Mars)
1073 switch (T->getKind()) {
1074 case BuiltinType::Void: Out << 'X'; break;
1075 case BuiltinType::SChar: Out << 'C'; break;
1076 case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'D'; break;
1077 case BuiltinType::UChar: Out << 'E'; break;
1078 case BuiltinType::Short: Out << 'F'; break;
1079 case BuiltinType::UShort: Out << 'G'; break;
1080 case BuiltinType::Int: Out << 'H'; break;
1081 case BuiltinType::UInt: Out << 'I'; break;
1082 case BuiltinType::Long: Out << 'J'; break;
1083 case BuiltinType::ULong: Out << 'K'; break;
1084 case BuiltinType::Float: Out << 'M'; break;
1085 case BuiltinType::Double: Out << 'N'; break;
1086 // TODO: Determine size and mangle accordingly
1087 case BuiltinType::LongDouble: Out << 'O'; break;
1088 case BuiltinType::LongLong: Out << "_J"; break;
1089 case BuiltinType::ULongLong: Out << "_K"; break;
1090 case BuiltinType::Int128: Out << "_L"; break;
1091 case BuiltinType::UInt128: Out << "_M"; break;
1092 case BuiltinType::Bool: Out << "_N"; break;
1093 case BuiltinType::WChar_S:
1094 case BuiltinType::WChar_U: Out << "_W"; break;
1095
1096#define BUILTIN_TYPE(Id, SingletonId)
1097#define PLACEHOLDER_TYPE(Id, SingletonId) \
1098 case BuiltinType::Id:
1099#include "clang/AST/BuiltinTypes.def"
1100 case BuiltinType::Dependent:
1101 llvm_unreachable("placeholder types shouldn't get to name mangling");
1102
1103 case BuiltinType::ObjCId: Out << "PAUobjc_object@@"; break;
1104 case BuiltinType::ObjCClass: Out << "PAUobjc_class@@"; break;
1105 case BuiltinType::ObjCSel: Out << "PAUobjc_selector@@"; break;
Guy Benyeib13621d2012-12-18 14:38:23 +00001106
1107 case BuiltinType::OCLImage1d: Out << "PAUocl_image1d@@"; break;
1108 case BuiltinType::OCLImage1dArray: Out << "PAUocl_image1darray@@"; break;
1109 case BuiltinType::OCLImage1dBuffer: Out << "PAUocl_image1dbuffer@@"; break;
1110 case BuiltinType::OCLImage2d: Out << "PAUocl_image2d@@"; break;
1111 case BuiltinType::OCLImage2dArray: Out << "PAUocl_image2darray@@"; break;
1112 case BuiltinType::OCLImage3d: Out << "PAUocl_image3d@@"; break;
Guy Benyei21f18c42013-02-07 10:55:47 +00001113 case BuiltinType::OCLSampler: Out << "PAUocl_sampler@@"; break;
Guy Benyeie6b9d802013-01-20 12:31:11 +00001114 case BuiltinType::OCLEvent: Out << "PAUocl_event@@"; break;
Guy Benyei7f92f2d2012-12-18 14:30:41 +00001115
1116 case BuiltinType::NullPtr: Out << "$$T"; break;
1117
1118 case BuiltinType::Char16:
1119 case BuiltinType::Char32:
1120 case BuiltinType::Half: {
1121 DiagnosticsEngine &Diags = Context.getDiags();
1122 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1123 "cannot mangle this built-in %0 type yet");
1124 Diags.Report(Range.getBegin(), DiagID)
1125 << T->getName(Context.getASTContext().getPrintingPolicy())
1126 << Range;
1127 break;
1128 }
1129 }
1130}
1131
1132// <type> ::= <function-type>
1133void MicrosoftCXXNameMangler::mangleType(const FunctionProtoType *T,
1134 SourceRange) {
1135 // Structors only appear in decls, so at this point we know it's not a
1136 // structor type.
1137 // FIXME: This may not be lambda-friendly.
