blob: 5b8aeae5d1c50c99148ffcf1a680a385cd61c226 [file] [log] [blame]
Shih-wei Liaof8fd82b2010-02-10 11:10:31 -08001//===--- CFG.cpp - Classes for representing and building CFGs----*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the CFG and CFGBuilder classes for representing and
11// building Control-Flow Graphs (CFGs) from ASTs.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Analysis/Support/SaveAndRestore.h"
16#include "clang/Analysis/CFG.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/StmtVisitor.h"
19#include "clang/AST/PrettyPrinter.h"
20#include "llvm/Support/GraphWriter.h"
21#include "llvm/Support/Allocator.h"
22#include "llvm/Support/Format.h"
23#include "llvm/ADT/DenseMap.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/ADT/OwningPtr.h"
26
27using namespace clang;
28
29namespace {
30
31static SourceLocation GetEndLoc(Decl* D) {
32 if (VarDecl* VD = dyn_cast<VarDecl>(D))
33 if (Expr* Ex = VD->getInit())
34 return Ex->getSourceRange().getEnd();
35
36 return D->getLocation();
37}
38
39class AddStmtChoice {
40public:
41 enum Kind { NotAlwaysAdd = 0, AlwaysAdd, AlwaysAddAsLValue };
42public:
43 AddStmtChoice(Kind kind) : k(kind) {}
44 bool alwaysAdd() const { return k != NotAlwaysAdd; }
45 bool asLValue() const { return k == AlwaysAddAsLValue; }
46private:
47 Kind k;
48};
49
50/// CFGBuilder - This class implements CFG construction from an AST.
51/// The builder is stateful: an instance of the builder should be used to only
52/// construct a single CFG.
53///
54/// Example usage:
55///
56/// CFGBuilder builder;
57/// CFG* cfg = builder.BuildAST(stmt1);
58///
59/// CFG construction is done via a recursive walk of an AST. We actually parse
60/// the AST in reverse order so that the successor of a basic block is
61/// constructed prior to its predecessor. This allows us to nicely capture
62/// implicit fall-throughs without extra basic blocks.
63///
64class CFGBuilder {
65 ASTContext *Context;
66 llvm::OwningPtr<CFG> cfg;
67
68 CFGBlock* Block;
69 CFGBlock* Succ;
70 CFGBlock* ContinueTargetBlock;
71 CFGBlock* BreakTargetBlock;
72 CFGBlock* SwitchTerminatedBlock;
73 CFGBlock* DefaultCaseBlock;
74 CFGBlock* TryTerminatedBlock;
75
76 // LabelMap records the mapping from Label expressions to their blocks.
77 typedef llvm::DenseMap<LabelStmt*,CFGBlock*> LabelMapTy;
78 LabelMapTy LabelMap;
79
80 // A list of blocks that end with a "goto" that must be backpatched to their
81 // resolved targets upon completion of CFG construction.
82 typedef std::vector<CFGBlock*> BackpatchBlocksTy;
83 BackpatchBlocksTy BackpatchBlocks;
84
85 // A list of labels whose address has been taken (for indirect gotos).
86 typedef llvm::SmallPtrSet<LabelStmt*,5> LabelSetTy;
87 LabelSetTy AddressTakenLabels;
88
89public:
90 explicit CFGBuilder() : cfg(new CFG()), // crew a new CFG
91 Block(NULL), Succ(NULL),
92 ContinueTargetBlock(NULL), BreakTargetBlock(NULL),
93 SwitchTerminatedBlock(NULL), DefaultCaseBlock(NULL),
94 TryTerminatedBlock(NULL) {}
95
96 // buildCFG - Used by external clients to construct the CFG.
97 CFG* buildCFG(const Decl *D, Stmt *Statement, ASTContext *C, bool AddEHEdges,
98 bool AddScopes);
99
100private:
101 // Visitors to walk an AST and construct the CFG.
102 CFGBlock *VisitAddrLabelExpr(AddrLabelExpr *A, AddStmtChoice asc);
103 CFGBlock *VisitBinaryOperator(BinaryOperator *B, AddStmtChoice asc);
104 CFGBlock *VisitBlockExpr(BlockExpr* E, AddStmtChoice asc);
105 CFGBlock *VisitBreakStmt(BreakStmt *B);
106 CFGBlock *VisitCallExpr(CallExpr *C, AddStmtChoice asc);
107 CFGBlock *VisitCaseStmt(CaseStmt *C);
108 CFGBlock *VisitChooseExpr(ChooseExpr *C, AddStmtChoice asc);
109 CFGBlock *VisitCompoundStmt(CompoundStmt *C);
110 CFGBlock *VisitConditionalOperator(ConditionalOperator *C,
111 AddStmtChoice asc);
112 CFGBlock *VisitContinueStmt(ContinueStmt *C);
113 CFGBlock *VisitCXXCatchStmt(CXXCatchStmt *S);
114 CFGBlock *VisitCXXThrowExpr(CXXThrowExpr *T);
115 CFGBlock *VisitCXXTryStmt(CXXTryStmt *S);
116 CFGBlock *VisitDeclStmt(DeclStmt *DS);
117 CFGBlock *VisitDeclSubExpr(Decl* D);
118 CFGBlock *VisitDefaultStmt(DefaultStmt *D);
119 CFGBlock *VisitDoStmt(DoStmt *D);
120 CFGBlock *VisitForStmt(ForStmt *F);
121 CFGBlock *VisitGotoStmt(GotoStmt* G);
122 CFGBlock *VisitIfStmt(IfStmt *I);
123 CFGBlock *VisitIndirectGotoStmt(IndirectGotoStmt *I);
124 CFGBlock *VisitLabelStmt(LabelStmt *L);
125 CFGBlock *VisitObjCAtCatchStmt(ObjCAtCatchStmt *S);
126 CFGBlock *VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S);
127 CFGBlock *VisitObjCAtThrowStmt(ObjCAtThrowStmt *S);
128 CFGBlock *VisitObjCAtTryStmt(ObjCAtTryStmt *S);
129 CFGBlock *VisitObjCForCollectionStmt(ObjCForCollectionStmt *S);
130 CFGBlock *VisitReturnStmt(ReturnStmt* R);
131 CFGBlock *VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr *E, AddStmtChoice asc);
132 CFGBlock *VisitStmtExpr(StmtExpr *S, AddStmtChoice asc);
133 CFGBlock *VisitSwitchStmt(SwitchStmt *S);
134 CFGBlock *VisitWhileStmt(WhileStmt *W);
135
136 CFGBlock *Visit(Stmt *S, AddStmtChoice asc = AddStmtChoice::NotAlwaysAdd);
137 CFGBlock *VisitStmt(Stmt *S, AddStmtChoice asc);
138 CFGBlock *VisitChildren(Stmt* S);
139
140 // NYS == Not Yet Supported
141 CFGBlock* NYS() {
142 badCFG = true;
143 return Block;
144 }
145
146 CFGBlock *StartScope(Stmt *S, CFGBlock *B) {
147 if (!AddScopes)
148 return B;
149
150 if (B == 0)
151 B = createBlock();
152 B->StartScope(S, cfg->getBumpVectorContext());
153 return B;
154 }
155
156 void EndScope(Stmt *S) {
157 if (!AddScopes)
158 return;
159
160 if (Block == 0)
161 Block = createBlock();
162 Block->EndScope(S, cfg->getBumpVectorContext());
163 }
164
165 void autoCreateBlock() { if (!Block) Block = createBlock(); }
166 CFGBlock *createBlock(bool add_successor = true);
167 bool FinishBlock(CFGBlock* B);
168 CFGBlock *addStmt(Stmt *S, AddStmtChoice asc = AddStmtChoice::AlwaysAdd) {
169 return Visit(S, asc);
170 }
171
172 void AppendStmt(CFGBlock *B, Stmt *S,
173 AddStmtChoice asc = AddStmtChoice::AlwaysAdd) {
174 B->appendStmt(S, cfg->getBumpVectorContext(), asc.asLValue());
175 }
176
177 void AddSuccessor(CFGBlock *B, CFGBlock *S) {
178 B->addSuccessor(S, cfg->getBumpVectorContext());
179 }
180
181 /// TryResult - a class representing a variant over the values
182 /// 'true', 'false', or 'unknown'. This is returned by TryEvaluateBool,
183 /// and is used by the CFGBuilder to decide if a branch condition
184 /// can be decided up front during CFG construction.
185 class TryResult {
186 int X;
187 public:
188 TryResult(bool b) : X(b ? 1 : 0) {}
189 TryResult() : X(-1) {}
190
191 bool isTrue() const { return X == 1; }
192 bool isFalse() const { return X == 0; }
193 bool isKnown() const { return X >= 0; }
194 void negate() {
195 assert(isKnown());
196 X ^= 0x1;
197 }
198 };
199
200 /// TryEvaluateBool - Try and evaluate the Stmt and return 0 or 1
201 /// if we can evaluate to a known value, otherwise return -1.
202 TryResult TryEvaluateBool(Expr *S) {
203 Expr::EvalResult Result;
204 if (!S->isTypeDependent() && !S->isValueDependent() &&
205 S->Evaluate(Result, *Context) && Result.Val.isInt())
206 return Result.Val.getInt().getBoolValue();
207
208 return TryResult();
209 }
210
211 bool badCFG;
212
213 // True iff EH edges on CallExprs should be added to the CFG.
214 bool AddEHEdges;
215
216 // True iff scope start and scope end notes should be added to the CFG.
217 bool AddScopes;
218};
219
220// FIXME: Add support for dependent-sized array types in C++?
221// Does it even make sense to build a CFG for an uninstantiated template?
222static VariableArrayType* FindVA(Type* t) {
223 while (ArrayType* vt = dyn_cast<ArrayType>(t)) {
224 if (VariableArrayType* vat = dyn_cast<VariableArrayType>(vt))
225 if (vat->getSizeExpr())
226 return vat;
227
228 t = vt->getElementType().getTypePtr();
229 }
230
231 return 0;
232}
233
234/// BuildCFG - Constructs a CFG from an AST (a Stmt*). The AST can represent an
235/// arbitrary statement. Examples include a single expression or a function
236/// body (compound statement). The ownership of the returned CFG is
237/// transferred to the caller. If CFG construction fails, this method returns
238/// NULL.
239CFG* CFGBuilder::buildCFG(const Decl *D, Stmt* Statement, ASTContext* C,
240 bool addehedges, bool AddScopes) {
241 AddEHEdges = addehedges;
242 Context = C;
243 assert(cfg.get());
244 if (!Statement)
245 return NULL;
246
247 this->AddScopes = AddScopes;
248 badCFG = false;
249
250 // Create an empty block that will serve as the exit block for the CFG. Since
251 // this is the first block added to the CFG, it will be implicitly registered
252 // as the exit block.
253 Succ = createBlock();
254 assert(Succ == &cfg->getExit());
255 Block = NULL; // the EXIT block is empty. Create all other blocks lazily.
256
257 // Visit the statements and create the CFG.
