Chris Lattner | 5fd3e26 | 2008-04-14 17:54:23 +0000 | [diff] [blame] | 1 | //===--- RewriteRope.cpp - Rope specialized for rewriter --------*- C++ -*-===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file implements the RewriteRope class, which is a powerful string. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "clang/Rewrite/RewriteRope.h" |
| 15 | #include "llvm/Support/Casting.h" |
Chris Lattner | 5618d88 | 2008-04-14 21:41:00 +0000 | [diff] [blame] | 16 | #include <algorithm> |
Chris Lattner | 5fd3e26 | 2008-04-14 17:54:23 +0000 | [diff] [blame] | 17 | using namespace clang; |
| 18 | using llvm::dyn_cast; |
| 19 | using llvm::cast; |
| 20 | |
| 21 | |
| 22 | //===----------------------------------------------------------------------===// |
| 23 | // InsertResult Class |
| 24 | //===----------------------------------------------------------------------===// |
| 25 | |
| 26 | /// This is an adapted B+ Tree, ... erases don't keep the tree balanced. |
| 27 | |
| 28 | namespace { |
| 29 | class RopePieceBTreeNode; |
| 30 | struct InsertResult { |
| 31 | RopePieceBTreeNode *LHS, *RHS; |
| 32 | }; |
| 33 | } // end anonymous namespace |
| 34 | |
| 35 | //===----------------------------------------------------------------------===// |
| 36 | // RopePieceBTreeNode Class |
| 37 | //===----------------------------------------------------------------------===// |
| 38 | |
| 39 | namespace { |
| 40 | class RopePieceBTreeNode { |
| 41 | protected: |
| 42 | /// WidthFactor - This controls the number of K/V slots held in the BTree: |
| 43 | /// how wide it is. Each level of the BTree is guaranteed to have at least |
| 44 | /// 'WidthFactor' elements in it (either ropepieces or children), (except |
| 45 | /// the root, which may have less) and may have at most 2*WidthFactor |
| 46 | /// elements. |
| 47 | enum { WidthFactor = 8 }; |
| 48 | |
| 49 | /// Size - This is the number of bytes of file this node (including any |
| 50 | /// potential children) covers. |
| 51 | unsigned Size; |
| 52 | |
| 53 | /// IsLeaf - True if this is an instance of RopePieceBTreeLeaf, false if it |
| 54 | /// is an instance of RopePieceBTreeInterior. |
| 55 | bool IsLeaf; |
| 56 | |
Chris Lattner | b442e21 | 2008-04-14 20:05:32 +0000 | [diff] [blame] | 57 | RopePieceBTreeNode(bool isLeaf) : Size(0), IsLeaf(isLeaf) {} |
Chris Lattner | 5fd3e26 | 2008-04-14 17:54:23 +0000 | [diff] [blame] | 58 | ~RopePieceBTreeNode() {} |
| 59 | public: |
| 60 | |
| 61 | bool isLeaf() const { return IsLeaf; } |
| 62 | unsigned size() const { return Size; } |
| 63 | |
| 64 | void Destroy(); |
| 65 | |
| 66 | /// split - Split the range containing the specified offset so that we are |
| 67 | /// guaranteed that there is a place to do an insertion at the specified |
| 68 | /// offset. The offset is relative, so "0" is the start of the node. This |
| 69 | /// returns true if the insertion could not be done in place, and returns |
| 70 | /// information in 'Res' about the piece that is percolated up. |
| 71 | bool split(unsigned Offset, InsertResult *Res); |
| 72 | |
| 73 | /// insert - Insert the specified ropepiece into this tree node at the |
| 74 | /// specified offset. The offset is relative, so "0" is the start of the |
| 75 | /// node. This returns true if the insertion could not be done in place, |
| 76 | /// and returns information in 'Res' about the piece that is percolated up. |
| 77 | bool insert(unsigned Offset, const RopePiece &R, InsertResult *Res); |
| 78 | |
| 79 | /// erase - Remove NumBytes from this node at the specified offset. We are |
| 80 | /// guaranteed that there is a split at Offset. |
| 81 | void erase(unsigned Offset, unsigned NumBytes); |
| 82 | |
| 83 | static inline bool classof(const RopePieceBTreeNode *) { return true; } |
| 84 | |
| 85 | }; |
| 86 | } // end anonymous namespace |
| 87 | |
| 88 | //===----------------------------------------------------------------------===// |
| 89 | // RopePieceBTreeLeaf Class |