1138 Out << "$$A6";
1139 mangleType(T, NULL, false, false);
1140}
1141void MicrosoftCXXNameMangler::mangleType(const FunctionNoProtoType *T,
1142 SourceRange) {
1143 llvm_unreachable("Can't mangle K&R function prototypes");
1144}
1145
1146void MicrosoftCXXNameMangler::mangleType(const FunctionType *T,
1147 const FunctionDecl *D,
1148 bool IsStructor,
1149 bool IsInstMethod) {
1150 // <function-type> ::= <this-cvr-qualifiers> <calling-convention>
1151 // <return-type> <argument-list> <throw-spec>
1152 const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
1153
1154 // If this is a C++ instance method, mangle the CVR qualifiers for the
1155 // this pointer.
1156 if (IsInstMethod)
1157 mangleQualifiers(Qualifiers::fromCVRMask(Proto->getTypeQuals()), false);
1158
1159 mangleCallingConvention(T, IsInstMethod);
1160
1161 // <return-type> ::= <type>
1162 // ::= @ # structors (they have no declared return type)
Timur Iskhodzhanov59660c22013-02-13 08:37:51 +00001163 if (IsStructor) {
1164 if (isa<CXXDestructorDecl>(D) && D == Structor &&
1165 StructorType == Dtor_Deleting) {
1166 // The scalar deleting destructor takes an extra int argument.
1167 // However, the FunctionType generated has 0 arguments.
1168 // FIXME: This is a temporary hack.
1169 // Maybe should fix the FunctionType creation instead?
1170 Out << "PAXI@Z";
1171 return;
1172 }
Guy Benyei7f92f2d2012-12-18 14:30:41 +00001173 Out << '@';
Timur Iskhodzhanov59660c22013-02-13 08:37:51 +00001174 } else {
Guy Benyei7f92f2d2012-12-18 14:30:41 +00001175 QualType Result = Proto->getResultType();
1176 const Type* RT = Result.getTypePtr();
1177 if (!RT->isAnyPointerType() && !RT->isReferenceType()) {
1178 if (Result.hasQualifiers() || !RT->isBuiltinType())
1179 Out << '?';
1180 if (!RT->isBuiltinType() && !Result.hasQualifiers()) {
1181 // Lack of qualifiers for user types is mangled as 'A'.
1182 Out << 'A';
1183 }
1184 }
1185
1186 // FIXME: Get the source range for the result type. Or, better yet,
1187 // implement the unimplemented stuff so we don't need accurate source
1188 // location info anymore :).
1189 mangleType(Result, SourceRange());
1190 }
1191
1192 // <argument-list> ::= X # void
1193 // ::= <type>+ @
1194 // ::= <type>* Z # varargs
1195 if (Proto->getNumArgs() == 0 && !Proto->isVariadic()) {
1196 Out << 'X';
1197 } else {
1198 if (D) {
1199 // If we got a decl, use the type-as-written to make sure arrays
1200 // get mangled right. Note that we can't rely on the TSI
1201 // existing if (for example) the parameter was synthesized.
1202 for (FunctionDecl::param_const_iterator Parm = D->param_begin(),
1203 ParmEnd = D->param_end(); Parm != ParmEnd; ++Parm) {
1204 TypeSourceInfo *TSI = (*Parm)->getTypeSourceInfo();
1205 QualType Type = TSI ? TSI->getType() : (*Parm)->getType();
1206 mangleArgumentType(Type, (*Parm)->getSourceRange());
1207 }
1208 } else {
1209 // Happens for function pointer type arguments for example.
