Shih-wei Liao | f8fd82b | 2010-02-10 11:10:31 -0800 | [diff] [blame^] | 1 | //=== BasicValueFactory.cpp - Basic values for Path Sens analysis --*- C++ -*-// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file defines BasicValueFactory, a class that manages the lifetime |
| 11 | // of APSInt objects and symbolic constraints used by GRExprEngine |
| 12 | // and related classes. |
| 13 | // |
| 14 | //===----------------------------------------------------------------------===// |
| 15 | |
| 16 | #include "clang/Checker/PathSensitive/BasicValueFactory.h" |
| 17 | |
| 18 | using namespace clang; |
| 19 | |
| 20 | void CompoundValData::Profile(llvm::FoldingSetNodeID& ID, QualType T, |
| 21 | llvm::ImmutableList<SVal> L) { |
| 22 | T.Profile(ID); |
| 23 | ID.AddPointer(L.getInternalPointer()); |
| 24 | } |
| 25 | |
| 26 | void LazyCompoundValData::Profile(llvm::FoldingSetNodeID& ID, |
| 27 | const void *store,const TypedRegion *region) { |
| 28 | ID.AddPointer(store); |
| 29 | ID.AddPointer(region); |
| 30 | } |
| 31 | |
| 32 | typedef std::pair<SVal, uintptr_t> SValData; |
| 33 | typedef std::pair<SVal, SVal> SValPair; |
| 34 | |
| 35 | namespace llvm { |
| 36 | template<> struct FoldingSetTrait<SValData> { |
| 37 | static inline void Profile(const SValData& X, llvm::FoldingSetNodeID& ID) { |
| 38 | X.first.Profile(ID); |
| 39 | ID.AddPointer( (void*) X.second); |
| 40 | } |
| 41 | }; |
| 42 | |
| 43 | template<> struct FoldingSetTrait<SValPair> { |
| 44 | static inline void Profile(const SValPair& X, llvm::FoldingSetNodeID& ID) { |
| 45 | X.first.Profile(ID); |
| 46 | X.second.Profile(ID); |
| 47 | } |
| 48 | }; |
| 49 | } |
| 50 | |
| 51 | typedef llvm::FoldingSet<llvm::FoldingSetNodeWrapper<SValData> > |
| 52 | PersistentSValsTy; |
| 53 | |
| 54 | typedef llvm::FoldingSet<llvm::FoldingSetNodeWrapper<SValPair> > |
| 55 | PersistentSValPairsTy; |
| 56 | |
| 57 | BasicValueFactory::~BasicValueFactory() { |
| 58 | // Note that the dstor for the contents of APSIntSet will never be called, |
| 59 | // so we iterate over the set and invoke the dstor for each APSInt. This |
| 60 | // frees an aux. memory allocated to represent very large constants. |
| 61 | for (APSIntSetTy::iterator I=APSIntSet.begin(), E=APSIntSet.end(); I!=E; ++I) |
| 62 | I->getValue().~APSInt(); |
| 63 | |
| 64 | delete (PersistentSValsTy*) PersistentSVals; |
| 65 | delete (PersistentSValPairsTy*) PersistentSValPairs; |
| 66 | } |
| 67 | |
| 68 | const llvm::APSInt& BasicValueFactory::getValue(const llvm::APSInt& X) { |
| 69 | llvm::FoldingSetNodeID ID; |
| 70 | void* InsertPos; |
| 71 | typedef llvm::FoldingSetNodeWrapper<llvm::APSInt> FoldNodeTy; |
| 72 | |
| 73 | X.Profile(ID); |
| 74 | FoldNodeTy* P = APSIntSet.FindNodeOrInsertPos(ID, InsertPos); |
| 75 | |
| 76 | if (!P) { |
| 77 | P = (FoldNodeTy*) BPAlloc.Allocate<FoldNodeTy>(); |
| 78 | new (P) FoldNodeTy(X); |
| 79 | APSIntSet.InsertNode(P, InsertPos); |
| 80 | } |
| 81 | |
| 82 | return *P; |
| 83 | } |
| 84 | |
| 85 | const llvm::APSInt& BasicValueFactory::getValue(const llvm::APInt& X, |
| 86 | bool isUnsigned) { |
| 87 | llvm::APSInt V(X, isUnsigned); |
| 88 | return getValue(V); |
| 89 | } |
| 90 | |
