blob: 09072b6a7c31fba56db8246dc1996e9c2cb557e8 [file] [log] [blame]
Douglas Gregorc41b6ff2010-06-30 22:01:08 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3<html>
4<head>
5 <META http-equiv="Content-Type" content="text/html; charset=ISO-8859-1" />
6 <title>Language Compatibility</title>
7 <link type="text/css" rel="stylesheet" href="menu.css" />
8 <link type="text/css" rel="stylesheet" href="content.css" />
9 <style type="text/css">
10</style>
11</head>
12<body>
13
14<!--#include virtual="menu.html.incl"-->
15
16<div id="content">
17
18<!-- ======================================================================= -->
19<h1>Language Compatibility</h1>
20<!-- ======================================================================= -->
21
22<p>Clang strives to both conform to current language standards (C99,
23 C++98) and also to implement many widely-used extensions available
24 in other compilers, so that most correct code will "just work" when
25 compiler with Clang. However, Clang is more strict than other
26 popular compilers, and may reject incorrect code that other
27 compilers allow. This page documents common compatibility and
28 portability issues with Clang to help you understand and fix the
29 problem in your code when Clang emits an error message.</p>
30
31<ul>
32 <li><a href="#c">C compatibility</a>
33 <ul>
34 <li><a href="#inline">C99 inline functions</a></li>
35 <li><a href="#lvalue-cast">Lvalue casts</a></li>
36 </ul>
37 </li>
38 <li><a href="#objective-c">Objective-C compatibility</a>
39 <ul>
40 <li><a href="#super-cast">Cast of super</a></li>
41 <li><a href="#sizeof-interface">Size of interfaces</a></li>
42 </ul>
43 </li>
44 <li><a href="#c++">C++ compatibility</a>
45 <ul>
46 <li><a href="#vla">Variable-length arrays</a></li>
47 <li><a href="#init_static_const">Initialization of non-integral static const data members within a class definition</a></li>
48 <li><a href="#dep_lookup">Unqualified lookup in templates</a></li>
49 <li><a href="#dep_lookup_bases">Unqualified lookup into dependent bases of class templates</a></li>
50 <li><a href="#undep_incomplete">Incomplete types in templates</a></li>
51 <li><a href="#bad_templates">Templates with no valid instantiations</a></li>
52 <li><a href="#default_init_const">Default initialization of const
53 variable of a class type requires user-defined default
54 constructor</a></li>
55 </ul>
56 </li>
57 <li><a href="#objective-c++">Objective-C++ compatibility</a>
58 <ul>
59 <li><a href="#implicit-downcasts">Implicit downcasts</a></li>
60 </ul>
61 </li>
62</ul>
63
64<!-- ======================================================================= -->
65<h2 id="c">C compatibility</h3>
66<!-- ======================================================================= -->
67
68<!-- ======================================================================= -->
69<h3 id="inline">C99 inline functions</h3>
70<!-- ======================================================================= -->
71<p>By default, Clang builds C code according to the C99 standard,
72which provides different inlining semantics than GCC's default
73behavior. For example, when compiling the following code with no optimization:</p>
74<pre>
75inline int add(int i, int j) { return i + j; }
76
77int main() {
78 int i = add(4, 5);
79 return i;
80}
81</pre>
82
83<p>In C99, this is an incomplete (incorrect) program because there is
84no external definition of the <code>add</code> function: the inline
85definition is only used for optimization, if the compiler decides to
86perform inlining. Therefore, we will get a (correct) link-time error
87with Clang, e.g.:</p>
88
89<pre>
90Undefined symbols:
91 "_add", referenced from:
92 _main in cc-y1jXIr.o
93</pre>
94
95<p>There are several ways to fix this problem:</p>
96
97<ul>
98 <li>Provide an external (non-inline) definition of <code>add</code>
99 somewhere in your program.</li>
100
101 <li>Change <code>add</code> to a <code>static inline</code>
102 function. Static inline functions are always resolved within the
103 translation unit, so you won't have to add an external, non-inline
104 definition of the function elsewhere in your program.</li>
105
106 <li>Compile with the GNU89 dialect by adding
107 <code>-std=gnu89</code> to the set of Clang options. This option is
108 only recommended if the program source cannot be changed or if the
109 program also relies on additional C89-specific behavior that cannot
110 be changed.</li>
111</ul>
112
113<!-- ======================================================================= -->
114<h3 id="lvalue-cast">Lvalue casts</h3>
115<!-- ======================================================================= -->
116
117<p>GCC permits casting the left-hand side of an assignment to a
118different type. Clang produces an error on similar code, e.g.,</p>
119
120<pre>
121lvalue.c:2:3: error: assignment to cast is illegal, lvalue casts are not
122 supported
123 (int*)addr = val;
124 ^~~~~~~~~~ ~
125</pre>
126
127<p>To fix this problem, move the cast to the right-hand side. In this
128example, one could use:</p>
129
130<pre>