258 CFGBlock* B = addStmt(Statement);
259
260 if (const CXXConstructorDecl *CD = dyn_cast_or_null<CXXConstructorDecl>(D)) {
261 // FIXME: Add code for base initializers and member initializers.
262 (void)CD;
263 }
264 if (!B)
265 B = Succ;
266
267 if (B) {
268 // Finalize the last constructed block. This usually involves reversing the
269 // order of the statements in the block.
270 if (Block) FinishBlock(B);
271
272 // Backpatch the gotos whose label -> block mappings we didn't know when we
273 // encountered them.
274 for (BackpatchBlocksTy::iterator I = BackpatchBlocks.begin(),
275 E = BackpatchBlocks.end(); I != E; ++I ) {
276
277 CFGBlock* B = *I;
278 GotoStmt* G = cast<GotoStmt>(B->getTerminator());
279 LabelMapTy::iterator LI = LabelMap.find(G->getLabel());
280
281 // If there is no target for the goto, then we are looking at an
282 // incomplete AST. Handle this by not registering a successor.
283 if (LI == LabelMap.end()) continue;
284
285 AddSuccessor(B, LI->second);
286 }
287
288 // Add successors to the Indirect Goto Dispatch block (if we have one).
289 if (CFGBlock* B = cfg->getIndirectGotoBlock())
290 for (LabelSetTy::iterator I = AddressTakenLabels.begin(),
291 E = AddressTakenLabels.end(); I != E; ++I ) {
292
293 // Lookup the target block.
294 LabelMapTy::iterator LI = LabelMap.find(*I);
295
296 // If there is no target block that contains label, then we are looking
297 // at an incomplete AST. Handle this by not registering a successor.
298 if (LI == LabelMap.end()) continue;
299
300 AddSuccessor(B, LI->second);
301 }
302
303 Succ = B;
304 }
305
306 // Create an empty entry block that has no predecessors.
307 cfg->setEntry(createBlock());
308
309 return badCFG ? NULL : cfg.take();
310}
311
312/// createBlock - Used to lazily create blocks that are connected
313/// to the current (global) succcessor.
314CFGBlock* CFGBuilder::createBlock(bool add_successor) {
315 CFGBlock* B = cfg->createBlock();
316 if (add_successor && Succ)
317 AddSuccessor(B, Succ);
318 return B;
319}
320
321/// FinishBlock - "Finalize" the block by checking if we have a bad CFG.
322bool CFGBuilder::FinishBlock(CFGBlock* B) {
323 if (badCFG)
324 return false;
325
326 assert(B);
327 return true;
328}
329
330/// Visit - Walk the subtree of a statement and add extra
331/// blocks for ternary operators, &&, and ||. We also process "," and
332/// DeclStmts (which may contain nested control-flow).
333CFGBlock* CFGBuilder::Visit(Stmt * S, AddStmtChoice asc) {
334tryAgain:
335 switch (S->getStmtClass()) {
336 default:
337 return VisitStmt(S, asc);
338
339 case Stmt::AddrLabelExprClass:
340 return VisitAddrLabelExpr(cast<AddrLabelExpr>(S), asc);
341
342 case Stmt::BinaryOperatorClass:
343 return VisitBinaryOperator(cast<BinaryOperator>(S), asc);
344
345 case Stmt::BlockExprClass:
346 return VisitBlockExpr(cast<BlockExpr>(S), asc);
347
348 case Stmt::BreakStmtClass:
349 return VisitBreakStmt(cast<BreakStmt>(S));
350
351 case Stmt::CallExprClass:
352 return VisitCallExpr(cast<CallExpr>(S), asc);
353
354 case Stmt::CaseStmtClass:
355 return VisitCaseStmt(cast<CaseStmt>(S));
356
357 case Stmt::ChooseExprClass:
358 return VisitChooseExpr(cast<ChooseExpr>(S), asc);
359
360 case Stmt::CompoundStmtClass:
361 return VisitCompoundStmt(cast<CompoundStmt>(S));
362
363 case Stmt::ConditionalOperatorClass:
364 return VisitConditionalOperator(cast<ConditionalOperator>(S), asc);
365
366 case Stmt::ContinueStmtClass:
367 return VisitContinueStmt(cast<ContinueStmt>(S));
368
369 case Stmt::CXXCatchStmtClass:
370 return VisitCXXCatchStmt(cast<CXXCatchStmt>(S));
371
372 case Stmt::CXXThrowExprClass:
373 return VisitCXXThrowExpr(cast<CXXThrowExpr>(S));
374
375 case Stmt::CXXTryStmtClass:
376 return VisitCXXTryStmt(cast<CXXTryStmt>(S));
377
378 case Stmt::DeclStmtClass:
379 return VisitDeclStmt(cast<DeclStmt>(S));
380
381 case Stmt::DefaultStmtClass:
382 return VisitDefaultStmt(cast<DefaultStmt>(S));
383
384 case Stmt::DoStmtClass:
385 return VisitDoStmt(cast<DoStmt>(S));
386
387 case Stmt::ForStmtClass:
388 return VisitForStmt(cast<ForStmt>(S));
389
390 case Stmt::GotoStmtClass:
391 return VisitGotoStmt(cast<GotoStmt>(S));
392
393 case Stmt::IfStmtClass:
394 return VisitIfStmt(cast<IfStmt>(S));
395
396 case Stmt::IndirectGotoStmtClass:
397 return VisitIndirectGotoStmt(cast<IndirectGotoStmt>(S));
398
399 case Stmt::LabelStmtClass:
400 return VisitLabelStmt(cast<LabelStmt>(S));
401
402 case Stmt::ObjCAtCatchStmtClass:
403 return VisitObjCAtCatchStmt(cast<ObjCAtCatchStmt>(S));
404
405 case Stmt::ObjCAtSynchronizedStmtClass:
406 return VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S));
407
408 case Stmt::ObjCAtThrowStmtClass:
409 return VisitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(S));
410
411 case Stmt::ObjCAtTryStmtClass:
412 return VisitObjCAtTryStmt(cast<ObjCAtTryStmt>(S));
413
414 case Stmt::ObjCForCollectionStmtClass:
415 return VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S));
416
417 case Stmt::ParenExprClass:
418 S = cast<ParenExpr>(S)->getSubExpr();
419 goto tryAgain;
420
421 case Stmt::NullStmtClass:
422 return Block;
423
424 case Stmt::ReturnStmtClass:
425 return VisitReturnStmt(cast<ReturnStmt>(S));
426
427 case Stmt::SizeOfAlignOfExprClass:
428 return VisitSizeOfAlignOfExpr(cast<SizeOfAlignOfExpr>(S), asc);
429
430 case Stmt::StmtExprClass:
431 return VisitStmtExpr(cast<StmtExpr>(S), asc);
432
433 case Stmt::SwitchStmtClass:
434 return VisitSwitchStmt(cast<SwitchStmt>(S));
435
436 case Stmt::WhileStmtClass:
437 return VisitWhileStmt(cast<WhileStmt>(S));
438 }
439}
440
441CFGBlock *CFGBuilder::VisitStmt(Stmt *S, AddStmtChoice asc) {
442 if (asc.alwaysAdd()) {
443 autoCreateBlock();
444 AppendStmt(Block, S, asc);
445 }
446
447 return VisitChildren(S);
448}
449
450/// VisitChildren - Visit the children of a Stmt.
451CFGBlock *CFGBuilder::VisitChildren(Stmt* Terminator) {
452 CFGBlock *B = Block;
453 for (Stmt::child_iterator I = Terminator->child_begin(),
454 E = Terminator->child_end(); I != E; ++I) {
455 if (*I) B = Visit(*I);
456 }
457 return B;
458}
459
460CFGBlock *CFGBuilder::VisitAddrLabelExpr(AddrLabelExpr *A,
461 AddStmtChoice asc) {
462 AddressTakenLabels.insert(A->getLabel());
463
464 if (asc.alwaysAdd()) {
465 autoCreateBlock();
466 AppendStmt(Block, A, asc);
467 }
468
469 return Block;
470}
471
472CFGBlock *CFGBuilder::VisitBinaryOperator(BinaryOperator *B,
473 AddStmtChoice asc) {
474 if (B->isLogicalOp()) { // && or ||
475 CFGBlock* ConfluenceBlock = Block ? Block : createBlock();
476 AppendStmt(ConfluenceBlock, B, asc);
477
478 if (!FinishBlock(ConfluenceBlock))
479 return 0;
480
481 // create the block evaluating the LHS
482 CFGBlock* LHSBlock = createBlock(false);
483 LHSBlock->setTerminator(B);
484
485 // create the block evaluating the RHS
486 Succ = ConfluenceBlock;
487 Block = NULL;
488 CFGBlock* RHSBlock = addStmt(B->getRHS());
489 if (!FinishBlock(RHSBlock))
490 return 0;
491
492 // See if this is a known constant.
493 TryResult KnownVal = TryEvaluateBool(B->getLHS());
494 if (KnownVal.isKnown() && (B->getOpcode() == BinaryOperator::LOr))
495 KnownVal.negate();
496
497 // Now link the LHSBlock with RHSBlock.
498 if (B->getOpcode() == BinaryOperator::LOr) {
499 AddSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
500 AddSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
501 } else {
502 assert(B->getOpcode() == BinaryOperator::LAnd);
503 AddSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
504 AddSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
505 }
506
507 // Generate the blocks for evaluating the LHS.
508 Block = LHSBlock;
509 return addStmt(B->getLHS());
510 }
511 else if (B->getOpcode() == BinaryOperator::Comma) { // ,
512 autoCreateBlock();
513 AppendStmt(Block, B, asc);
514 addStmt(B->getRHS());
515 return addStmt(B->getLHS());
516 }
517
518 return VisitStmt(B, asc);
519}
520
521CFGBlock *CFGBuilder::VisitBlockExpr(BlockExpr *E, AddStmtChoice asc) {
522 if (asc.alwaysAdd()) {
523 autoCreateBlock();
524 AppendStmt(Block, E, asc);
525 }
526 return Block;
527}
528
529CFGBlock *CFGBuilder::VisitBreakStmt(BreakStmt *B) {
530 // "break" is a control-flow statement. Thus we stop processing the current
531 // block.
532 if (Block && !FinishBlock(Block))
533 return 0;
534
535 // Now create a new block that ends with the break statement.
536 Block = createBlock(false);
537 Block->setTerminator(B);
538
539 // If there is no target for the break, then we are looking at an incomplete
540 // AST. This means that the CFG cannot be constructed.