1210 for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
1211 ArgEnd = Proto->arg_type_end();
1212 Arg != ArgEnd; ++Arg)
1213 mangleArgumentType(*Arg, SourceRange());
1214 }
1215 // <builtin-type> ::= Z # ellipsis
1216 if (Proto->isVariadic())
1217 Out << 'Z';
1218 else
1219 Out << '@';
1220 }
1221
1222 mangleThrowSpecification(Proto);
1223}
1224
1225void MicrosoftCXXNameMangler::mangleFunctionClass(const FunctionDecl *FD) {
1226 // <function-class> ::= A # private: near
1227 // ::= B # private: far
1228 // ::= C # private: static near
1229 // ::= D # private: static far
1230 // ::= E # private: virtual near
1231 // ::= F # private: virtual far
1232 // ::= G # private: thunk near
1233 // ::= H # private: thunk far
1234 // ::= I # protected: near
1235 // ::= J # protected: far
1236 // ::= K # protected: static near
1237 // ::= L # protected: static far
1238 // ::= M # protected: virtual near
1239 // ::= N # protected: virtual far
1240 // ::= O # protected: thunk near
1241 // ::= P # protected: thunk far
1242 // ::= Q # public: near
1243 // ::= R # public: far
1244 // ::= S # public: static near
1245 // ::= T # public: static far
1246 // ::= U # public: virtual near
1247 // ::= V # public: virtual far
1248 // ::= W # public: thunk near
1249 // ::= X # public: thunk far
1250 // ::= Y # global near
1251 // ::= Z # global far
1252 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1253 switch (MD->getAccess()) {
1254 default:
1255 case AS_private:
1256 if (MD->isStatic())
1257 Out << 'C';
1258 else if (MD->isVirtual())
1259 Out << 'E';
1260 else
1261 Out << 'A';
1262 break;
1263 case AS_protected:
1264 if (MD->isStatic())
1265 Out << 'K';
1266 else if (MD->isVirtual())
1267 Out << 'M';
1268 else
1269 Out << 'I';
1270 break;
1271 case AS_public:
1272 if (MD->isStatic())
1273 Out << 'S';
1274 else if (MD->isVirtual())
1275 Out << 'U';
1276 else
1277 Out << 'Q';
1278 }
1279 } else
1280 Out << 'Y';
1281}
1282void MicrosoftCXXNameMangler::mangleCallingConvention(const FunctionType *T,
1283 bool IsInstMethod) {
1284 // <calling-convention> ::= A # __cdecl
1285 // ::= B # __export __cdecl
1286 // ::= C # __pascal
1287 // ::= D # __export __pascal
1288 // ::= E # __thiscall
1289 // ::= F # __export __thiscall
1290 // ::= G # __stdcall
1291 // ::= H # __export __stdcall
1292 // ::= I # __fastcall
1293 // ::= J # __export __fastcall
1294 // The 'export' calling conventions are from a bygone era
1295 // (*cough*Win16*cough*) when functions were declared for export with
1296 // that keyword. (It didn't actually export them, it just made them so
1297 // that they could be in a DLL and somebody from another module could call
1298 // them.)
1299 CallingConv CC = T->getCallConv();
1300 if (CC == CC_Default) {
1301 if (IsInstMethod) {
1302 const FunctionProtoType *FPT =
1303 T->getCanonicalTypeUnqualified().castAs<FunctionProtoType>();
1304 bool isVariadic = FPT->isVariadic();
1305 CC = getASTContext().getDefaultCXXMethodCallConv(isVariadic);
1306 } else {
1307 CC = CC_C;
1308 }
1309 }
1310 switch (CC) {
1311 default:
1312 llvm_unreachable("Unsupported CC for mangling");
1313 case CC_Default:
1314 case CC_C: Out << 'A'; break;
1315 case CC_X86Pascal: Out << 'C'; break;
1316 case CC_X86ThisCall: Out << 'E'; break;
1317 case CC_X86StdCall: Out << 'G'; break;
1318 case CC_X86FastCall: Out << 'I'; break;
1319 }
1320}
1321void MicrosoftCXXNameMangler::mangleThrowSpecification(
1322 const FunctionProtoType *FT) {
1323 // <throw-spec> ::= Z # throw(...) (default)
1324 // ::= @ # throw() or __declspec/__attribute__((nothrow))
1325 // ::= <type>+
1326 // NOTE: Since the Microsoft compiler ignores throw specifications, they are
1327 // all actually mangled as 'Z'. (They're ignored because their associated
1328 // functionality isn't implemented, and probably never will be.)