131 addr = (float *)val;
132</pre>
133
134<!-- ======================================================================= -->
135<h2 id="objective-c">Objective-C compatibility</h3>
136<!-- ======================================================================= -->
137
138<!-- ======================================================================= -->
139<h3 id="super-cast">Cast of super</h3>
140<!-- ======================================================================= -->
141
142<p>GCC treats the <code>super</code> identifier as an expression that
143can, among other things, be cast to a different type. Clang treats
144<code>super</code> as a context-sensitive keyword, and will reject a
145type-cast of <code>super</code>:</p>
146
147<pre>
148super.m:11:12: error: cannot cast 'super' (it isn't an expression)
149 [(Super*)super add:4];
150 ~~~~~~~~^
151</pre>
152
153<p>To fix this problem, remove the type cast, e.g.</p>
154<pre>
155 [super add:4];
156</pre>
157
158<!-- ======================================================================= -->
159<h3 id="sizeof-interface">Size of interfaces</h3>
160<!-- ======================================================================= -->
161
162<p>When using the "non-fragile" Objective-C ABI in use, the size of an
163Objective-C class may change over time as instance variables are added
164(or removed). For this reason, Clang rejects the application of the
165<code>sizeof</code> operator to an Objective-C class when using this
166ABI:</p>
167
168<pre>
169sizeof.m:4:14: error: invalid application of 'sizeof' to interface 'NSArray' in
170 non-fragile ABI
171 int size = sizeof(NSArray);
172 ^ ~~~~~~~~~
173</pre>
174
175<p>Code that relies on the size of an Objective-C class is likely to
176be broken anyway, since that size is not actually constant. To address
177this problem, use the Objective-C runtime API function
178<code>clang_getInstanceSize()</code>:</p>
179
180<pre>
181 class_getInstanceSize([NSArray class])
182</pre>
183
184<!-- ======================================================================= -->
185<h2 id="c++">C++ compatibility</h3>
186<!-- ======================================================================= -->
187
188<!-- ======================================================================= -->
189<h3 id="vla">Variable-length arrays</h3>
190<!-- ======================================================================= -->
191
192<p>GCC and C99 allow an array's size to be determined at run
193time. This extension is not permitted in standard C++. However, Clang
194supports such variable length arrays in very limited circumstances for
195compatibility with GNU C and C99 programs:</p>
196
197<ul>
198 <li>The element type of a variable length array must be a POD
199 ("plain old data") type, which means that it cannot have any
200 user-declared constructors or destructors, base classes, or any
201 members if non-POD type. All C types are POD types.</li>
202
203 <li>Variable length arrays cannot be used as the type of a non-type
204template parameter.</li> </ul>
205
206<p>If your code uses variable length arrays in a manner that Clang doesn't support, there are several ways to fix your code:
207
208<ol>
209<li>replace the variable length array with a fixed-size array if you can
210 determine a
211 reasonable upper bound at compile time; sometimes this is as
212 simple as changing <tt>int size = ...;</tt> to <tt>const int size
213 = ...;</tt> (if the definition of <tt>size</tt> is a compile-time
214 integral constant);</li>
215<li>use an <tt>std::string</tt> instead of a <tt>char []</tt>;</li>
216<li>use <tt>std::vector</tt> or some other suitable container type;
217 or</li>
218<li>allocate the array on the heap instead using <tt>new Type[]</tt> -
219 just remember to <tt>delete[]</tt> it.</li>
220</ol>
221
222<!-- ======================================================================= -->
223<h3 id="init_static_const">Initialization of non-integral static const data members within a class definition</h3>
224<!-- ======================================================================= -->
225
226The following code is ill-formed in C++'03:
227
228<pre>
229class SomeClass {
230 public:
231 static const double SomeConstant = 0.5;
232};
233
234const double SomeClass::SomeConstant;
235</pre>
236
237Clang errors with something similar to:
238
239<pre>
240.../your_file.h:42:42: error: 'SomeConstant' can only be initialized if it is a static const integral data member
241 static const double SomeConstant = 0.5;
242 ^ ~~~
243</pre>
244
245Only <i>integral</i> constant expressions are allowed as initializers
246within the class definition. See C++'03 [class.static.data] p4 for the
247details of this restriction. The fix here is straightforward: move
248the initializer to the definition of the static data member, which
249must exist outside of the class definition:
250
251<pre>
252class SomeClass {
253 public:
254 static const double SomeConstant;
255};
256
257const double SomeClass::SomeConstant<b> = 0.5</b>;
258</pre>
259
260Note that the forthcoming C++0x standard will allow this.
