Shih-wei Liao | f8fd82b | 2010-02-10 11:10:31 -0800 | [diff] [blame^] | 1 | //===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file implements the Expr constant evaluator. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "clang/AST/APValue.h" |
| 15 | #include "clang/AST/ASTContext.h" |
| 16 | #include "clang/AST/CharUnits.h" |
| 17 | #include "clang/AST/RecordLayout.h" |
| 18 | #include "clang/AST/StmtVisitor.h" |
| 19 | #include "clang/AST/ASTDiagnostic.h" |
| 20 | #include "clang/Basic/Builtins.h" |
| 21 | #include "clang/Basic/TargetInfo.h" |
| 22 | #include "llvm/ADT/SmallString.h" |
| 23 | #include <cstring> |
| 24 | |
| 25 | using namespace clang; |
| 26 | using llvm::APSInt; |
| 27 | using llvm::APFloat; |
| 28 | |
| 29 | /// EvalInfo - This is a private struct used by the evaluator to capture |
| 30 | /// information about a subexpression as it is folded. It retains information |
| 31 | /// about the AST context, but also maintains information about the folded |
| 32 | /// expression. |
| 33 | /// |
| 34 | /// If an expression could be evaluated, it is still possible it is not a C |
| 35 | /// "integer constant expression" or constant expression. If not, this struct |
| 36 | /// captures information about how and why not. |
| 37 | /// |
| 38 | /// One bit of information passed *into* the request for constant folding |
| 39 | /// indicates whether the subexpression is "evaluated" or not according to C |
| 40 | /// rules. For example, the RHS of (0 && foo()) is not evaluated. We can |
| 41 | /// evaluate the expression regardless of what the RHS is, but C only allows |
| 42 | /// certain things in certain situations. |
| 43 | struct EvalInfo { |
| 44 | ASTContext &Ctx; |
| 45 | |
| 46 | /// EvalResult - Contains information about the evaluation. |
| 47 | Expr::EvalResult &EvalResult; |
| 48 | |
| 49 | /// AnyLValue - Stack based LValue results are not discarded. |
| 50 | bool AnyLValue; |
| 51 | |
| 52 | EvalInfo(ASTContext &ctx, Expr::EvalResult& evalresult, |
| 53 | bool anylvalue = false) |
| 54 | : Ctx(ctx), EvalResult(evalresult), AnyLValue(anylvalue) {} |
| 55 | }; |
| 56 | |
| 57 | |
| 58 | static bool EvaluateLValue(const Expr *E, APValue &Result, EvalInfo &Info); |
| 59 | static bool EvaluatePointer(const Expr *E, APValue &Result, EvalInfo &Info); |
| 60 | static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info); |
| 61 | static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result, |
| 62 | EvalInfo &Info); |
| 63 | static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info); |
| 64 | static bool EvaluateComplex(const Expr *E, APValue &Result, EvalInfo &Info); |
| 65 | |
| 66 | //===----------------------------------------------------------------------===// |
| 67 | // Misc utilities |
| 68 | //===----------------------------------------------------------------------===// |
| 69 | |
| 70 | static bool EvalPointerValueAsBool(APValue& Value, bool& Result) { |
| 71 | // FIXME: Is this accurate for all kinds of bases? If not, what would |
| 72 | // the check look like? |
| 73 | Result = Value.getLValueBase() || !Value.getLValueOffset().isZero(); |
| 74 | return true; |
| 75 | } |
| 76 | |
| 77 | static bool HandleConversionToBool(const Expr* E, bool& Result, |
| 78 | EvalInfo &Info) { |
| 79 | if (E->getType()->isIntegralType()) { |
| 80 | APSInt IntResult; |
| 81 | if (!EvaluateInteger(E, IntResult, Info)) |
| 82 | return false; |
| 83 | Result = IntResult != 0; |
| 84 | return true; |
| 85 | } else if (E->getType()->isRealFloatingType()) { |
| 86 | APFloat FloatResult(0.0); |
| 87 | if (!EvaluateFloat(E, FloatResult, Info)) |
| 88 | return false; |
| 89 | Result = !FloatResult.isZero(); |
| 90 | return true; |
| 91 | } else if (E->getType()->hasPointerRepresentation()) { |
| 92 | APValue PointerResult; |
| 93 | if (!EvaluatePointer(E, PointerResult, Info)) |
| 94 | return false; |
| 95 | return EvalPointerValueAsBool(PointerResult, Result); |
| 96 | } else if (E->getType()->isAnyComplexType()) { |
| 97 | APValue ComplexResult; |
| 98 | if (!EvaluateComplex(E, ComplexResult, Info)) |
| 99 | return false; |
| 100 | if (ComplexResult.isComplexFloat()) { |
| 101 | Result = !ComplexResult.getComplexFloatReal().isZero() || |
| 102 | !ComplexResult.getComplexFloatImag().isZero(); |
| 103 | } else { |
| 104 | Result = ComplexResult.getComplexIntReal().getBoolValue() || |
| 105 | ComplexResult.getComplexIntImag().getBoolValue(); |
| 106 | } |
| 107 | return true; |
| 108 | } |
| 109 | |
| 110 | return false; |
| 111 | } |
| 112 | |
| 113 | static APSInt HandleFloatToIntCast(QualType DestType, QualType SrcType, |
| 114 | APFloat &Value, ASTContext &Ctx) { |
| 115 | unsigned DestWidth = Ctx.getIntWidth(DestType); |
| 116 | // Determine whether we are converting to unsigned or signed. |
| 117 | bool DestSigned = DestType->isSignedIntegerType(); |
| 118 | |
| 119 | // FIXME: Warning for overflow. |
| 120 | uint64_t Space[4]; |
| 121 | bool ignored; |
| 122 | (void)Value.convertToInteger(Space, DestWidth, DestSigned, |
| 123 | llvm::APFloat::rmTowardZero, &ignored); |
| 124 | return APSInt(llvm::APInt(DestWidth, 4, Space), !DestSigned); |
| 125 | } |
| 126 | |
| 127 | static APFloat HandleFloatToFloatCast(QualType DestType, QualType SrcType, |
| 128 | APFloat &Value, ASTContext &Ctx) { |
| 129 | bool ignored; |
| 130 | APFloat Result = Value; |
| 131 | Result.convert(Ctx.getFloatTypeSemantics(DestType), |
| 132 | APFloat::rmNearestTiesToEven, &ignored); |
| 133 | return Result; |
| 134 | } |
| 135 | |
| 136 | static APSInt HandleIntToIntCast(QualType DestType, QualType SrcType, |
| 137 | APSInt &Value, ASTContext &Ctx) { |
| 138 | unsigned DestWidth = Ctx.getIntWidth(DestType); |
| 139 | APSInt Result = Value; |
| 140 | // Figure out if this is a truncate, extend or noop cast. |
| 141 | // If the input is signed, do a sign extend, noop, or truncate. |
| 142 | Result.extOrTrunc(DestWidth); |
| 143 | Result.setIsUnsigned(DestType->isUnsignedIntegerType()); |
| 144 | return Result; |
| 145 | } |
| 146 | |
| 147 | static APFloat HandleIntToFloatCast(QualType DestType, QualType SrcType, |
| 148 | APSInt &Value, ASTContext &Ctx) { |
| 149 | |
| 150 | APFloat Result(Ctx.getFloatTypeSemantics(DestType), 1); |
| 151 | Result.convertFromAPInt(Value, Value.isSigned(), |
| 152 | APFloat::rmNearestTiesToEven); |
| 153 | return Result; |
| 154 | } |
| 155 | |
| 156 | namespace { |
| 157 | class HasSideEffect |
| 158 | : public StmtVisitor<HasSideEffect, bool> { |
| 159 | EvalInfo &Info; |
| 160 | public: |
| 161 | |
| 162 | HasSideEffect(EvalInfo &info) : Info(info) {} |
| 163 | |
| 164 | // Unhandled nodes conservatively default to having side effects. |
| 165 | bool VisitStmt(Stmt *S) { |
| 166 | return true; |
| 167 | } |
| 168 | |
| 169 | bool VisitParenExpr(ParenExpr *E) { return Visit(E->getSubExpr()); } |
| 170 | bool VisitDeclRefExpr(DeclRefExpr *E) { |
| 171 | if (Info.Ctx.getCanonicalType(E->getType()).isVolatileQualified()) |
| 172 | return true; |
| 173 | return false; |
| 174 | } |
| 175 | // We don't want to evaluate BlockExprs multiple times, as they generate |
| 176 | // a ton of code. |
| 177 | bool VisitBlockExpr(BlockExpr *E) { return true; } |
| 178 | bool VisitPredefinedExpr(PredefinedExpr *E) { return false; } |
| 179 | bool VisitCompoundLiteralExpr(CompoundLiteralExpr *E) |
| 180 | { return Visit(E->getInitializer()); } |
| 181 | bool VisitMemberExpr(MemberExpr *E) { return Visit(E->getBase()); } |
| 182 | bool VisitIntegerLiteral(IntegerLiteral *E) { return false; } |
| 183 | bool VisitFloatingLiteral(FloatingLiteral *E) { return false; } |
| 184 | bool VisitStringLiteral(StringLiteral *E) { return false; } |
| 185 | bool VisitCharacterLiteral(CharacterLiteral *E) { return false; } |
| 186 | bool VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr *E) { return false; } |
| 187 | bool VisitArraySubscriptExpr(ArraySubscriptExpr *E) |
| 188 | { return Visit(E->getLHS()) || Visit(E->getRHS()); } |
| 189 | bool VisitChooseExpr(ChooseExpr *E) |
| 190 | { return Visit(E->getChosenSubExpr(Info.Ctx)); } |
| 191 | bool VisitCastExpr(CastExpr *E) { return Visit(E->getSubExpr()); } |
| 192 | bool VisitBinAssign(BinaryOperator *E) { return true; } |
| 193 | bool VisitCompoundAssignOperator(BinaryOperator *E) { return true; } |
| 194 | bool VisitBinaryOperator(BinaryOperator *E) |
| 195 | { return Visit(E->getLHS()) || Visit(E->getRHS()); } |
| 196 | bool VisitUnaryPreInc(UnaryOperator *E) { return true; } |
| 197 | bool VisitUnaryPostInc(UnaryOperator *E) { return true; } |
| 198 | bool VisitUnaryPreDec(UnaryOperator *E) { return true; } |
| 199 | bool VisitUnaryPostDec(UnaryOperator *E) { return true; } |
| 200 | bool VisitUnaryDeref(UnaryOperator *E) { |
| 201 | if (Info.Ctx.getCanonicalType(E->getType()).isVolatileQualified()) |
| 202 | return true; |
| 203 | return Visit(E->getSubExpr()); |
| 204 | } |
| 205 | bool VisitUnaryOperator(UnaryOperator *E) { return Visit(E->getSubExpr()); } |
| 206 | }; |
| 207 | |
| 208 | } // end anonymous namespace |
| 209 | |
| 210 | //===----------------------------------------------------------------------===// |
| 211 | // LValue Evaluation |
| 212 | //===----------------------------------------------------------------------===// |
| 213 | namespace { |
| 214 | class LValueExprEvaluator |
| 215 | : public StmtVisitor<LValueExprEvaluator, APValue> { |
| 216 | EvalInfo &Info; |
| 217 | public: |
| 218 | |
| 219 | LValueExprEvaluator(EvalInfo &info) : Info(info) {} |
| 220 | |
| 221 | APValue VisitStmt(Stmt *S) { |
| 222 | return APValue(); |
| 223 | } |
| 224 | |
| 225 | APValue VisitParenExpr(ParenExpr *E) { return Visit(E->getSubExpr()); } |
| 226 | APValue VisitDeclRefExpr(DeclRefExpr *E); |
| 227 | APValue VisitPredefinedExpr(PredefinedExpr *E) { return APValue(E); } |
| 228 | APValue VisitCompoundLiteralExpr(CompoundLiteralExpr *E); |
| 229 | APValue VisitMemberExpr(MemberExpr *E); |
| 230 | APValue VisitStringLiteral(StringLiteral *E) { return APValue(E); } |
| 231 | APValue VisitObjCEncodeExpr(ObjCEncodeExpr *E) { return APValue(E); } |
| 232 | APValue VisitArraySubscriptExpr(ArraySubscriptExpr *E); |
| 233 | APValue VisitUnaryDeref(UnaryOperator *E); |
| 234 | APValue VisitUnaryExtension(const UnaryOperator *E) |