541 if (BreakTargetBlock)
542 AddSuccessor(Block, BreakTargetBlock);
543 else
544 badCFG = true;
545
546
547 return Block;
548}
549
550static bool CanThrow(Expr *E) {
551 QualType Ty = E->getType();
552 if (Ty->isFunctionPointerType())
553 Ty = Ty->getAs<PointerType>()->getPointeeType();
554 else if (Ty->isBlockPointerType())
555 Ty = Ty->getAs<BlockPointerType>()->getPointeeType();
556
557 const FunctionType *FT = Ty->getAs<FunctionType>();
558 if (FT) {
559 if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
560 if (Proto->hasEmptyExceptionSpec())
561 return false;
562 }
563 return true;
564}
565
566CFGBlock *CFGBuilder::VisitCallExpr(CallExpr *C, AddStmtChoice asc) {
567 // If this is a call to a no-return function, this stops the block here.
568 bool NoReturn = false;
569 if (C->getCallee()->getType().getNoReturnAttr()) {
570 NoReturn = true;
571 }
572
573 bool AddEHEdge = false;
574
575 // Languages without exceptions are assumed to not throw.
576 if (Context->getLangOptions().Exceptions) {
577 if (AddEHEdges)
578 AddEHEdge = true;
579 }
580
581 if (FunctionDecl *FD = C->getDirectCallee()) {
582 if (FD->hasAttr<NoReturnAttr>())
583 NoReturn = true;
584 if (FD->hasAttr<NoThrowAttr>())
585 AddEHEdge = false;
586 }
587
588 if (!CanThrow(C->getCallee()))
589 AddEHEdge = false;
590
591 if (!NoReturn && !AddEHEdge)
592 return VisitStmt(C, asc);
593
594 if (Block) {
595 Succ = Block;
596 if (!FinishBlock(Block))
597 return 0;
598 }
599
600 Block = createBlock(!NoReturn);
601 AppendStmt(Block, C, asc);
602
603 if (NoReturn) {
604 // Wire this to the exit block directly.
605 AddSuccessor(Block, &cfg->getExit());
606 }
607 if (AddEHEdge) {
608 // Add exceptional edges.
609 if (TryTerminatedBlock)
610 AddSuccessor(Block, TryTerminatedBlock);
611 else
612 AddSuccessor(Block, &cfg->getExit());
613 }
614
615 return VisitChildren(C);
616}
617
618CFGBlock *CFGBuilder::VisitChooseExpr(ChooseExpr *C,
619 AddStmtChoice asc) {
620 CFGBlock* ConfluenceBlock = Block ? Block : createBlock();
621 AppendStmt(ConfluenceBlock, C, asc);
622 if (!FinishBlock(ConfluenceBlock))
623 return 0;
624
625 Succ = ConfluenceBlock;
626 Block = NULL;
627 CFGBlock* LHSBlock = addStmt(C->getLHS());
628 if (!FinishBlock(LHSBlock))
629 return 0;
630
631 Succ = ConfluenceBlock;
632 Block = NULL;
633 CFGBlock* RHSBlock = addStmt(C->getRHS());
634 if (!FinishBlock(RHSBlock))
635 return 0;
636
637 Block = createBlock(false);
638 // See if this is a known constant.
639 const TryResult& KnownVal = TryEvaluateBool(C->getCond());
640 AddSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
641 AddSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
642 Block->setTerminator(C);
643 return addStmt(C->getCond());
644}
645
646
647CFGBlock* CFGBuilder::VisitCompoundStmt(CompoundStmt* C) {
648 EndScope(C);
649
650 CFGBlock* LastBlock = Block;
651
652 for (CompoundStmt::reverse_body_iterator I=C->body_rbegin(), E=C->body_rend();
653 I != E; ++I ) {
654 LastBlock = addStmt(*I);
655
656 if (badCFG)
657 return NULL;
658 }
659
660 LastBlock = StartScope(C, LastBlock);
661
662 return LastBlock;
663}
664
665CFGBlock *CFGBuilder::VisitConditionalOperator(ConditionalOperator *C,
666 AddStmtChoice asc) {
667 // Create the confluence block that will "merge" the results of the ternary
668 // expression.
669 CFGBlock* ConfluenceBlock = Block ? Block : createBlock();
670 AppendStmt(ConfluenceBlock, C, asc);
671 if (!FinishBlock(ConfluenceBlock))
672 return 0;
673
674 // Create a block for the LHS expression if there is an LHS expression. A
675 // GCC extension allows LHS to be NULL, causing the condition to be the
676 // value that is returned instead.
677 // e.g: x ?: y is shorthand for: x ? x : y;
678 Succ = ConfluenceBlock;
679 Block = NULL;
680 CFGBlock* LHSBlock = NULL;
681 if (C->getLHS()) {
682 LHSBlock = addStmt(C->getLHS());
683 if (!FinishBlock(LHSBlock))
684 return 0;
685 Block = NULL;
686 }
687
688 // Create the block for the RHS expression.
689 Succ = ConfluenceBlock;
690 CFGBlock* RHSBlock = addStmt(C->getRHS());
691 if (!FinishBlock(RHSBlock))
692 return 0;
693
694 // Create the block that will contain the condition.
695 Block = createBlock(false);
696
697 // See if this is a known constant.
698 const TryResult& KnownVal = TryEvaluateBool(C->getCond());
699 if (LHSBlock) {
700 AddSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
701 } else {
702 if (KnownVal.isFalse()) {
703 // If we know the condition is false, add NULL as the successor for
704 // the block containing the condition. In this case, the confluence
705 // block will have just one predecessor.
706 AddSuccessor(Block, 0);
707 assert(ConfluenceBlock->pred_size() == 1);
708 } else {
709 // If we have no LHS expression, add the ConfluenceBlock as a direct
710 // successor for the block containing the condition. Moreover, we need to
711 // reverse the order of the predecessors in the ConfluenceBlock because
712 // the RHSBlock will have been added to the succcessors already, and we
713 // want the first predecessor to the the block containing the expression
714 // for the case when the ternary expression evaluates to true.
715 AddSuccessor(Block, ConfluenceBlock);
716 assert(ConfluenceBlock->pred_size() == 2);
717 std::reverse(ConfluenceBlock->pred_begin(),
718 ConfluenceBlock->pred_end());
719 }
720 }
721
722 AddSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
723 Block->setTerminator(C);
724 return addStmt(C->getCond());
725}
726
727CFGBlock *CFGBuilder::VisitDeclStmt(DeclStmt *DS) {
728 autoCreateBlock();
729
730 if (DS->isSingleDecl()) {
731 AppendStmt(Block, DS);
732 return VisitDeclSubExpr(DS->getSingleDecl());
733 }
734
735 CFGBlock *B = 0;
736
737 // FIXME: Add a reverse iterator for DeclStmt to avoid this extra copy.
738 typedef llvm::SmallVector<Decl*,10> BufTy;
739 BufTy Buf(DS->decl_begin(), DS->decl_end());
740
741 for (BufTy::reverse_iterator I = Buf.rbegin(), E = Buf.rend(); I != E; ++I) {
742 // Get the alignment of the new DeclStmt, padding out to >=8 bytes.
743 unsigned A = llvm::AlignOf<DeclStmt>::Alignment < 8
744 ? 8 : llvm::AlignOf<DeclStmt>::Alignment;
745
746 // Allocate the DeclStmt using the BumpPtrAllocator. It will get
747 // automatically freed with the CFG.
748 DeclGroupRef DG(*I);
749 Decl *D = *I;
750 void *Mem = cfg->getAllocator().Allocate(sizeof(DeclStmt), A);
751 DeclStmt *DSNew = new (Mem) DeclStmt(DG, D->getLocation(), GetEndLoc(D));
752
753 // Append the fake DeclStmt to block.
754 AppendStmt(Block, DSNew);
755 B = VisitDeclSubExpr(D);
756 }
757
758 return B;
759}
760
761/// VisitDeclSubExpr - Utility method to add block-level expressions for
762/// initializers in Decls.
763CFGBlock *CFGBuilder::VisitDeclSubExpr(Decl* D) {
764 assert(Block);
765
766 VarDecl *VD = dyn_cast<VarDecl>(D);
767
768 if (!VD)
769 return Block;
770
771 Expr *Init = VD->getInit();
772
773 if (Init) {
774 // Optimization: Don't create separate block-level statements for literals.
775 switch (Init->getStmtClass()) {
776 case Stmt::IntegerLiteralClass:
777 case Stmt::CharacterLiteralClass:
778 case Stmt::StringLiteralClass:
779 break;
780 default:
781 Block = addStmt(Init,
782 VD->getType()->isReferenceType()
783 ? AddStmtChoice::AlwaysAddAsLValue
784 : AddStmtChoice::AlwaysAdd);
785 }
786 }
787
788 // If the type of VD is a VLA, then we must process its size expressions.
789 for (VariableArrayType* VA = FindVA(VD->getType().getTypePtr()); VA != 0;
790 VA = FindVA(VA->getElementType().getTypePtr()))
791 Block = addStmt(VA->getSizeExpr());
792
793 return Block;
794}
795
796CFGBlock* CFGBuilder::VisitIfStmt(IfStmt* I) {
797 // We may see an if statement in the middle of a basic block, or it may be the
798 // first statement we are processing. In either case, we create a new basic
799 // block. First, we create the blocks for the then...else statements, and
800 // then we create the block containing the if statement. If we were in the
801 // middle of a block, we stop processing that block. That block is then the
802 // implicit successor for the "then" and "else" clauses.
803
804 // The block we were proccessing is now finished. Make it the successor
805 // block.
806 if (Block) {
807 Succ = Block;
808 if (!FinishBlock(Block))
809 return 0;
810 }
811
812 // Process the false branch.
813 CFGBlock* ElseBlock = Succ;
814
815 if (Stmt* Else = I->getElse()) {
816 SaveAndRestore<CFGBlock*> sv(Succ);
817
818 // NULL out Block so that the recursive call to Visit will
819 // create a new basic block.
820 Block = NULL;
821 ElseBlock = addStmt(Else);
822
823 if (!ElseBlock) // Can occur when the Else body has all NullStmts.
824 ElseBlock = sv.get();
825 else if (Block) {
826 if (!FinishBlock(ElseBlock))
827 return 0;
828 }
829 }
830
831 // Process the true branch.
832 CFGBlock* ThenBlock;
833 {
834 Stmt* Then = I->getThen();
835 assert(Then);
836 SaveAndRestore<CFGBlock*> sv(Succ);
837 Block = NULL;
838 ThenBlock = addStmt(Then);
839
840 if (!ThenBlock) {
841 // We can reach here if the "then" body has all NullStmts.
842 // Create an empty block so we can distinguish between true and false
843 // branches in path-sensitive analyses.
844 ThenBlock = createBlock(false);
845 AddSuccessor(ThenBlock, sv.get());
846 } else if (Block) {
847 if (!FinishBlock(ThenBlock))
848 return 0;
849 }
850 }
851
852 // Now create a new block containing the if statement.
853 Block = createBlock(false);
854
855 // Set the terminator of the new block to the If statement.
856 Block->setTerminator(I);
857
858 // See if this is a known constant.
859 const TryResult &KnownVal = TryEvaluateBool(I->getCond());
860
861 // Now add the successors.
