blob: bb74f9b2f555071df9d4f639ea81495204a24196 [file] [log] [blame]
Shih-wei Liaof8fd82b2010-02-10 11:10:31 -08001//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CodeGenModule.h"
16#include "CGCall.h"
17#include "CGObjCRuntime.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/DeclObjC.h"
20#include "llvm/Intrinsics.h"
21#include "clang/CodeGen/CodeGenOptions.h"
22#include "llvm/Target/TargetData.h"
23using namespace clang;
24using namespace CodeGen;
25
26//===--------------------------------------------------------------------===//
27// Miscellaneous Helper Methods
28//===--------------------------------------------------------------------===//
29
30/// CreateTempAlloca - This creates a alloca and inserts it into the entry
31/// block.
32llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(const llvm::Type *Ty,
33 const llvm::Twine &Name) {
34 if (!Builder.isNamePreserving())
35 return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt);
36 return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt);
37}
38
39llvm::Value *CodeGenFunction::CreateMemTemp(QualType Ty, const llvm::Twine &Name) {
40 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name);
41 // FIXME: Should we prefer the preferred type alignment here?
42 CharUnits Align = getContext().getTypeAlignInChars(Ty);
43 Alloc->setAlignment(Align.getQuantity());
44 return Alloc;
45}
46
47/// EvaluateExprAsBool - Perform the usual unary conversions on the specified
48/// expression and compare the result against zero, returning an Int1Ty value.
49llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
50 QualType BoolTy = getContext().BoolTy;
51 if (E->getType()->isMemberFunctionPointerType()) {
52 LValue LV = EmitAggExprToLValue(E);
53
54 // Get the pointer.
55 llvm::Value *FuncPtr = Builder.CreateStructGEP(LV.getAddress(), 0,
56 "src.ptr");
57 FuncPtr = Builder.CreateLoad(FuncPtr);
58
59 llvm::Value *IsNotNull =
60 Builder.CreateICmpNE(FuncPtr,
61 llvm::Constant::getNullValue(FuncPtr->getType()),
62 "tobool");
63
64 return IsNotNull;
65 }
66 if (!E->getType()->isAnyComplexType())
67 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
68
69 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
70}
71
72/// EmitAnyExpr - Emit code to compute the specified expression which can have
73/// any type. The result is returned as an RValue struct. If this is an
74/// aggregate expression, the aggloc/agglocvolatile arguments indicate where the
75/// result should be returned.
76RValue CodeGenFunction::EmitAnyExpr(const Expr *E, llvm::Value *AggLoc,
77 bool IsAggLocVolatile, bool IgnoreResult,
78 bool IsInitializer) {
79 if (!hasAggregateLLVMType(E->getType()))
80 return RValue::get(EmitScalarExpr(E, IgnoreResult));
81 else if (E->getType()->isAnyComplexType())
82 return RValue::getComplex(EmitComplexExpr(E, false, false,
83 IgnoreResult, IgnoreResult));
84
85 EmitAggExpr(E, AggLoc, IsAggLocVolatile, IgnoreResult, IsInitializer);
86 return RValue::getAggregate(AggLoc, IsAggLocVolatile);
87}
88
89/// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
90/// always be accessible even if no aggregate location is provided.
91RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E,
92 bool IsAggLocVolatile,
93 bool IsInitializer) {
94 llvm::Value *AggLoc = 0;
95
96 if (hasAggregateLLVMType(E->getType()) &&
97 !E->getType()->isAnyComplexType())
98 AggLoc = CreateTempAlloca(ConvertTypeForMem(E->getType()), "agg.tmp");
99 return EmitAnyExpr(E, AggLoc, IsAggLocVolatile, /*IgnoreResult=*/false,
100 IsInitializer);
101}
102
103RValue CodeGenFunction::EmitReferenceBindingToExpr(const Expr* E,
104 bool IsInitializer) {
105 bool ShouldDestroyTemporaries = false;
106 unsigned OldNumLiveTemporaries = 0;
107
108 if (const CXXDefaultArgExpr *DAE = dyn_cast<CXXDefaultArgExpr>(E))
109 E = DAE->getExpr();
110
111 if (const CXXExprWithTemporaries *TE = dyn_cast<CXXExprWithTemporaries>(E)) {
112 ShouldDestroyTemporaries = true;
113
114 // Keep track of the current cleanup stack depth.
115 OldNumLiveTemporaries = LiveTemporaries.size();
116
117 E = TE->getSubExpr();
118 }
119
120 RValue Val;
121 if (E->isLvalue(getContext()) == Expr::LV_Valid) {
122 // Emit the expr as an lvalue.
123 LValue LV = EmitLValue(E);
124 if (LV.isSimple()) {
125 if (ShouldDestroyTemporaries) {
126 // Pop temporaries.
127 while (LiveTemporaries.size() > OldNumLiveTemporaries)
128 PopCXXTemporary();
129 }
130
131 return RValue::get(LV.getAddress());
132 }
133
134 Val = EmitLoadOfLValue(LV, E->getType());
135
136 if (ShouldDestroyTemporaries) {
137 // Pop temporaries.
138 while (LiveTemporaries.size() > OldNumLiveTemporaries)
139 PopCXXTemporary();
140 }
141 } else {
142 const CXXRecordDecl *BaseClassDecl = 0;
143 const CXXRecordDecl *DerivedClassDecl = 0;
144
145 if (const CastExpr *CE =
146 dyn_cast<CastExpr>(E->IgnoreParenNoopCasts(getContext()))) {
147 if (CE->getCastKind() == CastExpr::CK_DerivedToBase) {
148 E = CE->getSubExpr();
149
150 BaseClassDecl =
151 cast<CXXRecordDecl>(CE->getType()->getAs<RecordType>()->getDecl());
152 DerivedClassDecl =
153 cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl());
154 }
155 }
156
157 Val = EmitAnyExprToTemp(E, /*IsAggLocVolatile=*/false,
158 IsInitializer);
159
160 if (ShouldDestroyTemporaries) {
161 // Pop temporaries.
162 while (LiveTemporaries.size() > OldNumLiveTemporaries)
163 PopCXXTemporary();
164 }
165
166 if (IsInitializer) {
167 // We might have to destroy the temporary variable.
168 if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
169 if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
170 if (!ClassDecl->hasTrivialDestructor()) {
171 const CXXDestructorDecl *Dtor =
172 ClassDecl->getDestructor(getContext());
173
174 {
175 DelayedCleanupBlock Scope(*this);
176 EmitCXXDestructorCall(Dtor, Dtor_Complete,
177 Val.getAggregateAddr());
178
179 // Make sure to jump to the exit block.
180 EmitBranch(Scope.getCleanupExitBlock());
181 }
182 if (Exceptions) {
183 EHCleanupBlock Cleanup(*this);
184 EmitCXXDestructorCall(Dtor, Dtor_Complete,
185 Val.getAggregateAddr());
186 }
187 }
188 }
189 }
190 }
191
192 // Check if need to perform the derived-to-base cast.
193 if (BaseClassDecl) {
194 llvm::Value *Derived = Val.getAggregateAddr();
195 llvm::Value *Base =
196 GetAddressOfBaseClass(Derived, DerivedClassDecl, BaseClassDecl,
197 /*NullCheckValue=*/false);
198 return RValue::get(Base);
199 }
200 }
201
202 if (Val.isAggregate()) {
203 Val = RValue::get(Val.getAggregateAddr());
204 } else {
205 // Create a temporary variable that we can bind the reference to.
206 llvm::Value *Temp = CreateMemTemp(E->getType(), "reftmp");
207 if (Val.isScalar())
208 EmitStoreOfScalar(Val.getScalarVal(), Temp, false, E->getType());
209 else
210 StoreComplexToAddr(Val.getComplexVal(), Temp, false);
211 Val = RValue::get(Temp);
212 }
213
214 return Val;
215}
216
217
218/// getAccessedFieldNo - Given an encoded value and a result number, return the
219/// input field number being accessed.
220unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
221 const llvm::Constant *Elts) {
222 if (isa<llvm::ConstantAggregateZero>(Elts))
223 return 0;
224
225 return cast<llvm::ConstantInt>(Elts->getOperand(Idx))->getZExtValue();
226}
227
228void CodeGenFunction::EmitCheck(llvm::Value *Address, unsigned Size) {
229 if (!CatchUndefined)
230 return;
231
232 const llvm::IntegerType *Size_tTy
233 = llvm::IntegerType::get(VMContext, LLVMPointerWidth);
234 Address = Builder.CreateBitCast(Address, PtrToInt8Ty);
235
236 const llvm::Type *ResType[] = {
237 Size_tTy
238 };
239 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, ResType, 1);
240 const llvm::IntegerType *IntTy = cast<llvm::IntegerType>(
241 CGM.getTypes().ConvertType(CGM.getContext().IntTy));
242 // In time, people may want to control this and use a 1 here.
243 llvm::Value *Arg = llvm::ConstantInt::get(IntTy, 0);
244 llvm::Value *C = Builder.CreateCall2(F, Address, Arg);
245 llvm::BasicBlock *Cont = createBasicBlock();
246 llvm::BasicBlock *Check = createBasicBlock();
247 llvm::Value *NegativeOne = llvm::ConstantInt::get(Size_tTy, -1ULL);
248 Builder.CreateCondBr(Builder.CreateICmpEQ(C, NegativeOne), Cont, Check);
249
250 EmitBlock(Check);
251 Builder.CreateCondBr(Builder.CreateICmpUGE(C,
252 llvm::ConstantInt::get(Size_tTy, Size)),
253 Cont, getTrapBB());
254 EmitBlock(Cont);
255}
256
257
258llvm::Value *CodeGenFunction::
259EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
260 bool isInc, bool isPre) {
261 QualType ValTy = E->getSubExpr()->getType();
262 llvm::Value *InVal = EmitLoadOfLValue(LV, ValTy).getScalarVal();
263
264 int AmountVal = isInc ? 1 : -1;
265
266 if (ValTy->isPointerType() &&
267 ValTy->getAs<PointerType>()->isVariableArrayType()) {
268 // The amount of the addition/subtraction needs to account for the VLA size
269 ErrorUnsupported(E, "VLA pointer inc/dec");
270 }
271
272 llvm::Value *NextVal;
273 if (const llvm::PointerType *PT =
274 dyn_cast<llvm::PointerType>(InVal->getType())) {
275 llvm::Constant *Inc =
276 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), AmountVal);
277 if (!isa<llvm::FunctionType>(PT->getElementType())) {
278 QualType PTEE = ValTy->getPointeeType();
279 if (const ObjCInterfaceType *OIT =
280 dyn_cast<ObjCInterfaceType>(PTEE)) {
281 // Handle interface types, which are not represented with a concrete
282 // type.