| 235 | { return Visit(E->getSubExpr()); } |
| 236 | APValue VisitChooseExpr(const ChooseExpr *E) |
| 237 | { return Visit(E->getChosenSubExpr(Info.Ctx)); } |
| 238 | |
| 239 | APValue VisitCastExpr(CastExpr *E) { |
| 240 | switch (E->getCastKind()) { |
| 241 | default: |
| 242 | return APValue(); |
| 243 | |
| 244 | case CastExpr::CK_NoOp: |
| 245 | return Visit(E->getSubExpr()); |
| 246 | } |
| 247 | } |
| 248 | // FIXME: Missing: __real__, __imag__ |
| 249 | }; |
| 250 | } // end anonymous namespace |
| 251 | |
| 252 | static bool EvaluateLValue(const Expr* E, APValue& Result, EvalInfo &Info) { |
| 253 | Result = LValueExprEvaluator(Info).Visit(const_cast<Expr*>(E)); |
| 254 | return Result.isLValue(); |
| 255 | } |
| 256 | |
| 257 | APValue LValueExprEvaluator::VisitDeclRefExpr(DeclRefExpr *E) { |
| 258 | if (isa<FunctionDecl>(E->getDecl())) { |
| 259 | return APValue(E); |
| 260 | } else if (VarDecl* VD = dyn_cast<VarDecl>(E->getDecl())) { |
| 261 | if (!Info.AnyLValue && !VD->hasGlobalStorage()) |
| 262 | return APValue(); |
| 263 | if (!VD->getType()->isReferenceType()) |
| 264 | return APValue(E); |
| 265 | // FIXME: Check whether VD might be overridden! |
| 266 | if (const Expr *Init = VD->getAnyInitializer()) |
| 267 | return Visit(const_cast<Expr *>(Init)); |
| 268 | } |
| 269 | |
| 270 | return APValue(); |
| 271 | } |
| 272 | |
| 273 | APValue LValueExprEvaluator::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { |
| 274 | if (!Info.AnyLValue && !E->isFileScope()) |
| 275 | return APValue(); |
| 276 | return APValue(E); |
| 277 | } |
| 278 | |
| 279 | APValue LValueExprEvaluator::VisitMemberExpr(MemberExpr *E) { |
| 280 | APValue result; |
| 281 | QualType Ty; |
| 282 | if (E->isArrow()) { |
| 283 | if (!EvaluatePointer(E->getBase(), result, Info)) |
| 284 | return APValue(); |
| 285 | Ty = E->getBase()->getType()->getAs<PointerType>()->getPointeeType(); |
| 286 | } else { |
| 287 | result = Visit(E->getBase()); |
| 288 | if (result.isUninit()) |
| 289 | return APValue(); |
| 290 | Ty = E->getBase()->getType(); |
| 291 | } |
| 292 | |
| 293 | RecordDecl *RD = Ty->getAs<RecordType>()->getDecl(); |
| 294 | const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD); |
| 295 | |
| 296 | FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl()); |
| 297 | if (!FD) // FIXME: deal with other kinds of member expressions |
| 298 | return APValue(); |
| 299 | |
| 300 | if (FD->getType()->isReferenceType()) |
| 301 | return APValue(); |
| 302 | |
| 303 | // FIXME: This is linear time. |
| 304 | unsigned i = 0; |
| 305 | for (RecordDecl::field_iterator Field = RD->field_begin(), |
| 306 | FieldEnd = RD->field_end(); |
| 307 | Field != FieldEnd; (void)++Field, ++i) { |
| 308 | if (*Field == FD) |
| 309 | break; |
| 310 | } |
| 311 | |
| 312 | result.setLValue(result.getLValueBase(), |
| 313 | result.getLValueOffset() + |
| 314 | CharUnits::fromQuantity(RL.getFieldOffset(i) / 8)); |
| 315 | |
| 316 | return result; |
| 317 | } |
| 318 | |
| 319 | APValue LValueExprEvaluator::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { |
| 320 | APValue Result; |
| 321 | |
| 322 | if (!EvaluatePointer(E->getBase(), Result, Info)) |
| 323 | return APValue(); |
| 324 | |
| 325 | APSInt Index; |
| 326 | if (!EvaluateInteger(E->getIdx(), Index, Info)) |
| 327 | return APValue(); |
| 328 | |
| 329 | CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(E->getType()); |
| 330 | |
| 331 | CharUnits Offset = Index.getSExtValue() * ElementSize; |
| 332 | Result.setLValue(Result.getLValueBase(), |
| 333 | Result.getLValueOffset() + Offset); |
| 334 | return Result; |
| 335 | } |
| 336 | |
| 337 | APValue LValueExprEvaluator::VisitUnaryDeref(UnaryOperator *E) { |
| 338 | APValue Result; |
| 339 | if (!EvaluatePointer(E->getSubExpr(), Result, Info)) |
| 340 | return APValue(); |
| 341 | return Result; |
| 342 | } |
| 343 | |
| 344 | //===----------------------------------------------------------------------===// |
| 345 | // Pointer Evaluation |
| 346 | //===----------------------------------------------------------------------===// |
| 347 | |
| 348 | namespace { |
| 349 | class PointerExprEvaluator |
| 350 | : public StmtVisitor<PointerExprEvaluator, APValue> { |
| 351 | EvalInfo &Info; |
| 352 | public: |
| 353 | |
| 354 | PointerExprEvaluator(EvalInfo &info) : Info(info) {} |
| 355 | |
| 356 | APValue VisitStmt(Stmt *S) { |
| 357 | return APValue(); |
| 358 | } |
| 359 | |
| 360 | APValue VisitParenExpr(ParenExpr *E) { return Visit(E->getSubExpr()); } |
| 361 | |
| 362 | APValue VisitBinaryOperator(const BinaryOperator *E); |
| 363 | APValue VisitCastExpr(CastExpr* E); |
| 364 | APValue VisitUnaryExtension(const UnaryOperator *E) |
| 365 | { return Visit(E->getSubExpr()); } |
| 366 | APValue VisitUnaryAddrOf(const UnaryOperator *E); |
| 367 | APValue VisitObjCStringLiteral(ObjCStringLiteral *E) |
| 368 | { return APValue(E); } |
| 369 | APValue VisitAddrLabelExpr(AddrLabelExpr *E) |
| 370 | { return APValue(E); } |
| 371 | APValue VisitCallExpr(CallExpr *E); |
| 372 | APValue VisitBlockExpr(BlockExpr *E) { |
| 373 | if (!E->hasBlockDeclRefExprs()) |
| 374 | return APValue(E); |
| 375 | return APValue(); |
| 376 | } |
| 377 | APValue VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) |
| 378 | { return APValue((Expr*)0); } |
| 379 | APValue VisitConditionalOperator(ConditionalOperator *E); |
| 380 | APValue VisitChooseExpr(ChooseExpr *E) |
| 381 | { return Visit(E->getChosenSubExpr(Info.Ctx)); } |
| 382 | APValue VisitCXXNullPtrLiteralExpr(CXXNullPtrLiteralExpr *E) |
| 383 | { return APValue((Expr*)0); } |
| 384 | // FIXME: Missing: @protocol, @selector |
| 385 | }; |
| 386 | } // end anonymous namespace |
| 387 | |
| 388 | static bool EvaluatePointer(const Expr* E, APValue& Result, EvalInfo &Info) { |
| 389 | if (!E->getType()->hasPointerRepresentation()) |
| 390 | return false; |
| 391 | Result = PointerExprEvaluator(Info).Visit(const_cast<Expr*>(E)); |
| 392 | return Result.isLValue(); |
| 393 | } |
| 394 | |
| 395 | APValue PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { |
| 396 | if (E->getOpcode() != BinaryOperator::Add && |
| 397 | E->getOpcode() != BinaryOperator::Sub) |
| 398 | return APValue(); |
| 399 | |
| 400 | const Expr *PExp = E->getLHS(); |
| 401 | const Expr *IExp = E->getRHS(); |
| 402 | if (IExp->getType()->isPointerType()) |
| 403 | std::swap(PExp, IExp); |
| 404 | |
| 405 | APValue ResultLValue; |
| 406 | if (!EvaluatePointer(PExp, ResultLValue, Info)) |
| 407 | return APValue(); |
| 408 | |
| 409 | llvm::APSInt AdditionalOffset(32); |
| 410 | if (!EvaluateInteger(IExp, AdditionalOffset, Info)) |
| 411 | return APValue(); |
| 412 | |
| 413 | QualType PointeeType = PExp->getType()->getAs<PointerType>()->getPointeeType(); |
| 414 | CharUnits SizeOfPointee; |
| 415 | |
| 416 | // Explicitly handle GNU void* and function pointer arithmetic extensions. |
| 417 | if (PointeeType->isVoidType() || PointeeType->isFunctionType()) |
| 418 | SizeOfPointee = CharUnits::One(); |
| 419 | else |
| 420 | SizeOfPointee = Info.Ctx.getTypeSizeInChars(PointeeType); |
| 421 | |
| 422 | CharUnits Offset = ResultLValue.getLValueOffset(); |
| 423 | |
| 424 | if (E->getOpcode() == BinaryOperator::Add) |
| 425 | Offset += AdditionalOffset.getLimitedValue() * SizeOfPointee; |
| 426 | else |
| 427 | Offset -= AdditionalOffset.getLimitedValue() * SizeOfPointee; |
| 428 | |
| 429 | return APValue(ResultLValue.getLValueBase(), Offset); |
| 430 | } |
| 431 | |
| 432 | APValue PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) { |
| 433 | APValue result; |
| 434 | if (EvaluateLValue(E->getSubExpr(), result, Info)) |
| 435 | return result; |
| 436 | return APValue(); |
| 437 | } |
| 438 | |
| 439 | |
| 440 | APValue PointerExprEvaluator::VisitCastExpr(CastExpr* E) { |
| 441 | Expr* SubExpr = E->getSubExpr(); |
| 442 | |
| 443 | switch (E->getCastKind()) { |
| 444 | default: |
| 445 | break; |
| 446 | |
| 447 | case CastExpr::CK_Unknown: { |
| 448 | // FIXME: The handling for CK_Unknown is ugly/shouldn't be necessary! |
| 449 | |
| 450 | // Check for pointer->pointer cast |
| 451 | if (SubExpr->getType()->isPointerType() || |
| 452 | SubExpr->getType()->isObjCObjectPointerType() || |
| 453 | SubExpr->getType()->isNullPtrType() || |
| 454 | SubExpr->getType()->isBlockPointerType()) |
| 455 | return Visit(SubExpr); |
| 456 | |
| 457 | if (SubExpr->getType()->isIntegralType()) { |
| 458 | APValue Result; |
| 459 | if (!EvaluateIntegerOrLValue(SubExpr, Result, Info)) |
| 460 | break; |
| 461 | |
| 462 | if (Result.isInt()) { |
| 463 | Result.getInt().extOrTrunc((unsigned)Info.Ctx.getTypeSize(E->getType())); |
| 464 | return APValue(0, |
| 465 | CharUnits::fromQuantity(Result.getInt().getZExtValue())); |
| 466 | } |
| 467 | |
| 468 | // Cast is of an lvalue, no need to change value. |
| 469 | return Result; |
| 470 | } |
| 471 | break; |
| 472 | } |
| 473 | |
| 474 | case CastExpr::CK_NoOp: |
| 475 | case CastExpr::CK_BitCast: |
| 476 | case CastExpr::CK_AnyPointerToObjCPointerCast: |
| 477 | case CastExpr::CK_AnyPointerToBlockPointerCast: |
| 478 | return Visit(SubExpr); |
| 479 | |
| 480 | case CastExpr::CK_IntegralToPointer: { |
| 481 | APValue Result; |
| 482 | if (!EvaluateIntegerOrLValue(SubExpr, Result, Info)) |
| 483 | break; |
| 484 | |
| 485 | if (Result.isInt()) { |
| 486 | Result.getInt().extOrTrunc((unsigned)Info.Ctx.getTypeSize(E->getType())); |
| 487 | return APValue(0, |
| 488 | CharUnits::fromQuantity(Result.getInt().getZExtValue())); |
| 489 | } |
| 490 | |
| 491 | // Cast is of an lvalue, no need to change value. |
| 492 | return Result; |
| 493 | } |
| 494 | case CastExpr::CK_ArrayToPointerDecay: |
| 495 | case CastExpr::CK_FunctionToPointerDecay: { |
| 496 | APValue Result; |
| 497 | if (EvaluateLValue(SubExpr, Result, Info)) |
| 498 | return Result; |
| 499 | break; |
| 500 | } |
| 501 | } |
| 502 | |
| 503 | return APValue(); |
| 504 | } |
| 505 | |
| 506 | APValue PointerExprEvaluator::VisitCallExpr(CallExpr *E) { |
| 507 | if (E->isBuiltinCall(Info.Ctx) == |
| 508 | Builtin::BI__builtin___CFStringMakeConstantString || |
| 509 | E->isBuiltinCall(Info.Ctx) == |
| 510 | Builtin::BI__builtin___NSStringMakeConstantString) |
| 511 | return APValue(E); |