1329 Out << 'Z';
1330}
1331
1332void MicrosoftCXXNameMangler::mangleType(const UnresolvedUsingType *T,
1333 SourceRange Range) {
1334 // Probably should be mangled as a template instantiation; need to see what
1335 // VC does first.
1336 DiagnosticsEngine &Diags = Context.getDiags();
1337 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1338 "cannot mangle this unresolved dependent type yet");
1339 Diags.Report(Range.getBegin(), DiagID)
1340 << Range;
1341}
1342
1343// <type> ::= <union-type> | <struct-type> | <class-type> | <enum-type>
1344// <union-type> ::= T <name>
1345// <struct-type> ::= U <name>
1346// <class-type> ::= V <name>
1347// <enum-type> ::= W <size> <name>
1348void MicrosoftCXXNameMangler::mangleType(const EnumType *T, SourceRange) {
1349 mangleType(cast<TagType>(T));
1350}
1351void MicrosoftCXXNameMangler::mangleType(const RecordType *T, SourceRange) {
1352 mangleType(cast<TagType>(T));
1353}
1354void MicrosoftCXXNameMangler::mangleType(const TagType *T) {
1355 switch (T->getDecl()->getTagKind()) {
1356 case TTK_Union:
1357 Out << 'T';
1358 break;
1359 case TTK_Struct:
1360 case TTK_Interface:
1361 Out << 'U';
1362 break;
1363 case TTK_Class:
1364 Out << 'V';
1365 break;
1366 case TTK_Enum:
1367 Out << 'W';
1368 Out << getASTContext().getTypeSizeInChars(
1369 cast<EnumDecl>(T->getDecl())->getIntegerType()).getQuantity();
1370 break;
1371 }
1372 mangleName(T->getDecl());
1373}
1374
1375// <type> ::= <array-type>
1376// <array-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers>
1377// [Y <dimension-count> <dimension>+]
1378// <element-type> # as global
1379// ::= Q <cvr-qualifiers> [Y <dimension-count> <dimension>+]
1380// <element-type> # as param
1381// It's supposed to be the other way around, but for some strange reason, it
1382// isn't. Today this behavior is retained for the sole purpose of backwards
1383// compatibility.
1384void MicrosoftCXXNameMangler::mangleType(const ArrayType *T, bool IsGlobal) {
1385 // This isn't a recursive mangling, so now we have to do it all in this
1386 // one call.
1387 if (IsGlobal) {
1388 manglePointerQualifiers(T->getElementType().getQualifiers());
1389 } else {
1390 Out << 'Q';
1391 }
1392 mangleExtraDimensions(T->getElementType());
1393}
1394void MicrosoftCXXNameMangler::mangleType(const ConstantArrayType *T,
1395 SourceRange) {
1396 mangleType(cast<ArrayType>(T), false);
1397}
1398void MicrosoftCXXNameMangler::mangleType(const VariableArrayType *T,
1399 SourceRange) {
1400 mangleType(cast<ArrayType>(T), false);
1401}
1402void MicrosoftCXXNameMangler::mangleType(const DependentSizedArrayType *T,
1403 SourceRange) {
1404 mangleType(cast<ArrayType>(T), false);
1405}
1406void MicrosoftCXXNameMangler::mangleType(const IncompleteArrayType *T,
1407 SourceRange) {
1408 mangleType(cast<ArrayType>(T), false);
1409}
1410void MicrosoftCXXNameMangler::mangleExtraDimensions(QualType ElementTy) {
1411 SmallVector<llvm::APInt, 3> Dimensions;
1412 for (;;) {
1413 if (const ConstantArrayType *CAT =
1414 getASTContext().getAsConstantArrayType(ElementTy)) {
1415 Dimensions.push_back(CAT->getSize());
1416 ElementTy = CAT->getElementType();
1417 } else if (ElementTy->isVariableArrayType()) {
1418 const VariableArrayType *VAT =
1419 getASTContext().getAsVariableArrayType(ElementTy);
1420 DiagnosticsEngine &Diags = Context.getDiags();
1421 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1422 "cannot mangle this variable-length array yet");
1423 Diags.Report(VAT->getSizeExpr()->getExprLoc(), DiagID)
1424 << VAT->getBracketsRange();
1425 return;
1426 } else if (ElementTy->isDependentSizedArrayType()) {
1427 // The dependent expression has to be folded into a constant (TODO).