283 int size = getContext().getTypeSize(OIT) / 8;
284 if (!isInc)
285 size = -size;
286 Inc = llvm::ConstantInt::get(Inc->getType(), size);
287 const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
288 InVal = Builder.CreateBitCast(InVal, i8Ty);
289 NextVal = Builder.CreateGEP(InVal, Inc, "add.ptr");
290 llvm::Value *lhs = LV.getAddress();
291 lhs = Builder.CreateBitCast(lhs, llvm::PointerType::getUnqual(i8Ty));
292 LV = LValue::MakeAddr(lhs, MakeQualifiers(ValTy));
293 } else
294 NextVal = Builder.CreateInBoundsGEP(InVal, Inc, "ptrincdec");
295 } else {
296 const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
297 NextVal = Builder.CreateBitCast(InVal, i8Ty, "tmp");
298 NextVal = Builder.CreateGEP(NextVal, Inc, "ptrincdec");
299 NextVal = Builder.CreateBitCast(NextVal, InVal->getType());
300 }
301 } else if (InVal->getType() == llvm::Type::getInt1Ty(VMContext) && isInc) {
302 // Bool++ is an interesting case, due to promotion rules, we get:
303 // Bool++ -> Bool = Bool+1 -> Bool = (int)Bool+1 ->
304 // Bool = ((int)Bool+1) != 0
305 // An interesting aspect of this is that increment is always true.
306 // Decrement does not have this property.
307 NextVal = llvm::ConstantInt::getTrue(VMContext);
308 } else if (isa<llvm::IntegerType>(InVal->getType())) {
309 NextVal = llvm::ConstantInt::get(InVal->getType(), AmountVal);
310
311 // Signed integer overflow is undefined behavior.
312 if (ValTy->isSignedIntegerType())
313 NextVal = Builder.CreateNSWAdd(InVal, NextVal, isInc ? "inc" : "dec");
314 else
315 NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
316 } else {
317 // Add the inc/dec to the real part.
318 if (InVal->getType()->isFloatTy())
319 NextVal =
320 llvm::ConstantFP::get(VMContext,
321 llvm::APFloat(static_cast<float>(AmountVal)));
322 else if (InVal->getType()->isDoubleTy())
323 NextVal =
324 llvm::ConstantFP::get(VMContext,
325 llvm::APFloat(static_cast<double>(AmountVal)));
326 else {
327 llvm::APFloat F(static_cast<float>(AmountVal));
328 bool ignored;
329 F.convert(Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
330 &ignored);
331 NextVal = llvm::ConstantFP::get(VMContext, F);
332 }
333 NextVal = Builder.CreateFAdd(InVal, NextVal, isInc ? "inc" : "dec");
334 }
335
336 // Store the updated result through the lvalue.
337 if (LV.isBitfield())
338 EmitStoreThroughBitfieldLValue(RValue::get(NextVal), LV, ValTy, &NextVal);
339 else
340 EmitStoreThroughLValue(RValue::get(NextVal), LV, ValTy);
341
342 // If this is a postinc, return the value read from memory, otherwise use the
343 // updated value.
344 return isPre ? NextVal : InVal;
345}
346
347
348CodeGenFunction::ComplexPairTy CodeGenFunction::
349EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
350 bool isInc, bool isPre) {
351 ComplexPairTy InVal = LoadComplexFromAddr(LV.getAddress(),
352 LV.isVolatileQualified());
353
354 llvm::Value *NextVal;
355 if (isa<llvm::IntegerType>(InVal.first->getType())) {
356 uint64_t AmountVal = isInc ? 1 : -1;
357 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
358
359 // Add the inc/dec to the real part.
360 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
361 } else {
362 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
363 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
364 if (!isInc)
365 FVal.changeSign();
366 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
367
368 // Add the inc/dec to the real part.
369 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
370 }
371
372 ComplexPairTy IncVal(NextVal, InVal.second);
373
374 // Store the updated result through the lvalue.
375 StoreComplexToAddr(IncVal, LV.getAddress(), LV.isVolatileQualified());
376
377 // If this is a postinc, return the value read from memory, otherwise use the
378 // updated value.
379 return isPre ? IncVal : InVal;
380}
381
382
383//===----------------------------------------------------------------------===//
384// LValue Expression Emission
385//===----------------------------------------------------------------------===//
386
387RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
388 if (Ty->isVoidType())
389 return RValue::get(0);
390
391 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
392 const llvm::Type *EltTy = ConvertType(CTy->getElementType());
393 llvm::Value *U = llvm::UndefValue::get(EltTy);
394 return RValue::getComplex(std::make_pair(U, U));
395 }
396
397 if (hasAggregateLLVMType(Ty)) {
398 const llvm::Type *LTy = llvm::PointerType::getUnqual(ConvertType(Ty));
399 return RValue::getAggregate(llvm::UndefValue::get(LTy));
400 }
401
402 return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
403}
404
405RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
406 const char *Name) {
407 ErrorUnsupported(E, Name);
408 return GetUndefRValue(E->getType());
409}
410
411LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
412 const char *Name) {
413 ErrorUnsupported(E, Name);
414 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
415 return LValue::MakeAddr(llvm::UndefValue::get(Ty),
416 MakeQualifiers(E->getType()));
417}
418
419LValue CodeGenFunction::EmitCheckedLValue(const Expr *E) {
420 LValue LV = EmitLValue(E);
421 if (!isa<DeclRefExpr>(E) && !LV.isBitfield() && LV.isSimple())
422 EmitCheck(LV.getAddress(), getContext().getTypeSize(E->getType()) / 8);
423 return LV;
424}
425
426/// EmitLValue - Emit code to compute a designator that specifies the location
427/// of the expression.
428///
429/// This can return one of two things: a simple address or a bitfield reference.
430/// In either case, the LLVM Value* in the LValue structure is guaranteed to be
431/// an LLVM pointer type.
432///
433/// If this returns a bitfield reference, nothing about the pointee type of the
434/// LLVM value is known: For example, it may not be a pointer to an integer.
435///
436/// If this returns a normal address, and if the lvalue's C type is fixed size,
437/// this method guarantees that the returned pointer type will point to an LLVM
438/// type of the same size of the lvalue's type. If the lvalue has a variable
439/// length type, this is not possible.
440///
441LValue CodeGenFunction::EmitLValue(const Expr *E) {
442 switch (E->getStmtClass()) {
443 default: return EmitUnsupportedLValue(E, "l-value expression");
444
445 case Expr::ObjCIsaExprClass:
446 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
447 case Expr::BinaryOperatorClass:
448 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
449 case Expr::CallExprClass:
450 case Expr::CXXMemberCallExprClass:
451 case Expr::CXXOperatorCallExprClass:
452 return EmitCallExprLValue(cast<CallExpr>(E));
453 case Expr::VAArgExprClass:
454 return EmitVAArgExprLValue(cast<VAArgExpr>(E));
455 case Expr::DeclRefExprClass:
456 return EmitDeclRefLValue(cast<DeclRefExpr>(E));
457 case Expr::ParenExprClass:return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
458 case Expr::PredefinedExprClass:
459 return EmitPredefinedLValue(cast<PredefinedExpr>(E));
460 case Expr::StringLiteralClass:
461 return EmitStringLiteralLValue(cast<StringLiteral>(E));
462 case Expr::ObjCEncodeExprClass:
463 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
464
465 case Expr::BlockDeclRefExprClass:
466 return EmitBlockDeclRefLValue(cast<BlockDeclRefExpr>(E));
467
468 case Expr::CXXTemporaryObjectExprClass:
469 case Expr::CXXConstructExprClass:
470 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
471 case Expr::CXXBindTemporaryExprClass:
472 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
473 case Expr::CXXExprWithTemporariesClass:
474 return EmitCXXExprWithTemporariesLValue(cast<CXXExprWithTemporaries>(E));
475 case Expr::CXXZeroInitValueExprClass:
476 return EmitNullInitializationLValue(cast<CXXZeroInitValueExpr>(E));
477 case Expr::CXXDefaultArgExprClass:
478 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
479 case Expr::CXXTypeidExprClass:
480 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
481
482 case Expr::ObjCMessageExprClass:
483 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
484 case Expr::ObjCIvarRefExprClass:
485 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
486 case Expr::ObjCPropertyRefExprClass:
487 return EmitObjCPropertyRefLValue(cast<ObjCPropertyRefExpr>(E));
488 case Expr::ObjCImplicitSetterGetterRefExprClass:
489 return EmitObjCKVCRefLValue(cast<ObjCImplicitSetterGetterRefExpr>(E));
490 case Expr::ObjCSuperExprClass:
491 return EmitObjCSuperExprLValue(cast<ObjCSuperExpr>(E));
492
493 case Expr::StmtExprClass:
494 return EmitStmtExprLValue(cast<StmtExpr>(E));
495 case Expr::UnaryOperatorClass:
496 return EmitUnaryOpLValue(cast<UnaryOperator>(E));
497 case Expr::ArraySubscriptExprClass:
498 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
499 case Expr::ExtVectorElementExprClass:
500 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
501 case Expr::MemberExprClass:
502 return EmitMemberExpr(cast<MemberExpr>(E));
503 case Expr::CompoundLiteralExprClass:
504 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
505 case Expr::ConditionalOperatorClass:
506 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
507 case Expr::ChooseExprClass:
508 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext()));
509 case Expr::ImplicitCastExprClass:
510 case Expr::CStyleCastExprClass:
511 case Expr::CXXFunctionalCastExprClass:
512 case Expr::CXXStaticCastExprClass:
513 case Expr::CXXDynamicCastExprClass:
514 case Expr::CXXReinterpretCastExprClass:
515 case Expr::CXXConstCastExprClass:
516 return EmitCastLValue(cast<CastExpr>(E));
517 }
518}
519
520llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
521 QualType Ty) {
522 llvm::LoadInst *Load = Builder.CreateLoad(Addr, "tmp");
523 if (Volatile)
524 Load->setVolatile(true);
525
526 // Bool can have different representation in memory than in registers.