862 AddSuccessor(Block, KnownVal.isFalse() ? NULL : ThenBlock);
863 AddSuccessor(Block, KnownVal.isTrue()? NULL : ElseBlock);
864
865 // Add the condition as the last statement in the new block. This may create
866 // new blocks as the condition may contain control-flow. Any newly created
867 // blocks will be pointed to be "Block".
868 Block = addStmt(I->getCond());
869
870 // Finally, if the IfStmt contains a condition variable, add both the IfStmt
871 // and the condition variable initialization to the CFG.
872 if (VarDecl *VD = I->getConditionVariable()) {
873 if (Expr *Init = VD->getInit()) {
874 autoCreateBlock();
875 AppendStmt(Block, I, AddStmtChoice::AlwaysAdd);
876 addStmt(Init);
877 }
878 }
879
880 return Block;
881}
882
883
884CFGBlock* CFGBuilder::VisitReturnStmt(ReturnStmt* R) {
885 // If we were in the middle of a block we stop processing that block.
886 //
887 // NOTE: If a "return" appears in the middle of a block, this means that the
888 // code afterwards is DEAD (unreachable). We still keep a basic block
889 // for that code; a simple "mark-and-sweep" from the entry block will be
890 // able to report such dead blocks.
891 if (Block)
892 FinishBlock(Block);
893
894 // Create the new block.
895 Block = createBlock(false);
896
897 // The Exit block is the only successor.
898 AddSuccessor(Block, &cfg->getExit());
899
900 // Add the return statement to the block. This may create new blocks if R
901 // contains control-flow (short-circuit operations).
902 return VisitStmt(R, AddStmtChoice::AlwaysAdd);
903}
904
905CFGBlock* CFGBuilder::VisitLabelStmt(LabelStmt* L) {
906 // Get the block of the labeled statement. Add it to our map.
907 addStmt(L->getSubStmt());
908 CFGBlock* LabelBlock = Block;
909
910 if (!LabelBlock) // This can happen when the body is empty, i.e.
911 LabelBlock = createBlock(); // scopes that only contains NullStmts.
912
913 assert(LabelMap.find(L) == LabelMap.end() && "label already in map");
914 LabelMap[ L ] = LabelBlock;
915
916 // Labels partition blocks, so this is the end of the basic block we were
917 // processing (L is the block's label). Because this is label (and we have
918 // already processed the substatement) there is no extra control-flow to worry
919 // about.
920 LabelBlock->setLabel(L);
921 if (!FinishBlock(LabelBlock))
922 return 0;
923
924 // We set Block to NULL to allow lazy creation of a new block (if necessary);
925 Block = NULL;
926
927 // This block is now the implicit successor of other blocks.
928 Succ = LabelBlock;
929
930 return LabelBlock;
931}
932
933CFGBlock* CFGBuilder::VisitGotoStmt(GotoStmt* G) {
934 // Goto is a control-flow statement. Thus we stop processing the current
935 // block and create a new one.
936 if (Block)
937 FinishBlock(Block);
938
939 Block = createBlock(false);
940 Block->setTerminator(G);
941
942 // If we already know the mapping to the label block add the successor now.
943 LabelMapTy::iterator I = LabelMap.find(G->getLabel());
944
945 if (I == LabelMap.end())
946 // We will need to backpatch this block later.
947 BackpatchBlocks.push_back(Block);
948 else
949 AddSuccessor(Block, I->second);
950
951 return Block;
952}
953
954CFGBlock* CFGBuilder::VisitForStmt(ForStmt* F) {
955 CFGBlock* LoopSuccessor = NULL;
956
957 // "for" is a control-flow statement. Thus we stop processing the current
958 // block.
959 if (Block) {
960 if (!FinishBlock(Block))
961 return 0;
962 LoopSuccessor = Block;
963 } else
964 LoopSuccessor = Succ;
965
966 // Because of short-circuit evaluation, the condition of the loop can span
967 // multiple basic blocks. Thus we need the "Entry" and "Exit" blocks that
968 // evaluate the condition.
969 CFGBlock* ExitConditionBlock = createBlock(false);
970 CFGBlock* EntryConditionBlock = ExitConditionBlock;
971
972 // Set the terminator for the "exit" condition block.
973 ExitConditionBlock->setTerminator(F);
974
975 // Now add the actual condition to the condition block. Because the condition
976 // itself may contain control-flow, new blocks may be created.
977 if (Stmt* C = F->getCond()) {
978 Block = ExitConditionBlock;
979 EntryConditionBlock = addStmt(C);
980 assert(Block == EntryConditionBlock);
981
982 // If this block contains a condition variable, add both the condition
983 // variable and initializer to the CFG.
984 if (VarDecl *VD = F->getConditionVariable()) {
985 if (Expr *Init = VD->getInit()) {
986 autoCreateBlock();
987 AppendStmt(Block, F, AddStmtChoice::AlwaysAdd);
988 EntryConditionBlock = addStmt(Init);
989 assert(Block == EntryConditionBlock);
990 }
991 }
992
993 if (Block) {
994 if (!FinishBlock(EntryConditionBlock))
995 return 0;
996 }
997 }
998
999 // The condition block is the implicit successor for the loop body as well as
1000 // any code above the loop.
1001 Succ = EntryConditionBlock;
1002
1003 // See if this is a known constant.
1004 TryResult KnownVal(true);
1005
1006 if (F->getCond())
1007 KnownVal = TryEvaluateBool(F->getCond());
1008
1009 // Now create the loop body.
1010 {
1011 assert(F->getBody());
1012
1013 // Save the current values for Block, Succ, and continue and break targets
1014 SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ),
1015 save_continue(ContinueTargetBlock),
1016 save_break(BreakTargetBlock);
1017
1018 // Create a new block to contain the (bottom) of the loop body.
1019 Block = NULL;
1020
1021 if (Stmt* I = F->getInc()) {
1022 // Generate increment code in its own basic block. This is the target of
1023 // continue statements.
1024 Succ = addStmt(I);
1025 } else {
1026 // No increment code. Create a special, empty, block that is used as the
1027 // target block for "looping back" to the start of the loop.
1028 assert(Succ == EntryConditionBlock);
1029 Succ = createBlock();
1030 }
1031
1032 // Finish up the increment (or empty) block if it hasn't been already.
1033 if (Block) {
1034 assert(Block == Succ);
1035 if (!FinishBlock(Block))
1036 return 0;
1037 Block = 0;
1038 }
1039
1040 ContinueTargetBlock = Succ;
1041
1042 // The starting block for the loop increment is the block that should
1043 // represent the 'loop target' for looping back to the start of the loop.
1044 ContinueTargetBlock->setLoopTarget(F);
1045
1046 // All breaks should go to the code following the loop.
1047 BreakTargetBlock = LoopSuccessor;
1048
1049 // Now populate the body block, and in the process create new blocks as we
1050 // walk the body of the loop.
1051 CFGBlock* BodyBlock = addStmt(F->getBody());
1052
1053 if (!BodyBlock)
1054 BodyBlock = ContinueTargetBlock; // can happen for "for (...;...;...) ;"
1055 else if (Block && !FinishBlock(BodyBlock))
1056 return 0;
1057
1058 // This new body block is a successor to our "exit" condition block.
1059 AddSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
1060 }
1061
1062 // Link up the condition block with the code that follows the loop. (the
1063 // false branch).
1064 AddSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
1065
1066 // If the loop contains initialization, create a new block for those
1067 // statements. This block can also contain statements that precede the loop.
1068 if (Stmt* I = F->getInit()) {
1069 Block = createBlock();
1070 return addStmt(I);
1071 } else {
1072 // There is no loop initialization. We are thus basically a while loop.
1073 // NULL out Block to force lazy block construction.
1074 Block = NULL;
1075 Succ = EntryConditionBlock;
1076 return EntryConditionBlock;
1077 }
1078}
1079
1080CFGBlock* CFGBuilder::VisitObjCForCollectionStmt(ObjCForCollectionStmt* S) {
1081 // Objective-C fast enumeration 'for' statements:
1082 // http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC
1083 //
1084 // for ( Type newVariable in collection_expression ) { statements }
1085 //
1086 // becomes:
1087 //
1088 // prologue:
1089 // 1. collection_expression
1090 // T. jump to loop_entry
1091 // loop_entry:
1092 // 1. side-effects of element expression
1093 // 1. ObjCForCollectionStmt [performs binding to newVariable]
1094 // T. ObjCForCollectionStmt TB, FB [jumps to TB if newVariable != nil]
1095 // TB:
1096 // statements
1097 // T. jump to loop_entry
1098 // FB:
1099 // what comes after
1100 //
1101 // and
1102 //
1103 // Type existingItem;
1104 // for ( existingItem in expression ) { statements }
1105 //
1106 // becomes:
1107 //
1108 // the same with newVariable replaced with existingItem; the binding works
1109 // the same except that for one ObjCForCollectionStmt::getElement() returns
1110 // a DeclStmt and the other returns a DeclRefExpr.
1111 //
1112
1113 CFGBlock* LoopSuccessor = 0;
1114
1115 if (Block) {
1116 if (!FinishBlock(Block))
1117 return 0;
1118 LoopSuccessor = Block;
1119 Block = 0;
1120 } else
1121 LoopSuccessor = Succ;
1122
1123 // Build the condition blocks.
1124 CFGBlock* ExitConditionBlock = createBlock(false);
1125 CFGBlock* EntryConditionBlock = ExitConditionBlock;
1126
1127 // Set the terminator for the "exit" condition block.
1128 ExitConditionBlock->setTerminator(S);
1129
1130 // The last statement in the block should be the ObjCForCollectionStmt, which
1131 // performs the actual binding to 'element' and determines if there are any
1132 // more items in the collection.
1133 AppendStmt(ExitConditionBlock, S);
1134 Block = ExitConditionBlock;
1135
1136 // Walk the 'element' expression to see if there are any side-effects. We
1137 // generate new blocks as necesary. We DON'T add the statement by default to
1138 // the CFG unless it contains control-flow.
1139 EntryConditionBlock = Visit(S->getElement(), AddStmtChoice::NotAlwaysAdd);
1140 if (Block) {
1141 if (!FinishBlock(EntryConditionBlock))
1142 return 0;
1143 Block = 0;
1144 }
1145
1146 // The condition block is the implicit successor for the loop body as well as
1147 // any code above the loop.
1148 Succ = EntryConditionBlock;
1149
1150 // Now create the true branch.
1151 {
1152 // Save the current values for Succ, continue and break targets.
1153 SaveAndRestore<CFGBlock*> save_Succ(Succ),
1154 save_continue(ContinueTargetBlock), save_break(BreakTargetBlock);
1155
1156 BreakTargetBlock = LoopSuccessor;
1157 ContinueTargetBlock = EntryConditionBlock;
1158
1159 CFGBlock* BodyBlock = addStmt(S->getBody());
1160
1161 if (!BodyBlock)
1162 BodyBlock = EntryConditionBlock; // can happen for "for (X in Y) ;"
1163 else if (Block) {
1164 if (!FinishBlock(BodyBlock))
1165 return 0;
1166 }
1167
1168 // This new body block is a successor to our "exit" condition block.