1428 const DependentSizedArrayType *DSAT =
1429 getASTContext().getAsDependentSizedArrayType(ElementTy);
1430 DiagnosticsEngine &Diags = Context.getDiags();
1431 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1432 "cannot mangle this dependent-length array yet");
1433 Diags.Report(DSAT->getSizeExpr()->getExprLoc(), DiagID)
1434 << DSAT->getBracketsRange();
1435 return;
1436 } else if (ElementTy->isIncompleteArrayType()) continue;
1437 else break;
1438 }
1439 mangleQualifiers(ElementTy.getQualifiers(), false);
1440 // If there are any additional dimensions, mangle them now.
1441 if (Dimensions.size() > 0) {
1442 Out << 'Y';
1443 // <dimension-count> ::= <number> # number of extra dimensions
1444 mangleNumber(Dimensions.size());
1445 for (unsigned Dim = 0; Dim < Dimensions.size(); ++Dim) {
1446 mangleNumber(Dimensions[Dim].getLimitedValue());
1447 }
1448 }
1449 mangleType(ElementTy.getLocalUnqualifiedType(), SourceRange());
1450}
1451
1452// <type> ::= <pointer-to-member-type>
1453// <pointer-to-member-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers>
1454// <class name> <type>
1455void MicrosoftCXXNameMangler::mangleType(const MemberPointerType *T,
1456 SourceRange Range) {
1457 QualType PointeeType = T->getPointeeType();
1458 if (const FunctionProtoType *FPT = PointeeType->getAs<FunctionProtoType>()) {
1459 Out << '8';
1460 mangleName(T->getClass()->castAs<RecordType>()->getDecl());
1461 mangleType(FPT, NULL, false, true);
1462 } else {
1463 mangleQualifiers(PointeeType.getQualifiers(), true);
1464 mangleName(T->getClass()->castAs<RecordType>()->getDecl());
1465 mangleType(PointeeType.getLocalUnqualifiedType(), Range);
1466 }
1467}
1468
1469void MicrosoftCXXNameMangler::mangleType(const TemplateTypeParmType *T,
1470 SourceRange Range) {
1471 DiagnosticsEngine &Diags = Context.getDiags();
1472 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1473 "cannot mangle this template type parameter type yet");
1474 Diags.Report(Range.getBegin(), DiagID)
1475 << Range;
1476}
1477
1478void MicrosoftCXXNameMangler::mangleType(
1479 const SubstTemplateTypeParmPackType *T,
1480 SourceRange Range) {
1481 DiagnosticsEngine &Diags = Context.getDiags();
1482 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1483 "cannot mangle this substituted parameter pack yet");
1484 Diags.Report(Range.getBegin(), DiagID)
1485 << Range;
1486}
1487
1488// <type> ::= <pointer-type>
1489// <pointer-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers> <type>
1490void MicrosoftCXXNameMangler::mangleType(const PointerType *T,
1491 SourceRange Range) {
1492 QualType PointeeTy = T->getPointeeType();
1493 if (PointeeTy->isArrayType()) {
1494 // Pointers to arrays are mangled like arrays.
1495 mangleExtraDimensions(PointeeTy);
1496 } else if (const FunctionType *FT = PointeeTy->getAs<FunctionType>()) {
1497 // Function pointers are special.
1498 Out << '6';
1499 mangleType(FT, NULL, false, false);
1500 } else {
1501 mangleQualifiers(PointeeTy.getQualifiers(), false);
1502 mangleType(PointeeTy, Range, false);
1503 }
1504}
1505void MicrosoftCXXNameMangler::mangleType(const ObjCObjectPointerType *T,
1506 SourceRange Range) {
1507 // Object pointers never have qualifiers.