527 llvm::Value *V = Load;
528 if (Ty->isBooleanType())
529 if (V->getType() != llvm::Type::getInt1Ty(VMContext))
530 V = Builder.CreateTrunc(V, llvm::Type::getInt1Ty(VMContext), "tobool");
531
532 return V;
533}
534
535void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
536 bool Volatile, QualType Ty) {
537
538 if (Ty->isBooleanType()) {
539 // Bool can have different representation in memory than in registers.
540 const llvm::PointerType *DstPtr = cast<llvm::PointerType>(Addr->getType());
541 Value = Builder.CreateIntCast(Value, DstPtr->getElementType(), false);
542 }
543 Builder.CreateStore(Value, Addr, Volatile);
544}
545
546/// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
547/// method emits the address of the lvalue, then loads the result as an rvalue,
548/// returning the rvalue.
549RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, QualType ExprType) {
550 if (LV.isObjCWeak()) {
551 // load of a __weak object.
552 llvm::Value *AddrWeakObj = LV.getAddress();
553 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
554 AddrWeakObj));
555 }
556
557 if (LV.isSimple()) {
558 llvm::Value *Ptr = LV.getAddress();
559 const llvm::Type *EltTy =
560 cast<llvm::PointerType>(Ptr->getType())->getElementType();
561
562 // Simple scalar l-value.
563 //
564 // FIXME: We shouldn't have to use isSingleValueType here.
565 if (EltTy->isSingleValueType())
566 return RValue::get(EmitLoadOfScalar(Ptr, LV.isVolatileQualified(),
567 ExprType));
568
569 assert(ExprType->isFunctionType() && "Unknown scalar value");
570 return RValue::get(Ptr);
571 }
572
573 if (LV.isVectorElt()) {
574 llvm::Value *Vec = Builder.CreateLoad(LV.getVectorAddr(),
575 LV.isVolatileQualified(), "tmp");
576 return RValue::get(Builder.CreateExtractElement(Vec, LV.getVectorIdx(),
577 "vecext"));
578 }
579
580 // If this is a reference to a subset of the elements of a vector, either
581 // shuffle the input or extract/insert them as appropriate.
582 if (LV.isExtVectorElt())
583 return EmitLoadOfExtVectorElementLValue(LV, ExprType);
584
585 if (LV.isBitfield())
586 return EmitLoadOfBitfieldLValue(LV, ExprType);
587
588 if (LV.isPropertyRef())
589 return EmitLoadOfPropertyRefLValue(LV, ExprType);
590
591 assert(LV.isKVCRef() && "Unknown LValue type!");
592 return EmitLoadOfKVCRefLValue(LV, ExprType);
593}
594
595RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
596 QualType ExprType) {
597 unsigned StartBit = LV.getBitfieldStartBit();
598 unsigned BitfieldSize = LV.getBitfieldSize();
599 llvm::Value *Ptr = LV.getBitfieldAddr();
600
601 const llvm::Type *EltTy =
602 cast<llvm::PointerType>(Ptr->getType())->getElementType();
603 unsigned EltTySize = CGM.getTargetData().getTypeSizeInBits(EltTy);
604
605 // In some cases the bitfield may straddle two memory locations. Currently we
606 // load the entire bitfield, then do the magic to sign-extend it if
607 // necessary. This results in somewhat more code than necessary for the common
608 // case (one load), since two shifts accomplish both the masking and sign
609 // extension.
610 unsigned LowBits = std::min(BitfieldSize, EltTySize - StartBit);
611 llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "tmp");
612
613 // Shift to proper location.
614 if (StartBit)
615 Val = Builder.CreateLShr(Val, StartBit, "bf.lo");
616
617 // Mask off unused bits.
618 llvm::Constant *LowMask = llvm::ConstantInt::get(VMContext,
619 llvm::APInt::getLowBitsSet(EltTySize, LowBits));
620 Val = Builder.CreateAnd(Val, LowMask, "bf.lo.cleared");
621
622 // Fetch the high bits if necessary.
623 if (LowBits < BitfieldSize) {
624 unsigned HighBits = BitfieldSize - LowBits;
625 llvm::Value *HighPtr = Builder.CreateGEP(Ptr, llvm::ConstantInt::get(
626 llvm::Type::getInt32Ty(VMContext), 1), "bf.ptr.hi");
627 llvm::Value *HighVal = Builder.CreateLoad(HighPtr,
628 LV.isVolatileQualified(),
629 "tmp");
630
631 // Mask off unused bits.
632 llvm::Constant *HighMask = llvm::ConstantInt::get(VMContext,
633 llvm::APInt::getLowBitsSet(EltTySize, HighBits));
634 HighVal = Builder.CreateAnd(HighVal, HighMask, "bf.lo.cleared");
635
636 // Shift to proper location and or in to bitfield value.
637 HighVal = Builder.CreateShl(HighVal, LowBits);
638 Val = Builder.CreateOr(Val, HighVal, "bf.val");
639 }
640
641 // Sign extend if necessary.
642 if (LV.isBitfieldSigned()) {
643 llvm::Value *ExtraBits = llvm::ConstantInt::get(EltTy,
644 EltTySize - BitfieldSize);
645 Val = Builder.CreateAShr(Builder.CreateShl(Val, ExtraBits),
646 ExtraBits, "bf.val.sext");
647 }
648
649 // The bitfield type and the normal type differ when the storage sizes differ
650 // (currently just _Bool).
651 Val = Builder.CreateIntCast(Val, ConvertType(ExprType), false, "tmp");
652
653 return RValue::get(Val);
654}
655
656RValue CodeGenFunction::EmitLoadOfPropertyRefLValue(LValue LV,
657 QualType ExprType) {
658 return EmitObjCPropertyGet(LV.getPropertyRefExpr());
659}
660
661RValue CodeGenFunction::EmitLoadOfKVCRefLValue(LValue LV,
662 QualType ExprType) {
663 return EmitObjCPropertyGet(LV.getKVCRefExpr());
664}
665
666// If this is a reference to a subset of the elements of a vector, create an
667// appropriate shufflevector.
668RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV,
669 QualType ExprType) {
670 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddr(),
671 LV.isVolatileQualified(), "tmp");
672
673 const llvm::Constant *Elts = LV.getExtVectorElts();
674
675 // If the result of the expression is a non-vector type, we must be extracting
676 // a single element. Just codegen as an extractelement.
677 const VectorType *ExprVT = ExprType->getAs<VectorType>();
678 if (!ExprVT) {
679 unsigned InIdx = getAccessedFieldNo(0, Elts);
680 llvm::Value *Elt = llvm::ConstantInt::get(
681 llvm::Type::getInt32Ty(VMContext), InIdx);
682 return RValue::get(Builder.CreateExtractElement(Vec, Elt, "tmp"));
683 }
684
685 // Always use shuffle vector to try to retain the original program structure
686 unsigned NumResultElts = ExprVT->getNumElements();
687
688 llvm::SmallVector<llvm::Constant*, 4> Mask;
689 for (unsigned i = 0; i != NumResultElts; ++i) {
690 unsigned InIdx = getAccessedFieldNo(i, Elts);
691 Mask.push_back(llvm::ConstantInt::get(
692 llvm::Type::getInt32Ty(VMContext), InIdx));
693 }
694
695 llvm::Value *MaskV = llvm::ConstantVector::get(&Mask[0], Mask.size());
696 Vec = Builder.CreateShuffleVector(Vec,
697 llvm::UndefValue::get(Vec->getType()),
698 MaskV, "tmp");
699 return RValue::get(Vec);
700}
701
702
703
704/// EmitStoreThroughLValue - Store the specified rvalue into the specified
705/// lvalue, where both are guaranteed to the have the same type, and that type
706/// is 'Ty'.
707void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
708 QualType Ty) {
709 if (!Dst.isSimple()) {
710 if (Dst.isVectorElt()) {
711 // Read/modify/write the vector, inserting the new element.
712 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddr(),
713 Dst.isVolatileQualified(), "tmp");
714 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
715 Dst.getVectorIdx(), "vecins");
716 Builder.CreateStore(Vec, Dst.getVectorAddr(),Dst.isVolatileQualified());
717 return;
718 }
719
720 // If this is an update of extended vector elements, insert them as
721 // appropriate.
722 if (Dst.isExtVectorElt())
723 return EmitStoreThroughExtVectorComponentLValue(Src, Dst, Ty);
724
725 if (Dst.isBitfield())
726 return EmitStoreThroughBitfieldLValue(Src, Dst, Ty);
727
728 if (Dst.isPropertyRef())
729 return EmitStoreThroughPropertyRefLValue(Src, Dst, Ty);
730
731 assert(Dst.isKVCRef() && "Unknown LValue type");
732 return EmitStoreThroughKVCRefLValue(Src, Dst, Ty);
733 }
734
735 if (Dst.isObjCWeak() && !Dst.isNonGC()) {
736 // load of a __weak object.