261
262<!-- ======================================================================= -->
263<h3 id="dep_lookup">Unqualified lookup in templates</h3>
264<!-- ======================================================================= -->
265
266<p>Some versions of GCC accept the following invalid code:
267
268<pre>
269template &lt;typename T&gt; T Squared(T x) {
270 return Multiply(x, x);
271}
272
273int Multiply(int x, int y) {
274 return x * y;
275}
276
277int main() {
278 Squared(5);
279}
280</pre>
281
282<p>Clang complains:
283
284<pre> <b>my_file.cpp:2:10: <span class="error">error:</span> use of undeclared identifier 'Multiply'</b>
285 return Multiply(x, x);
286 <span class="caret"> ^</span>
287
288 <b>my_file.cpp:10:3: <span class="note">note:</span> in instantiation of function template specialization 'Squared&lt;int&gt;' requested here</b>
289 Squared(5);
290 <span class="caret"> ^</span>
291</pre>
292
293<p>The C++ standard says that unqualified names like <q>Multiply</q>
294are looked up in two ways.
295
296<p>First, the compiler does <i>unqualified lookup</i> in the scope
297where the name was written. For a template, this means the lookup is
298done at the point where the template is defined, not where it's
299instantiated. Since <tt>Multiply</tt> hasn't been declared yet at
300this point, unqualified lookup won't find it.
301
302<p>Second, if the name is called like a function, then the compiler
303also does <i>argument-dependent lookup</i> (ADL). (Sometimes
304unqualified lookup can suppress ADL; see [basic.lookup.argdep]p3 for
305more information.) In ADL, the compiler looks at the types of all the
306arguments to the call. When it finds a class type, it looks up the
307name in that class's namespace; the result is all the declarations it
308finds in those namespaces, plus the declarations from unqualified
309lookup. However, the compiler doesn't do ADL until it knows all the
310argument types.
311
312<p>In our example, <tt>Multiply</tt> is called with dependent
313arguments, so ADL isn't done until the template is instantiated. At
314that point, the arguments both have type <tt>int</tt>, which doesn't
315contain any class types, and so ADL doesn't look in any namespaces.
316Since neither form of lookup found the declaration
317of <tt>Multiply</tt>, the code doesn't compile.
318
319<p>Here's another example, this time using overloaded operators,
320which obey very similar rules.
321
322<pre>#include &lt;iostream&gt;
323
324template&lt;typename T&gt;
325void Dump(const T&amp; value) {
326 std::cout &lt;&lt; value &lt;&lt; "\n";
327}
328
329namespace ns {
330 struct Data {};
331}
332
333std::ostream&amp; operator&lt;&lt;(std::ostream&amp; out, ns::Data data) {
334 return out &lt;&lt; "Some data";
335}
336
337void Use() {
338 Dump(ns::Data());
339}</pre>
340
341<p>Again, Clang complains about not finding a matching function:</p>
342
343<pre>
344<b>my_file.cpp:5:13: <span class="error">error:</span> invalid operands to binary expression ('ostream' (aka 'basic_ostream&lt;char&gt;') and 'ns::Data const')</b>
345 std::cout &lt;&lt; value &lt;&lt; "\n";
346 <span class="caret">~~~~~~~~~ ^ ~~~~~</span>
347<b>my_file.cpp:17:3: <span class="note">note:</span> in instantiation of function template specialization 'Dump&lt;ns::Data&gt;' requested here</b>
348 Dump(ns::Data());
349 <span class="caret">^</span>
350</pre>
351
352<p>Just like before, unqualified lookup didn't find any declarations
353with the name <tt>operator&lt;&lt;</tt>. Unlike before, the argument
354types both contain class types: one of them is an instance of the
355class template type <tt>std::basic_ostream</tt>, and the other is the
356type <tt>ns::Data</tt> that we declared above. Therefore, ADL will
357look in the namespaces <tt>std</tt> and <tt>ns</tt> for
358an <tt>operator&lt;&lt;</tt>. Since one of the argument types was
359still dependent during the template definition, ADL isn't done until
360the template is instantiated during <tt>Use</tt>, which means that
361the <tt>operator&lt;&lt;</tt> we want it to find has already been
362declared. Unfortunately, it was declared in the global namespace, not
363in either of the namespaces that ADL will look in!