1508 Out << 'A';
1509 mangleType(T->getPointeeType(), Range);
1510}
1511
1512// <type> ::= <reference-type>
1513// <reference-type> ::= A <cvr-qualifiers> <type>
1514void MicrosoftCXXNameMangler::mangleType(const LValueReferenceType *T,
1515 SourceRange Range) {
1516 Out << 'A';
1517 QualType PointeeTy = T->getPointeeType();
1518 if (!PointeeTy.hasQualifiers())
1519 // Lack of qualifiers is mangled as 'A'.
1520 Out << 'A';
1521 mangleType(PointeeTy, Range);
1522}
1523
1524// <type> ::= <r-value-reference-type>
1525// <r-value-reference-type> ::= $$Q <cvr-qualifiers> <type>
1526void MicrosoftCXXNameMangler::mangleType(const RValueReferenceType *T,
1527 SourceRange Range) {
1528 Out << "$$Q";
1529 QualType PointeeTy = T->getPointeeType();
1530 if (!PointeeTy.hasQualifiers())
1531 // Lack of qualifiers is mangled as 'A'.
1532 Out << 'A';
1533 mangleType(PointeeTy, Range);
1534}
1535
1536void MicrosoftCXXNameMangler::mangleType(const ComplexType *T,
1537 SourceRange Range) {
1538 DiagnosticsEngine &Diags = Context.getDiags();
1539 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1540 "cannot mangle this complex number type yet");
1541 Diags.Report(Range.getBegin(), DiagID)
1542 << Range;
1543}
1544
1545void MicrosoftCXXNameMangler::mangleType(const VectorType *T,
1546 SourceRange Range) {
1547 DiagnosticsEngine &Diags = Context.getDiags();
1548 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1549 "cannot mangle this vector type yet");
1550 Diags.Report(Range.getBegin(), DiagID)
1551 << Range;
1552}
1553void MicrosoftCXXNameMangler::mangleType(const ExtVectorType *T,
1554 SourceRange Range) {
1555 DiagnosticsEngine &Diags = Context.getDiags();
1556 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1557 "cannot mangle this extended vector type yet");
1558 Diags.Report(Range.getBegin(), DiagID)
1559 << Range;
1560}
1561void MicrosoftCXXNameMangler::mangleType(const DependentSizedExtVectorType *T,
1562 SourceRange Range) {
1563 DiagnosticsEngine &Diags = Context.getDiags();
1564 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1565 "cannot mangle this dependent-sized extended vector type yet");
1566 Diags.Report(Range.getBegin(), DiagID)
1567 << Range;
1568}
1569
1570void MicrosoftCXXNameMangler::mangleType(const ObjCInterfaceType *T,
1571 SourceRange) {
1572 // ObjC interfaces have structs underlying them.
1573 Out << 'U';
1574 mangleName(T->getDecl());
1575}
1576
1577void MicrosoftCXXNameMangler::mangleType(const ObjCObjectType *T,
1578 SourceRange Range) {
1579 // We don't allow overloading by different protocol qualification,
1580 // so mangling them isn't necessary.