737 llvm::Value *LvalueDst = Dst.getAddress();
738 llvm::Value *src = Src.getScalarVal();
739 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
740 return;
741 }
742
743 if (Dst.isObjCStrong() && !Dst.isNonGC()) {
744 // load of a __strong object.
745 llvm::Value *LvalueDst = Dst.getAddress();
746 llvm::Value *src = Src.getScalarVal();
747 if (Dst.isObjCIvar()) {
748 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
749 const llvm::Type *ResultType = ConvertType(getContext().LongTy);
750 llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp());
751 llvm::Value *dst = RHS;
752 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
753 llvm::Value *LHS =
754 Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast");
755 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
756 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
757 BytesBetween);
758 } else if (Dst.isGlobalObjCRef())
759 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst);
760 else
761 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
762 return;
763 }
764
765 assert(Src.isScalar() && "Can't emit an agg store with this method");
766 EmitStoreOfScalar(Src.getScalarVal(), Dst.getAddress(),
767 Dst.isVolatileQualified(), Ty);
768}
769
770void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
771 QualType Ty,
772 llvm::Value **Result) {
773 unsigned StartBit = Dst.getBitfieldStartBit();
774 unsigned BitfieldSize = Dst.getBitfieldSize();
775 llvm::Value *Ptr = Dst.getBitfieldAddr();
776
777 const llvm::Type *EltTy =
778 cast<llvm::PointerType>(Ptr->getType())->getElementType();
779 unsigned EltTySize = CGM.getTargetData().getTypeSizeInBits(EltTy);
780
781 // Get the new value, cast to the appropriate type and masked to exactly the
782 // size of the bit-field.
783 llvm::Value *SrcVal = Src.getScalarVal();
784 llvm::Value *NewVal = Builder.CreateIntCast(SrcVal, EltTy, false, "tmp");
785 llvm::Constant *Mask = llvm::ConstantInt::get(VMContext,
786 llvm::APInt::getLowBitsSet(EltTySize, BitfieldSize));
787 NewVal = Builder.CreateAnd(NewVal, Mask, "bf.value");
788
789 // Return the new value of the bit-field, if requested.
790 if (Result) {
791 // Cast back to the proper type for result.
792 const llvm::Type *SrcTy = SrcVal->getType();
793 llvm::Value *SrcTrunc = Builder.CreateIntCast(NewVal, SrcTy, false,
794 "bf.reload.val");
795
796 // Sign extend if necessary.
797 if (Dst.isBitfieldSigned()) {
798 unsigned SrcTySize = CGM.getTargetData().getTypeSizeInBits(SrcTy);
799 llvm::Value *ExtraBits = llvm::ConstantInt::get(SrcTy,
800 SrcTySize - BitfieldSize);
801 SrcTrunc = Builder.CreateAShr(Builder.CreateShl(SrcTrunc, ExtraBits),
802 ExtraBits, "bf.reload.sext");
803 }
804
805 *Result = SrcTrunc;
806 }
807
808 // In some cases the bitfield may straddle two memory locations. Emit the low
809 // part first and check to see if the high needs to be done.
810 unsigned LowBits = std::min(BitfieldSize, EltTySize - StartBit);
811 llvm::Value *LowVal = Builder.CreateLoad(Ptr, Dst.isVolatileQualified(),
812 "bf.prev.low");
813
814 // Compute the mask for zero-ing the low part of this bitfield.
815 llvm::Constant *InvMask =
816 llvm::ConstantInt::get(VMContext,
817 ~llvm::APInt::getBitsSet(EltTySize, StartBit, StartBit + LowBits));
818
819 // Compute the new low part as
820 // LowVal = (LowVal & InvMask) | (NewVal << StartBit),
821 // with the shift of NewVal implicitly stripping the high bits.
822 llvm::Value *NewLowVal =
823 Builder.CreateShl(NewVal, StartBit, "bf.value.lo");
824 LowVal = Builder.CreateAnd(LowVal, InvMask, "bf.prev.lo.cleared");
825 LowVal = Builder.CreateOr(LowVal, NewLowVal, "bf.new.lo");
826
827 // Write back.
828 Builder.CreateStore(LowVal, Ptr, Dst.isVolatileQualified());
829
830 // If the low part doesn't cover the bitfield emit a high part.
831 if (LowBits < BitfieldSize) {
832 unsigned HighBits = BitfieldSize - LowBits;
833 llvm::Value *HighPtr = Builder.CreateGEP(Ptr, llvm::ConstantInt::get(
834 llvm::Type::getInt32Ty(VMContext), 1), "bf.ptr.hi");
835 llvm::Value *HighVal = Builder.CreateLoad(HighPtr,
836 Dst.isVolatileQualified(),
837 "bf.prev.hi");
838
839 // Compute the mask for zero-ing the high part of this bitfield.
840 llvm::Constant *InvMask =
841 llvm::ConstantInt::get(VMContext, ~llvm::APInt::getLowBitsSet(EltTySize,
842 HighBits));
843
844 // Compute the new high part as
845 // HighVal = (HighVal & InvMask) | (NewVal lshr LowBits),
846 // where the high bits of NewVal have already been cleared and the
847 // shift stripping the low bits.
848 llvm::Value *NewHighVal =
849 Builder.CreateLShr(NewVal, LowBits, "bf.value.high");
850 HighVal = Builder.CreateAnd(HighVal, InvMask, "bf.prev.hi.cleared");
851 HighVal = Builder.CreateOr(HighVal, NewHighVal, "bf.new.hi");
852
853 // Write back.
854 Builder.CreateStore(HighVal, HighPtr, Dst.isVolatileQualified());
855 }
856}
857
858void CodeGenFunction::EmitStoreThroughPropertyRefLValue(RValue Src,
859 LValue Dst,
860 QualType Ty) {
861 EmitObjCPropertySet(Dst.getPropertyRefExpr(), Src);
862}
863
864void CodeGenFunction::EmitStoreThroughKVCRefLValue(RValue Src,
865 LValue Dst,
866 QualType Ty) {
867 EmitObjCPropertySet(Dst.getKVCRefExpr(), Src);
868}
869
870void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
871 LValue Dst,
872 QualType Ty) {
873 // This access turns into a read/modify/write of the vector. Load the input
874 // value now.
875 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddr(),
876 Dst.isVolatileQualified(), "tmp");
877 const llvm::Constant *Elts = Dst.getExtVectorElts();
878
879 llvm::Value *SrcVal = Src.getScalarVal();
880
881 if (const VectorType *VTy = Ty->getAs<VectorType>()) {
882 unsigned NumSrcElts = VTy->getNumElements();
883 unsigned NumDstElts =
884 cast<llvm::VectorType>(Vec->getType())->getNumElements();
885 if (NumDstElts == NumSrcElts) {
886 // Use shuffle vector is the src and destination are the same number of
887 // elements and restore the vector mask since it is on the side it will be
888 // stored.
889 llvm::SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
890 for (unsigned i = 0; i != NumSrcElts; ++i) {
891 unsigned InIdx = getAccessedFieldNo(i, Elts);
892 Mask[InIdx] = llvm::ConstantInt::get(
893 llvm::Type::getInt32Ty(VMContext), i);
894 }
895
896 llvm::Value *MaskV = llvm::ConstantVector::get(&Mask[0], Mask.size());
897 Vec = Builder.CreateShuffleVector(SrcVal,
898 llvm::UndefValue::get(Vec->getType()),
899 MaskV, "tmp");
900 } else if (NumDstElts > NumSrcElts) {
901 // Extended the source vector to the same length and then shuffle it
902 // into the destination.
903 // FIXME: since we're shuffling with undef, can we just use the indices
904 // into that? This could be simpler.
905 llvm::SmallVector<llvm::Constant*, 4> ExtMask;
906 const llvm::Type *Int32Ty = llvm::Type::getInt32Ty(VMContext);
907 unsigned i;
908 for (i = 0; i != NumSrcElts; ++i)
909 ExtMask.push_back(llvm::ConstantInt::get(Int32Ty, i));
910 for (; i != NumDstElts; ++i)
911 ExtMask.push_back(llvm::UndefValue::get(Int32Ty));
912 llvm::Value *ExtMaskV = llvm::ConstantVector::get(&ExtMask[0],
913 ExtMask.size());
914 llvm::Value *ExtSrcVal =
915 Builder.CreateShuffleVector(SrcVal,
916 llvm::UndefValue::get(SrcVal->getType()),
917 ExtMaskV, "tmp");
918 // build identity
919 llvm::SmallVector<llvm::Constant*, 4> Mask;
920 for (unsigned i = 0; i != NumDstElts; ++i)
921 Mask.push_back(llvm::ConstantInt::get(Int32Ty, i));
922
923 // modify when what gets shuffled in
924 for (unsigned i = 0; i != NumSrcElts; ++i) {
925 unsigned Idx = getAccessedFieldNo(i, Elts);
926 Mask[Idx] = llvm::ConstantInt::get(Int32Ty, i+NumDstElts);
927 }
928 llvm::Value *MaskV = llvm::ConstantVector::get(&Mask[0], Mask.size());
929 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV, "tmp");
930 } else {
931 // We should never shorten the vector
932 assert(0 && "unexpected shorten vector length");
933 }
934 } else {
935 // If the Src is a scalar (not a vector) it must be updating one element.
936 unsigned InIdx = getAccessedFieldNo(0, Elts);
937 const llvm::Type *Int32Ty = llvm::Type::getInt32Ty(VMContext);
938 llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
939 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt, "tmp");
940 }
941
942 Builder.CreateStore(Vec, Dst.getExtVectorAddr(), Dst.isVolatileQualified());
943}
944
945// setObjCGCLValueClass - sets class of he lvalue for the purpose of
946// generating write-barries API. It is currently a global, ivar,
947// or neither.