| 90 | //===----------------------------------------------------------------------===// |
| 91 | |
| 92 | namespace { |
| 93 | class RopePieceBTreeLeaf : public RopePieceBTreeNode { |
| 94 | /// NumPieces - This holds the number of rope pieces currently active in the |
| 95 | /// Pieces array. |
| 96 | unsigned char NumPieces; |
| 97 | |
| 98 | /// Pieces - This tracks the file chunks currently in this leaf. |
| 99 | /// |
| 100 | RopePiece Pieces[2*WidthFactor]; |
| 101 | |
| 102 | /// NextLeaf - This is a pointer to the next leaf in the tree, allowing |
| 103 | /// efficient in-order forward iteration of the tree without traversal. |
| 104 | const RopePieceBTreeLeaf *NextLeaf; |
| 105 | public: |
Chris Lattner | 70778c8 | 2008-04-14 20:07:03 +0000 | [diff] [blame] | 106 | RopePieceBTreeLeaf() : RopePieceBTreeNode(true), NumPieces(0), NextLeaf(0){} |
Chris Lattner | 5fd3e26 | 2008-04-14 17:54:23 +0000 | [diff] [blame] | 107 | |
| 108 | bool isFull() const { return NumPieces == 2*WidthFactor; } |
| 109 | |
| 110 | /// clear - Remove all rope pieces from this leaf. |
| 111 | void clear() { |
| 112 | while (NumPieces) |
| 113 | Pieces[--NumPieces] = RopePiece(); |
| 114 | Size = 0; |
| 115 | } |
| 116 | |
| 117 | unsigned getNumPieces() const { return NumPieces; } |
| 118 | |
| 119 | const RopePiece &getPiece(unsigned i) const { |
| 120 | assert(i < getNumPieces() && "Invalid piece ID"); |
| 121 | return Pieces[i]; |
| 122 | } |
| 123 | |
| 124 | const RopePieceBTreeLeaf *getNextLeafInOrder() const { return NextLeaf; } |
| 125 | void setNextLeafInOrder(const RopePieceBTreeLeaf *NL) { NextLeaf = NL; } |
| 126 | |
| 127 | void FullRecomputeSizeLocally() { |
| 128 | Size = 0; |
| 129 | for (unsigned i = 0, e = getNumPieces(); i != e; ++i) |
| 130 | Size += getPiece(i).size(); |
| 131 | } |
| 132 | |
| 133 | /// split - Split the range containing the specified offset so that we are |
| 134 | /// guaranteed that there is a place to do an insertion at the specified |
| 135 | /// offset. The offset is relative, so "0" is the start of the node. This |
| 136 | /// returns true if the insertion could not be done in place, and returns |
| 137 | /// information in 'Res' about the piece that is percolated up. |
| 138 | bool split(unsigned Offset, InsertResult *Res); |
| 139 | |
| 140 | /// insert - Insert the specified ropepiece into this tree node at the |
| 141 | /// specified offset. The offset is relative, so "0" is the start of the |
| 142 | /// node. This returns true if the insertion could not be done in place, |
| 143 | /// and returns information in 'Res' about the piece that is percolated up. |
| 144 | bool insert(unsigned Offset, const RopePiece &R, InsertResult *Res); |
| 145 | |
| 146 | |
| 147 | /// erase - Remove NumBytes from this node at the specified offset. We are |
| 148 | /// guaranteed that there is a split at Offset. |
| 149 | void erase(unsigned Offset, unsigned NumBytes); |
| 150 | |
| 151 | static inline bool classof(const RopePieceBTreeLeaf *) { return true; } |
| 152 | static inline bool classof(const RopePieceBTreeNode *N) { |
| 153 | return N->isLeaf(); |
| 154 | } |
| 155 | }; |
| 156 | } // end anonymous namespace |
| 157 | |
| 158 | /// split - Split the range containing the specified offset so that we are |
| 159 | /// guaranteed that there is a place to do an insertion at the specified |
| 160 | /// offset. The offset is relative, so "0" is the start of the node. This |
| 161 | /// returns true if the insertion could not be done in place, and returns |
| 162 | /// information in 'Res' about the piece that is percolated up. |
| 163 | bool RopePieceBTreeLeaf::split(unsigned Offset, InsertResult *Res) { |
| 164 | // Find the insertion point. We are guaranteed that there is a split at the |
| 165 | // specified offset so find it. |
| 166 | if (Offset == 0 || Offset == size()) { |
| 167 | // Fastpath for a common case. There is already a splitpoint at the end. |
| 168 | return false; |