| 512 | return APValue(); |
| 513 | } |
| 514 | |
| 515 | APValue PointerExprEvaluator::VisitConditionalOperator(ConditionalOperator *E) { |
| 516 | bool BoolResult; |
| 517 | if (!HandleConversionToBool(E->getCond(), BoolResult, Info)) |
| 518 | return APValue(); |
| 519 | |
| 520 | Expr* EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr(); |
| 521 | |
| 522 | APValue Result; |
| 523 | if (EvaluatePointer(EvalExpr, Result, Info)) |
| 524 | return Result; |
| 525 | return APValue(); |
| 526 | } |
| 527 | |
| 528 | //===----------------------------------------------------------------------===// |
| 529 | // Vector Evaluation |
| 530 | //===----------------------------------------------------------------------===// |
| 531 | |
| 532 | namespace { |
| 533 | class VectorExprEvaluator |
| 534 | : public StmtVisitor<VectorExprEvaluator, APValue> { |
| 535 | EvalInfo &Info; |
| 536 | APValue GetZeroVector(QualType VecType); |
| 537 | public: |
| 538 | |
| 539 | VectorExprEvaluator(EvalInfo &info) : Info(info) {} |
| 540 | |
| 541 | APValue VisitStmt(Stmt *S) { |
| 542 | return APValue(); |
| 543 | } |
| 544 | |
| 545 | APValue VisitParenExpr(ParenExpr *E) |
| 546 | { return Visit(E->getSubExpr()); } |
| 547 | APValue VisitUnaryExtension(const UnaryOperator *E) |
| 548 | { return Visit(E->getSubExpr()); } |
| 549 | APValue VisitUnaryPlus(const UnaryOperator *E) |
| 550 | { return Visit(E->getSubExpr()); } |
| 551 | APValue VisitUnaryReal(const UnaryOperator *E) |
| 552 | { return Visit(E->getSubExpr()); } |
| 553 | APValue VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) |
| 554 | { return GetZeroVector(E->getType()); } |
| 555 | APValue VisitCastExpr(const CastExpr* E); |
| 556 | APValue VisitCompoundLiteralExpr(const CompoundLiteralExpr *E); |
| 557 | APValue VisitInitListExpr(const InitListExpr *E); |
| 558 | APValue VisitConditionalOperator(const ConditionalOperator *E); |
| 559 | APValue VisitChooseExpr(const ChooseExpr *E) |
| 560 | { return Visit(E->getChosenSubExpr(Info.Ctx)); } |
| 561 | APValue VisitUnaryImag(const UnaryOperator *E); |
| 562 | // FIXME: Missing: unary -, unary ~, binary add/sub/mul/div, |
| 563 | // binary comparisons, binary and/or/xor, |
| 564 | // shufflevector, ExtVectorElementExpr |
| 565 | // (Note that these require implementing conversions |
| 566 | // between vector types.) |
| 567 | }; |
| 568 | } // end anonymous namespace |
| 569 | |
| 570 | static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) { |
| 571 | if (!E->getType()->isVectorType()) |
| 572 | return false; |
| 573 | Result = VectorExprEvaluator(Info).Visit(const_cast<Expr*>(E)); |
| 574 | return !Result.isUninit(); |
| 575 | } |
| 576 | |
| 577 | APValue VectorExprEvaluator::VisitCastExpr(const CastExpr* E) { |
| 578 | const VectorType *VTy = E->getType()->getAs<VectorType>(); |
| 579 | QualType EltTy = VTy->getElementType(); |
| 580 | unsigned NElts = VTy->getNumElements(); |
| 581 | unsigned EltWidth = Info.Ctx.getTypeSize(EltTy); |
| 582 | |
| 583 | const Expr* SE = E->getSubExpr(); |
| 584 | QualType SETy = SE->getType(); |
| 585 | APValue Result = APValue(); |
| 586 | |
| 587 | // Check for vector->vector bitcast and scalar->vector splat. |
| 588 | if (SETy->isVectorType()) { |
| 589 | return this->Visit(const_cast<Expr*>(SE)); |
| 590 | } else if (SETy->isIntegerType()) { |
| 591 | APSInt IntResult; |
| 592 | if (!EvaluateInteger(SE, IntResult, Info)) |
| 593 | return APValue(); |
| 594 | Result = APValue(IntResult); |
| 595 | } else if (SETy->isRealFloatingType()) { |
| 596 | APFloat F(0.0); |
| 597 | if (!EvaluateFloat(SE, F, Info)) |
| 598 | return APValue(); |
| 599 | Result = APValue(F); |
| 600 | } else |
| 601 | return APValue(); |
| 602 | |
| 603 | // For casts of a scalar to ExtVector, convert the scalar to the element type |
| 604 | // and splat it to all elements. |
| 605 | if (E->getType()->isExtVectorType()) { |
| 606 | if (EltTy->isIntegerType() && Result.isInt()) |
| 607 | Result = APValue(HandleIntToIntCast(EltTy, SETy, Result.getInt(), |
| 608 | Info.Ctx)); |
| 609 | else if (EltTy->isIntegerType()) |
| 610 | Result = APValue(HandleFloatToIntCast(EltTy, SETy, Result.getFloat(), |
| 611 | Info.Ctx)); |
| 612 | else if (EltTy->isRealFloatingType() && Result.isInt()) |
| 613 | Result = APValue(HandleIntToFloatCast(EltTy, SETy, Result.getInt(), |
| 614 | Info.Ctx)); |
| 615 | else if (EltTy->isRealFloatingType()) |
| 616 | Result = APValue(HandleFloatToFloatCast(EltTy, SETy, Result.getFloat(), |
| 617 | Info.Ctx)); |
| 618 | else |
| 619 | return APValue(); |
| 620 | |
| 621 | // Splat and create vector APValue. |
| 622 | llvm::SmallVector<APValue, 4> Elts(NElts, Result); |
| 623 | return APValue(&Elts[0], Elts.size()); |
| 624 | } |
| 625 | |
| 626 | // For casts of a scalar to regular gcc-style vector type, bitcast the scalar |
| 627 | // to the vector. To construct the APValue vector initializer, bitcast the |
| 628 | // initializing value to an APInt, and shift out the bits pertaining to each |
| 629 | // element. |
| 630 | APSInt Init; |
| 631 | Init = Result.isInt() ? Result.getInt() : Result.getFloat().bitcastToAPInt(); |
| 632 | |
| 633 | llvm::SmallVector<APValue, 4> Elts; |
| 634 | for (unsigned i = 0; i != NElts; ++i) { |
| 635 | APSInt Tmp = Init; |
| 636 | Tmp.extOrTrunc(EltWidth); |
| 637 | |
| 638 | if (EltTy->isIntegerType()) |
| 639 | Elts.push_back(APValue(Tmp)); |
| 640 | else if (EltTy->isRealFloatingType()) |
| 641 | Elts.push_back(APValue(APFloat(Tmp))); |
| 642 | else |
| 643 | return APValue(); |
| 644 | |
| 645 | Init >>= EltWidth; |
| 646 | } |
| 647 | return APValue(&Elts[0], Elts.size()); |
| 648 | } |
| 649 | |
| 650 | APValue |
| 651 | VectorExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { |
| 652 | return this->Visit(const_cast<Expr*>(E->getInitializer())); |
| 653 | } |
| 654 | |
| 655 | APValue |
| 656 | VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) { |
| 657 | const VectorType *VT = E->getType()->getAs<VectorType>(); |
| 658 | unsigned NumInits = E->getNumInits(); |
| 659 | unsigned NumElements = VT->getNumElements(); |
| 660 | |
| 661 | QualType EltTy = VT->getElementType(); |
| 662 | llvm::SmallVector<APValue, 4> Elements; |
| 663 | |
| 664 | for (unsigned i = 0; i < NumElements; i++) { |
| 665 | if (EltTy->isIntegerType()) { |
| 666 | llvm::APSInt sInt(32); |
| 667 | if (i < NumInits) { |
| 668 | if (!EvaluateInteger(E->getInit(i), sInt, Info)) |
| 669 | return APValue(); |
| 670 | } else { |
| 671 | sInt = Info.Ctx.MakeIntValue(0, EltTy); |
| 672 | } |
| 673 | Elements.push_back(APValue(sInt)); |
| 674 | } else { |
| 675 | llvm::APFloat f(0.0); |
| 676 | if (i < NumInits) { |
| 677 | if (!EvaluateFloat(E->getInit(i), f, Info)) |
| 678 | return APValue(); |
| 679 | } else { |
| 680 | f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)); |
| 681 | } |
| 682 | Elements.push_back(APValue(f)); |
| 683 | } |
| 684 | } |
| 685 | return APValue(&Elements[0], Elements.size()); |
| 686 | } |
| 687 | |
| 688 | APValue |
| 689 | VectorExprEvaluator::GetZeroVector(QualType T) { |
| 690 | const VectorType *VT = T->getAs<VectorType>(); |
| 691 | QualType EltTy = VT->getElementType(); |
| 692 | APValue ZeroElement; |
| 693 | if (EltTy->isIntegerType()) |
| 694 | ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy)); |
| 695 | else |
| 696 | ZeroElement = |
| 697 | APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy))); |
| 698 | |
| 699 | llvm::SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement); |
| 700 | return APValue(&Elements[0], Elements.size()); |
| 701 | } |
| 702 | |
| 703 | APValue VectorExprEvaluator::VisitConditionalOperator(const ConditionalOperator *E) { |
| 704 | bool BoolResult; |
| 705 | if (!HandleConversionToBool(E->getCond(), BoolResult, Info)) |
| 706 | return APValue(); |
| 707 | |
| 708 | Expr* EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr(); |
| 709 | |
| 710 | APValue Result; |
| 711 | if (EvaluateVector(EvalExpr, Result, Info)) |
| 712 | return Result; |
| 713 | return APValue(); |
| 714 | } |
| 715 | |
| 716 | APValue VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) { |
| 717 | if (!E->getSubExpr()->isEvaluatable(Info.Ctx)) |
| 718 | Info.EvalResult.HasSideEffects = true; |
| 719 | return GetZeroVector(E->getType()); |
| 720 | } |
| 721 | |
| 722 | //===----------------------------------------------------------------------===// |
| 723 | // Integer Evaluation |
| 724 | //===----------------------------------------------------------------------===// |
| 725 | |
| 726 | namespace { |
| 727 | class IntExprEvaluator |
| 728 | : public StmtVisitor<IntExprEvaluator, bool> { |
| 729 | EvalInfo &Info; |
| 730 | APValue &Result; |
| 731 | public: |
| 732 | IntExprEvaluator(EvalInfo &info, APValue &result) |
| 733 | : Info(info), Result(result) {} |
| 734 | |
| 735 | bool Success(const llvm::APSInt &SI, const Expr *E) { |
| 736 | assert(E->getType()->isIntegralType() && "Invalid evaluation result."); |
| 737 | assert(SI.isSigned() == E->getType()->isSignedIntegerType() && |
| 738 | "Invalid evaluation result."); |
| 739 | assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) && |
| 740 | "Invalid evaluation result."); |
| 741 | Result = APValue(SI); |
| 742 | return true; |
| 743 | } |
| 744 | |
| 745 | bool Success(const llvm::APInt &I, const Expr *E) { |
| 746 | assert(E->getType()->isIntegralType() && "Invalid evaluation result."); |
| 747 | assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) && |
| 748 | "Invalid evaluation result."); |
| 749 | Result = APValue(APSInt(I)); |
| 750 | Result.getInt().setIsUnsigned(E->getType()->isUnsignedIntegerType()); |
| 751 | return true; |
| 752 | } |
| 753 | |
| 754 | bool Success(uint64_t Value, const Expr *E) { |
| 755 | assert(E->getType()->isIntegralType() && "Invalid evaluation result."); |
| 756 | Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType())); |
| 757 | return true; |
| 758 | } |
| 759 | |
| 760 | bool Error(SourceLocation L, diag::kind D, const Expr *E) { |
| 761 | // Take the first error. |
| 762 | if (Info.EvalResult.Diag == 0) { |
| 763 | Info.EvalResult.DiagLoc = L; |
| 764 | Info.EvalResult.Diag = D; |
| 765 | Info.EvalResult.DiagExpr = E; |
| 766 | } |
| 767 | return false; |
| 768 | } |
| 769 | |