948static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
949 LValue &LV) {
950 if (Ctx.getLangOptions().getGCMode() == LangOptions::NonGC)
951 return;
952
953 if (isa<ObjCIvarRefExpr>(E)) {
954 LV.SetObjCIvar(LV, true);
955 ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E));
956 LV.setBaseIvarExp(Exp->getBase());
957 LV.SetObjCArray(LV, E->getType()->isArrayType());
958 return;
959 }
960
961 if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) {
962 if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
963 if ((VD->isBlockVarDecl() && !VD->hasLocalStorage()) ||
964 VD->isFileVarDecl())
965 LV.SetGlobalObjCRef(LV, true);
966 }
967 LV.SetObjCArray(LV, E->getType()->isArrayType());
968 return;
969 }
970
971 if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) {
972 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV);
973 return;
974 }
975
976 if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) {
977 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV);
978 if (LV.isObjCIvar()) {
979 // If cast is to a structure pointer, follow gcc's behavior and make it
980 // a non-ivar write-barrier.
981 QualType ExpTy = E->getType();
982 if (ExpTy->isPointerType())
983 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
984 if (ExpTy->isRecordType())
985 LV.SetObjCIvar(LV, false);
986 }
987 return;
988 }
989 if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) {
990 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV);
991 return;
992 }
993
994 if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) {
995 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV);
996 return;
997 }
998
999 if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
1000 setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1001 if (LV.isObjCIvar() && !LV.isObjCArray())
1002 // Using array syntax to assigning to what an ivar points to is not
1003 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
1004 LV.SetObjCIvar(LV, false);
1005 else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
1006 // Using array syntax to assigning to what global points to is not
1007 // same as assigning to the global itself. {id *G;} G[i] = 0;
1008 LV.SetGlobalObjCRef(LV, false);
1009 return;
1010 }
1011
1012 if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) {
1013 setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1014 // We don't know if member is an 'ivar', but this flag is looked at
1015 // only in the context of LV.isObjCIvar().
1016 LV.SetObjCArray(LV, E->getType()->isArrayType());
1017 return;
1018 }
1019}
1020
1021static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
1022 const Expr *E, const VarDecl *VD) {
1023 assert((VD->hasExternalStorage() || VD->isFileVarDecl()) &&
1024 "Var decl must have external storage or be a file var decl!");
1025
1026 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
1027 if (VD->getType()->isReferenceType())
1028 V = CGF.Builder.CreateLoad(V, "tmp");
1029 LValue LV = LValue::MakeAddr(V, CGF.MakeQualifiers(E->getType()));
1030 setObjCGCLValueClass(CGF.getContext(), E, LV);
1031 return LV;
1032}
1033
1034static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
1035 const Expr *E, const FunctionDecl *FD) {
1036 llvm::Value* V = CGF.CGM.GetAddrOfFunction(FD);
1037 if (!FD->hasPrototype()) {
1038 if (const FunctionProtoType *Proto =
1039 FD->getType()->getAs<FunctionProtoType>()) {
1040 // Ugly case: for a K&R-style definition, the type of the definition
1041 // isn't the same as the type of a use. Correct for this with a
1042 // bitcast.
1043 QualType NoProtoType =
1044 CGF.getContext().getFunctionNoProtoType(Proto->getResultType());
1045 NoProtoType = CGF.getContext().getPointerType(NoProtoType);
1046 V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType), "tmp");
1047 }
1048 }
1049 return LValue::MakeAddr(V, CGF.MakeQualifiers(E->getType()));
1050}
1051
1052LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
1053 const NamedDecl *ND = E->getDecl();
1054
1055 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1056
1057 // Check if this is a global variable.
1058 if (VD->hasExternalStorage() || VD->isFileVarDecl())
1059 return EmitGlobalVarDeclLValue(*this, E, VD);
1060
1061 bool NonGCable = VD->hasLocalStorage() && !VD->hasAttr<BlocksAttr>();
1062
1063 llvm::Value *V = LocalDeclMap[VD];
1064 assert(V && "DeclRefExpr not entered in LocalDeclMap?");
1065
1066 Qualifiers Quals = MakeQualifiers(E->getType());
1067 // local variables do not get their gc attribute set.
1068 // local static?
1069 if (NonGCable) Quals.removeObjCGCAttr();
1070
1071 if (VD->hasAttr<BlocksAttr>()) {
1072 V = Builder.CreateStructGEP(V, 1, "forwarding");
1073 V = Builder.CreateLoad(V);
1074 V = Builder.CreateStructGEP(V, getByRefValueLLVMField(VD),
1075 VD->getNameAsString());
1076 }
1077 if (VD->getType()->isReferenceType())
1078 V = Builder.CreateLoad(V, "tmp");
1079 LValue LV = LValue::MakeAddr(V, Quals);
1080 LValue::SetObjCNonGC(LV, NonGCable);
1081 setObjCGCLValueClass(getContext(), E, LV);
1082 return LV;
1083 }
1084
1085 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
1086 return EmitFunctionDeclLValue(*this, E, FD);
1087
1088 // FIXME: the qualifier check does not seem sufficient here
1089 if (E->getQualifier()) {
1090 const FieldDecl *FD = cast<FieldDecl>(ND);
1091 llvm::Value *V = CGM.EmitPointerToDataMember(FD);
1092
1093 return LValue::MakeAddr(V, MakeQualifiers(FD->getType()));
1094 }
1095
1096 assert(false && "Unhandled DeclRefExpr");
1097
1098 // an invalid LValue, but the assert will
1099 // ensure that this point is never reached.
1100 return LValue();
1101}
1102
1103LValue CodeGenFunction::EmitBlockDeclRefLValue(const BlockDeclRefExpr *E) {
1104 return LValue::MakeAddr(GetAddrOfBlockDecl(E), MakeQualifiers(E->getType()));
1105}
1106
1107LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
1108 // __extension__ doesn't affect lvalue-ness.
1109 if (E->getOpcode() == UnaryOperator::Extension)
1110 return EmitLValue(E->getSubExpr());
1111
1112 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
1113 switch (E->getOpcode()) {
1114 default: assert(0 && "Unknown unary operator lvalue!");
1115 case UnaryOperator::Deref: {
1116 QualType T = E->getSubExpr()->getType()->getPointeeType();
1117 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
1118
1119 Qualifiers Quals = MakeQualifiers(T);
1120 Quals.setAddressSpace(ExprTy.getAddressSpace());
1121
1122 LValue LV = LValue::MakeAddr(EmitScalarExpr(E->getSubExpr()), Quals);
1123 // We should not generate __weak write barrier on indirect reference
1124 // of a pointer to object; as in void foo (__weak id *param); *param = 0;
1125 // But, we continue to generate __strong write barrier on indirect write
1126 // into a pointer to object.
1127 if (getContext().getLangOptions().ObjC1 &&
1128 getContext().getLangOptions().getGCMode() != LangOptions::NonGC &&
1129 LV.isObjCWeak())
1130 LValue::SetObjCNonGC(LV, !E->isOBJCGCCandidate(getContext()));
1131 return LV;
1132 }
1133 case UnaryOperator::Real:
1134 case UnaryOperator::Imag: {
1135 LValue LV = EmitLValue(E->getSubExpr());
1136 unsigned Idx = E->getOpcode() == UnaryOperator::Imag;
1137 return LValue::MakeAddr(Builder.CreateStructGEP(LV.getAddress(),
1138 Idx, "idx"),
1139 MakeQualifiers(ExprTy));
1140 }
1141 case UnaryOperator::PreInc:
1142 case UnaryOperator::PreDec: {
1143 LValue LV = EmitLValue(E->getSubExpr());
1144 bool isInc = E->getOpcode() == UnaryOperator::PreInc;
1145
1146 if (E->getType()->isAnyComplexType())
1147 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
1148 else
1149 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
1150 return LV;
1151 }
1152 }
1153}
1154
1155LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
1156 return LValue::MakeAddr(CGM.GetAddrOfConstantStringFromLiteral(E),
1157 Qualifiers());
1158}
1159
1160LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
1161 return LValue::MakeAddr(CGM.GetAddrOfConstantStringFromObjCEncode(E),
1162 Qualifiers());
1163}
1164
1165
1166LValue CodeGenFunction::EmitPredefinedFunctionName(unsigned Type) {
1167 std::string GlobalVarName;
1168
1169 switch (Type) {
1170 default: assert(0 && "Invalid type");
1171 case PredefinedExpr::Func:
1172 GlobalVarName = "__func__.";
1173 break;
1174 case PredefinedExpr::Function:
1175 GlobalVarName = "__FUNCTION__.";
1176 break;
1177 case PredefinedExpr::PrettyFunction:
1178 GlobalVarName = "__PRETTY_FUNCTION__.";
1179 break;
1180 }
1181
1182 llvm::StringRef FnName = CurFn->getName();
1183 if (FnName.startswith("\01"))
1184 FnName = FnName.substr(1);
1185 GlobalVarName += FnName;
1186
1187 std::string FunctionName =
1188 PredefinedExpr::ComputeName(getContext(), (PredefinedExpr::IdentType)Type,
1189 CurCodeDecl);
1190
1191 llvm::Constant *C =
1192 CGM.GetAddrOfConstantCString(FunctionName, GlobalVarName.c_str());
1193 return LValue::MakeAddr(C, Qualifiers());
1194}
1195
1196LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
1197 switch (E->getIdentType()) {
1198 default:
1199 return EmitUnsupportedLValue(E, "predefined expression");
1200 case PredefinedExpr::Func:
1201 case PredefinedExpr::Function:
1202 case PredefinedExpr::PrettyFunction:
1203 return EmitPredefinedFunctionName(E->getIdentType());
1204 }
1205}
1206
1207llvm::BasicBlock *CodeGenFunction::getTrapBB() {
1208 const CodeGenOptions &GCO = CGM.getCodeGenOpts();
1209
1210 // If we are not optimzing, don't collapse all calls to trap in the function
1211 // to the same call, that way, in the debugger they can see which operation
1212 // did in fact fail. If we are optimizing, we collpase all call to trap down
1213 // to just one per function to save on codesize.