| 169 | } |
| 170 | |
| 171 | // Find the piece that this offset lands in. |
| 172 | unsigned PieceOffs = 0; |
| 173 | unsigned i = 0; |
| 174 | while (Offset >= PieceOffs+Pieces[i].size()) { |
| 175 | PieceOffs += Pieces[i].size(); |
| 176 | ++i; |
| 177 | } |
| 178 | |
| 179 | // If there is already a split point at the specified offset, just return |
| 180 | // success. |
| 181 | if (PieceOffs == Offset) |
| 182 | return false; |
| 183 | |
| 184 | // Otherwise, we need to split piece 'i' at Offset-PieceOffs. Convert Offset |
| 185 | // to being Piece relative. |
| 186 | unsigned IntraPieceOffset = Offset-PieceOffs; |
| 187 | |
| 188 | // We do this by shrinking the RopePiece and then doing an insert of the tail. |
| 189 | RopePiece Tail(Pieces[i].StrData, Pieces[i].StartOffs+IntraPieceOffset, |
| 190 | Pieces[i].EndOffs); |
| 191 | Size -= Pieces[i].size(); |
| 192 | Pieces[i].EndOffs = Pieces[i].StartOffs+IntraPieceOffset; |
| 193 | Size += Pieces[i].size(); |
| 194 | |
| 195 | return insert(Offset, Tail, Res); |
| 196 | } |
| 197 | |
| 198 | |
| 199 | /// insert - Insert the specified RopePiece into this tree node at the |
| 200 | /// specified offset. The offset is relative, so "0" is the start of the |
| 201 | /// node. This returns true if the insertion could not be done in place, and |
| 202 | /// returns information in 'Res' about the piece that is percolated up. |
| 203 | bool RopePieceBTreeLeaf::insert(unsigned Offset, const RopePiece &R, |
| 204 | InsertResult *Res) { |
| 205 | // If this node is not full, insert the piece. |
| 206 | if (!isFull()) { |
| 207 | // Find the insertion point. We are guaranteed that there is a split at the |
| 208 | // specified offset so find it. |
| 209 | unsigned i = 0, e = getNumPieces(); |
| 210 | if (Offset == size()) { |
| 211 | // Fastpath for a common case. |
| 212 | i = e; |
| 213 | } else { |
| 214 | unsigned SlotOffs = 0; |
| 215 | for (; Offset > SlotOffs; ++i) |
| 216 | SlotOffs += getPiece(i).size(); |
| 217 | assert(SlotOffs == Offset && "Split didn't occur before insertion!"); |
| 218 | } |
| 219 | |
| 220 | // For an insertion into a non-full leaf node, just insert the value in |
| 221 | // its sorted position. This requires moving later values over. |
| 222 | for (; i != e; --e) |
| 223 | Pieces[e] = Pieces[e-1]; |
| 224 | Pieces[i] = R; |
| 225 | ++NumPieces; |
| 226 | Size += R.size(); |
| 227 | return false; |
| 228 | } |
| 229 | |
| 230 | // Otherwise, if this is leaf is full, split it in two halves. Since this |
| 231 | // node is full, it contains 2*WidthFactor values. We move the first |
| 232 | // 'WidthFactor' values to the LHS child (which we leave in this node) and |
| 233 | // move the last 'WidthFactor' values into the RHS child. |
| 234 | |
| 235 | // Create the new node. |
| 236 | RopePieceBTreeLeaf *NewNode = new RopePieceBTreeLeaf(); |
| 237 | |
| 238 | // Move over the last 'WidthFactor' values from here to NewNode. |
| 239 | std::copy(&Pieces[WidthFactor], &Pieces[2*WidthFactor], |
| 240 | &NewNode->Pieces[0]); |
| 241 | // Replace old pieces with null RopePieces to drop refcounts. |
| 242 | std::fill(&Pieces[WidthFactor], &Pieces[2*WidthFactor], RopePiece()); |
| 243 | |
| 244 | // Decrease the number of values in the two nodes. |
| 245 | NewNode->NumPieces = NumPieces = WidthFactor; |
| 246 | |
| 247 | // Recompute the two nodes' size. |
| 248 | NewNode->FullRecomputeSizeLocally(); |
| 249 | FullRecomputeSizeLocally(); |
| 250 | |
| 251 | // Update the list of leaves. |
| 252 | NewNode->setNextLeafInOrder(this->getNextLeafInOrder()); |
| 253 | this->setNextLeafInOrder(NewNode); |
| 254 | |
| 255 | assert(Res && "No result location specified"); |
| 256 | Res->LHS = this; |
| 257 | Res->RHS = NewNode; |
| 258 | |
| 259 | if (this->size() >= Offset) |
| 260 | this->insert(Offset, R, 0 /*can't fail*/); |
| 261 | else |
| 262 | NewNode->insert(Offset - this->size(), R, 0 /*can't fail*/); |
| 263 | return true; |
| 264 | } |
| 265 | |