1169 AddSuccessor(ExitConditionBlock, BodyBlock);
1170 }
1171
1172 // Link up the condition block with the code that follows the loop.
1173 // (the false branch).
1174 AddSuccessor(ExitConditionBlock, LoopSuccessor);
1175
1176 // Now create a prologue block to contain the collection expression.
1177 Block = createBlock();
1178 return addStmt(S->getCollection());
1179}
1180
1181CFGBlock* CFGBuilder::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt* S) {
1182 // FIXME: Add locking 'primitives' to CFG for @synchronized.
1183
1184 // Inline the body.
1185 CFGBlock *SyncBlock = addStmt(S->getSynchBody());
1186
1187 // The sync body starts its own basic block. This makes it a little easier
1188 // for diagnostic clients.
1189 if (SyncBlock) {
1190 if (!FinishBlock(SyncBlock))
1191 return 0;
1192
1193 Block = 0;
1194 }
1195
1196 Succ = SyncBlock;
1197
1198 // Inline the sync expression.
1199 return addStmt(S->getSynchExpr());
1200}
1201
1202CFGBlock* CFGBuilder::VisitObjCAtTryStmt(ObjCAtTryStmt* S) {
1203 // FIXME
1204 return NYS();
1205}
1206
1207CFGBlock* CFGBuilder::VisitWhileStmt(WhileStmt* W) {
1208 CFGBlock* LoopSuccessor = NULL;
1209
1210 // "while" is a control-flow statement. Thus we stop processing the current
1211 // block.
1212 if (Block) {
1213 if (!FinishBlock(Block))
1214 return 0;
1215 LoopSuccessor = Block;
1216 } else
1217 LoopSuccessor = Succ;
1218
1219 // Because of short-circuit evaluation, the condition of the loop can span
1220 // multiple basic blocks. Thus we need the "Entry" and "Exit" blocks that
1221 // evaluate the condition.
1222 CFGBlock* ExitConditionBlock = createBlock(false);
1223 CFGBlock* EntryConditionBlock = ExitConditionBlock;
1224
1225 // Set the terminator for the "exit" condition block.
1226 ExitConditionBlock->setTerminator(W);
1227
1228 // Now add the actual condition to the condition block. Because the condition
1229 // itself may contain control-flow, new blocks may be created. Thus we update
1230 // "Succ" after adding the condition.
1231 if (Stmt* C = W->getCond()) {
1232 Block = ExitConditionBlock;
1233 EntryConditionBlock = addStmt(C);
1234 assert(Block == EntryConditionBlock);
1235
1236 // If this block contains a condition variable, add both the condition
1237 // variable and initializer to the CFG.
1238 if (VarDecl *VD = W->getConditionVariable()) {
1239 if (Expr *Init = VD->getInit()) {
1240 autoCreateBlock();
1241 AppendStmt(Block, W, AddStmtChoice::AlwaysAdd);
1242 EntryConditionBlock = addStmt(Init);
1243 assert(Block == EntryConditionBlock);
1244 }
1245 }
1246
1247 if (Block) {
1248 if (!FinishBlock(EntryConditionBlock))
1249 return 0;
1250 }
1251 }
1252
1253 // The condition block is the implicit successor for the loop body as well as
1254 // any code above the loop.
1255 Succ = EntryConditionBlock;
1256
1257 // See if this is a known constant.
1258 const TryResult& KnownVal = TryEvaluateBool(W->getCond());
1259
1260 // Process the loop body.
1261 {
1262 assert(W->getBody());
1263
1264 // Save the current values for Block, Succ, and continue and break targets
1265 SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ),
1266 save_continue(ContinueTargetBlock),
1267 save_break(BreakTargetBlock);
1268
1269 // Create an empty block to represent the transition block for looping back
1270 // to the head of the loop.
1271 Block = 0;
1272 assert(Succ == EntryConditionBlock);
1273 Succ = createBlock();
1274 Succ->setLoopTarget(W);
1275 ContinueTargetBlock = Succ;
1276
1277 // All breaks should go to the code following the loop.
1278 BreakTargetBlock = LoopSuccessor;
1279
1280 // NULL out Block to force lazy instantiation of blocks for the body.
1281 Block = NULL;
1282
1283 // Create the body. The returned block is the entry to the loop body.
1284 CFGBlock* BodyBlock = addStmt(W->getBody());
1285
1286 if (!BodyBlock)
1287 BodyBlock = ContinueTargetBlock; // can happen for "while(...) ;"
1288 else if (Block) {
1289 if (!FinishBlock(BodyBlock))
1290 return 0;
1291 }
1292
1293 // Add the loop body entry as a successor to the condition.
1294 AddSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
1295 }
1296
1297 // Link up the condition block with the code that follows the loop. (the
1298 // false branch).
1299 AddSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
1300
1301 // There can be no more statements in the condition block since we loop back
1302 // to this block. NULL out Block to force lazy creation of another block.
1303 Block = NULL;
1304
1305 // Return the condition block, which is the dominating block for the loop.
1306 Succ = EntryConditionBlock;
1307 return EntryConditionBlock;
1308}
1309
1310
1311CFGBlock *CFGBuilder::VisitObjCAtCatchStmt(ObjCAtCatchStmt* S) {
1312 // FIXME: For now we pretend that @catch and the code it contains does not
1313 // exit.
1314 return Block;
1315}
1316
1317CFGBlock* CFGBuilder::VisitObjCAtThrowStmt(ObjCAtThrowStmt* S) {
1318 // FIXME: This isn't complete. We basically treat @throw like a return
1319 // statement.
1320
1321 // If we were in the middle of a block we stop processing that block.
1322 if (Block && !FinishBlock(Block))
1323 return 0;
1324
1325 // Create the new block.
1326 Block = createBlock(false);
1327
1328 // The Exit block is the only successor.
1329 AddSuccessor(Block, &cfg->getExit());
1330
1331 // Add the statement to the block. This may create new blocks if S contains
1332 // control-flow (short-circuit operations).
1333 return VisitStmt(S, AddStmtChoice::AlwaysAdd);
1334}
1335
1336CFGBlock* CFGBuilder::VisitCXXThrowExpr(CXXThrowExpr* T) {
1337 // If we were in the middle of a block we stop processing that block.
1338 if (Block && !FinishBlock(Block))
1339 return 0;
1340
1341 // Create the new block.
1342 Block = createBlock(false);
1343
1344 if (TryTerminatedBlock)
1345 // The current try statement is the only successor.
1346 AddSuccessor(Block, TryTerminatedBlock);
1347 else
1348 // otherwise the Exit block is the only successor.
1349 AddSuccessor(Block, &cfg->getExit());
1350
1351 // Add the statement to the block. This may create new blocks if S contains
1352 // control-flow (short-circuit operations).
1353 return VisitStmt(T, AddStmtChoice::AlwaysAdd);
1354}
1355
1356CFGBlock *CFGBuilder::VisitDoStmt(DoStmt* D) {
1357 CFGBlock* LoopSuccessor = NULL;
1358
1359 // "do...while" is a control-flow statement. Thus we stop processing the
1360 // current block.
1361 if (Block) {
1362 if (!FinishBlock(Block))
1363 return 0;
1364 LoopSuccessor = Block;
1365 } else
1366 LoopSuccessor = Succ;
1367
1368 // Because of short-circuit evaluation, the condition of the loop can span
1369 // multiple basic blocks. Thus we need the "Entry" and "Exit" blocks that
1370 // evaluate the condition.
1371 CFGBlock* ExitConditionBlock = createBlock(false);
1372 CFGBlock* EntryConditionBlock = ExitConditionBlock;
1373
1374 // Set the terminator for the "exit" condition block.
1375 ExitConditionBlock->setTerminator(D);
1376
1377 // Now add the actual condition to the condition block. Because the condition
1378 // itself may contain control-flow, new blocks may be created.
1379 if (Stmt* C = D->getCond()) {
1380 Block = ExitConditionBlock;
1381 EntryConditionBlock = addStmt(C);
1382 if (Block) {
1383 if (!FinishBlock(EntryConditionBlock))
1384 return 0;
1385 }
1386 }
1387
1388 // The condition block is the implicit successor for the loop body.
1389 Succ = EntryConditionBlock;
1390
1391 // See if this is a known constant.
1392 const TryResult &KnownVal = TryEvaluateBool(D->getCond());
1393
1394 // Process the loop body.
1395 CFGBlock* BodyBlock = NULL;
1396 {
1397 assert(D->getBody());
1398
1399 // Save the current values for Block, Succ, and continue and break targets
1400 SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ),
1401 save_continue(ContinueTargetBlock),
1402 save_break(BreakTargetBlock);
1403
1404 // All continues within this loop should go to the condition block
1405 ContinueTargetBlock = EntryConditionBlock;
1406
1407 // All breaks should go to the code following the loop.
1408 BreakTargetBlock = LoopSuccessor;
1409
1410 // NULL out Block to force lazy instantiation of blocks for the body.
1411 Block = NULL;
1412
1413 // Create the body. The returned block is the entry to the loop body.
1414 BodyBlock = addStmt(D->getBody());
1415
1416 if (!BodyBlock)
1417 BodyBlock = EntryConditionBlock; // can happen for "do ; while(...)"
1418 else if (Block) {
1419 if (!FinishBlock(BodyBlock))
1420 return 0;
1421 }
1422
1423 // Add an intermediate block between the BodyBlock and the
1424 // ExitConditionBlock to represent the "loop back" transition. Create an
1425 // empty block to represent the transition block for looping back to the
1426 // head of the loop.
1427 // FIXME: Can we do this more efficiently without adding another block?
1428 Block = NULL;
1429 Succ = BodyBlock;
1430 CFGBlock *LoopBackBlock = createBlock();
1431 LoopBackBlock->setLoopTarget(D);
1432
1433 // Add the loop body entry as a successor to the condition.
1434 AddSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : LoopBackBlock);
1435 }
1436
1437 // Link up the condition block with the code that follows the loop.
1438 // (the false branch).
1439 AddSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
1440
1441 // There can be no more statements in the body block(s) since we loop back to
1442 // the body. NULL out Block to force lazy creation of another block.
1443 Block = NULL;
1444
1445 // Return the loop body, which is the dominating block for the loop.
1446 Succ = BodyBlock;
1447 return BodyBlock;
1448}
1449
1450CFGBlock* CFGBuilder::VisitContinueStmt(ContinueStmt* C) {
1451 // "continue" is a control-flow statement. Thus we stop processing the
1452 // current block.
1453 if (Block && !FinishBlock(Block))
1454 return 0;
1455
1456 // Now create a new block that ends with the continue statement.