| 770 | //===--------------------------------------------------------------------===// |
| 771 | // Visitor Methods |
| 772 | //===--------------------------------------------------------------------===// |
| 773 | |
| 774 | bool VisitStmt(Stmt *) { |
| 775 | assert(0 && "This should be called on integers, stmts are not integers"); |
| 776 | return false; |
| 777 | } |
| 778 | |
| 779 | bool VisitExpr(Expr *E) { |
| 780 | return Error(E->getLocStart(), diag::note_invalid_subexpr_in_ice, E); |
| 781 | } |
| 782 | |
| 783 | bool VisitParenExpr(ParenExpr *E) { return Visit(E->getSubExpr()); } |
| 784 | |
| 785 | bool VisitIntegerLiteral(const IntegerLiteral *E) { |
| 786 | return Success(E->getValue(), E); |
| 787 | } |
| 788 | bool VisitCharacterLiteral(const CharacterLiteral *E) { |
| 789 | return Success(E->getValue(), E); |
| 790 | } |
| 791 | bool VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) { |
| 792 | // Per gcc docs "this built-in function ignores top level |
| 793 | // qualifiers". We need to use the canonical version to properly |
| 794 | // be able to strip CRV qualifiers from the type. |
| 795 | QualType T0 = Info.Ctx.getCanonicalType(E->getArgType1()); |
| 796 | QualType T1 = Info.Ctx.getCanonicalType(E->getArgType2()); |
| 797 | return Success(Info.Ctx.typesAreCompatible(T0.getUnqualifiedType(), |
| 798 | T1.getUnqualifiedType()), |
| 799 | E); |
| 800 | } |
| 801 | |
| 802 | bool CheckReferencedDecl(const Expr *E, const Decl *D); |
| 803 | bool VisitDeclRefExpr(const DeclRefExpr *E) { |
| 804 | return CheckReferencedDecl(E, E->getDecl()); |
| 805 | } |
| 806 | bool VisitMemberExpr(const MemberExpr *E) { |
| 807 | if (CheckReferencedDecl(E, E->getMemberDecl())) { |
| 808 | // Conservatively assume a MemberExpr will have side-effects |
| 809 | Info.EvalResult.HasSideEffects = true; |
| 810 | return true; |
| 811 | } |
| 812 | return false; |
| 813 | } |
| 814 | |
| 815 | bool VisitCallExpr(const CallExpr *E); |
| 816 | bool VisitBinaryOperator(const BinaryOperator *E); |
| 817 | bool VisitUnaryOperator(const UnaryOperator *E); |
| 818 | bool VisitConditionalOperator(const ConditionalOperator *E); |
| 819 | |
| 820 | bool VisitCastExpr(CastExpr* E); |
| 821 | bool VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E); |
| 822 | |
| 823 | bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { |
| 824 | return Success(E->getValue(), E); |
| 825 | } |
| 826 | |
| 827 | bool VisitGNUNullExpr(const GNUNullExpr *E) { |
| 828 | return Success(0, E); |
| 829 | } |
| 830 | |
| 831 | bool VisitCXXZeroInitValueExpr(const CXXZeroInitValueExpr *E) { |
| 832 | return Success(0, E); |
| 833 | } |
| 834 | |
| 835 | bool VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { |
| 836 | return Success(0, E); |
| 837 | } |
| 838 | |
| 839 | bool VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) { |
| 840 | return Success(E->EvaluateTrait(Info.Ctx), E); |
| 841 | } |
| 842 | |
| 843 | bool VisitChooseExpr(const ChooseExpr *E) { |
| 844 | return Visit(E->getChosenSubExpr(Info.Ctx)); |
| 845 | } |
| 846 | |
| 847 | bool VisitUnaryReal(const UnaryOperator *E); |
| 848 | bool VisitUnaryImag(const UnaryOperator *E); |
| 849 | |
| 850 | private: |
| 851 | CharUnits GetAlignOfExpr(const Expr *E); |
| 852 | CharUnits GetAlignOfType(QualType T); |
| 853 | // FIXME: Missing: array subscript of vector, member of vector |
| 854 | }; |
| 855 | } // end anonymous namespace |
| 856 | |
| 857 | static bool EvaluateIntegerOrLValue(const Expr* E, APValue &Result, EvalInfo &Info) { |
| 858 | if (!E->getType()->isIntegralType()) |
| 859 | return false; |
| 860 | |
| 861 | return IntExprEvaluator(Info, Result).Visit(const_cast<Expr*>(E)); |
| 862 | } |
| 863 | |
| 864 | static bool EvaluateInteger(const Expr* E, APSInt &Result, EvalInfo &Info) { |
| 865 | APValue Val; |
| 866 | if (!EvaluateIntegerOrLValue(E, Val, Info) || !Val.isInt()) |
| 867 | return false; |
| 868 | Result = Val.getInt(); |
| 869 | return true; |
| 870 | } |
| 871 | |
| 872 | bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) { |
| 873 | // Enums are integer constant exprs. |
| 874 | if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) |
| 875 | return Success(ECD->getInitVal(), E); |
| 876 | |
| 877 | // In C++, const, non-volatile integers initialized with ICEs are ICEs. |
| 878 | // In C, they can also be folded, although they are not ICEs. |
| 879 | if (Info.Ctx.getCanonicalType(E->getType()).getCVRQualifiers() |
| 880 | == Qualifiers::Const) { |
| 881 | |
| 882 | if (isa<ParmVarDecl>(D)) |
| 883 | return Error(E->getLocStart(), diag::note_invalid_subexpr_in_ice, E); |
| 884 | |
| 885 | if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { |
| 886 | if (const Expr *Init = VD->getAnyInitializer()) { |
| 887 | if (APValue *V = VD->getEvaluatedValue()) { |
| 888 | if (V->isInt()) |
| 889 | return Success(V->getInt(), E); |
| 890 | return Error(E->getLocStart(), diag::note_invalid_subexpr_in_ice, E); |
| 891 | } |
| 892 | |
| 893 | if (VD->isEvaluatingValue()) |
| 894 | return Error(E->getLocStart(), diag::note_invalid_subexpr_in_ice, E); |
| 895 | |
| 896 | VD->setEvaluatingValue(); |
| 897 | |
| 898 | if (Visit(const_cast<Expr*>(Init))) { |
| 899 | // Cache the evaluated value in the variable declaration. |
| 900 | VD->setEvaluatedValue(Result); |
| 901 | return true; |
| 902 | } |
| 903 | |
| 904 | VD->setEvaluatedValue(APValue()); |
| 905 | return false; |
| 906 | } |
| 907 | } |
| 908 | } |
| 909 | |
| 910 | // Otherwise, random variable references are not constants. |
| 911 | return Error(E->getLocStart(), diag::note_invalid_subexpr_in_ice, E); |
| 912 | } |
| 913 | |
| 914 | /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way |
| 915 | /// as GCC. |
| 916 | static int EvaluateBuiltinClassifyType(const CallExpr *E) { |
| 917 | // The following enum mimics the values returned by GCC. |
| 918 | // FIXME: Does GCC differ between lvalue and rvalue references here? |
| 919 | enum gcc_type_class { |
| 920 | no_type_class = -1, |
| 921 | void_type_class, integer_type_class, char_type_class, |
| 922 | enumeral_type_class, boolean_type_class, |
| 923 | pointer_type_class, reference_type_class, offset_type_class, |
| 924 | real_type_class, complex_type_class, |
| 925 | function_type_class, method_type_class, |
| 926 | record_type_class, union_type_class, |
| 927 | array_type_class, string_type_class, |
| 928 | lang_type_class |
| 929 | }; |
| 930 | |
| 931 | // If no argument was supplied, default to "no_type_class". This isn't |
| 932 | // ideal, however it is what gcc does. |
| 933 | if (E->getNumArgs() == 0) |
| 934 | return no_type_class; |
| 935 | |
| 936 | QualType ArgTy = E->getArg(0)->getType(); |
| 937 | if (ArgTy->isVoidType()) |
| 938 | return void_type_class; |
| 939 | else if (ArgTy->isEnumeralType()) |
| 940 | return enumeral_type_class; |
| 941 | else if (ArgTy->isBooleanType()) |
| 942 | return boolean_type_class; |
| 943 | else if (ArgTy->isCharType()) |
| 944 | return string_type_class; // gcc doesn't appear to use char_type_class |
| 945 | else if (ArgTy->isIntegerType()) |
| 946 | return integer_type_class; |
| 947 | else if (ArgTy->isPointerType()) |
| 948 | return pointer_type_class; |
| 949 | else if (ArgTy->isReferenceType()) |
| 950 | return reference_type_class; |
| 951 | else if (ArgTy->isRealType()) |
| 952 | return real_type_class; |
| 953 | else if (ArgTy->isComplexType()) |
| 954 | return complex_type_class; |
| 955 | else if (ArgTy->isFunctionType()) |
| 956 | return function_type_class; |
| 957 | else if (ArgTy->isStructureType()) |
| 958 | return record_type_class; |
| 959 | else if (ArgTy->isUnionType()) |
| 960 | return union_type_class; |
| 961 | else if (ArgTy->isArrayType()) |
| 962 | return array_type_class; |
| 963 | else if (ArgTy->isUnionType()) |
| 964 | return union_type_class; |
| 965 | else // FIXME: offset_type_class, method_type_class, & lang_type_class? |
| 966 | assert(0 && "CallExpr::isBuiltinClassifyType(): unimplemented type"); |
| 967 | return -1; |
| 968 | } |
| 969 | |
| 970 | bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) { |
| 971 | switch (E->isBuiltinCall(Info.Ctx)) { |
| 972 | default: |
| 973 | return Error(E->getLocStart(), diag::note_invalid_subexpr_in_ice, E); |
| 974 | |
| 975 | case Builtin::BI__builtin_object_size: { |
| 976 | const Expr *Arg = E->getArg(0)->IgnoreParens(); |
| 977 | Expr::EvalResult Base; |
| 978 | |
| 979 | // TODO: Perhaps we should let LLVM lower this? |
| 980 | if (Arg->EvaluateAsAny(Base, Info.Ctx) |
| 981 | && Base.Val.getKind() == APValue::LValue |
| 982 | && !Base.HasSideEffects) |
| 983 | if (const Expr *LVBase = Base.Val.getLValueBase()) |
| 984 | if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(LVBase)) { |
| 985 | if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) { |
| 986 | if (!VD->getType()->isIncompleteType() |
| 987 | && VD->getType()->isObjectType() |
| 988 | && !VD->getType()->isVariablyModifiedType() |
| 989 | && !VD->getType()->isDependentType()) { |
| 990 | CharUnits Size = Info.Ctx.getTypeSizeInChars(VD->getType()); |
| 991 | CharUnits Offset = Base.Val.getLValueOffset(); |
| 992 | if (!Offset.isNegative() && Offset <= Size) |
| 993 | Size -= Offset; |
| 994 | else |
| 995 | Size = CharUnits::Zero(); |
| 996 | return Success(Size.getQuantity(), E); |
| 997 | } |
| 998 | } |
| 999 | } |
| 1000 | |
| 1001 | // If evaluating the argument has side-effects we can't determine |
| 1002 | // the size of the object and lower it to unknown now. |
| 1003 | if (E->getArg(0)->HasSideEffects(Info.Ctx)) { |
| 1004 | if (E->getArg(1)->EvaluateAsInt(Info.Ctx).getZExtValue() <= 1) |
| 1005 | return Success(-1ULL, E); |
| 1006 | return Success(0, E); |
| 1007 | } |
| 1008 | |
| 1009 | return Error(E->getLocStart(), diag::note_invalid_subexpr_in_ice, E); |
| 1010 | } |
| 1011 | |
| 1012 | case Builtin::BI__builtin_classify_type: |
| 1013 | return Success(EvaluateBuiltinClassifyType(E), E); |
| 1014 | |
| 1015 | case Builtin::BI__builtin_constant_p: |
| 1016 | // __builtin_constant_p always has one operand: it returns true if that |
| 1017 | // operand can be folded, false otherwise. |
| 1018 | return Success(E->getArg(0)->isEvaluatable(Info.Ctx), E); |
| 1019 | |