| 91 | const llvm::APSInt& BasicValueFactory::getValue(uint64_t X, unsigned BitWidth, |
| 92 | bool isUnsigned) { |
| 93 | llvm::APSInt V(BitWidth, isUnsigned); |
| 94 | V = X; |
| 95 | return getValue(V); |
| 96 | } |
| 97 | |
| 98 | const llvm::APSInt& BasicValueFactory::getValue(uint64_t X, QualType T) { |
| 99 | |
| 100 | unsigned bits = Ctx.getTypeSize(T); |
| 101 | llvm::APSInt V(bits, T->isUnsignedIntegerType() || Loc::IsLocType(T)); |
| 102 | V = X; |
| 103 | return getValue(V); |
| 104 | } |
| 105 | |
| 106 | const CompoundValData* |
| 107 | BasicValueFactory::getCompoundValData(QualType T, |
| 108 | llvm::ImmutableList<SVal> Vals) { |
| 109 | |
| 110 | llvm::FoldingSetNodeID ID; |
| 111 | CompoundValData::Profile(ID, T, Vals); |
| 112 | void* InsertPos; |
| 113 | |
| 114 | CompoundValData* D = CompoundValDataSet.FindNodeOrInsertPos(ID, InsertPos); |
| 115 | |
| 116 | if (!D) { |
| 117 | D = (CompoundValData*) BPAlloc.Allocate<CompoundValData>(); |
| 118 | new (D) CompoundValData(T, Vals); |
| 119 | CompoundValDataSet.InsertNode(D, InsertPos); |
| 120 | } |
| 121 | |
| 122 | return D; |
| 123 | } |
| 124 | |
| 125 | const LazyCompoundValData* |
| 126 | BasicValueFactory::getLazyCompoundValData(const void *store, |
| 127 | const TypedRegion *region) { |
| 128 | llvm::FoldingSetNodeID ID; |
| 129 | LazyCompoundValData::Profile(ID, store, region); |
| 130 | void* InsertPos; |
| 131 | |
| 132 | LazyCompoundValData *D = |
| 133 | LazyCompoundValDataSet.FindNodeOrInsertPos(ID, InsertPos); |
| 134 | |
| 135 | if (!D) { |
| 136 | D = (LazyCompoundValData*) BPAlloc.Allocate<LazyCompoundValData>(); |
| 137 | new (D) LazyCompoundValData(store, region); |
| 138 | LazyCompoundValDataSet.InsertNode(D, InsertPos); |
| 139 | } |
| 140 | |
| 141 | return D; |
| 142 | } |
| 143 | |
| 144 | const llvm::APSInt* |
| 145 | BasicValueFactory::EvaluateAPSInt(BinaryOperator::Opcode Op, |
| 146 | const llvm::APSInt& V1, const llvm::APSInt& V2) { |
| 147 | |
| 148 | switch (Op) { |
| 149 | default: |
| 150 | assert (false && "Invalid Opcode."); |
| 151 | |
| 152 | case BinaryOperator::Mul: |
| 153 | return &getValue( V1 * V2 ); |
| 154 | |
| 155 | case BinaryOperator::Div: |
| 156 | return &getValue( V1 / V2 ); |
| 157 | |
| 158 | case BinaryOperator::Rem: |
| 159 | return &getValue( V1 % V2 ); |
| 160 | |
| 161 | case BinaryOperator::Add: |
| 162 | return &getValue( V1 + V2 ); |
| 163 | |
| 164 | case BinaryOperator::Sub: |
| 165 | return &getValue( V1 - V2 ); |
| 166 | |
| 167 | case BinaryOperator::Shl: { |
| 168 | |
| 169 | // FIXME: This logic should probably go higher up, where we can |
| 170 | // test these conditions symbolically. |
| 171 | |
| 172 | // FIXME: Expand these checks to include all undefined behavior. |
| 173 | |
| 174 | if (V2.isSigned() && V2.isNegative()) |
| 175 | return NULL; |
| 176 | |
| 177 | uint64_t Amt = V2.getZExtValue(); |
| 178 | |
| 179 | if (Amt > V1.getBitWidth()) |
| 180 | return NULL; |
| 181 | |
| 182 | return &getValue( V1.operator<<( (unsigned) Amt )); |
| 183 | } |
| 184 | |
| 185 | case BinaryOperator::Shr: { |
| 186 | |
| 187 | // FIXME: This logic should probably go higher up, where we can |
| 188 | // test these conditions symbolically. |
| 189 | |