| 266 | /// erase - Remove NumBytes from this node at the specified offset. We are |
| 267 | /// guaranteed that there is a split at Offset. |
| 268 | void RopePieceBTreeLeaf::erase(unsigned Offset, unsigned NumBytes) { |
| 269 | // Since we are guaranteed that there is a split at Offset, we start by |
| 270 | // finding the Piece that starts there. |
| 271 | unsigned PieceOffs = 0; |
| 272 | unsigned i = 0; |
| 273 | for (; Offset > PieceOffs; ++i) |
| 274 | PieceOffs += getPiece(i).size(); |
| 275 | assert(PieceOffs == Offset && "Split didn't occur before erase!"); |
| 276 | |
| 277 | unsigned StartPiece = i; |
| 278 | |
| 279 | // Figure out how many pieces completely cover 'NumBytes'. We want to remove |
| 280 | // all of them. |
| 281 | for (; Offset+NumBytes > PieceOffs+getPiece(i).size(); ++i) |
| 282 | PieceOffs += getPiece(i).size(); |
| 283 | |
| 284 | // If we exactly include the last one, include it in the region to delete. |
| 285 | if (Offset+NumBytes == PieceOffs+getPiece(i).size()) |
| 286 | PieceOffs += getPiece(i).size(), ++i; |
| 287 | |
| 288 | // If we completely cover some RopePieces, erase them now. |
| 289 | if (i != StartPiece) { |
| 290 | unsigned NumDeleted = i-StartPiece; |
| 291 | for (; i != getNumPieces(); ++i) |
| 292 | Pieces[i-NumDeleted] = Pieces[i]; |
| 293 | |
| 294 | // Drop references to dead rope pieces. |
| 295 | std::fill(&Pieces[getNumPieces()-NumDeleted], &Pieces[getNumPieces()], |
| 296 | RopePiece()); |
| 297 | NumPieces -= NumDeleted; |
| 298 | |
| 299 | unsigned CoverBytes = PieceOffs-Offset; |
| 300 | NumBytes -= CoverBytes; |
| 301 | Size -= CoverBytes; |
| 302 | } |
| 303 | |
| 304 | // If we completely removed some stuff, we could be done. |
| 305 | if (NumBytes == 0) return; |
| 306 | |
| 307 | // Okay, now might be erasing part of some Piece. If this is the case, then |
| 308 | // move the start point of the piece. |
| 309 | assert(getPiece(StartPiece).size() > NumBytes); |
| 310 | Pieces[StartPiece].StartOffs += NumBytes; |
| 311 | |
| 312 | // The size of this node just shrunk by NumBytes. |
| 313 | Size -= NumBytes; |
| 314 | } |
| 315 | |
| 316 | //===----------------------------------------------------------------------===// |
| 317 | // RopePieceBTreeInterior Class |
| 318 | //===----------------------------------------------------------------------===// |
| 319 | |
| 320 | namespace { |
| 321 | // Holds up to 2*WidthFactor children. |
| 322 | class RopePieceBTreeInterior : public RopePieceBTreeNode { |
| 323 | /// NumChildren - This holds the number of children currently active in the |
| 324 | /// Children array. |
| 325 | unsigned char NumChildren; |
| 326 | RopePieceBTreeNode *Children[2*WidthFactor]; |
| 327 | public: |
Chris Lattner | 70778c8 | 2008-04-14 20:07:03 +0000 | [diff] [blame] | 328 | RopePieceBTreeInterior() : RopePieceBTreeNode(false), NumChildren(0) {} |
Chris Lattner | 5fd3e26 | 2008-04-14 17:54:23 +0000 | [diff] [blame] | 329 | |
| 330 | RopePieceBTreeInterior(RopePieceBTreeNode *LHS, RopePieceBTreeNode *RHS) |
| 331 | : RopePieceBTreeNode(false) { |
| 332 | Children[0] = LHS; |
| 333 | Children[1] = RHS; |
| 334 | NumChildren = 2; |
| 335 | Size = LHS->size() + RHS->size(); |
| 336 | } |
| 337 | |
| 338 | bool isFull() const { return NumChildren == 2*WidthFactor; } |
| 339 | |
| 340 | unsigned getNumChildren() const { return NumChildren; } |
| 341 | const RopePieceBTreeNode *getChild(unsigned i) const { |
| 342 | assert(i < NumChildren && "invalid child #"); |
| 343 | return Children[i]; |
| 344 | } |
| 345 | RopePieceBTreeNode *getChild(unsigned i) { |
| 346 | assert(i < NumChildren && "invalid child #"); |
| 347 | return Children[i]; |
| 348 | } |
| 349 | |
| 350 | void FullRecomputeSizeLocally() { |
| 351 | Size = 0; |
| 352 | for (unsigned i = 0, e = getNumChildren(); i != e; ++i) |
| 353 | Size += getChild(i)->size(); |
| 354 | } |
| 355 | |
| 356 | |
| 357 | /// split - Split the range containing the specified offset so that we are |