364
365<p>There are two ways to fix this problem:</p>
366<ol><li>Make sure the function you want to call is declared before the
367template that might call it. This is the only option if none of its
368argument types contain classes. You can do this either by moving the
369template definition, or by moving the function definition, or by
370adding a forward declaration of the function before the template.</li>
371<li>Move the function into the same namespace as one of its arguments
372so that ADL applies.</li></ol>
373
374<p>For more information about argument-dependent lookup, see
375[basic.lookup.argdep]. For more information about the ordering of
376lookup in templates, see [temp.dep.candidate].
377
378<!-- ======================================================================= -->
379<h3 id="dep_lookup_bases">Unqualified lookup into dependent bases of class templates</h3>
380<!-- ======================================================================= -->
381
382Some versions of GCC accept the following invalid code:
383
384<pre>
385template &lt;typename T&gt; struct Base {
386 void DoThis(T x) {}
387 static void DoThat(T x) {}
388};
389
390template &lt;typename T&gt; struct Derived : public Base&lt;T&gt; {
391 void Work(T x) {
392 DoThis(x); // Invalid!
393 DoThat(x); // Invalid!
394 }
395};
396</pre>
397
398Clang correctly rejects it with the following errors
399(when <tt>Derived</tt> is eventually instantiated):
400
401<pre>
402my_file.cpp:8:5: error: use of undeclared identifier 'DoThis'
403 DoThis(x);
404 ^
405 this-&gt;
406my_file.cpp:2:8: note: must qualify identifier to find this declaration in dependent base class
407 void DoThis(T x) {}
408 ^
409my_file.cpp:9:5: error: use of undeclared identifier 'DoThat'
410 DoThat(x);
411 ^
412 this-&gt;
413my_file.cpp:3:15: note: must qualify identifier to find this declaration in dependent base class
414 static void DoThat(T x) {}
415</pre>
416
417Like we said <a href="#dep_lookup">above</a>, unqualified names like
418<tt>DoThis</tt> and <tt>DoThat</tt> are looked up when the template
419<tt>Derived</tt> is defined, not when it's instantiated. When we look
420up a name used in a class, we usually look into the base classes.
421However, we can't look into the base class <tt>Base&lt;T&gt;</tt>
422because its type depends on the template argument <tt>T</tt>, so the
423standard says we should just ignore it. See [temp.dep]p3 for details.
424
425<p>The fix, as Clang tells you, is to tell the compiler that we want a
426class member by prefixing the calls with <tt>this-&gt;</tt>:
427
428<pre>
429 void Work(T x) {
430 <b>this-&gt;</b>DoThis(x);
431 <b>this-&gt;</b>DoThat(x);
432 }
433</pre>
434
435Alternatively, you can tell the compiler exactly where to look:
436
437<pre>
438 void Work(T x) {
439 <b>Base&lt;T&gt;</b>::DoThis(x);
440 <b>Base&lt;T&gt;</b>::DoThat(x);
441 }
442</pre>
443
444This works whether the methods are static or not, but be careful:
445if <tt>DoThis</tt> is virtual, calling it this way will bypass virtual
446dispatch!
447
448<!-- ======================================================================= -->
449<h3 id="undep_incomplete">Incomplete types in templates</h3>
450<!-- ======================================================================= -->
451
452The following code is invalid, but compilers are allowed to accept it:
453
454<pre>
455 class IOOptions;
456 template &lt;class T&gt; bool read(T &amp;value) {
457 IOOptions opts;
458 return read(opts, value);
459 }
460
461 class IOOptions { bool ForceReads; };
462 bool read(const IOOptions &amp;opts, int &amp;x);
463 template bool read&lt;&gt;(int &amp;);
464</pre>
465
466The standard says that types which don't depend on template parameters
467must be complete when a template is defined if they affect the
468program's behavior. However, the standard also says that compilers
469are free to not enforce this rule. Most compilers enforce it to some
470extent; for example, it would be an error in GCC to
471write <tt>opts.ForceReads</tt> in the code above. In Clang, we feel
472that enforcing the rule consistently lets us provide a better
473experience, but unfortunately it also means we reject some code that
474other compilers accept.