1214 if (GCO.OptimizationLevel
1215 && TrapBB)
1216 return TrapBB;
1217
1218 llvm::BasicBlock *Cont = 0;
1219 if (HaveInsertPoint()) {
1220 Cont = createBasicBlock("cont");
1221 EmitBranch(Cont);
1222 }
1223 TrapBB = createBasicBlock("trap");
1224 EmitBlock(TrapBB);
1225
1226 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap, 0, 0);
1227 llvm::CallInst *TrapCall = Builder.CreateCall(F);
1228 TrapCall->setDoesNotReturn();
1229 TrapCall->setDoesNotThrow();
1230 Builder.CreateUnreachable();
1231
1232 if (Cont)
1233 EmitBlock(Cont);
1234 return TrapBB;
1235}
1236
1237LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) {
1238 // The index must always be an integer, which is not an aggregate. Emit it.
1239 llvm::Value *Idx = EmitScalarExpr(E->getIdx());
1240 QualType IdxTy = E->getIdx()->getType();
1241 bool IdxSigned = IdxTy->isSignedIntegerType();
1242
1243 // If the base is a vector type, then we are forming a vector element lvalue
1244 // with this subscript.
1245 if (E->getBase()->getType()->isVectorType()) {
1246 // Emit the vector as an lvalue to get its address.
1247 LValue LHS = EmitLValue(E->getBase());
1248 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
1249 Idx = Builder.CreateIntCast(Idx,
1250 llvm::Type::getInt32Ty(VMContext), IdxSigned, "vidx");
1251 return LValue::MakeVectorElt(LHS.getAddress(), Idx,
1252 E->getBase()->getType().getCVRQualifiers());
1253 }
1254
1255 // The base must be a pointer, which is not an aggregate. Emit it.
1256 llvm::Value *Base = EmitScalarExpr(E->getBase());
1257
1258 // Extend or truncate the index type to 32 or 64-bits.
1259 unsigned IdxBitwidth = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1260 if (IdxBitwidth != LLVMPointerWidth)
1261 Idx = Builder.CreateIntCast(Idx,
1262 llvm::IntegerType::get(VMContext, LLVMPointerWidth),
1263 IdxSigned, "idxprom");
1264
1265 // FIXME: As llvm implements the object size checking, this can come out.
1266 if (CatchUndefined) {
1267 if (const ImplicitCastExpr *ICE=dyn_cast<ImplicitCastExpr>(E->getBase())) {
1268 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
1269 if (ICE->getCastKind() == CastExpr::CK_ArrayToPointerDecay) {
1270 if (const ConstantArrayType *CAT
1271 = getContext().getAsConstantArrayType(DRE->getType())) {
1272 llvm::APInt Size = CAT->getSize();
1273 llvm::BasicBlock *Cont = createBasicBlock("cont");
1274 Builder.CreateCondBr(Builder.CreateICmpULE(Idx,
1275 llvm::ConstantInt::get(Idx->getType(), Size)),
1276 Cont, getTrapBB());
1277 EmitBlock(Cont);
1278 }
1279 }
1280 }
1281 }
1282 }
1283
1284 // We know that the pointer points to a type of the correct size, unless the
1285 // size is a VLA or Objective-C interface.
1286 llvm::Value *Address = 0;
1287 if (const VariableArrayType *VAT =
1288 getContext().getAsVariableArrayType(E->getType())) {
1289 llvm::Value *VLASize = GetVLASize(VAT);
1290
1291 Idx = Builder.CreateMul(Idx, VLASize);
1292
1293 QualType BaseType = getContext().getBaseElementType(VAT);
1294
1295 CharUnits BaseTypeSize = getContext().getTypeSizeInChars(BaseType);
1296 Idx = Builder.CreateUDiv(Idx,
1297 llvm::ConstantInt::get(Idx->getType(),
1298 BaseTypeSize.getQuantity()));
1299 Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
1300 } else if (const ObjCInterfaceType *OIT =
1301 dyn_cast<ObjCInterfaceType>(E->getType())) {
1302 llvm::Value *InterfaceSize =
1303 llvm::ConstantInt::get(Idx->getType(),
1304 getContext().getTypeSizeInChars(OIT).getQuantity());
1305
1306 Idx = Builder.CreateMul(Idx, InterfaceSize);
1307
1308 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
1309 Address = Builder.CreateGEP(Builder.CreateBitCast(Base, i8PTy),
1310 Idx, "arrayidx");
1311 Address = Builder.CreateBitCast(Address, Base->getType());
1312 } else {
1313 Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
1314 }
1315
1316 QualType T = E->getBase()->getType()->getPointeeType();
1317 assert(!T.isNull() &&
1318 "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
1319
1320 Qualifiers Quals = MakeQualifiers(T);
1321 Quals.setAddressSpace(E->getBase()->getType().getAddressSpace());
1322
1323 LValue LV = LValue::MakeAddr(Address, Quals);
1324 if (getContext().getLangOptions().ObjC1 &&
1325 getContext().getLangOptions().getGCMode() != LangOptions::NonGC) {
1326 LValue::SetObjCNonGC(LV, !E->isOBJCGCCandidate(getContext()));
1327 setObjCGCLValueClass(getContext(), E, LV);
1328 }
1329 return LV;
1330}
1331
1332static
1333llvm::Constant *GenerateConstantVector(llvm::LLVMContext &VMContext,
1334 llvm::SmallVector<unsigned, 4> &Elts) {
1335 llvm::SmallVector<llvm::Constant*, 4> CElts;
1336
1337 for (unsigned i = 0, e = Elts.size(); i != e; ++i)
1338 CElts.push_back(llvm::ConstantInt::get(
1339 llvm::Type::getInt32Ty(VMContext), Elts[i]));
1340
1341 return llvm::ConstantVector::get(&CElts[0], CElts.size());
1342}
1343
1344LValue CodeGenFunction::
1345EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
1346 const llvm::Type *Int32Ty = llvm::Type::getInt32Ty(VMContext);
1347
1348 // Emit the base vector as an l-value.
1349 LValue Base;
1350
1351 // ExtVectorElementExpr's base can either be a vector or pointer to vector.
1352 if (E->isArrow()) {
1353 // If it is a pointer to a vector, emit the address and form an lvalue with
1354 // it.
1355 llvm::Value *Ptr = EmitScalarExpr(E->getBase());
1356 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
1357 Qualifiers Quals = MakeQualifiers(PT->getPointeeType());
1358 Quals.removeObjCGCAttr();
1359 Base = LValue::MakeAddr(Ptr, Quals);
1360 } else if (E->getBase()->isLvalue(getContext()) == Expr::LV_Valid) {
1361 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
1362 // emit the base as an lvalue.
1363 assert(E->getBase()->getType()->isVectorType());
1364 Base = EmitLValue(E->getBase());
1365 } else {
1366 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
1367 assert(E->getBase()->getType()->getAs<VectorType>() &&
1368 "Result must be a vector");
1369 llvm::Value *Vec = EmitScalarExpr(E->getBase());
1370
1371 // Store the vector to memory (because LValue wants an address).
1372 llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType());
1373 Builder.CreateStore(Vec, VecMem);
1374 Base = LValue::MakeAddr(VecMem, Qualifiers());
1375 }
1376
1377 // Encode the element access list into a vector of unsigned indices.
1378 llvm::SmallVector<unsigned, 4> Indices;
1379 E->getEncodedElementAccess(Indices);
1380
1381 if (Base.isSimple()) {
1382 llvm::Constant *CV = GenerateConstantVector(VMContext, Indices);
1383 return LValue::MakeExtVectorElt(Base.getAddress(), CV,
1384 Base.getVRQualifiers());
1385 }
1386 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
1387
1388 llvm::Constant *BaseElts = Base.getExtVectorElts();
1389 llvm::SmallVector<llvm::Constant *, 4> CElts;
1390
1391 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
1392 if (isa<llvm::ConstantAggregateZero>(BaseElts))
1393 CElts.push_back(llvm::ConstantInt::get(Int32Ty, 0));
1394 else
1395 CElts.push_back(cast<llvm::Constant>(BaseElts->getOperand(Indices[i])));
1396 }
1397 llvm::Constant *CV = llvm::ConstantVector::get(&CElts[0], CElts.size());
1398 return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV,
1399 Base.getVRQualifiers());
1400}
1401
1402LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
1403 bool isNonGC = false;
1404 Expr *BaseExpr = E->getBase();
1405 llvm::Value *BaseValue = NULL;
1406 Qualifiers BaseQuals;
1407
1408 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
1409 if (E->isArrow()) {
1410 BaseValue = EmitScalarExpr(BaseExpr);
1411 const PointerType *PTy =
1412 BaseExpr->getType()->getAs<PointerType>();
1413 BaseQuals = PTy->getPointeeType().getQualifiers();
1414 } else if (isa<ObjCPropertyRefExpr>(BaseExpr->IgnoreParens()) ||
1415 isa<ObjCImplicitSetterGetterRefExpr>(
1416 BaseExpr->IgnoreParens())) {
1417 RValue RV = EmitObjCPropertyGet(BaseExpr);
1418 BaseValue = RV.getAggregateAddr();
1419 BaseQuals = BaseExpr->getType().getQualifiers();
1420 } else {
1421 LValue BaseLV = EmitLValue(BaseExpr);
1422 if (BaseLV.isNonGC())
1423 isNonGC = true;
1424 // FIXME: this isn't right for bitfields.