1581 mangleType(T->getBaseType(), Range);
1582}
1583
1584void MicrosoftCXXNameMangler::mangleType(const BlockPointerType *T,
1585 SourceRange Range) {
1586 Out << "_E";
1587
1588 QualType pointee = T->getPointeeType();
1589 mangleType(pointee->castAs<FunctionProtoType>(), NULL, false, false);
1590}
1591
1592void MicrosoftCXXNameMangler::mangleType(const InjectedClassNameType *T,
1593 SourceRange Range) {
1594 DiagnosticsEngine &Diags = Context.getDiags();
1595 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1596 "cannot mangle this injected class name type yet");
1597 Diags.Report(Range.getBegin(), DiagID)
1598 << Range;
1599}
1600
1601void MicrosoftCXXNameMangler::mangleType(const TemplateSpecializationType *T,
1602 SourceRange Range) {
1603 DiagnosticsEngine &Diags = Context.getDiags();
1604 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1605 "cannot mangle this template specialization type yet");
1606 Diags.Report(Range.getBegin(), DiagID)
1607 << Range;
1608}
1609
1610void MicrosoftCXXNameMangler::mangleType(const DependentNameType *T,
1611 SourceRange Range) {
1612 DiagnosticsEngine &Diags = Context.getDiags();
1613 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1614 "cannot mangle this dependent name type yet");
1615 Diags.Report(Range.getBegin(), DiagID)
1616 << Range;
1617}
1618
1619void MicrosoftCXXNameMangler::mangleType(
1620 const DependentTemplateSpecializationType *T,
1621 SourceRange Range) {
1622 DiagnosticsEngine &Diags = Context.getDiags();
1623 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1624 "cannot mangle this dependent template specialization type yet");
1625 Diags.Report(Range.getBegin(), DiagID)
1626 << Range;
1627}
1628
1629void MicrosoftCXXNameMangler::mangleType(const PackExpansionType *T,
1630 SourceRange Range) {
1631 DiagnosticsEngine &Diags = Context.getDiags();
1632 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1633 "cannot mangle this pack expansion yet");
1634 Diags.Report(Range.getBegin(), DiagID)
1635 << Range;
1636}
1637
1638void MicrosoftCXXNameMangler::mangleType(const TypeOfType *T,
1639 SourceRange Range) {
1640 DiagnosticsEngine &Diags = Context.getDiags();
1641 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1642 "cannot mangle this typeof(type) yet");
1643 Diags.Report(Range.getBegin(), DiagID)
1644 << Range;
1645}
1646
1647void MicrosoftCXXNameMangler::mangleType(const TypeOfExprType *T,
1648 SourceRange Range) {
1649 DiagnosticsEngine &Diags = Context.getDiags();
1650 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1651 "cannot mangle this typeof(expression) yet");
1652 Diags.Report(Range.getBegin(), DiagID)
1653 << Range;
1654}
1655
1656void MicrosoftCXXNameMangler::mangleType(const DecltypeType *T,
1657 SourceRange Range) {
1658 DiagnosticsEngine &Diags = Context.getDiags();
1659 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1660 "cannot mangle this decltype() yet");
1661 Diags.Report(Range.getBegin(), DiagID)
1662 << Range;
1663}
1664
1665void MicrosoftCXXNameMangler::mangleType(const UnaryTransformType *T,
1666 SourceRange Range) {
1667 DiagnosticsEngine &Diags = Context.getDiags();
1668 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1669 "cannot mangle this unary transform type yet");
1670 Diags.Report(Range.getBegin(), DiagID)
1671 << Range;
1672}
1673
1674void MicrosoftCXXNameMangler::mangleType(const AutoType *T, SourceRange Range) {
1675 DiagnosticsEngine &Diags = Context.getDiags();
1676 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1677 "cannot mangle this 'auto' type yet");
1678 Diags.Report(Range.getBegin(), DiagID)
1679 << Range;
1680}
1681
1682void MicrosoftCXXNameMangler::mangleType(const AtomicType *T,
1683 SourceRange Range) {
1684 DiagnosticsEngine &Diags = Context.getDiags();
1685 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1686 "cannot mangle this C11 atomic type yet");
1687 Diags.Report(Range.getBegin(), DiagID)
1688 << Range;
1689}
1690
1691void MicrosoftMangleContext::mangleName(const NamedDecl *D,
1692 raw_ostream &Out) {
1693 assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
1694 "Invalid mangleName() call, argument is not a variable or function!");
1695 assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
1696 "Invalid mangleName() call on 'structor decl!");
1697
1698 PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
1699 getASTContext().getSourceManager(),
1700 "Mangling declaration");
1701
1702 MicrosoftCXXNameMangler Mangler(*this, Out);
1703 return Mangler.mangle(D);
1704}
1705void MicrosoftMangleContext::mangleThunk(const CXXMethodDecl *MD,
1706 const ThunkInfo &Thunk,
1707 raw_ostream &) {
1708 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1709 "cannot mangle thunk for this method yet");
1710 getDiags().Report(MD->getLocation(), DiagID);
1711}
1712void MicrosoftMangleContext::mangleCXXDtorThunk(const CXXDestructorDecl *DD,
1713 CXXDtorType Type,
1714 const ThisAdjustment &,
1715 raw_ostream &) {
1716 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1717 "cannot mangle thunk for this destructor yet");
1718 getDiags().Report(DD->getLocation(), DiagID);
1719}
1720void MicrosoftMangleContext::mangleCXXVTable(const CXXRecordDecl *RD,
1721 raw_ostream &Out) {
1722 // <mangled-name> ::= ? <operator-name> <class-name> <storage-class>
1723 // <cvr-qualifiers> [<name>] @
1724 // <operator-name> ::= _7 # vftable
1725 // ::= _8 # vbtable
1726 // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
1727 // is always '6' for vftables and '7' for vbtables. (The difference is
1728 // beyond me.)