475
476<p>We've explained the rule here in very imprecise terms; see
477[temp.res]p8 for details.
478
479<!-- ======================================================================= -->
480<h3 id="bad_templates">Templates with no valid instantiations</h3>
481<!-- ======================================================================= -->
482
483The following code contains a typo: the programmer
484meant <tt>init()</tt> but wrote <tt>innit()</tt> instead.
485
486<pre>
487 template &lt;class T&gt; class Processor {
488 ...
489 void init();
490 ...
491 };
492 ...
493 template &lt;class T&gt; void process() {
494 Processor&lt;T&gt; processor;
495 processor.innit(); // <-- should be 'init()'
496 ...
497 }
498</pre>
499
500Unfortunately, we can't flag this mistake as soon as we see it: inside
501a template, we're not allowed to make assumptions about "dependent
502types" like <tt>Processor&lt;T&gt;</tt>. Suppose that later on in
503this file the programmer adds an explicit specialization
504of <tt>Processor</tt>, like so:
505
506<pre>
507 template &lt;&gt; class Processor&lt;char*&gt; {
508 void innit();
509 };
510</pre>
511
512Now the program will work &mdash; as long as the programmer only ever
513instantiates <tt>process()</tt> with <tt>T = char*</tt>! This is why
514it's hard, and sometimes impossible, to diagnose mistakes in a
515template definition before it's instantiated.
516
517<p>The standard says that a template with no valid instantiations is
518ill-formed. Clang tries to do as much checking as possible at
519definition-time instead of instantiation-time: not only does this
520produce clearer diagnostics, but it also substantially improves
521compile times when using pre-compiled headers. The downside to this
522philosophy is that Clang sometimes fails to process files because they
523contain broken templates that are no longer used. The solution is
524simple: since the code is unused, just remove it.
525
526<!-- ======================================================================= -->
527<h3 id="default_init_const">Default initialization of const variable of a class type requires user-defined default constructor</h3>
528<!-- ======================================================================= -->
529
530If a <tt>class</tt> or <tt>struct</tt> has no user-defined default
531constructor, C++ doesn't allow you to default construct a <tt>const</tt>
532instance of it like this ([dcl.init], p9):
533
534<pre>
535class Foo {
536 public:
537 // The compiler-supplied default constructor works fine, so we
538 // don't bother with defining one.
539 ...
540};
541
542void Bar() {
543 const Foo foo; // Error!
544 ...
545}
546</pre>
547
548To fix this, you can define a default constructor for the class:
549
550<pre>
551class Foo {
552 public:
553 Foo() {}
554 ...
555};
556
557void Bar() {
558 const Foo foo; // Now the compiler is happy.
559 ...
560}
561</pre>
562
563<!-- ======================================================================= -->
564<h2 id="objective-c++">Objective-C++ compatibility</h3>
565<!-- ======================================================================= -->
566
567<!-- ======================================================================= -->
568<h3 id="implicit-downcasts">Implicit downcasts</h3>
569<!-- ======================================================================= -->
570
571<p>Due to a bug in its implementation, GCC allows implicit downcasts
572(from base class to a derived class) when calling functions. Such code is
573inherently unsafe, since the object might not actually be an instance
574of the derived class, and is rejected by Clang. For example, given
575this code:</p>
576
577<pre>
578@interface Base @end
579@interface Derived : Base @end
580
581void f(Derived *);
582void g(Base *base) {
583 f(base);
584}
585</pre>
586
587<p>Clang produces the following error:</p>
588
589<pre>
590downcast.mm:6:3: error: no matching function for call to 'f'
591 f(base);
592 ^
593downcast.mm:4:6: note: candidate function not viable: no known conversion from
594 'Base *' to 'Derived *' for 1st argument
595void f(Derived *);
596 ^
597</pre>
598
599<p>If the downcast is actually correct (e.g., because the code has
600already checked that the object has the appropriate type), add an
601explicit cast:</p>
602
603<pre>
604 f((Derived *)base);
605</pre>
606
607</div>
608</body>
609</html>