| 190 | // FIXME: Expand these checks to include all undefined behavior. |
| 191 | |
| 192 | if (V2.isSigned() && V2.isNegative()) |
| 193 | return NULL; |
| 194 | |
| 195 | uint64_t Amt = V2.getZExtValue(); |
| 196 | |
| 197 | if (Amt > V1.getBitWidth()) |
| 198 | return NULL; |
| 199 | |
| 200 | return &getValue( V1.operator>>( (unsigned) Amt )); |
| 201 | } |
| 202 | |
| 203 | case BinaryOperator::LT: |
| 204 | return &getTruthValue( V1 < V2 ); |
| 205 | |
| 206 | case BinaryOperator::GT: |
| 207 | return &getTruthValue( V1 > V2 ); |
| 208 | |
| 209 | case BinaryOperator::LE: |
| 210 | return &getTruthValue( V1 <= V2 ); |
| 211 | |
| 212 | case BinaryOperator::GE: |
| 213 | return &getTruthValue( V1 >= V2 ); |
| 214 | |
| 215 | case BinaryOperator::EQ: |
| 216 | return &getTruthValue( V1 == V2 ); |
| 217 | |
| 218 | case BinaryOperator::NE: |
| 219 | return &getTruthValue( V1 != V2 ); |
| 220 | |
| 221 | // Note: LAnd, LOr, Comma are handled specially by higher-level logic. |
| 222 | |
| 223 | case BinaryOperator::And: |
| 224 | return &getValue( V1 & V2 ); |
| 225 | |
| 226 | case BinaryOperator::Or: |
| 227 | return &getValue( V1 | V2 ); |
| 228 | |
| 229 | case BinaryOperator::Xor: |
| 230 | return &getValue( V1 ^ V2 ); |
| 231 | } |
| 232 | } |
| 233 | |
| 234 | |
| 235 | const std::pair<SVal, uintptr_t>& |
| 236 | BasicValueFactory::getPersistentSValWithData(const SVal& V, uintptr_t Data) { |
| 237 | |
| 238 | // Lazily create the folding set. |
| 239 | if (!PersistentSVals) PersistentSVals = new PersistentSValsTy(); |
| 240 | |
| 241 | llvm::FoldingSetNodeID ID; |
| 242 | void* InsertPos; |
| 243 | V.Profile(ID); |
| 244 | ID.AddPointer((void*) Data); |
| 245 | |
| 246 | PersistentSValsTy& Map = *((PersistentSValsTy*) PersistentSVals); |
| 247 | |
| 248 | typedef llvm::FoldingSetNodeWrapper<SValData> FoldNodeTy; |
| 249 | FoldNodeTy* P = Map.FindNodeOrInsertPos(ID, InsertPos); |
| 250 | |
| 251 | if (!P) { |
| 252 | P = (FoldNodeTy*) BPAlloc.Allocate<FoldNodeTy>(); |
| 253 | new (P) FoldNodeTy(std::make_pair(V, Data)); |
| 254 | Map.InsertNode(P, InsertPos); |
| 255 | } |
| 256 | |
| 257 | return P->getValue(); |
| 258 | } |
| 259 | |
| 260 | const std::pair<SVal, SVal>& |
| 261 | BasicValueFactory::getPersistentSValPair(const SVal& V1, const SVal& V2) { |
| 262 | |
| 263 | // Lazily create the folding set. |
| 264 | if (!PersistentSValPairs) PersistentSValPairs = new PersistentSValPairsTy(); |
| 265 | |
| 266 | llvm::FoldingSetNodeID ID; |
| 267 | void* InsertPos; |
| 268 | V1.Profile(ID); |
| 269 | V2.Profile(ID); |
| 270 | |
| 271 | PersistentSValPairsTy& Map = *((PersistentSValPairsTy*) PersistentSValPairs); |
| 272 | |
| 273 | typedef llvm::FoldingSetNodeWrapper<SValPair> FoldNodeTy; |
| 274 | FoldNodeTy* P = Map.FindNodeOrInsertPos(ID, InsertPos); |
| 275 | |
| 276 | if (!P) { |
| 277 | P = (FoldNodeTy*) BPAlloc.Allocate<FoldNodeTy>(); |
| 278 | new (P) FoldNodeTy(std::make_pair(V1, V2)); |
| 279 | Map.InsertNode(P, InsertPos); |
| 280 | } |
| 281 | |
| 282 | return P->getValue(); |
| 283 | } |
| 284 | |
| 285 | const SVal* BasicValueFactory::getPersistentSVal(SVal X) { |
| 286 | return &getPersistentSValWithData(X, 0).first; |
| 287 | } |
| 288 | |
| 289 | |