| 1020 | case Builtin::BI__builtin_eh_return_data_regno: { |
| 1021 | int Operand = E->getArg(0)->EvaluateAsInt(Info.Ctx).getZExtValue(); |
| 1022 | Operand = Info.Ctx.Target.getEHDataRegisterNumber(Operand); |
| 1023 | return Success(Operand, E); |
| 1024 | } |
| 1025 | } |
| 1026 | } |
| 1027 | |
| 1028 | bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { |
| 1029 | if (E->getOpcode() == BinaryOperator::Comma) { |
| 1030 | if (!Visit(E->getRHS())) |
| 1031 | return false; |
| 1032 | |
| 1033 | // If we can't evaluate the LHS, it might have side effects; |
| 1034 | // conservatively mark it. |
| 1035 | if (!E->getLHS()->isEvaluatable(Info.Ctx)) |
| 1036 | Info.EvalResult.HasSideEffects = true; |
| 1037 | |
| 1038 | return true; |
| 1039 | } |
| 1040 | |
| 1041 | if (E->isLogicalOp()) { |
| 1042 | // These need to be handled specially because the operands aren't |
| 1043 | // necessarily integral |
| 1044 | bool lhsResult, rhsResult; |
| 1045 | |
| 1046 | if (HandleConversionToBool(E->getLHS(), lhsResult, Info)) { |
| 1047 | // We were able to evaluate the LHS, see if we can get away with not |
| 1048 | // evaluating the RHS: 0 && X -> 0, 1 || X -> 1 |
| 1049 | if (lhsResult == (E->getOpcode() == BinaryOperator::LOr)) |
| 1050 | return Success(lhsResult, E); |
| 1051 | |
| 1052 | if (HandleConversionToBool(E->getRHS(), rhsResult, Info)) { |
| 1053 | if (E->getOpcode() == BinaryOperator::LOr) |
| 1054 | return Success(lhsResult || rhsResult, E); |
| 1055 | else |
| 1056 | return Success(lhsResult && rhsResult, E); |
| 1057 | } |
| 1058 | } else { |
| 1059 | if (HandleConversionToBool(E->getRHS(), rhsResult, Info)) { |
| 1060 | // We can't evaluate the LHS; however, sometimes the result |
| 1061 | // is determined by the RHS: X && 0 -> 0, X || 1 -> 1. |
| 1062 | if (rhsResult == (E->getOpcode() == BinaryOperator::LOr) || |
| 1063 | !rhsResult == (E->getOpcode() == BinaryOperator::LAnd)) { |
| 1064 | // Since we weren't able to evaluate the left hand side, it |
| 1065 | // must have had side effects. |
| 1066 | Info.EvalResult.HasSideEffects = true; |
| 1067 | |
| 1068 | return Success(rhsResult, E); |
| 1069 | } |
| 1070 | } |
| 1071 | } |
| 1072 | |
| 1073 | return false; |
| 1074 | } |
| 1075 | |
| 1076 | QualType LHSTy = E->getLHS()->getType(); |
| 1077 | QualType RHSTy = E->getRHS()->getType(); |
| 1078 | |
| 1079 | if (LHSTy->isAnyComplexType()) { |
| 1080 | assert(RHSTy->isAnyComplexType() && "Invalid comparison"); |
| 1081 | APValue LHS, RHS; |
| 1082 | |
| 1083 | if (!EvaluateComplex(E->getLHS(), LHS, Info)) |
| 1084 | return false; |
| 1085 | |
| 1086 | if (!EvaluateComplex(E->getRHS(), RHS, Info)) |
| 1087 | return false; |
| 1088 | |
| 1089 | if (LHS.isComplexFloat()) { |
| 1090 | APFloat::cmpResult CR_r = |
| 1091 | LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal()); |
| 1092 | APFloat::cmpResult CR_i = |
| 1093 | LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag()); |
| 1094 | |
| 1095 | if (E->getOpcode() == BinaryOperator::EQ) |
| 1096 | return Success((CR_r == APFloat::cmpEqual && |
| 1097 | CR_i == APFloat::cmpEqual), E); |
| 1098 | else { |
| 1099 | assert(E->getOpcode() == BinaryOperator::NE && |
| 1100 | "Invalid complex comparison."); |
| 1101 | return Success(((CR_r == APFloat::cmpGreaterThan || |
| 1102 | CR_r == APFloat::cmpLessThan) && |
| 1103 | (CR_i == APFloat::cmpGreaterThan || |
| 1104 | CR_i == APFloat::cmpLessThan)), E); |
| 1105 | } |
| 1106 | } else { |
| 1107 | if (E->getOpcode() == BinaryOperator::EQ) |
| 1108 | return Success((LHS.getComplexIntReal() == RHS.getComplexIntReal() && |
| 1109 | LHS.getComplexIntImag() == RHS.getComplexIntImag()), E); |
| 1110 | else { |
| 1111 | assert(E->getOpcode() == BinaryOperator::NE && |
| 1112 | "Invalid compex comparison."); |
| 1113 | return Success((LHS.getComplexIntReal() != RHS.getComplexIntReal() || |
| 1114 | LHS.getComplexIntImag() != RHS.getComplexIntImag()), E); |
| 1115 | } |
| 1116 | } |
| 1117 | } |
| 1118 | |
| 1119 | if (LHSTy->isRealFloatingType() && |
| 1120 | RHSTy->isRealFloatingType()) { |
| 1121 | APFloat RHS(0.0), LHS(0.0); |
| 1122 | |
| 1123 | if (!EvaluateFloat(E->getRHS(), RHS, Info)) |
| 1124 | return false; |
| 1125 | |
| 1126 | if (!EvaluateFloat(E->getLHS(), LHS, Info)) |
| 1127 | return false; |
| 1128 | |
| 1129 | APFloat::cmpResult CR = LHS.compare(RHS); |
| 1130 | |
| 1131 | switch (E->getOpcode()) { |
| 1132 | default: |
| 1133 | assert(0 && "Invalid binary operator!"); |
| 1134 | case BinaryOperator::LT: |
| 1135 | return Success(CR == APFloat::cmpLessThan, E); |
| 1136 | case BinaryOperator::GT: |
| 1137 | return Success(CR == APFloat::cmpGreaterThan, E); |
| 1138 | case BinaryOperator::LE: |
| 1139 | return Success(CR == APFloat::cmpLessThan || CR == APFloat::cmpEqual, E); |
| 1140 | case BinaryOperator::GE: |
| 1141 | return Success(CR == APFloat::cmpGreaterThan || CR == APFloat::cmpEqual, |
| 1142 | E); |
| 1143 | case BinaryOperator::EQ: |
| 1144 | return Success(CR == APFloat::cmpEqual, E); |
| 1145 | case BinaryOperator::NE: |
| 1146 | return Success(CR == APFloat::cmpGreaterThan |
| 1147 | || CR == APFloat::cmpLessThan, E); |
| 1148 | } |
| 1149 | } |
| 1150 | |
| 1151 | if (LHSTy->isPointerType() && RHSTy->isPointerType()) { |
| 1152 | if (E->getOpcode() == BinaryOperator::Sub || E->isEqualityOp()) { |
| 1153 | APValue LHSValue; |
| 1154 | if (!EvaluatePointer(E->getLHS(), LHSValue, Info)) |
| 1155 | return false; |
| 1156 | |
| 1157 | APValue RHSValue; |
| 1158 | if (!EvaluatePointer(E->getRHS(), RHSValue, Info)) |
| 1159 | return false; |
| 1160 | |
| 1161 | // Reject any bases from the normal codepath; we special-case comparisons |
| 1162 | // to null. |
| 1163 | if (LHSValue.getLValueBase()) { |
| 1164 | if (!E->isEqualityOp()) |
| 1165 | return false; |
| 1166 | if (RHSValue.getLValueBase() || !RHSValue.getLValueOffset().isZero()) |
| 1167 | return false; |
| 1168 | bool bres; |
| 1169 | if (!EvalPointerValueAsBool(LHSValue, bres)) |
| 1170 | return false; |
| 1171 | return Success(bres ^ (E->getOpcode() == BinaryOperator::EQ), E); |
| 1172 | } else if (RHSValue.getLValueBase()) { |
| 1173 | if (!E->isEqualityOp()) |
| 1174 | return false; |
| 1175 | if (LHSValue.getLValueBase() || !LHSValue.getLValueOffset().isZero()) |
| 1176 | return false; |
| 1177 | bool bres; |
| 1178 | if (!EvalPointerValueAsBool(RHSValue, bres)) |
| 1179 | return false; |
| 1180 | return Success(bres ^ (E->getOpcode() == BinaryOperator::EQ), E); |
| 1181 | } |
| 1182 | |
| 1183 | if (E->getOpcode() == BinaryOperator::Sub) { |
| 1184 | const QualType Type = E->getLHS()->getType(); |
| 1185 | const QualType ElementType = Type->getAs<PointerType>()->getPointeeType(); |
| 1186 | |
| 1187 | CharUnits ElementSize = CharUnits::One(); |
| 1188 | if (!ElementType->isVoidType() && !ElementType->isFunctionType()) |
| 1189 | ElementSize = Info.Ctx.getTypeSizeInChars(ElementType); |
| 1190 | |
| 1191 | CharUnits Diff = LHSValue.getLValueOffset() - |
| 1192 | RHSValue.getLValueOffset(); |
| 1193 | return Success(Diff / ElementSize, E); |
| 1194 | } |
| 1195 | bool Result; |
| 1196 | if (E->getOpcode() == BinaryOperator::EQ) { |
| 1197 | Result = LHSValue.getLValueOffset() == RHSValue.getLValueOffset(); |
| 1198 | } else { |
| 1199 | Result = LHSValue.getLValueOffset() != RHSValue.getLValueOffset(); |
| 1200 | } |
| 1201 | return Success(Result, E); |
| 1202 | } |
| 1203 | } |
| 1204 | if (!LHSTy->isIntegralType() || |
| 1205 | !RHSTy->isIntegralType()) { |
| 1206 | // We can't continue from here for non-integral types, and they |
| 1207 | // could potentially confuse the following operations. |
| 1208 | return false; |
| 1209 | } |
| 1210 | |
| 1211 | // The LHS of a constant expr is always evaluated and needed. |
| 1212 | if (!Visit(E->getLHS())) |
| 1213 | return false; // error in subexpression. |
| 1214 | |
| 1215 | APValue RHSVal; |
| 1216 | if (!EvaluateIntegerOrLValue(E->getRHS(), RHSVal, Info)) |
| 1217 | return false; |
| 1218 | |
| 1219 | // Handle cases like (unsigned long)&a + 4. |
| 1220 | if (E->isAdditiveOp() && Result.isLValue() && RHSVal.isInt()) { |
| 1221 | CharUnits Offset = Result.getLValueOffset(); |
| 1222 | CharUnits AdditionalOffset = CharUnits::fromQuantity( |
| 1223 | RHSVal.getInt().getZExtValue()); |
| 1224 | if (E->getOpcode() == BinaryOperator::Add) |
| 1225 | Offset += AdditionalOffset; |
| 1226 | else |
| 1227 | Offset -= AdditionalOffset; |
| 1228 | Result = APValue(Result.getLValueBase(), Offset); |
| 1229 | return true; |
| 1230 | } |
| 1231 | |
| 1232 | // Handle cases like 4 + (unsigned long)&a |
| 1233 | if (E->getOpcode() == BinaryOperator::Add && |
| 1234 | RHSVal.isLValue() && Result.isInt()) { |
| 1235 | CharUnits Offset = RHSVal.getLValueOffset(); |
| 1236 | Offset += CharUnits::fromQuantity(Result.getInt().getZExtValue()); |
| 1237 | Result = APValue(RHSVal.getLValueBase(), Offset); |
| 1238 | return true; |
| 1239 | } |
| 1240 | |
| 1241 | // All the following cases expect both operands to be an integer |
| 1242 | if (!Result.isInt() || !RHSVal.isInt()) |
| 1243 | return false; |
| 1244 | |
| 1245 | APSInt& RHS = RHSVal.getInt(); |
| 1246 | |
| 1247 | switch (E->getOpcode()) { |
| 1248 | default: |
| 1249 | return Error(E->getOperatorLoc(), diag::note_invalid_subexpr_in_ice, E); |
| 1250 | case BinaryOperator::Mul: return Success(Result.getInt() * RHS, E); |
| 1251 | case BinaryOperator::Add: return Success(Result.getInt() + RHS, E); |
| 1252 | case BinaryOperator::Sub: return Success(Result.getInt() - RHS, E); |
| 1253 | case BinaryOperator::And: return Success(Result.getInt() & RHS, E); |
| 1254 | case BinaryOperator::Xor: return Success(Result.getInt() ^ RHS, E); |
| 1255 | case BinaryOperator::Or: return Success(Result.getInt() | RHS, E); |
| 1256 | case BinaryOperator::Div: |
| 1257 | if (RHS == 0) |
| 1258 | return Error(E->getOperatorLoc(), diag::note_expr_divide_by_zero, E); |
| 1259 | return Success(Result.getInt() / RHS, E); |
| 1260 | case BinaryOperator::Rem: |
| 1261 | if (RHS == 0) |
| 1262 | return Error(E->getOperatorLoc(), diag::note_expr_divide_by_zero, E); |
| 1263 | return Success(Result.getInt() % RHS, E); |
| 1264 | case BinaryOperator::Shl: { |
| 1265 | // FIXME: Warn about out of range shift amounts! |
| 1266 | unsigned SA = |