1425 BaseValue = BaseLV.getAddress();
1426 QualType BaseTy = BaseExpr->getType();
1427 BaseQuals = BaseTy.getQualifiers();
1428 }
1429
1430 NamedDecl *ND = E->getMemberDecl();
1431 if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) {
1432 LValue LV = EmitLValueForField(BaseValue, Field,
1433 BaseQuals.getCVRQualifiers());
1434 LValue::SetObjCNonGC(LV, isNonGC);
1435 setObjCGCLValueClass(getContext(), E, LV);
1436 return LV;
1437 }
1438
1439 if (VarDecl *VD = dyn_cast<VarDecl>(ND))
1440 return EmitGlobalVarDeclLValue(*this, E, VD);
1441
1442 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
1443 return EmitFunctionDeclLValue(*this, E, FD);
1444
1445 assert(false && "Unhandled member declaration!");
1446 return LValue();
1447}
1448
1449LValue CodeGenFunction::EmitLValueForBitfield(llvm::Value* BaseValue,
1450 const FieldDecl* Field,
1451 unsigned CVRQualifiers) {
1452 CodeGenTypes::BitFieldInfo Info = CGM.getTypes().getBitFieldInfo(Field);
1453
1454 // FIXME: CodeGenTypes should expose a method to get the appropriate type for
1455 // FieldTy (the appropriate type is ABI-dependent).
1456 const llvm::Type *FieldTy =
1457 CGM.getTypes().ConvertTypeForMem(Field->getType());
1458 const llvm::PointerType *BaseTy =
1459 cast<llvm::PointerType>(BaseValue->getType());
1460 unsigned AS = BaseTy->getAddressSpace();
1461 BaseValue = Builder.CreateBitCast(BaseValue,
1462 llvm::PointerType::get(FieldTy, AS),
1463 "tmp");
1464
1465 llvm::Value *Idx =
1466 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), Info.FieldNo);
1467 llvm::Value *V = Builder.CreateGEP(BaseValue, Idx, "tmp");
1468
1469 return LValue::MakeBitfield(V, Info.Start, Info.Size,
1470 Field->getType()->isSignedIntegerType(),
1471 Field->getType().getCVRQualifiers()|CVRQualifiers);
1472}
1473
1474LValue CodeGenFunction::EmitLValueForField(llvm::Value* BaseValue,
1475 const FieldDecl* Field,
1476 unsigned CVRQualifiers) {
1477 if (Field->isBitField())
1478 return EmitLValueForBitfield(BaseValue, Field, CVRQualifiers);
1479
1480 unsigned idx = CGM.getTypes().getLLVMFieldNo(Field);
1481 llvm::Value *V = Builder.CreateStructGEP(BaseValue, idx, "tmp");
1482
1483 // Match union field type.
1484 if (Field->getParent()->isUnion()) {
1485 const llvm::Type *FieldTy =
1486 CGM.getTypes().ConvertTypeForMem(Field->getType());
1487 const llvm::PointerType * BaseTy =
1488 cast<llvm::PointerType>(BaseValue->getType());
1489 unsigned AS = BaseTy->getAddressSpace();
1490 V = Builder.CreateBitCast(V,
1491 llvm::PointerType::get(FieldTy, AS),
1492 "tmp");
1493 }
1494 if (Field->getType()->isReferenceType())
1495 V = Builder.CreateLoad(V, "tmp");
1496
1497 Qualifiers Quals = MakeQualifiers(Field->getType());
1498 Quals.addCVRQualifiers(CVRQualifiers);
1499 // __weak attribute on a field is ignored.
1500 if (Quals.getObjCGCAttr() == Qualifiers::Weak)
1501 Quals.removeObjCGCAttr();
1502
1503 return LValue::MakeAddr(V, Quals);
1504}
1505
1506LValue
1507CodeGenFunction::EmitLValueForFieldInitialization(llvm::Value* BaseValue,
1508 const FieldDecl* Field,
1509 unsigned CVRQualifiers) {
1510 QualType FieldType = Field->getType();
1511
1512 if (!FieldType->isReferenceType())
1513 return EmitLValueForField(BaseValue, Field, CVRQualifiers);
1514
1515 unsigned idx = CGM.getTypes().getLLVMFieldNo(Field);
1516 llvm::Value *V = Builder.CreateStructGEP(BaseValue, idx, "tmp");
1517
1518 assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs");
1519
1520 return LValue::MakeAddr(V, MakeQualifiers(FieldType));
1521}
1522
1523LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr* E){
1524 llvm::Value *DeclPtr = CreateTempAlloca(ConvertTypeForMem(E->getType()),
1525 ".compoundliteral");
1526
1527 const Expr* InitExpr = E->getInitializer();
1528 LValue Result = LValue::MakeAddr(DeclPtr, MakeQualifiers(E->getType()));
1529
1530 if (E->getType()->isComplexType())
1531 EmitComplexExprIntoAddr(InitExpr, DeclPtr, false);
1532 else if (hasAggregateLLVMType(E->getType()))
1533 EmitAnyExpr(InitExpr, DeclPtr, false);
1534 else
1535 EmitStoreThroughLValue(EmitAnyExpr(InitExpr), Result, E->getType());
1536
1537 return Result;
1538}
1539
1540LValue
1541CodeGenFunction::EmitConditionalOperatorLValue(const ConditionalOperator* E) {
1542 if (E->isLvalue(getContext()) == Expr::LV_Valid) {
1543 if (int Cond = ConstantFoldsToSimpleInteger(E->getCond())) {
1544 Expr *Live = Cond == 1 ? E->getLHS() : E->getRHS();
1545 if (Live)
1546 return EmitLValue(Live);
1547 }
1548
1549 if (!E->getLHS())
1550 return EmitUnsupportedLValue(E, "conditional operator with missing LHS");
1551
1552 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1553 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1554 llvm::BasicBlock *ContBlock = createBasicBlock("cond.end");
1555
1556 EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
1557
1558 // Any temporaries created here are conditional.
1559 BeginConditionalBranch();
1560 EmitBlock(LHSBlock);
1561 LValue LHS = EmitLValue(E->getLHS());
1562 EndConditionalBranch();
1563
1564 if (!LHS.isSimple())
1565 return EmitUnsupportedLValue(E, "conditional operator");
1566
1567 // FIXME: We shouldn't need an alloca for this.
1568 llvm::Value *Temp = CreateTempAlloca(LHS.getAddress()->getType(),"condtmp");
1569 Builder.CreateStore(LHS.getAddress(), Temp);
1570 EmitBranch(ContBlock);
1571
1572 // Any temporaries created here are conditional.
1573 BeginConditionalBranch();
1574 EmitBlock(RHSBlock);
1575 LValue RHS = EmitLValue(E->getRHS());
1576 EndConditionalBranch();
1577 if (!RHS.isSimple())
1578 return EmitUnsupportedLValue(E, "conditional operator");
1579
1580 Builder.CreateStore(RHS.getAddress(), Temp);
1581 EmitBranch(ContBlock);
1582
1583 EmitBlock(ContBlock);
1584
1585 Temp = Builder.CreateLoad(Temp, "lv");
1586 return LValue::MakeAddr(Temp, MakeQualifiers(E->getType()));
1587 }
1588
1589 // ?: here should be an aggregate.
1590 assert((hasAggregateLLVMType(E->getType()) &&
1591 !E->getType()->isAnyComplexType()) &&
1592 "Unexpected conditional operator!");
1593
1594 return EmitAggExprToLValue(E);
1595}
1596
1597/// EmitCastLValue - Casts are never lvalues unless that cast is a dynamic_cast.
1598/// If the cast is a dynamic_cast, we can have the usual lvalue result,
1599/// otherwise if a cast is needed by the code generator in an lvalue context,
1600/// then it must mean that we need the address of an aggregate in order to
1601/// access one of its fields. This can happen for all the reasons that casts
1602/// are permitted with aggregate result, including noop aggregate casts, and
1603/// cast from scalar to union.
1604LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
1605 switch (E->getCastKind()) {
1606 default:
1607 return EmitUnsupportedLValue(E, "unexpected cast lvalue");
1608
1609 case CastExpr::CK_Dynamic: {
1610 LValue LV = EmitLValue(E->getSubExpr());
1611 llvm::Value *V = LV.getAddress();
1612 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E);
1613 return LValue::MakeAddr(EmitDynamicCast(V, DCE),
1614 MakeQualifiers(E->getType()));
1615 }
1616
1617 case CastExpr::CK_NoOp:
1618 case CastExpr::CK_ConstructorConversion:
1619 case CastExpr::CK_UserDefinedConversion:
1620 case CastExpr::CK_AnyPointerToObjCPointerCast:
1621 return EmitLValue(E->getSubExpr());
1622
1623 case CastExpr::CK_DerivedToBase: {
1624 const RecordType *DerivedClassTy =
1625 E->getSubExpr()->getType()->getAs<RecordType>();
1626 CXXRecordDecl *DerivedClassDecl =
1627 cast<CXXRecordDecl>(DerivedClassTy->getDecl());
1628
1629 const RecordType *BaseClassTy = E->getType()->getAs<RecordType>();
1630 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseClassTy->getDecl());
1631
1632 LValue LV = EmitLValue(E->getSubExpr());
1633
1634 // Perform the derived-to-base conversion
1635 llvm::Value *Base =
1636 GetAddressOfBaseClass(LV.getAddress(), DerivedClassDecl,
1637 BaseClassDecl, /*NullCheckValue=*/false);
1638
1639 return LValue::MakeAddr(Base, MakeQualifiers(E->getType()));
1640 }
1641 case CastExpr::CK_ToUnion:
1642 return EmitAggExprToLValue(E);
1643 case CastExpr::CK_BaseToDerived: {
1644 const RecordType *BaseClassTy =
1645 E->getSubExpr()->getType()->getAs<RecordType>();
1646 CXXRecordDecl *BaseClassDecl =
1647 cast<CXXRecordDecl>(BaseClassTy->getDecl());
1648
1649 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
1650 CXXRecordDecl *DerivedClassDecl =
1651 cast<CXXRecordDecl>(DerivedClassTy->getDecl());
1652
1653 LValue LV = EmitLValue(E->getSubExpr());
1654
1655 // Perform the base-to-derived conversion
1656 llvm::Value *Derived =
1657 GetAddressOfDerivedClass(LV.getAddress(), BaseClassDecl,
1658 DerivedClassDecl, /*NullCheckValue=*/false);
1659
1660 return LValue::MakeAddr(Derived, MakeQualifiers(E->getType()));
1661 }
1662 case CastExpr::CK_BitCast: {
1663 // This must be a reinterpret_cast (or c-style equivalent).