| 358 | /// guaranteed that there is a place to do an insertion at the specified |
| 359 | /// offset. The offset is relative, so "0" is the start of the node. This |
| 360 | /// returns true if the insertion could not be done in place, and returns |
| 361 | /// information in 'Res' about the piece that is percolated up. |
| 362 | bool split(unsigned Offset, InsertResult *Res); |
| 363 | |
| 364 | |
| 365 | /// insert - Insert the specified ropepiece into this tree node at the |
| 366 | /// specified offset. The offset is relative, so "0" is the start of the |
| 367 | /// node. This returns true if the insertion could not be done in place, |
| 368 | /// and returns information in 'Res' about the piece that is percolated up. |
| 369 | bool insert(unsigned Offset, const RopePiece &R, InsertResult *Res); |
| 370 | |
| 371 | /// HandleChildPiece - A child propagated an insertion result up to us. |
| 372 | /// Insert the new child, and/or propagate the result further up the tree. |
| 373 | bool HandleChildPiece(unsigned i, InsertResult &Res); |
| 374 | |
| 375 | /// erase - Remove NumBytes from this node at the specified offset. We are |
| 376 | /// guaranteed that there is a split at Offset. |
| 377 | void erase(unsigned Offset, unsigned NumBytes); |
| 378 | |
| 379 | static inline bool classof(const RopePieceBTreeInterior *) { return true; } |
| 380 | static inline bool classof(const RopePieceBTreeNode *N) { |
| 381 | return !N->isLeaf(); |
| 382 | } |
| 383 | }; |
| 384 | } // end anonymous namespace |
| 385 | |
| 386 | /// split - Split the range containing the specified offset so that we are |
| 387 | /// guaranteed that there is a place to do an insertion at the specified |
| 388 | /// offset. The offset is relative, so "0" is the start of the node. This |
| 389 | /// returns true if the insertion could not be done in place, and returns |
| 390 | /// information in 'Res' about the piece that is percolated up. |
| 391 | bool RopePieceBTreeInterior::split(unsigned Offset, InsertResult *Res) { |
| 392 | // Figure out which child to split. |
| 393 | if (Offset == 0 || Offset == size()) |
| 394 | return false; // If we have an exact offset, we're already split. |
| 395 | |
| 396 | unsigned ChildOffset = 0; |
| 397 | unsigned i = 0; |
| 398 | for (; Offset >= ChildOffset+getChild(i)->size(); ++i) |
| 399 | ChildOffset += getChild(i)->size(); |
| 400 | |
| 401 | // If already split there, we're done. |
| 402 | if (ChildOffset == Offset) |
| 403 | return false; |
| 404 | |
| 405 | // Otherwise, recursively split the child. |
| 406 | if (getChild(i)->split(Offset-ChildOffset, Res)) |
| 407 | return HandleChildPiece(i, *Res); |
| 408 | return false; // Done! |
| 409 | } |
| 410 | |
| 411 | /// insert - Insert the specified ropepiece into this tree node at the |
| 412 | /// specified offset. The offset is relative, so "0" is the start of the |
| 413 | /// node. This returns true if the insertion could not be done in place, and |
| 414 | /// returns information in 'Res' about the piece that is percolated up. |
| 415 | bool RopePieceBTreeInterior::insert(unsigned Offset, const RopePiece &R, |
| 416 | InsertResult *Res) { |
| 417 | // Find the insertion point. We are guaranteed that there is a split at the |
| 418 | // specified offset so find it. |
| 419 | unsigned i = 0, e = getNumChildren(); |
| 420 | |
| 421 | unsigned ChildOffs = 0; |
| 422 | if (Offset == size()) { |
| 423 | // Fastpath for a common case. Insert at end of last child. |
| 424 | i = e-1; |
| 425 | ChildOffs = size()-getChild(i)->size(); |
| 426 | } else { |
| 427 | for (; Offset > ChildOffs+getChild(i)->size(); ++i) |
| 428 | ChildOffs += getChild(i)->size(); |
| 429 | } |
| 430 | |
| 431 | Size += R.size(); |
| 432 | |
| 433 | // Insert at the end of this child. |
| 434 | if (getChild(i)->insert(Offset-ChildOffs, R, Res)) |
| 435 | return HandleChildPiece(i, *Res); |
| 436 | |
| 437 | return false; |
| 438 | } |
| 439 | |