| 1267 | (unsigned) RHS.getLimitedValue(Result.getInt().getBitWidth()-1); |
| 1268 | return Success(Result.getInt() << SA, E); |
| 1269 | } |
| 1270 | case BinaryOperator::Shr: { |
| 1271 | unsigned SA = |
| 1272 | (unsigned) RHS.getLimitedValue(Result.getInt().getBitWidth()-1); |
| 1273 | return Success(Result.getInt() >> SA, E); |
| 1274 | } |
| 1275 | |
| 1276 | case BinaryOperator::LT: return Success(Result.getInt() < RHS, E); |
| 1277 | case BinaryOperator::GT: return Success(Result.getInt() > RHS, E); |
| 1278 | case BinaryOperator::LE: return Success(Result.getInt() <= RHS, E); |
| 1279 | case BinaryOperator::GE: return Success(Result.getInt() >= RHS, E); |
| 1280 | case BinaryOperator::EQ: return Success(Result.getInt() == RHS, E); |
| 1281 | case BinaryOperator::NE: return Success(Result.getInt() != RHS, E); |
| 1282 | } |
| 1283 | } |
| 1284 | |
| 1285 | bool IntExprEvaluator::VisitConditionalOperator(const ConditionalOperator *E) { |
| 1286 | bool Cond; |
| 1287 | if (!HandleConversionToBool(E->getCond(), Cond, Info)) |
| 1288 | return false; |
| 1289 | |
| 1290 | return Visit(Cond ? E->getTrueExpr() : E->getFalseExpr()); |
| 1291 | } |
| 1292 | |
| 1293 | CharUnits IntExprEvaluator::GetAlignOfType(QualType T) { |
| 1294 | // C++ [expr.sizeof]p2: "When applied to a reference or a reference type, |
| 1295 | // the result is the size of the referenced type." |
| 1296 | // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the |
| 1297 | // result shall be the alignment of the referenced type." |
| 1298 | if (const ReferenceType *Ref = T->getAs<ReferenceType>()) |
| 1299 | T = Ref->getPointeeType(); |
| 1300 | |
| 1301 | // Get information about the alignment. |
| 1302 | unsigned CharSize = Info.Ctx.Target.getCharWidth(); |
| 1303 | |
| 1304 | // __alignof is defined to return the preferred alignment. |
| 1305 | return CharUnits::fromQuantity( |
| 1306 | Info.Ctx.getPreferredTypeAlign(T.getTypePtr()) / CharSize); |
| 1307 | } |
| 1308 | |
| 1309 | CharUnits IntExprEvaluator::GetAlignOfExpr(const Expr *E) { |
| 1310 | E = E->IgnoreParens(); |
| 1311 | |
| 1312 | // alignof decl is always accepted, even if it doesn't make sense: we default |
| 1313 | // to 1 in those cases. |
| 1314 | if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) |
| 1315 | return Info.Ctx.getDeclAlign(DRE->getDecl(), |
| 1316 | /*RefAsPointee*/true); |
| 1317 | |
| 1318 | if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) |
| 1319 | return Info.Ctx.getDeclAlign(ME->getMemberDecl(), |
| 1320 | /*RefAsPointee*/true); |
| 1321 | |
| 1322 | return GetAlignOfType(E->getType()); |
| 1323 | } |
| 1324 | |
| 1325 | |
| 1326 | /// VisitSizeAlignOfExpr - Evaluate a sizeof or alignof with a result as the |
| 1327 | /// expression's type. |
| 1328 | bool IntExprEvaluator::VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E) { |
| 1329 | // Handle alignof separately. |
| 1330 | if (!E->isSizeOf()) { |
| 1331 | if (E->isArgumentType()) |
| 1332 | return Success(GetAlignOfType(E->getArgumentType()).getQuantity(), E); |
| 1333 | else |
| 1334 | return Success(GetAlignOfExpr(E->getArgumentExpr()).getQuantity(), E); |
| 1335 | } |
| 1336 | |
| 1337 | QualType SrcTy = E->getTypeOfArgument(); |
| 1338 | // C++ [expr.sizeof]p2: "When applied to a reference or a reference type, |
| 1339 | // the result is the size of the referenced type." |
| 1340 | // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the |
| 1341 | // result shall be the alignment of the referenced type." |
| 1342 | if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>()) |
| 1343 | SrcTy = Ref->getPointeeType(); |
| 1344 | |
| 1345 | // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc |
| 1346 | // extension. |
| 1347 | if (SrcTy->isVoidType() || SrcTy->isFunctionType()) |
| 1348 | return Success(1, E); |
| 1349 | |
| 1350 | // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2. |
| 1351 | if (!SrcTy->isConstantSizeType()) |
| 1352 | return false; |
| 1353 | |
| 1354 | // Get information about the size. |
| 1355 | return Success(Info.Ctx.getTypeSizeInChars(SrcTy).getQuantity(), E); |
| 1356 | } |
| 1357 | |
| 1358 | bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { |
| 1359 | // Special case unary operators that do not need their subexpression |
| 1360 | // evaluated. offsetof/sizeof/alignof are all special. |
| 1361 | if (E->isOffsetOfOp()) { |
| 1362 | // The AST for offsetof is defined in such a way that we can just |
| 1363 | // directly Evaluate it as an l-value. |
| 1364 | APValue LV; |
| 1365 | if (!EvaluateLValue(E->getSubExpr(), LV, Info)) |
| 1366 | return false; |
| 1367 | if (LV.getLValueBase()) |
| 1368 | return false; |
| 1369 | return Success(LV.getLValueOffset().getQuantity(), E); |
| 1370 | } |
| 1371 | |
| 1372 | if (E->getOpcode() == UnaryOperator::LNot) { |
| 1373 | // LNot's operand isn't necessarily an integer, so we handle it specially. |
| 1374 | bool bres; |
| 1375 | if (!HandleConversionToBool(E->getSubExpr(), bres, Info)) |
| 1376 | return false; |
| 1377 | return Success(!bres, E); |
| 1378 | } |
| 1379 | |
| 1380 | // Only handle integral operations... |
| 1381 | if (!E->getSubExpr()->getType()->isIntegralType()) |
| 1382 | return false; |
| 1383 | |
| 1384 | // Get the operand value into 'Result'. |
| 1385 | if (!Visit(E->getSubExpr())) |
| 1386 | return false; |
| 1387 | |
| 1388 | switch (E->getOpcode()) { |
| 1389 | default: |
| 1390 | // Address, indirect, pre/post inc/dec, etc are not valid constant exprs. |
| 1391 | // See C99 6.6p3. |
| 1392 | return Error(E->getOperatorLoc(), diag::note_invalid_subexpr_in_ice, E); |
| 1393 | case UnaryOperator::Extension: |
| 1394 | // FIXME: Should extension allow i-c-e extension expressions in its scope? |
| 1395 | // If so, we could clear the diagnostic ID. |
| 1396 | return true; |
| 1397 | case UnaryOperator::Plus: |
| 1398 | // The result is always just the subexpr. |
| 1399 | return true; |
| 1400 | case UnaryOperator::Minus: |
| 1401 | if (!Result.isInt()) return false; |
| 1402 | return Success(-Result.getInt(), E); |
| 1403 | case UnaryOperator::Not: |
| 1404 | if (!Result.isInt()) return false; |
| 1405 | return Success(~Result.getInt(), E); |
| 1406 | } |
| 1407 | } |
| 1408 | |
| 1409 | /// HandleCast - This is used to evaluate implicit or explicit casts where the |
| 1410 | /// result type is integer. |
| 1411 | bool IntExprEvaluator::VisitCastExpr(CastExpr *E) { |
| 1412 | Expr *SubExpr = E->getSubExpr(); |
| 1413 | QualType DestType = E->getType(); |
| 1414 | QualType SrcType = SubExpr->getType(); |
| 1415 | |
| 1416 | if (DestType->isBooleanType()) { |
| 1417 | bool BoolResult; |
| 1418 | if (!HandleConversionToBool(SubExpr, BoolResult, Info)) |
| 1419 | return false; |
| 1420 | return Success(BoolResult, E); |
| 1421 | } |
| 1422 | |
| 1423 | // Handle simple integer->integer casts. |
| 1424 | if (SrcType->isIntegralType()) { |
| 1425 | if (!Visit(SubExpr)) |
| 1426 | return false; |
| 1427 | |
| 1428 | if (!Result.isInt()) { |
| 1429 | // Only allow casts of lvalues if they are lossless. |
| 1430 | return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType); |
| 1431 | } |
| 1432 | |
| 1433 | return Success(HandleIntToIntCast(DestType, SrcType, |
| 1434 | Result.getInt(), Info.Ctx), E); |
| 1435 | } |
| 1436 | |
| 1437 | // FIXME: Clean this up! |
| 1438 | if (SrcType->isPointerType()) { |
| 1439 | APValue LV; |
| 1440 | if (!EvaluatePointer(SubExpr, LV, Info)) |
| 1441 | return false; |
| 1442 | |
| 1443 | if (LV.getLValueBase()) { |
| 1444 | // Only allow based lvalue casts if they are lossless. |
| 1445 | if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType)) |
| 1446 | return false; |
| 1447 | |
| 1448 | Result = LV; |
| 1449 | return true; |
| 1450 | } |
| 1451 | |
| 1452 | APSInt AsInt = Info.Ctx.MakeIntValue(LV.getLValueOffset().getQuantity(), |
| 1453 | SrcType); |
| 1454 | return Success(HandleIntToIntCast(DestType, SrcType, AsInt, Info.Ctx), E); |
| 1455 | } |
| 1456 | |
| 1457 | if (SrcType->isArrayType() || SrcType->isFunctionType()) { |
| 1458 | // This handles double-conversion cases, where there's both |
| 1459 | // an l-value promotion and an implicit conversion to int. |
| 1460 | APValue LV; |
| 1461 | if (!EvaluateLValue(SubExpr, LV, Info)) |
| 1462 | return false; |
| 1463 | |
| 1464 | if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(Info.Ctx.VoidPtrTy)) |
| 1465 | return false; |
| 1466 | |
| 1467 | Result = LV; |
| 1468 | return true; |
| 1469 | } |
| 1470 | |
| 1471 | if (SrcType->isAnyComplexType()) { |
| 1472 | APValue C; |
| 1473 | if (!EvaluateComplex(SubExpr, C, Info)) |
| 1474 | return false; |
| 1475 | if (C.isComplexFloat()) |
| 1476 | return Success(HandleFloatToIntCast(DestType, SrcType, |
| 1477 | C.getComplexFloatReal(), Info.Ctx), |
| 1478 | E); |
| 1479 | else |
| 1480 | return Success(HandleIntToIntCast(DestType, SrcType, |
| 1481 | C.getComplexIntReal(), Info.Ctx), E); |
| 1482 | } |
| 1483 | // FIXME: Handle vectors |
| 1484 | |
| 1485 | if (!SrcType->isRealFloatingType()) |
| 1486 | return Error(E->getExprLoc(), diag::note_invalid_subexpr_in_ice, E); |
| 1487 | |
| 1488 | APFloat F(0.0); |
| 1489 | if (!EvaluateFloat(SubExpr, F, Info)) |
| 1490 | return Error(E->getExprLoc(), diag::note_invalid_subexpr_in_ice, E); |
| 1491 | |
| 1492 | return Success(HandleFloatToIntCast(DestType, SrcType, F, Info.Ctx), E); |
| 1493 | } |
| 1494 | |
| 1495 | bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) { |
| 1496 | if (E->getSubExpr()->getType()->isAnyComplexType()) { |
| 1497 | APValue LV; |
| 1498 | if (!EvaluateComplex(E->getSubExpr(), LV, Info) || !LV.isComplexInt()) |
| 1499 | return Error(E->getExprLoc(), diag::note_invalid_subexpr_in_ice, E); |
| 1500 | return Success(LV.getComplexIntReal(), E); |
| 1501 | } |
| 1502 | |
| 1503 | return Visit(E->getSubExpr()); |
| 1504 | } |
| 1505 | |
| 1506 | bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) { |
| 1507 | if (E->getSubExpr()->getType()->isComplexIntegerType()) { |
| 1508 | APValue LV; |
| 1509 | if (!EvaluateComplex(E->getSubExpr(), LV, Info) || !LV.isComplexInt()) |
| 1510 | return Error(E->getExprLoc(), diag::note_invalid_subexpr_in_ice, E); |
| 1511 | return Success(LV.getComplexIntImag(), E); |
| 1512 | } |
| 1513 | |