1457 Block = createBlock(false);
1458 Block->setTerminator(C);
1459
1460 // If there is no target for the continue, then we are looking at an
1461 // incomplete AST. This means the CFG cannot be constructed.
1462 if (ContinueTargetBlock)
1463 AddSuccessor(Block, ContinueTargetBlock);
1464 else
1465 badCFG = true;
1466
1467 return Block;
1468}
1469
1470CFGBlock *CFGBuilder::VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr *E,
1471 AddStmtChoice asc) {
1472
1473 if (asc.alwaysAdd()) {
1474 autoCreateBlock();
1475 AppendStmt(Block, E);
1476 }
1477
1478 // VLA types have expressions that must be evaluated.
1479 if (E->isArgumentType()) {
1480 for (VariableArrayType* VA = FindVA(E->getArgumentType().getTypePtr());
1481 VA != 0; VA = FindVA(VA->getElementType().getTypePtr()))
1482 addStmt(VA->getSizeExpr());
1483 }
1484
1485 return Block;
1486}
1487
1488/// VisitStmtExpr - Utility method to handle (nested) statement
1489/// expressions (a GCC extension).
1490CFGBlock* CFGBuilder::VisitStmtExpr(StmtExpr *SE, AddStmtChoice asc) {
1491 if (asc.alwaysAdd()) {
1492 autoCreateBlock();
1493 AppendStmt(Block, SE);
1494 }
1495 return VisitCompoundStmt(SE->getSubStmt());
1496}
1497
1498CFGBlock* CFGBuilder::VisitSwitchStmt(SwitchStmt* Terminator) {
1499 // "switch" is a control-flow statement. Thus we stop processing the current
1500 // block.
1501 CFGBlock* SwitchSuccessor = NULL;
1502
1503 if (Block) {
1504 if (!FinishBlock(Block))
1505 return 0;
1506 SwitchSuccessor = Block;
1507 } else SwitchSuccessor = Succ;
1508
1509 // Save the current "switch" context.
1510 SaveAndRestore<CFGBlock*> save_switch(SwitchTerminatedBlock),
1511 save_break(BreakTargetBlock),
1512 save_default(DefaultCaseBlock);
1513
1514 // Set the "default" case to be the block after the switch statement. If the
1515 // switch statement contains a "default:", this value will be overwritten with
1516 // the block for that code.
1517 DefaultCaseBlock = SwitchSuccessor;
1518
1519 // Create a new block that will contain the switch statement.
1520 SwitchTerminatedBlock = createBlock(false);
1521
1522 // Now process the switch body. The code after the switch is the implicit
1523 // successor.
1524 Succ = SwitchSuccessor;
1525 BreakTargetBlock = SwitchSuccessor;
1526
1527 // When visiting the body, the case statements should automatically get linked
1528 // up to the switch. We also don't keep a pointer to the body, since all
1529 // control-flow from the switch goes to case/default statements.
1530 assert(Terminator->getBody() && "switch must contain a non-NULL body");
1531 Block = NULL;
1532 CFGBlock *BodyBlock = addStmt(Terminator->getBody());
1533 if (Block) {
1534 if (!FinishBlock(BodyBlock))
1535 return 0;
1536 }
1537
1538 // If we have no "default:" case, the default transition is to the code
1539 // following the switch body.
1540 AddSuccessor(SwitchTerminatedBlock, DefaultCaseBlock);
1541
1542 // Add the terminator and condition in the switch block.
1543 SwitchTerminatedBlock->setTerminator(Terminator);
1544 assert(Terminator->getCond() && "switch condition must be non-NULL");
1545 Block = SwitchTerminatedBlock;
1546 Block = addStmt(Terminator->getCond());
1547
1548 // Finally, if the SwitchStmt contains a condition variable, add both the
1549 // SwitchStmt and the condition variable initialization to the CFG.
1550 if (VarDecl *VD = Terminator->getConditionVariable()) {
1551 if (Expr *Init = VD->getInit()) {
1552 autoCreateBlock();
1553 AppendStmt(Block, Terminator, AddStmtChoice::AlwaysAdd);
1554 addStmt(Init);
1555 }
1556 }
1557
1558 return Block;
1559}
1560
1561CFGBlock* CFGBuilder::VisitCaseStmt(CaseStmt* CS) {
1562 // CaseStmts are essentially labels, so they are the first statement in a
1563 // block.
1564
1565 if (CS->getSubStmt())
1566 addStmt(CS->getSubStmt());
1567
1568 CFGBlock* CaseBlock = Block;
1569 if (!CaseBlock)
1570 CaseBlock = createBlock();
1571
1572 // Cases statements partition blocks, so this is the top of the basic block we
1573 // were processing (the "case XXX:" is the label).
1574 CaseBlock->setLabel(CS);
1575
1576 if (!FinishBlock(CaseBlock))
1577 return 0;
1578
1579 // Add this block to the list of successors for the block with the switch
1580 // statement.
1581 assert(SwitchTerminatedBlock);
1582 AddSuccessor(SwitchTerminatedBlock, CaseBlock);
1583
1584 // We set Block to NULL to allow lazy creation of a new block (if necessary)
1585 Block = NULL;
1586
1587 // This block is now the implicit successor of other blocks.
1588 Succ = CaseBlock;
1589
1590 return CaseBlock;
1591}
1592
1593CFGBlock* CFGBuilder::VisitDefaultStmt(DefaultStmt* Terminator) {
1594 if (Terminator->getSubStmt())
1595 addStmt(Terminator->getSubStmt());
1596
1597 DefaultCaseBlock = Block;
1598
1599 if (!DefaultCaseBlock)
1600 DefaultCaseBlock = createBlock();
1601
1602 // Default statements partition blocks, so this is the top of the basic block
1603 // we were processing (the "default:" is the label).
1604 DefaultCaseBlock->setLabel(Terminator);
1605
1606 if (!FinishBlock(DefaultCaseBlock))
1607 return 0;
1608
1609 // Unlike case statements, we don't add the default block to the successors
1610 // for the switch statement immediately. This is done when we finish
1611 // processing the switch statement. This allows for the default case
1612 // (including a fall-through to the code after the switch statement) to always
1613 // be the last successor of a switch-terminated block.
1614
1615 // We set Block to NULL to allow lazy creation of a new block (if necessary)
1616 Block = NULL;
1617
1618 // This block is now the implicit successor of other blocks.
1619 Succ = DefaultCaseBlock;
1620
1621 return DefaultCaseBlock;
1622}
1623
1624CFGBlock *CFGBuilder::VisitCXXTryStmt(CXXTryStmt *Terminator) {
1625 // "try"/"catch" is a control-flow statement. Thus we stop processing the
1626 // current block.
1627 CFGBlock* TrySuccessor = NULL;
1628
1629 if (Block) {
1630 if (!FinishBlock(Block))
1631 return 0;
1632 TrySuccessor = Block;
1633 } else TrySuccessor = Succ;
1634
1635 CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock;
1636
1637 // Create a new block that will contain the try statement.
1638 CFGBlock *NewTryTerminatedBlock = createBlock(false);
1639 // Add the terminator in the try block.
1640 NewTryTerminatedBlock->setTerminator(Terminator);
1641
1642 bool HasCatchAll = false;
1643 for (unsigned h = 0; h <Terminator->getNumHandlers(); ++h) {
1644 // The code after the try is the implicit successor.
1645 Succ = TrySuccessor;
1646 CXXCatchStmt *CS = Terminator->getHandler(h);
1647 if (CS->getExceptionDecl() == 0) {
1648 HasCatchAll = true;
1649 }
1650 Block = NULL;
1651 CFGBlock *CatchBlock = VisitCXXCatchStmt(CS);
1652 if (CatchBlock == 0)
1653 return 0;
1654 // Add this block to the list of successors for the block with the try
1655 // statement.
1656 AddSuccessor(NewTryTerminatedBlock, CatchBlock);
1657 }
1658 if (!HasCatchAll) {
1659 if (PrevTryTerminatedBlock)
1660 AddSuccessor(NewTryTerminatedBlock, PrevTryTerminatedBlock);
1661 else
1662 AddSuccessor(NewTryTerminatedBlock, &cfg->getExit());
1663 }
1664
1665 // The code after the try is the implicit successor.
1666 Succ = TrySuccessor;
1667
1668 // Save the current "try" context.
1669 SaveAndRestore<CFGBlock*> save_try(TryTerminatedBlock);
1670 TryTerminatedBlock = NewTryTerminatedBlock;
1671
1672 assert(Terminator->getTryBlock() && "try must contain a non-NULL body");
1673 Block = NULL;
1674 Block = addStmt(Terminator->getTryBlock());
1675 return Block;
1676}
1677
1678CFGBlock* CFGBuilder::VisitCXXCatchStmt(CXXCatchStmt* CS) {
1679 // CXXCatchStmt are treated like labels, so they are the first statement in a
1680 // block.
1681
1682 if (CS->getHandlerBlock())
1683 addStmt(CS->getHandlerBlock());
1684
1685 CFGBlock* CatchBlock = Block;
1686 if (!CatchBlock)
1687 CatchBlock = createBlock();
1688
1689 CatchBlock->setLabel(CS);
1690
1691 if (!FinishBlock(CatchBlock))
1692 return 0;
1693
1694 // We set Block to NULL to allow lazy creation of a new block (if necessary)
1695 Block = NULL;
1696
1697 return CatchBlock;
1698}
1699
1700CFGBlock* CFGBuilder::VisitIndirectGotoStmt(IndirectGotoStmt* I) {
1701 // Lazily create the indirect-goto dispatch block if there isn't one already.
1702 CFGBlock* IBlock = cfg->getIndirectGotoBlock();
1703
1704 if (!IBlock) {
1705 IBlock = createBlock(false);
1706 cfg->setIndirectGotoBlock(IBlock);
1707 }
1708
1709 // IndirectGoto is a control-flow statement. Thus we stop processing the
1710 // current block and create a new one.
1711 if (Block && !FinishBlock(Block))
1712 return 0;
1713
1714 Block = createBlock(false);
1715 Block->setTerminator(I);
1716 AddSuccessor(Block, IBlock);
1717 return addStmt(I->getTarget());
1718}
1719
1720} // end anonymous namespace
1721
1722/// createBlock - Constructs and adds a new CFGBlock to the CFG. The block has
1723/// no successors or predecessors. If this is the first block created in the
1724/// CFG, it is automatically set to be the Entry and Exit of the CFG.
1725CFGBlock* CFG::createBlock() {
1726 bool first_block = begin() == end();
1727
1728 // Create the block.
1729 CFGBlock *Mem = getAllocator().Allocate<CFGBlock>();
1730 new (Mem) CFGBlock(NumBlockIDs++, BlkBVC);
1731 Blocks.push_back(Mem, BlkBVC);
1732
1733 // If this is the first block, set it as the Entry and Exit.
1734 if (first_block)
1735 Entry = Exit = &back();
1736
1737 // Return the block.