1729 // TODO: vbtables.
1730 MicrosoftCXXNameMangler Mangler(*this, Out);
1731 Mangler.getStream() << "\01??_7";
1732 Mangler.mangleName(RD);
1733 Mangler.getStream() << "6B";
1734 // TODO: If the class has more than one vtable, mangle in the class it came
1735 // from.
1736 Mangler.getStream() << '@';
1737}
1738void MicrosoftMangleContext::mangleCXXVTT(const CXXRecordDecl *RD,
1739 raw_ostream &) {
1740 llvm_unreachable("The MS C++ ABI does not have virtual table tables!");
1741}
1742void MicrosoftMangleContext::mangleCXXCtorVTable(const CXXRecordDecl *RD,
1743 int64_t Offset,
1744 const CXXRecordDecl *Type,
1745 raw_ostream &) {
1746 llvm_unreachable("The MS C++ ABI does not have constructor vtables!");
1747}
1748void MicrosoftMangleContext::mangleCXXRTTI(QualType T,
1749 raw_ostream &) {
1750 // FIXME: Give a location...
1751 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1752 "cannot mangle RTTI descriptors for type %0 yet");
1753 getDiags().Report(DiagID)
1754 << T.getBaseTypeIdentifier();
1755}
1756void MicrosoftMangleContext::mangleCXXRTTIName(QualType T,
1757 raw_ostream &) {
1758 // FIXME: Give a location...
1759 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1760 "cannot mangle the name of type %0 into RTTI descriptors yet");
1761 getDiags().Report(DiagID)
1762 << T.getBaseTypeIdentifier();
1763}
1764void MicrosoftMangleContext::mangleCXXCtor(const CXXConstructorDecl *D,
1765 CXXCtorType Type,
1766 raw_ostream & Out) {
1767 MicrosoftCXXNameMangler mangler(*this, Out);
1768 mangler.mangle(D);
1769}
1770void MicrosoftMangleContext::mangleCXXDtor(const CXXDestructorDecl *D,
1771 CXXDtorType Type,
1772 raw_ostream & Out) {
Timur Iskhodzhanov59660c22013-02-13 08:37:51 +00001773 MicrosoftCXXNameMangler mangler(*this, Out, D, Type);
Guy Benyei7f92f2d2012-12-18 14:30:41 +00001774 mangler.mangle(D);
1775}
1776void MicrosoftMangleContext::mangleReferenceTemporary(const clang::VarDecl *VD,
1777 raw_ostream &) {
1778 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1779 "cannot mangle this reference temporary yet");
1780 getDiags().Report(VD->getLocation(), DiagID);
1781}
1782
1783MangleContext *clang::createMicrosoftMangleContext(ASTContext &Context,
1784 DiagnosticsEngine &Diags) {
1785 return new MicrosoftMangleContext(Context, Diags);
1786}