1664 const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E);
1665
1666 LValue LV = EmitLValue(E->getSubExpr());
1667 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
1668 ConvertType(CE->getTypeAsWritten()));
1669 return LValue::MakeAddr(V, MakeQualifiers(E->getType()));
1670 }
1671 }
1672}
1673
1674LValue CodeGenFunction::EmitNullInitializationLValue(
1675 const CXXZeroInitValueExpr *E) {
1676 QualType Ty = E->getType();
1677 LValue LV = LValue::MakeAddr(CreateMemTemp(Ty), MakeQualifiers(Ty));
1678 EmitMemSetToZero(LV.getAddress(), Ty);
1679 return LV;
1680}
1681
1682//===--------------------------------------------------------------------===//
1683// Expression Emission
1684//===--------------------------------------------------------------------===//
1685
1686
1687RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
1688 ReturnValueSlot ReturnValue) {
1689 // Builtins never have block type.
1690 if (E->getCallee()->getType()->isBlockPointerType())
1691 return EmitBlockCallExpr(E, ReturnValue);
1692
1693 if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E))
1694 return EmitCXXMemberCallExpr(CE, ReturnValue);
1695
1696 const Decl *TargetDecl = 0;
1697 if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E->getCallee())) {
1698 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CE->getSubExpr())) {
1699 TargetDecl = DRE->getDecl();
1700 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(TargetDecl))
1701 if (unsigned builtinID = FD->getBuiltinID())
1702 return EmitBuiltinExpr(FD, builtinID, E);
1703 }
1704 }
1705
1706 if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E))
1707 if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
1708 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
1709
1710 if (isa<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
1711 // C++ [expr.pseudo]p1:
1712 // The result shall only be used as the operand for the function call
1713 // operator (), and the result of such a call has type void. The only
1714 // effect is the evaluation of the postfix-expression before the dot or
1715 // arrow.
1716 EmitScalarExpr(E->getCallee());
1717 return RValue::get(0);
1718 }
1719
1720 llvm::Value *Callee = EmitScalarExpr(E->getCallee());
1721 return EmitCall(E->getCallee()->getType(), Callee, ReturnValue,
1722 E->arg_begin(), E->arg_end(), TargetDecl);
1723}
1724
1725LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
1726 // Comma expressions just emit their LHS then their RHS as an l-value.
1727 if (E->getOpcode() == BinaryOperator::Comma) {
1728 EmitAnyExpr(E->getLHS());
1729 EnsureInsertPoint();
1730 return EmitLValue(E->getRHS());
1731 }
1732
1733 if (E->getOpcode() == BinaryOperator::PtrMemD ||
1734 E->getOpcode() == BinaryOperator::PtrMemI)
1735 return EmitPointerToDataMemberBinaryExpr(E);
1736
1737 // Can only get l-value for binary operator expressions which are a
1738 // simple assignment of aggregate type.
1739 if (E->getOpcode() != BinaryOperator::Assign)
1740 return EmitUnsupportedLValue(E, "binary l-value expression");
1741
1742 if (!hasAggregateLLVMType(E->getType())) {
1743 // Emit the LHS as an l-value.
1744 LValue LV = EmitLValue(E->getLHS());
1745
1746 llvm::Value *RHS = EmitScalarExpr(E->getRHS());
1747 EmitStoreOfScalar(RHS, LV.getAddress(), LV.isVolatileQualified(),
1748 E->getType());
1749 return LV;
1750 }
1751
1752 return EmitAggExprToLValue(E);
1753}
1754
1755LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
1756 RValue RV = EmitCallExpr(E);
1757
1758 if (!RV.isScalar())
1759 return LValue::MakeAddr(RV.getAggregateAddr(),MakeQualifiers(E->getType()));
1760
1761 assert(E->getCallReturnType()->isReferenceType() &&
1762 "Can't have a scalar return unless the return type is a "
1763 "reference type!");
1764
1765 return LValue::MakeAddr(RV.getScalarVal(), MakeQualifiers(E->getType()));
1766}
1767
1768LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
1769 // FIXME: This shouldn't require another copy.
1770 return EmitAggExprToLValue(E);
1771}
1772
1773LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
1774 llvm::Value *Temp = CreateMemTemp(E->getType(), "tmp");
1775 EmitCXXConstructExpr(Temp, E);
1776 return LValue::MakeAddr(Temp, MakeQualifiers(E->getType()));
1777}
1778
1779LValue
1780CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
1781 llvm::Value *Temp = EmitCXXTypeidExpr(E);
1782 return LValue::MakeAddr(Temp, MakeQualifiers(E->getType()));
1783}
1784
1785LValue
1786CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
1787 LValue LV = EmitLValue(E->getSubExpr());
1788 PushCXXTemporary(E->getTemporary(), LV.getAddress());
1789 return LV;
1790}
1791
1792LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
1793 // Can only get l-value for message expression returning aggregate type
1794 RValue RV = EmitObjCMessageExpr(E);
1795 // FIXME: can this be volatile?
1796 return LValue::MakeAddr(RV.getAggregateAddr(), MakeQualifiers(E->getType()));
1797}
1798
1799llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
1800 const ObjCIvarDecl *Ivar) {
1801 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
1802}
1803
1804LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
1805 llvm::Value *BaseValue,
1806 const ObjCIvarDecl *Ivar,
1807 unsigned CVRQualifiers) {
1808 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
1809 Ivar, CVRQualifiers);
1810}
1811
1812LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
1813 // FIXME: A lot of the code below could be shared with EmitMemberExpr.
1814 llvm::Value *BaseValue = 0;
1815 const Expr *BaseExpr = E->getBase();
1816 Qualifiers BaseQuals;
1817 QualType ObjectTy;
1818 if (E->isArrow()) {
1819 BaseValue = EmitScalarExpr(BaseExpr);
1820 ObjectTy = BaseExpr->getType()->getPointeeType();
1821 BaseQuals = ObjectTy.getQualifiers();
1822 } else {
1823 LValue BaseLV = EmitLValue(BaseExpr);
1824 // FIXME: this isn't right for bitfields.
1825 BaseValue = BaseLV.getAddress();
1826 ObjectTy = BaseExpr->getType();
1827 BaseQuals = ObjectTy.getQualifiers();
1828 }
1829
1830 LValue LV =
1831 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
1832 BaseQuals.getCVRQualifiers());
1833 setObjCGCLValueClass(getContext(), E, LV);
1834 return LV;
1835}
1836
1837LValue
1838CodeGenFunction::EmitObjCPropertyRefLValue(const ObjCPropertyRefExpr *E) {
1839 // This is a special l-value that just issues sends when we load or store
1840 // through it.
1841 return LValue::MakePropertyRef(E, E->getType().getCVRQualifiers());
1842}
1843
1844LValue CodeGenFunction::EmitObjCKVCRefLValue(
1845 const ObjCImplicitSetterGetterRefExpr *E) {
1846 // This is a special l-value that just issues sends when we load or store
1847 // through it.
1848 return LValue::MakeKVCRef(E, E->getType().getCVRQualifiers());
1849}
1850
1851LValue CodeGenFunction::EmitObjCSuperExprLValue(const ObjCSuperExpr *E) {
1852 return EmitUnsupportedLValue(E, "use of super");
1853}
1854
1855LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
1856 // Can only get l-value for message expression returning aggregate type
1857 RValue RV = EmitAnyExprToTemp(E);
1858 // FIXME: can this be volatile?
1859 return LValue::MakeAddr(RV.getAggregateAddr(), MakeQualifiers(E->getType()));
1860}
1861
1862RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
1863 ReturnValueSlot ReturnValue,
1864 CallExpr::const_arg_iterator ArgBeg,
1865 CallExpr::const_arg_iterator ArgEnd,
1866 const Decl *TargetDecl) {
1867 // Get the actual function type. The callee type will always be a pointer to
1868 // function type or a block pointer type.
1869 assert(CalleeType->isFunctionPointerType() &&
1870 "Call must have function pointer type!");
1871
1872 CalleeType = getContext().getCanonicalType(CalleeType);
1873
1874 const FunctionType *FnType
1875 = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
1876 QualType ResultType = FnType->getResultType();
1877
1878 CallArgList Args;
1879 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd);
1880
1881 return EmitCall(CGM.getTypes().getFunctionInfo(Args, FnType),
1882 Callee, ReturnValue, Args, TargetDecl);
1883}
1884
1885LValue CodeGenFunction::
1886EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
1887 llvm::Value *BaseV;
1888 if (E->getOpcode() == BinaryOperator::PtrMemI)
1889 BaseV = EmitScalarExpr(E->getLHS());
1890 else
1891 BaseV = EmitLValue(E->getLHS()).getAddress();
1892 const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(getLLVMContext());
1893 BaseV = Builder.CreateBitCast(BaseV, i8Ty);
1894 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
1895 llvm::Value *AddV = Builder.CreateInBoundsGEP(BaseV, OffsetV, "add.ptr");
1896
1897 QualType Ty = E->getRHS()->getType();
1898 Ty = Ty->getAs<MemberPointerType>()->getPointeeType();
1899
1900 const llvm::Type *PType = ConvertType(getContext().getPointerType(Ty));
1901 AddV = Builder.CreateBitCast(AddV, PType);
1902 return LValue::MakeAddr(AddV, MakeQualifiers(Ty));
1903}
1904