| 1514 | if (!E->getSubExpr()->isEvaluatable(Info.Ctx)) |
| 1515 | Info.EvalResult.HasSideEffects = true; |
| 1516 | return Success(0, E); |
| 1517 | } |
| 1518 | |
| 1519 | //===----------------------------------------------------------------------===// |
| 1520 | // Float Evaluation |
| 1521 | //===----------------------------------------------------------------------===// |
| 1522 | |
| 1523 | namespace { |
| 1524 | class FloatExprEvaluator |
| 1525 | : public StmtVisitor<FloatExprEvaluator, bool> { |
| 1526 | EvalInfo &Info; |
| 1527 | APFloat &Result; |
| 1528 | public: |
| 1529 | FloatExprEvaluator(EvalInfo &info, APFloat &result) |
| 1530 | : Info(info), Result(result) {} |
| 1531 | |
| 1532 | bool VisitStmt(Stmt *S) { |
| 1533 | return false; |
| 1534 | } |
| 1535 | |
| 1536 | bool VisitParenExpr(ParenExpr *E) { return Visit(E->getSubExpr()); } |
| 1537 | bool VisitCallExpr(const CallExpr *E); |
| 1538 | |
| 1539 | bool VisitUnaryOperator(const UnaryOperator *E); |
| 1540 | bool VisitBinaryOperator(const BinaryOperator *E); |
| 1541 | bool VisitFloatingLiteral(const FloatingLiteral *E); |
| 1542 | bool VisitCastExpr(CastExpr *E); |
| 1543 | bool VisitCXXZeroInitValueExpr(CXXZeroInitValueExpr *E); |
| 1544 | bool VisitConditionalOperator(ConditionalOperator *E); |
| 1545 | |
| 1546 | bool VisitChooseExpr(const ChooseExpr *E) |
| 1547 | { return Visit(E->getChosenSubExpr(Info.Ctx)); } |
| 1548 | bool VisitUnaryExtension(const UnaryOperator *E) |
| 1549 | { return Visit(E->getSubExpr()); } |
| 1550 | |
| 1551 | // FIXME: Missing: __real__/__imag__, array subscript of vector, |
| 1552 | // member of vector, ImplicitValueInitExpr |
| 1553 | }; |
| 1554 | } // end anonymous namespace |
| 1555 | |
| 1556 | static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) { |
| 1557 | return FloatExprEvaluator(Info, Result).Visit(const_cast<Expr*>(E)); |
| 1558 | } |
| 1559 | |
| 1560 | bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) { |
| 1561 | switch (E->isBuiltinCall(Info.Ctx)) { |
| 1562 | default: return false; |
| 1563 | case Builtin::BI__builtin_huge_val: |
| 1564 | case Builtin::BI__builtin_huge_valf: |
| 1565 | case Builtin::BI__builtin_huge_vall: |
| 1566 | case Builtin::BI__builtin_inf: |
| 1567 | case Builtin::BI__builtin_inff: |
| 1568 | case Builtin::BI__builtin_infl: { |
| 1569 | const llvm::fltSemantics &Sem = |
| 1570 | Info.Ctx.getFloatTypeSemantics(E->getType()); |
| 1571 | Result = llvm::APFloat::getInf(Sem); |
| 1572 | return true; |
| 1573 | } |
| 1574 | |
| 1575 | case Builtin::BI__builtin_nan: |
| 1576 | case Builtin::BI__builtin_nanf: |
| 1577 | case Builtin::BI__builtin_nanl: |
| 1578 | // If this is __builtin_nan() turn this into a nan, otherwise we |
| 1579 | // can't constant fold it. |
| 1580 | if (const StringLiteral *S = |
| 1581 | dyn_cast<StringLiteral>(E->getArg(0)->IgnoreParenCasts())) { |
| 1582 | if (!S->isWide()) { |
| 1583 | const llvm::fltSemantics &Sem = |
| 1584 | Info.Ctx.getFloatTypeSemantics(E->getType()); |
| 1585 | unsigned Type = 0; |
| 1586 | if (!S->getString().empty() && S->getString().getAsInteger(0, Type)) |
| 1587 | return false; |
| 1588 | Result = llvm::APFloat::getNaN(Sem, false, Type); |
| 1589 | return true; |
| 1590 | } |
| 1591 | } |
| 1592 | return false; |
| 1593 | |
| 1594 | case Builtin::BI__builtin_fabs: |
| 1595 | case Builtin::BI__builtin_fabsf: |
| 1596 | case Builtin::BI__builtin_fabsl: |
| 1597 | if (!EvaluateFloat(E->getArg(0), Result, Info)) |
| 1598 | return false; |
| 1599 | |
| 1600 | if (Result.isNegative()) |
| 1601 | Result.changeSign(); |
| 1602 | return true; |
| 1603 | |
| 1604 | case Builtin::BI__builtin_copysign: |
| 1605 | case Builtin::BI__builtin_copysignf: |
| 1606 | case Builtin::BI__builtin_copysignl: { |
| 1607 | APFloat RHS(0.); |
| 1608 | if (!EvaluateFloat(E->getArg(0), Result, Info) || |
| 1609 | !EvaluateFloat(E->getArg(1), RHS, Info)) |
| 1610 | return false; |
| 1611 | Result.copySign(RHS); |
| 1612 | return true; |
| 1613 | } |
| 1614 | } |
| 1615 | } |
| 1616 | |
| 1617 | bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { |
| 1618 | if (E->getOpcode() == UnaryOperator::Deref) |
| 1619 | return false; |
| 1620 | |
| 1621 | if (!EvaluateFloat(E->getSubExpr(), Result, Info)) |
| 1622 | return false; |
| 1623 | |
| 1624 | switch (E->getOpcode()) { |
| 1625 | default: return false; |
| 1626 | case UnaryOperator::Plus: |
| 1627 | return true; |
| 1628 | case UnaryOperator::Minus: |
| 1629 | Result.changeSign(); |
| 1630 | return true; |
| 1631 | } |
| 1632 | } |
| 1633 | |
| 1634 | bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { |
| 1635 | if (E->getOpcode() == BinaryOperator::Comma) { |
| 1636 | if (!EvaluateFloat(E->getRHS(), Result, Info)) |
| 1637 | return false; |
| 1638 | |
| 1639 | // If we can't evaluate the LHS, it might have side effects; |
| 1640 | // conservatively mark it. |
| 1641 | if (!E->getLHS()->isEvaluatable(Info.Ctx)) |
| 1642 | Info.EvalResult.HasSideEffects = true; |
| 1643 | |
| 1644 | return true; |
| 1645 | } |
| 1646 | |
| 1647 | // FIXME: Diagnostics? I really don't understand how the warnings |
| 1648 | // and errors are supposed to work. |
| 1649 | APFloat RHS(0.0); |
| 1650 | if (!EvaluateFloat(E->getLHS(), Result, Info)) |
| 1651 | return false; |
| 1652 | if (!EvaluateFloat(E->getRHS(), RHS, Info)) |
| 1653 | return false; |
| 1654 | |
| 1655 | switch (E->getOpcode()) { |
| 1656 | default: return false; |
| 1657 | case BinaryOperator::Mul: |
| 1658 | Result.multiply(RHS, APFloat::rmNearestTiesToEven); |
| 1659 | return true; |
| 1660 | case BinaryOperator::Add: |
| 1661 | Result.add(RHS, APFloat::rmNearestTiesToEven); |
| 1662 | return true; |
| 1663 | case BinaryOperator::Sub: |
| 1664 | Result.subtract(RHS, APFloat::rmNearestTiesToEven); |
| 1665 | return true; |
| 1666 | case BinaryOperator::Div: |
| 1667 | Result.divide(RHS, APFloat::rmNearestTiesToEven); |
| 1668 | return true; |
| 1669 | } |
| 1670 | } |
| 1671 | |
| 1672 | bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) { |
| 1673 | Result = E->getValue(); |
| 1674 | return true; |
| 1675 | } |
| 1676 | |
| 1677 | bool FloatExprEvaluator::VisitCastExpr(CastExpr *E) { |
| 1678 | Expr* SubExpr = E->getSubExpr(); |
| 1679 | |
| 1680 | if (SubExpr->getType()->isIntegralType()) { |
| 1681 | APSInt IntResult; |
| 1682 | if (!EvaluateInteger(SubExpr, IntResult, Info)) |
| 1683 | return false; |
| 1684 | Result = HandleIntToFloatCast(E->getType(), SubExpr->getType(), |
| 1685 | IntResult, Info.Ctx); |
| 1686 | return true; |
| 1687 | } |
| 1688 | if (SubExpr->getType()->isRealFloatingType()) { |
| 1689 | if (!Visit(SubExpr)) |
| 1690 | return false; |
| 1691 | Result = HandleFloatToFloatCast(E->getType(), SubExpr->getType(), |
| 1692 | Result, Info.Ctx); |
| 1693 | return true; |
| 1694 | } |
| 1695 | // FIXME: Handle complex types |
| 1696 | |
| 1697 | return false; |
| 1698 | } |
| 1699 | |
| 1700 | bool FloatExprEvaluator::VisitCXXZeroInitValueExpr(CXXZeroInitValueExpr *E) { |
| 1701 | Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType())); |
| 1702 | return true; |
| 1703 | } |
| 1704 | |
| 1705 | bool FloatExprEvaluator::VisitConditionalOperator(ConditionalOperator *E) { |
| 1706 | bool Cond; |
| 1707 | if (!HandleConversionToBool(E->getCond(), Cond, Info)) |
| 1708 | return false; |
| 1709 | |
| 1710 | return Visit(Cond ? E->getTrueExpr() : E->getFalseExpr()); |
| 1711 | } |
| 1712 | |
| 1713 | //===----------------------------------------------------------------------===// |
| 1714 | // Complex Evaluation (for float and integer) |
| 1715 | //===----------------------------------------------------------------------===// |
| 1716 | |
| 1717 | namespace { |
| 1718 | class ComplexExprEvaluator |
| 1719 | : public StmtVisitor<ComplexExprEvaluator, APValue> { |
| 1720 | EvalInfo &Info; |
| 1721 | |
| 1722 | public: |
| 1723 | ComplexExprEvaluator(EvalInfo &info) : Info(info) {} |
| 1724 | |
| 1725 | //===--------------------------------------------------------------------===// |
| 1726 | // Visitor Methods |
| 1727 | //===--------------------------------------------------------------------===// |
| 1728 | |
| 1729 | APValue VisitStmt(Stmt *S) { |
| 1730 | return APValue(); |
| 1731 | } |
| 1732 | |
| 1733 | APValue VisitParenExpr(ParenExpr *E) { return Visit(E->getSubExpr()); } |
| 1734 | |
| 1735 | APValue VisitImaginaryLiteral(ImaginaryLiteral *E) { |
| 1736 | Expr* SubExpr = E->getSubExpr(); |
| 1737 | |
| 1738 | if (SubExpr->getType()->isRealFloatingType()) { |
| 1739 | APFloat Result(0.0); |
| 1740 | |
| 1741 | if (!EvaluateFloat(SubExpr, Result, Info)) |
| 1742 | return APValue(); |
| 1743 | |
| 1744 | return APValue(APFloat(Result.getSemantics(), APFloat::fcZero, false), |
| 1745 | Result); |
| 1746 | } else { |
| 1747 | assert(SubExpr->getType()->isIntegerType() && |
| 1748 | "Unexpected imaginary literal."); |
| 1749 | |
| 1750 | llvm::APSInt Result; |
| 1751 | if (!EvaluateInteger(SubExpr, Result, Info)) |
| 1752 | return APValue(); |
| 1753 | |
| 1754 | llvm::APSInt Zero(Result.getBitWidth(), !Result.isSigned()); |
| 1755 | Zero = 0; |
| 1756 | return APValue(Zero, Result); |
| 1757 | } |
| 1758 | } |
| 1759 | |
| 1760 | APValue VisitCastExpr(CastExpr *E) { |
| 1761 | Expr* SubExpr = E->getSubExpr(); |
| 1762 | QualType EltType = E->getType()->getAs<ComplexType>()->getElementType(); |
| 1763 | QualType SubType = SubExpr->getType(); |
| 1764 | |
| 1765 | if (SubType->isRealFloatingType()) { |
| 1766 | APFloat Result(0.0); |
| 1767 | |
| 1768 | if (!EvaluateFloat(SubExpr, Result, Info)) |
| 1769 | return APValue(); |
| 1770 | |
| 1771 | if (EltType->isRealFloatingType()) { |
| 1772 | Result = HandleFloatToFloatCast(EltType, SubType, Result, Info.Ctx); |
| 1773 | return APValue(Result, |
| 1774 | APFloat(Result.getSemantics(), APFloat::fcZero, false)); |
| 1775 | } else { |
| 1776 | llvm::APSInt IResult; |
| 1777 | IResult = HandleFloatToIntCast(EltType, SubType, Result, Info.Ctx); |
| 1778 | llvm::APSInt Zero(IResult.getBitWidth(), !IResult.isSigned()); |
| 1779 | Zero = 0; |
| 1780 | return APValue(IResult, Zero); |
| 1781 | } |
| 1782 | } else if (SubType->isIntegerType()) { |
| 1783 | APSInt Result; |
| 1784 | |
| 1785 | if (!EvaluateInteger(SubExpr, Result, Info)) |