| 440 | /// HandleChildPiece - A child propagated an insertion result up to us. |
| 441 | /// Insert the new child, and/or propagate the result further up the tree. |
| 442 | bool RopePieceBTreeInterior::HandleChildPiece(unsigned i, InsertResult &Res) { |
| 443 | // Otherwise the child propagated a subtree up to us as a new child. See if |
| 444 | // we have space for it here. |
| 445 | if (!isFull()) { |
| 446 | // Replace child 'i' with the two children specified in Res. |
| 447 | if (i + 1 != getNumChildren()) |
| 448 | memmove(&Children[i+2], &Children[i+1], |
| 449 | (getNumChildren()-i-1)*sizeof(Children[0])); |
| 450 | Children[i] = Res.LHS; |
| 451 | Children[i+1] = Res.RHS; |
| 452 | ++NumChildren; |
| 453 | return false; |
| 454 | } |
| 455 | |
| 456 | // Okay, this node is full. Split it in half, moving WidthFactor children to |
| 457 | // a newly allocated interior node. |
| 458 | |
| 459 | // Create the new node. |
| 460 | RopePieceBTreeInterior *NewNode = new RopePieceBTreeInterior(); |
| 461 | |
| 462 | // Move over the last 'WidthFactor' values from here to NewNode. |
| 463 | memcpy(&NewNode->Children[0], &Children[WidthFactor], |
| 464 | WidthFactor*sizeof(Children[0])); |
| 465 | |
| 466 | // Decrease the number of values in the two nodes. |
| 467 | NewNode->NumChildren = NumChildren = WidthFactor; |
| 468 | |
| 469 | // Finally, insert the two new children in the side the can (now) hold them. |
| 470 | if (i < WidthFactor) |
| 471 | this->HandleChildPiece(i, Res); |
| 472 | else |
| 473 | NewNode->HandleChildPiece(i-WidthFactor, Res); |
| 474 | |
| 475 | // Recompute the two nodes' size. |
| 476 | NewNode->FullRecomputeSizeLocally(); |
| 477 | FullRecomputeSizeLocally(); |
| 478 | |
| 479 | Res.LHS = this; |
| 480 | Res.RHS = NewNode; |
| 481 | return true; |
| 482 | } |
| 483 | |
| 484 | /// erase - Remove NumBytes from this node at the specified offset. We are |
| 485 | /// guaranteed that there is a split at Offset. |
| 486 | void RopePieceBTreeInterior::erase(unsigned Offset, unsigned NumBytes) { |
| 487 | // This will shrink this node by NumBytes. |
| 488 | Size -= NumBytes; |
| 489 | |
| 490 | // Find the first child that overlaps with Offset. |
| 491 | unsigned i = 0; |
| 492 | for (; Offset >= getChild(i)->size(); ++i) |
| 493 | Offset -= getChild(i)->size(); |
| 494 | |
| 495 | // Propagate the delete request into overlapping children, or completely |
| 496 | // delete the children as appropriate. |
| 497 | while (NumBytes) { |
| 498 | RopePieceBTreeNode *CurChild = getChild(i); |
| 499 | |
| 500 | // If we are deleting something contained entirely in the child, pass on the |
| 501 | // request. |
| 502 | if (Offset+NumBytes < CurChild->size()) { |
| 503 | CurChild->erase(Offset, NumBytes); |
| 504 | return; |
| 505 | } |
| 506 | |
| 507 | // If this deletion request starts somewhere in the middle of the child, it |
| 508 | // must be deleting to the end of the child. |
| 509 | if (Offset) { |
| 510 | unsigned BytesFromChild = CurChild->size()-Offset; |
| 511 | CurChild->erase(Offset, BytesFromChild); |
| 512 | NumBytes -= BytesFromChild; |
| 513 | ++i; |
| 514 | continue; |
| 515 | } |
| 516 | |
| 517 | // If the deletion request completely covers the child, delete it and move |
| 518 | // the rest down. |
| 519 | NumBytes -= CurChild->size(); |
| 520 | CurChild->Destroy(); |
| 521 | --NumChildren; |
| 522 | if (i+1 != getNumChildren()) |
| 523 | memmove(&Children[i], &Children[i+1], |
| 524 | (getNumChildren()-i)*sizeof(Children[0])); |
| 525 | } |
| 526 | } |
| 527 | |
| 528 | //===----------------------------------------------------------------------===// |
| 529 | // RopePieceBTreeNode Implementation |
| 530 | //===----------------------------------------------------------------------===// |
| 531 | |
| 532 | void RopePieceBTreeNode::Destroy() { |
| 533 | if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(this)) |
| 534 | delete Leaf; |
| 535 | else |