1738 return &back();
1739}
1740
1741/// buildCFG - Constructs a CFG from an AST. Ownership of the returned
1742/// CFG is returned to the caller.
1743CFG* CFG::buildCFG(const Decl *D, Stmt* Statement, ASTContext *C,
1744 bool AddEHEdges, bool AddScopes) {
1745 CFGBuilder Builder;
1746 return Builder.buildCFG(D, Statement, C, AddEHEdges, AddScopes);
1747}
1748
1749//===----------------------------------------------------------------------===//
1750// CFG: Queries for BlkExprs.
1751//===----------------------------------------------------------------------===//
1752
1753namespace {
1754 typedef llvm::DenseMap<const Stmt*,unsigned> BlkExprMapTy;
1755}
1756
1757static void FindSubExprAssignments(Stmt *S,
1758 llvm::SmallPtrSet<Expr*,50>& Set) {
1759 if (!S)
1760 return;
1761
1762 for (Stmt::child_iterator I=S->child_begin(), E=S->child_end(); I!=E; ++I) {
1763 Stmt *child = *I;
1764 if (!child)
1765 continue;
1766
1767 if (BinaryOperator* B = dyn_cast<BinaryOperator>(child))
1768 if (B->isAssignmentOp()) Set.insert(B);
1769
1770 FindSubExprAssignments(child, Set);
1771 }
1772}
1773
1774static BlkExprMapTy* PopulateBlkExprMap(CFG& cfg) {
1775 BlkExprMapTy* M = new BlkExprMapTy();
1776
1777 // Look for assignments that are used as subexpressions. These are the only
1778 // assignments that we want to *possibly* register as a block-level
1779 // expression. Basically, if an assignment occurs both in a subexpression and
1780 // at the block-level, it is a block-level expression.
1781 llvm::SmallPtrSet<Expr*,50> SubExprAssignments;
1782
1783 for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I)
1784 for (CFGBlock::iterator BI=(*I)->begin(), EI=(*I)->end(); BI != EI; ++BI)
1785 FindSubExprAssignments(*BI, SubExprAssignments);
1786
1787 for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I) {
1788
1789 // Iterate over the statements again on identify the Expr* and Stmt* at the
1790 // block-level that are block-level expressions.
1791
1792 for (CFGBlock::iterator BI=(*I)->begin(), EI=(*I)->end(); BI != EI; ++BI)
1793 if (Expr* Exp = dyn_cast<Expr>(*BI)) {
1794
1795 if (BinaryOperator* B = dyn_cast<BinaryOperator>(Exp)) {
1796 // Assignment expressions that are not nested within another
1797 // expression are really "statements" whose value is never used by
1798 // another expression.
1799 if (B->isAssignmentOp() && !SubExprAssignments.count(Exp))
1800 continue;
1801 } else if (const StmtExpr* Terminator = dyn_cast<StmtExpr>(Exp)) {
1802 // Special handling for statement expressions. The last statement in
1803 // the statement expression is also a block-level expr.
1804 const CompoundStmt* C = Terminator->getSubStmt();
1805 if (!C->body_empty()) {
1806 unsigned x = M->size();
1807 (*M)[C->body_back()] = x;
1808 }
1809 }
1810
1811 unsigned x = M->size();
1812 (*M)[Exp] = x;
1813 }
1814
1815 // Look at terminators. The condition is a block-level expression.
1816
1817 Stmt* S = (*I)->getTerminatorCondition();
1818
1819 if (S && M->find(S) == M->end()) {
1820 unsigned x = M->size();
1821 (*M)[S] = x;
1822 }
1823 }
1824
1825 return M;
1826}
1827
1828CFG::BlkExprNumTy CFG::getBlkExprNum(const Stmt* S) {
1829 assert(S != NULL);
1830 if (!BlkExprMap) { BlkExprMap = (void*) PopulateBlkExprMap(*this); }
1831
1832 BlkExprMapTy* M = reinterpret_cast<BlkExprMapTy*>(BlkExprMap);
1833 BlkExprMapTy::iterator I = M->find(S);
1834 return (I == M->end()) ? CFG::BlkExprNumTy() : CFG::BlkExprNumTy(I->second);
1835}
1836
1837unsigned CFG::getNumBlkExprs() {
1838 if (const BlkExprMapTy* M = reinterpret_cast<const BlkExprMapTy*>(BlkExprMap))
1839 return M->size();
1840 else {
1841 // We assume callers interested in the number of BlkExprs will want
1842 // the map constructed if it doesn't already exist.
1843 BlkExprMap = (void*) PopulateBlkExprMap(*this);
1844 return reinterpret_cast<BlkExprMapTy*>(BlkExprMap)->size();
1845 }
1846}
1847
1848//===----------------------------------------------------------------------===//
1849// Cleanup: CFG dstor.
1850//===----------------------------------------------------------------------===//
1851
1852CFG::~CFG() {
1853 delete reinterpret_cast<const BlkExprMapTy*>(BlkExprMap);
1854}
1855
1856//===----------------------------------------------------------------------===//
1857// CFG pretty printing
1858//===----------------------------------------------------------------------===//
1859
1860namespace {
1861
1862class StmtPrinterHelper : public PrinterHelper {
1863 typedef llvm::DenseMap<Stmt*,std::pair<unsigned,unsigned> > StmtMapTy;
1864 StmtMapTy StmtMap;
1865 signed CurrentBlock;
1866 unsigned CurrentStmt;
1867 const LangOptions &LangOpts;
1868public:
1869
1870 StmtPrinterHelper(const CFG* cfg, const LangOptions &LO)
1871 : CurrentBlock(0), CurrentStmt(0), LangOpts(LO) {
1872 for (CFG::const_iterator I = cfg->begin(), E = cfg->end(); I != E; ++I ) {
1873 unsigned j = 1;
1874 for (CFGBlock::const_iterator BI = (*I)->begin(), BEnd = (*I)->end() ;
1875 BI != BEnd; ++BI, ++j )
1876 StmtMap[*BI] = std::make_pair((*I)->getBlockID(),j);
1877 }
1878 }
1879
1880 virtual ~StmtPrinterHelper() {}
1881
1882 const LangOptions &getLangOpts() const { return LangOpts; }
1883 void setBlockID(signed i) { CurrentBlock = i; }
1884 void setStmtID(unsigned i) { CurrentStmt = i; }
1885
1886 virtual bool handledStmt(Stmt* Terminator, llvm::raw_ostream& OS) {
1887
1888 StmtMapTy::iterator I = StmtMap.find(Terminator);
1889
1890 if (I == StmtMap.end())
1891 return false;
1892
1893 if (CurrentBlock >= 0 && I->second.first == (unsigned) CurrentBlock
1894 && I->second.second == CurrentStmt) {
1895 return false;
1896 }
1897
1898 OS << "[B" << I->second.first << "." << I->second.second << "]";
1899 return true;
1900 }
1901};
1902} // end anonymous namespace
1903
1904
1905namespace {
1906class CFGBlockTerminatorPrint
1907 : public StmtVisitor<CFGBlockTerminatorPrint,void> {
1908
1909 llvm::raw_ostream& OS;
1910 StmtPrinterHelper* Helper;
1911 PrintingPolicy Policy;
1912public:
1913 CFGBlockTerminatorPrint(llvm::raw_ostream& os, StmtPrinterHelper* helper,
1914 const PrintingPolicy &Policy)
1915 : OS(os), Helper(helper), Policy(Policy) {}
1916
1917 void VisitIfStmt(IfStmt* I) {
1918 OS << "if ";
1919 I->getCond()->printPretty(OS,Helper,Policy);
1920 }
1921
1922 // Default case.
1923 void VisitStmt(Stmt* Terminator) {
1924 Terminator->printPretty(OS, Helper, Policy);
1925 }
1926
1927 void VisitForStmt(ForStmt* F) {
1928 OS << "for (" ;
1929 if (F->getInit())
1930 OS << "...";
1931 OS << "; ";
1932 if (Stmt* C = F->getCond())
1933 C->printPretty(OS, Helper, Policy);
1934 OS << "; ";
1935 if (F->getInc())
1936 OS << "...";
1937 OS << ")";
1938 }
1939
1940 void VisitWhileStmt(WhileStmt* W) {
1941 OS << "while " ;
1942 if (Stmt* C = W->getCond())
1943 C->printPretty(OS, Helper, Policy);
1944 }
1945
1946 void VisitDoStmt(DoStmt* D) {
1947 OS << "do ... while ";
1948 if (Stmt* C = D->getCond())
1949 C->printPretty(OS, Helper, Policy);
1950 }
1951
1952 void VisitSwitchStmt(SwitchStmt* Terminator) {
1953 OS << "switch ";
1954 Terminator->getCond()->printPretty(OS, Helper, Policy);
1955 }
1956
1957 void VisitCXXTryStmt(CXXTryStmt* CS) {
1958 OS << "try ...";
1959 }
1960
1961 void VisitConditionalOperator(ConditionalOperator* C) {
1962 C->getCond()->printPretty(OS, Helper, Policy);
1963 OS << " ? ... : ...";
1964 }
1965
1966 void VisitChooseExpr(ChooseExpr* C) {
1967 OS << "__builtin_choose_expr( ";
1968 C->getCond()->printPretty(OS, Helper, Policy);
1969 OS << " )";
1970 }
1971
1972 void VisitIndirectGotoStmt(IndirectGotoStmt* I) {
1973 OS << "goto *";
1974 I->getTarget()->printPretty(OS, Helper, Policy);
1975 }
1976
1977 void VisitBinaryOperator(BinaryOperator* B) {
1978 if (!B->isLogicalOp()) {
1979 VisitExpr(B);
1980 return;
1981 }
1982
1983 B->getLHS()->printPretty(OS, Helper, Policy);
1984
1985 switch (B->getOpcode()) {
1986 case BinaryOperator::LOr:
1987 OS << " || ...";
1988 return;
1989 case BinaryOperator::LAnd:
1990 OS << " && ...";
1991 return;
1992 default:
1993 assert(false && "Invalid logical operator.");
1994 }
1995 }
1996
1997 void VisitExpr(Expr* E) {
1998 E->printPretty(OS, Helper, Policy);
1999 }
2000};
2001} // end anonymous namespace
2002
2003
2004static void print_stmt(llvm::raw_ostream &OS, StmtPrinterHelper* Helper,
2005 const CFGElement &E) {
2006 Stmt *Terminator = E;
2007
2008 if (E.asStartScope()) {
2009 OS << "start scope\n";
2010 return;
2011 }
2012 if (E.asEndScope()) {
2013 OS << "end scope\n";
2014 return;
2015 }
2016
2017 if (Helper) {
2018 // special printing for statement-expressions.