| 1786 | return APValue(); |
| 1787 | |
| 1788 | if (EltType->isRealFloatingType()) { |
| 1789 | APFloat FResult = |
| 1790 | HandleIntToFloatCast(EltType, SubType, Result, Info.Ctx); |
| 1791 | return APValue(FResult, |
| 1792 | APFloat(FResult.getSemantics(), APFloat::fcZero, false)); |
| 1793 | } else { |
| 1794 | Result = HandleIntToIntCast(EltType, SubType, Result, Info.Ctx); |
| 1795 | llvm::APSInt Zero(Result.getBitWidth(), !Result.isSigned()); |
| 1796 | Zero = 0; |
| 1797 | return APValue(Result, Zero); |
| 1798 | } |
| 1799 | } else if (const ComplexType *CT = SubType->getAs<ComplexType>()) { |
| 1800 | APValue Src; |
| 1801 | |
| 1802 | if (!EvaluateComplex(SubExpr, Src, Info)) |
| 1803 | return APValue(); |
| 1804 | |
| 1805 | QualType SrcType = CT->getElementType(); |
| 1806 | |
| 1807 | if (Src.isComplexFloat()) { |
| 1808 | if (EltType->isRealFloatingType()) { |
| 1809 | return APValue(HandleFloatToFloatCast(EltType, SrcType, |
| 1810 | Src.getComplexFloatReal(), |
| 1811 | Info.Ctx), |
| 1812 | HandleFloatToFloatCast(EltType, SrcType, |
| 1813 | Src.getComplexFloatImag(), |
| 1814 | Info.Ctx)); |
| 1815 | } else { |
| 1816 | return APValue(HandleFloatToIntCast(EltType, SrcType, |
| 1817 | Src.getComplexFloatReal(), |
| 1818 | Info.Ctx), |
| 1819 | HandleFloatToIntCast(EltType, SrcType, |
| 1820 | Src.getComplexFloatImag(), |
| 1821 | Info.Ctx)); |
| 1822 | } |
| 1823 | } else { |
| 1824 | assert(Src.isComplexInt() && "Invalid evaluate result."); |
| 1825 | if (EltType->isRealFloatingType()) { |
| 1826 | return APValue(HandleIntToFloatCast(EltType, SrcType, |
| 1827 | Src.getComplexIntReal(), |
| 1828 | Info.Ctx), |
| 1829 | HandleIntToFloatCast(EltType, SrcType, |
| 1830 | Src.getComplexIntImag(), |
| 1831 | Info.Ctx)); |
| 1832 | } else { |
| 1833 | return APValue(HandleIntToIntCast(EltType, SrcType, |
| 1834 | Src.getComplexIntReal(), |
| 1835 | Info.Ctx), |
| 1836 | HandleIntToIntCast(EltType, SrcType, |
| 1837 | Src.getComplexIntImag(), |
| 1838 | Info.Ctx)); |
| 1839 | } |
| 1840 | } |
| 1841 | } |
| 1842 | |
| 1843 | // FIXME: Handle more casts. |
| 1844 | return APValue(); |
| 1845 | } |
| 1846 | |
| 1847 | APValue VisitBinaryOperator(const BinaryOperator *E); |
| 1848 | APValue VisitChooseExpr(const ChooseExpr *E) |
| 1849 | { return Visit(E->getChosenSubExpr(Info.Ctx)); } |
| 1850 | APValue VisitUnaryExtension(const UnaryOperator *E) |
| 1851 | { return Visit(E->getSubExpr()); } |
| 1852 | // FIXME Missing: unary +/-/~, binary div, ImplicitValueInitExpr, |
| 1853 | // conditional ?:, comma |
| 1854 | }; |
| 1855 | } // end anonymous namespace |
| 1856 | |
| 1857 | static bool EvaluateComplex(const Expr *E, APValue &Result, EvalInfo &Info) { |
| 1858 | Result = ComplexExprEvaluator(Info).Visit(const_cast<Expr*>(E)); |
| 1859 | assert((!Result.isComplexFloat() || |
| 1860 | (&Result.getComplexFloatReal().getSemantics() == |
| 1861 | &Result.getComplexFloatImag().getSemantics())) && |
| 1862 | "Invalid complex evaluation."); |
| 1863 | return Result.isComplexFloat() || Result.isComplexInt(); |
| 1864 | } |
| 1865 | |
| 1866 | APValue ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { |
| 1867 | APValue Result, RHS; |
| 1868 | |
| 1869 | if (!EvaluateComplex(E->getLHS(), Result, Info)) |
| 1870 | return APValue(); |
| 1871 | |
| 1872 | if (!EvaluateComplex(E->getRHS(), RHS, Info)) |
| 1873 | return APValue(); |
| 1874 | |
| 1875 | assert(Result.isComplexFloat() == RHS.isComplexFloat() && |
| 1876 | "Invalid operands to binary operator."); |
| 1877 | switch (E->getOpcode()) { |
| 1878 | default: return APValue(); |
| 1879 | case BinaryOperator::Add: |
| 1880 | if (Result.isComplexFloat()) { |
| 1881 | Result.getComplexFloatReal().add(RHS.getComplexFloatReal(), |
| 1882 | APFloat::rmNearestTiesToEven); |
| 1883 | Result.getComplexFloatImag().add(RHS.getComplexFloatImag(), |
| 1884 | APFloat::rmNearestTiesToEven); |
| 1885 | } else { |
| 1886 | Result.getComplexIntReal() += RHS.getComplexIntReal(); |
| 1887 | Result.getComplexIntImag() += RHS.getComplexIntImag(); |
| 1888 | } |
| 1889 | break; |
| 1890 | case BinaryOperator::Sub: |
| 1891 | if (Result.isComplexFloat()) { |
| 1892 | Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(), |
| 1893 | APFloat::rmNearestTiesToEven); |
| 1894 | Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(), |
| 1895 | APFloat::rmNearestTiesToEven); |
| 1896 | } else { |
| 1897 | Result.getComplexIntReal() -= RHS.getComplexIntReal(); |
| 1898 | Result.getComplexIntImag() -= RHS.getComplexIntImag(); |
| 1899 | } |
| 1900 | break; |
| 1901 | case BinaryOperator::Mul: |
| 1902 | if (Result.isComplexFloat()) { |
| 1903 | APValue LHS = Result; |
| 1904 | APFloat &LHS_r = LHS.getComplexFloatReal(); |
| 1905 | APFloat &LHS_i = LHS.getComplexFloatImag(); |
| 1906 | APFloat &RHS_r = RHS.getComplexFloatReal(); |
| 1907 | APFloat &RHS_i = RHS.getComplexFloatImag(); |
| 1908 | |
| 1909 | APFloat Tmp = LHS_r; |
| 1910 | Tmp.multiply(RHS_r, APFloat::rmNearestTiesToEven); |
| 1911 | Result.getComplexFloatReal() = Tmp; |
| 1912 | Tmp = LHS_i; |
| 1913 | Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven); |
| 1914 | Result.getComplexFloatReal().subtract(Tmp, APFloat::rmNearestTiesToEven); |
| 1915 | |
| 1916 | Tmp = LHS_r; |
| 1917 | Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven); |
| 1918 | Result.getComplexFloatImag() = Tmp; |
| 1919 | Tmp = LHS_i; |
| 1920 | Tmp.multiply(RHS_r, APFloat::rmNearestTiesToEven); |
| 1921 | Result.getComplexFloatImag().add(Tmp, APFloat::rmNearestTiesToEven); |
| 1922 | } else { |
| 1923 | APValue LHS = Result; |
| 1924 | Result.getComplexIntReal() = |
| 1925 | (LHS.getComplexIntReal() * RHS.getComplexIntReal() - |
| 1926 | LHS.getComplexIntImag() * RHS.getComplexIntImag()); |
| 1927 | Result.getComplexIntImag() = |
| 1928 | (LHS.getComplexIntReal() * RHS.getComplexIntImag() + |
| 1929 | LHS.getComplexIntImag() * RHS.getComplexIntReal()); |
| 1930 | } |
| 1931 | break; |
| 1932 | } |
| 1933 | |
| 1934 | return Result; |
| 1935 | } |
| 1936 | |
| 1937 | //===----------------------------------------------------------------------===// |
| 1938 | // Top level Expr::Evaluate method. |
| 1939 | //===----------------------------------------------------------------------===// |
| 1940 | |
| 1941 | /// Evaluate - Return true if this is a constant which we can fold using |
| 1942 | /// any crazy technique (that has nothing to do with language standards) that |
| 1943 | /// we want to. If this function returns true, it returns the folded constant |
| 1944 | /// in Result. |
| 1945 | bool Expr::Evaluate(EvalResult &Result, ASTContext &Ctx) const { |
| 1946 | EvalInfo Info(Ctx, Result); |
| 1947 | |
| 1948 | if (getType()->isVectorType()) { |
| 1949 | if (!EvaluateVector(this, Result.Val, Info)) |
| 1950 | return false; |
| 1951 | } else if (getType()->isIntegerType()) { |
| 1952 | if (!IntExprEvaluator(Info, Result.Val).Visit(const_cast<Expr*>(this))) |
| 1953 | return false; |
| 1954 | } else if (getType()->hasPointerRepresentation()) { |
| 1955 | if (!EvaluatePointer(this, Result.Val, Info)) |
| 1956 | return false; |
| 1957 | } else if (getType()->isRealFloatingType()) { |
| 1958 | llvm::APFloat f(0.0); |
| 1959 | if (!EvaluateFloat(this, f, Info)) |
| 1960 | return false; |
| 1961 | |
| 1962 | Result.Val = APValue(f); |
| 1963 | } else if (getType()->isAnyComplexType()) { |
| 1964 | if (!EvaluateComplex(this, Result.Val, Info)) |
| 1965 | return false; |
| 1966 | } else |
| 1967 | return false; |
| 1968 | |
| 1969 | return true; |
| 1970 | } |
| 1971 | |
| 1972 | bool Expr::EvaluateAsAny(EvalResult &Result, ASTContext &Ctx) const { |
| 1973 | EvalInfo Info(Ctx, Result, true); |
| 1974 | |
| 1975 | if (getType()->isVectorType()) { |
| 1976 | if (!EvaluateVector(this, Result.Val, Info)) |
| 1977 | return false; |
| 1978 | } else if (getType()->isIntegerType()) { |
| 1979 | if (!IntExprEvaluator(Info, Result.Val).Visit(const_cast<Expr*>(this))) |
| 1980 | return false; |
| 1981 | } else if (getType()->hasPointerRepresentation()) { |
| 1982 | if (!EvaluatePointer(this, Result.Val, Info)) |
| 1983 | return false; |
| 1984 | } else if (getType()->isRealFloatingType()) { |
| 1985 | llvm::APFloat f(0.0); |
| 1986 | if (!EvaluateFloat(this, f, Info)) |
| 1987 | return false; |
| 1988 | |
| 1989 | Result.Val = APValue(f); |
| 1990 | } else if (getType()->isAnyComplexType()) { |
| 1991 | if (!EvaluateComplex(this, Result.Val, Info)) |
| 1992 | return false; |
| 1993 | } else |
| 1994 | return false; |
| 1995 | |
| 1996 | return true; |
| 1997 | } |
| 1998 | |
| 1999 | bool Expr::EvaluateAsBooleanCondition(bool &Result, ASTContext &Ctx) const { |
| 2000 | EvalResult Scratch; |
| 2001 | EvalInfo Info(Ctx, Scratch); |
| 2002 | |
| 2003 | return HandleConversionToBool(this, Result, Info); |
| 2004 | } |
| 2005 | |
| 2006 | bool Expr::EvaluateAsLValue(EvalResult &Result, ASTContext &Ctx) const { |
| 2007 | EvalInfo Info(Ctx, Result); |
| 2008 | |
| 2009 | return EvaluateLValue(this, Result.Val, Info) && !Result.HasSideEffects; |
| 2010 | } |
| 2011 | |
| 2012 | bool Expr::EvaluateAsAnyLValue(EvalResult &Result, ASTContext &Ctx) const { |
| 2013 | EvalInfo Info(Ctx, Result, true); |
| 2014 | |
| 2015 | return EvaluateLValue(this, Result.Val, Info) && !Result.HasSideEffects; |
| 2016 | } |
| 2017 | |
| 2018 | /// isEvaluatable - Call Evaluate to see if this expression can be constant |
| 2019 | /// folded, but discard the result. |
| 2020 | bool Expr::isEvaluatable(ASTContext &Ctx) const { |
| 2021 | EvalResult Result; |
| 2022 | return Evaluate(Result, Ctx) && !Result.HasSideEffects; |
| 2023 | } |
| 2024 | |
| 2025 | bool Expr::HasSideEffects(ASTContext &Ctx) const { |
| 2026 | Expr::EvalResult Result; |
| 2027 | EvalInfo Info(Ctx, Result); |
| 2028 | return HasSideEffect(Info).Visit(const_cast<Expr*>(this)); |
| 2029 | } |
| 2030 | |
| 2031 | APSInt Expr::EvaluateAsInt(ASTContext &Ctx) const { |
| 2032 | EvalResult EvalResult; |
| 2033 | bool Result = Evaluate(EvalResult, Ctx); |
| 2034 | Result = Result; |
| 2035 | assert(Result && "Could not evaluate expression"); |
| 2036 | assert(EvalResult.Val.isInt() && "Expression did not evaluate to integer"); |
| 2037 | |
| 2038 | return EvalResult.Val.getInt(); |
| 2039 | } |