| 536 | delete cast<RopePieceBTreeInterior>(this); |
| 537 | } |
| 538 | |
| 539 | /// split - Split the range containing the specified offset so that we are |
| 540 | /// guaranteed that there is a place to do an insertion at the specified |
| 541 | /// offset. The offset is relative, so "0" is the start of the node. This |
| 542 | /// returns true if the insertion could not be done in place, and returns |
| 543 | /// information in 'Res' about the piece that is percolated up. |
| 544 | bool RopePieceBTreeNode::split(unsigned Offset, InsertResult *Res) { |
| 545 | assert(Offset <= size() && "Invalid offset to split!"); |
| 546 | if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(this)) |
| 547 | return Leaf->split(Offset, Res); |
| 548 | return cast<RopePieceBTreeInterior>(this)->split(Offset, Res); |
| 549 | } |
| 550 | |
| 551 | /// insert - Insert the specified ropepiece into this tree node at the |
| 552 | /// specified offset. The offset is relative, so "0" is the start of the |
| 553 | /// node. |
| 554 | bool RopePieceBTreeNode::insert(unsigned Offset, const RopePiece &R, |
| 555 | InsertResult *Res) { |
| 556 | assert(Offset <= size() && "Invalid offset to insert!"); |
| 557 | if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(this)) |
| 558 | return Leaf->insert(Offset, R, Res); |
| 559 | return cast<RopePieceBTreeInterior>(this)->insert(Offset, R, Res); |
| 560 | } |
| 561 | |
| 562 | /// erase - Remove NumBytes from this node at the specified offset. We are |
| 563 | /// guaranteed that there is a split at Offset. |
| 564 | void RopePieceBTreeNode::erase(unsigned Offset, unsigned NumBytes) { |
| 565 | assert(Offset+NumBytes <= size() && "Invalid offset to erase!"); |
| 566 | if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(this)) |
| 567 | return Leaf->erase(Offset, NumBytes); |
| 568 | return cast<RopePieceBTreeInterior>(this)->erase(Offset, NumBytes); |
| 569 | } |
| 570 | |
| 571 | |
| 572 | //===----------------------------------------------------------------------===// |
| 573 | // RopePieceBTreeIterator Implementation |
| 574 | //===----------------------------------------------------------------------===// |
| 575 | |
| 576 | static const RopePieceBTreeLeaf *getCN(const void *P) { |
| 577 | return static_cast<const RopePieceBTreeLeaf*>(P); |
| 578 | } |
| 579 | |
| 580 | // begin iterator. |
| 581 | RopePieceBTreeIterator::RopePieceBTreeIterator(const void *n) { |
| 582 | const RopePieceBTreeNode *N = static_cast<const RopePieceBTreeNode*>(n); |
| 583 | |
| 584 | // Walk down the left side of the tree until we get to a leaf. |
| 585 | while (const RopePieceBTreeInterior *IN = dyn_cast<RopePieceBTreeInterior>(N)) |
| 586 | N = IN->getChild(0); |
| 587 | |
| 588 | // We must have at least one leaf. |
| 589 | CurNode = cast<RopePieceBTreeLeaf>(N); |
| 590 | |
| 591 | // If we found a leaf that happens to be empty, skip over it until we get |
| 592 | // to something full. |
| 593 | while (CurNode && getCN(CurNode)->getNumPieces() == 0) |
| 594 | CurNode = getCN(CurNode)->getNextLeafInOrder(); |
| 595 | |
| 596 | if (CurNode != 0) |
| 597 | CurPiece = &getCN(CurNode)->getPiece(0); |
| 598 | else // Empty tree, this is an end() iterator. |
| 599 | CurPiece = 0; |
| 600 | CurChar = 0; |
| 601 | } |
| 602 | |
| 603 | void RopePieceBTreeIterator::MoveToNextPiece() { |
| 604 | if (CurPiece != &getCN(CurNode)->getPiece(getCN(CurNode)->getNumPieces()-1)) { |
| 605 | CurChar = 0; |
| 606 | ++CurPiece; |
| 607 | return; |
| 608 | } |
| 609 | |
| 610 | // Find the next non-empty leaf node. |
| 611 | do |
| 612 | CurNode = getCN(CurNode)->getNextLeafInOrder(); |
| 613 | while (CurNode && getCN(CurNode)->getNumPieces() == 0); |
| 614 | |
| 615 | if (CurNode != 0) |
| 616 | CurPiece = &getCN(CurNode)->getPiece(0); |
| 617 | else // Hit end(). |
| 618 | CurPiece = 0; |
| 619 | CurChar = 0; |
| 620 | } |
| 621 | |
| 622 | //===----------------------------------------------------------------------===// |