2019 if (StmtExpr* SE = dyn_cast<StmtExpr>(Terminator)) {
2020 CompoundStmt* Sub = SE->getSubStmt();
2021
2022 if (Sub->child_begin() != Sub->child_end()) {
2023 OS << "({ ... ; ";
2024 Helper->handledStmt(*SE->getSubStmt()->body_rbegin(),OS);
2025 OS << " })\n";
2026 return;
2027 }
2028 }
2029
2030 // special printing for comma expressions.
2031 if (BinaryOperator* B = dyn_cast<BinaryOperator>(Terminator)) {
2032 if (B->getOpcode() == BinaryOperator::Comma) {
2033 OS << "... , ";
2034 Helper->handledStmt(B->getRHS(),OS);
2035 OS << '\n';
2036 return;
2037 }
2038 }
2039 }
2040
2041 Terminator->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));
2042
2043 // Expressions need a newline.
2044 if (isa<Expr>(Terminator)) OS << '\n';
2045}
2046
2047static void print_block(llvm::raw_ostream& OS, const CFG* cfg,
2048 const CFGBlock& B,
2049 StmtPrinterHelper* Helper, bool print_edges) {
2050
2051 if (Helper) Helper->setBlockID(B.getBlockID());
2052
2053 // Print the header.
2054 OS << "\n [ B" << B.getBlockID();
2055
2056 if (&B == &cfg->getEntry())
2057 OS << " (ENTRY) ]\n";
2058 else if (&B == &cfg->getExit())
2059 OS << " (EXIT) ]\n";
2060 else if (&B == cfg->getIndirectGotoBlock())
2061 OS << " (INDIRECT GOTO DISPATCH) ]\n";
2062 else
2063 OS << " ]\n";
2064
2065 // Print the label of this block.
2066 if (Stmt* Label = const_cast<Stmt*>(B.getLabel())) {
2067
2068 if (print_edges)
2069 OS << " ";
2070
2071 if (LabelStmt* L = dyn_cast<LabelStmt>(Label))
2072 OS << L->getName();
2073 else if (CaseStmt* C = dyn_cast<CaseStmt>(Label)) {
2074 OS << "case ";
2075 C->getLHS()->printPretty(OS, Helper,
2076 PrintingPolicy(Helper->getLangOpts()));
2077 if (C->getRHS()) {
2078 OS << " ... ";
2079 C->getRHS()->printPretty(OS, Helper,
2080 PrintingPolicy(Helper->getLangOpts()));
2081 }
2082 } else if (isa<DefaultStmt>(Label))
2083 OS << "default";
2084 else if (CXXCatchStmt *CS = dyn_cast<CXXCatchStmt>(Label)) {
2085 OS << "catch (";
2086 if (CS->getExceptionDecl())
2087 CS->getExceptionDecl()->print(OS, PrintingPolicy(Helper->getLangOpts()),
2088 0);
2089 else
2090 OS << "...";
2091 OS << ")";
2092
2093 } else
2094 assert(false && "Invalid label statement in CFGBlock.");
2095
2096 OS << ":\n";
2097 }
2098
2099 // Iterate through the statements in the block and print them.
2100 unsigned j = 1;
2101
2102 for (CFGBlock::const_iterator I = B.begin(), E = B.end() ;
2103 I != E ; ++I, ++j ) {
2104
2105 // Print the statement # in the basic block and the statement itself.
2106 if (print_edges)
2107 OS << " ";
2108
2109 OS << llvm::format("%3d", j) << ": ";
2110
2111 if (Helper)
2112 Helper->setStmtID(j);
2113
2114 print_stmt(OS,Helper,*I);
2115 }
2116
2117 // Print the terminator of this block.
2118 if (B.getTerminator()) {
2119 if (print_edges)
2120 OS << " ";
2121
2122 OS << " T: ";
2123
2124 if (Helper) Helper->setBlockID(-1);
2125
2126 CFGBlockTerminatorPrint TPrinter(OS, Helper,
2127 PrintingPolicy(Helper->getLangOpts()));
2128 TPrinter.Visit(const_cast<Stmt*>(B.getTerminator()));
2129 OS << '\n';
2130 }
2131
2132 if (print_edges) {
2133 // Print the predecessors of this block.
2134 OS << " Predecessors (" << B.pred_size() << "):";
2135 unsigned i = 0;
2136
2137 for (CFGBlock::const_pred_iterator I = B.pred_begin(), E = B.pred_end();
2138 I != E; ++I, ++i) {
2139
2140 if (i == 8 || (i-8) == 0)
2141 OS << "\n ";
2142
2143 OS << " B" << (*I)->getBlockID();
2144 }
2145
2146 OS << '\n';
2147
2148 // Print the successors of this block.
2149 OS << " Successors (" << B.succ_size() << "):";
2150 i = 0;
2151
2152 for (CFGBlock::const_succ_iterator I = B.succ_begin(), E = B.succ_end();
2153 I != E; ++I, ++i) {
2154
2155 if (i == 8 || (i-8) % 10 == 0)
2156 OS << "\n ";
2157
2158 if (*I)
2159 OS << " B" << (*I)->getBlockID();
2160 else
2161 OS << " NULL";
2162 }
2163
2164 OS << '\n';
2165 }
2166}
2167
2168
2169/// dump - A simple pretty printer of a CFG that outputs to stderr.
2170void CFG::dump(const LangOptions &LO) const { print(llvm::errs(), LO); }
2171
2172/// print - A simple pretty printer of a CFG that outputs to an ostream.
2173void CFG::print(llvm::raw_ostream &OS, const LangOptions &LO) const {
2174 StmtPrinterHelper Helper(this, LO);
2175
2176 // Print the entry block.
2177 print_block(OS, this, getEntry(), &Helper, true);
2178
2179 // Iterate through the CFGBlocks and print them one by one.
2180 for (const_iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) {
2181 // Skip the entry block, because we already printed it.
2182 if (&(**I) == &getEntry() || &(**I) == &getExit())
2183 continue;
2184
2185 print_block(OS, this, **I, &Helper, true);
2186 }
2187
2188 // Print the exit block.
2189 print_block(OS, this, getExit(), &Helper, true);
2190 OS.flush();
2191}
2192
2193/// dump - A simply pretty printer of a CFGBlock that outputs to stderr.
2194void CFGBlock::dump(const CFG* cfg, const LangOptions &LO) const {
2195 print(llvm::errs(), cfg, LO);
2196}
2197
2198/// print - A simple pretty printer of a CFGBlock that outputs to an ostream.
2199/// Generally this will only be called from CFG::print.
2200void CFGBlock::print(llvm::raw_ostream& OS, const CFG* cfg,
2201 const LangOptions &LO) const {
2202 StmtPrinterHelper Helper(cfg, LO);
2203 print_block(OS, cfg, *this, &Helper, true);
2204}
2205
2206/// printTerminator - A simple pretty printer of the terminator of a CFGBlock.
2207void CFGBlock::printTerminator(llvm::raw_ostream &OS,
2208 const LangOptions &LO) const {
2209 CFGBlockTerminatorPrint TPrinter(OS, NULL, PrintingPolicy(LO));
2210 TPrinter.Visit(const_cast<Stmt*>(getTerminator()));
2211}
2212
2213Stmt* CFGBlock::getTerminatorCondition() {
2214
2215 if (!Terminator)
2216 return NULL;
2217
2218 Expr* E = NULL;
2219
2220 switch (Terminator->getStmtClass()) {
2221 default:
2222 break;
2223
2224 case Stmt::ForStmtClass:
2225 E = cast<ForStmt>(Terminator)->getCond();
2226 break;
2227
2228 case Stmt::WhileStmtClass:
2229 E = cast<WhileStmt>(Terminator)->getCond();
2230 break;
2231
2232 case Stmt::DoStmtClass:
2233 E = cast<DoStmt>(Terminator)->getCond();
2234 break;
2235
2236 case Stmt::IfStmtClass:
2237 E = cast<IfStmt>(Terminator)->getCond();
2238 break;
2239
2240 case Stmt::ChooseExprClass:
2241 E = cast<ChooseExpr>(Terminator)->getCond();
2242 break;
2243
2244 case Stmt::IndirectGotoStmtClass:
2245 E = cast<IndirectGotoStmt>(Terminator)->getTarget();
2246 break;
2247
2248 case Stmt::SwitchStmtClass:
2249 E = cast<SwitchStmt>(Terminator)->getCond();
2250 break;
2251
2252 case Stmt::ConditionalOperatorClass:
2253 E = cast<ConditionalOperator>(Terminator)->getCond();
2254 break;
2255
2256 case Stmt::BinaryOperatorClass: // '&&' and '||'
2257 E = cast<BinaryOperator>(Terminator)->getLHS();
2258 break;
2259
2260 case Stmt::ObjCForCollectionStmtClass:
2261 return Terminator;
2262 }
2263
2264 return E ? E->IgnoreParens() : NULL;
2265}
2266
2267bool CFGBlock::hasBinaryBranchTerminator() const {
2268
2269 if (!Terminator)
2270 return false;
2271
2272 Expr* E = NULL;
2273
2274 switch (Terminator->getStmtClass()) {
2275 default:
2276 return false;
2277
2278 case Stmt::ForStmtClass:
2279 case Stmt::WhileStmtClass:
2280 case Stmt::DoStmtClass:
2281 case Stmt::IfStmtClass:
2282 case Stmt::ChooseExprClass:
2283 case Stmt::ConditionalOperatorClass:
2284 case Stmt::BinaryOperatorClass:
2285 return true;
2286 }
2287
2288 return E ? E->IgnoreParens() : NULL;
2289}
2290
2291
2292//===----------------------------------------------------------------------===//
2293// CFG Graphviz Visualization
2294//===----------------------------------------------------------------------===//
2295
2296
2297#ifndef NDEBUG
2298static StmtPrinterHelper* GraphHelper;
2299#endif
2300
2301void CFG::viewCFG(const LangOptions &LO) const {
2302#ifndef NDEBUG
2303 StmtPrinterHelper H(this, LO);
2304 GraphHelper = &H;
2305 llvm::ViewGraph(this,"CFG");
2306 GraphHelper = NULL;
2307#endif
2308}
2309
2310namespace llvm {
2311template<>
2312struct DOTGraphTraits<const CFG*> : public DefaultDOTGraphTraits {
2313
2314 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
2315
2316 static std::string getNodeLabel(const CFGBlock* Node, const CFG* Graph) {
2317
2318#ifndef NDEBUG
2319 std::string OutSStr;
2320 llvm::raw_string_ostream Out(OutSStr);
2321 print_block(Out,Graph, *Node, GraphHelper, false);
2322 std::string& OutStr = Out.str();
2323
2324 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
2325
2326 // Process string output to make it nicer...
2327 for (unsigned i = 0; i != OutStr.length(); ++i)
2328 if (OutStr[i] == '\n') { // Left justify
2329 OutStr[i] = '\\';
2330 OutStr.insert(OutStr.begin()+i+1, 'l');
2331 }
2332
2333 return OutStr;
2334#else
2335 return "";
2336#endif
2337 }
2338};
2339} // end namespace llvm