| 623 | // RopePieceBTree Implementation |
| 624 | //===----------------------------------------------------------------------===// |
| 625 | |
| 626 | static RopePieceBTreeNode *getRoot(void *P) { |
| 627 | return static_cast<RopePieceBTreeNode*>(P); |
| 628 | } |
| 629 | |
| 630 | RopePieceBTree::RopePieceBTree() { |
| 631 | Root = new RopePieceBTreeLeaf(); |
| 632 | } |
| 633 | RopePieceBTree::RopePieceBTree(const RopePieceBTree &RHS) { |
| 634 | assert(RHS.empty() && "Can't copy non-empty tree yet"); |
| 635 | Root = new RopePieceBTreeLeaf(); |
| 636 | } |
| 637 | RopePieceBTree::~RopePieceBTree() { |
| 638 | getRoot(Root)->Destroy(); |
| 639 | } |
| 640 | |
| 641 | unsigned RopePieceBTree::size() const { |
| 642 | return getRoot(Root)->size(); |
| 643 | } |
| 644 | |
| 645 | void RopePieceBTree::clear() { |
| 646 | if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(getRoot(Root))) |
| 647 | Leaf->clear(); |
| 648 | else { |
| 649 | getRoot(Root)->Destroy(); |
| 650 | Root = new RopePieceBTreeLeaf(); |
| 651 | } |
| 652 | } |
| 653 | |
| 654 | void RopePieceBTree::insert(unsigned Offset, const RopePiece &R) { |
| 655 | InsertResult Result; |
| 656 | // #1. Split at Offset. |
| 657 | if (getRoot(Root)->split(Offset, &Result)) |
| 658 | Root = new RopePieceBTreeInterior(Result.LHS, Result.RHS); |
| 659 | |
| 660 | // #2. Do the insertion. |
| 661 | if (getRoot(Root)->insert(Offset, R, &Result)) |
| 662 | Root = new RopePieceBTreeInterior(Result.LHS, Result.RHS); |
| 663 | } |
| 664 | |
| 665 | void RopePieceBTree::erase(unsigned Offset, unsigned NumBytes) { |
| 666 | InsertResult Result; |
| 667 | // #1. Split at Offset. |
| 668 | if (getRoot(Root)->split(Offset, &Result)) |
| 669 | Root = new RopePieceBTreeInterior(Result.LHS, Result.RHS); |
| 670 | |
| 671 | // #2. Do the erasing. |
| 672 | getRoot(Root)->erase(Offset, NumBytes); |
| 673 | } |
Chris Lattner | 5618d88 | 2008-04-14 21:41:00 +0000 | [diff] [blame] | 674 | |
| 675 | //===----------------------------------------------------------------------===// |
| 676 | // RewriteRope Implementation |
| 677 | //===----------------------------------------------------------------------===// |
| 678 | |
| 679 | RopePiece RewriteRope::MakeRopeString(const char *Start, const char *End) { |
| 680 | unsigned Len = End-Start; |
| 681 | |
| 682 | // If we have space for this string in the current alloc buffer, use it. |
| 683 | if (AllocOffs+Len <= AllocChunkSize) { |
| 684 | memcpy(AllocBuffer->Data+AllocOffs, Start, Len); |
| 685 | AllocOffs += Len; |
| 686 | return RopePiece(AllocBuffer, AllocOffs-Len, AllocOffs); |
| 687 | } |
| 688 | |
| 689 | // If we don't have enough room because this specific allocation is huge, |
| 690 | // just allocate a new rope piece for it alone. |
| 691 | if (Len > AllocChunkSize) { |
| 692 | unsigned Size = End-Start+sizeof(RopeRefCountString)-1; |
| 693 | RopeRefCountString *Res = |
| 694 | reinterpret_cast<RopeRefCountString *>(new char[Size]); |
| 695 | Res->RefCount = 0; |
| 696 | memcpy(Res->Data, Start, End-Start); |
| 697 | return RopePiece(Res, 0, End-Start); |
| 698 | } |
| 699 | |
| 700 | // Otherwise, this was a small request but we just don't have space for it |
| 701 | // Make a new chunk and share it with later allocations. |
| 702 | |
| 703 | // If we had an old allocation, drop our reference to it. |
| 704 | if (AllocBuffer && --AllocBuffer->RefCount == 0) |
| 705 | delete [] (char*)AllocBuffer; |
| 706 | |
| 707 | unsigned AllocSize = sizeof(RopeRefCountString)-1+AllocChunkSize; |
| 708 | AllocBuffer = reinterpret_cast<RopeRefCountString *>(new char[AllocSize]); |
| 709 | AllocBuffer->RefCount = 0; |
| 710 | memcpy(AllocBuffer->Data, Start, Len); |
| 711 | AllocOffs = Len; |
| 712 | |
| 713 | // Start out the new allocation with a refcount of 1, since we have an |
| 714 | // internal reference to it. |
| 715 | AllocBuffer->addRef(); |
| 716 | return RopePiece(AllocBuffer, 0, Len); |
| 717 | } |
| 718 | |
| 719 | |