blob: 6f650fc2ef70db6af1f548a952c6b45dec2f4d28 [file] [log] [blame]
Shih-wei Liaof8fd82b2010-02-10 11:10:31 -08001//===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// These classes wrap the information about a call or function
11// definition used to handle ABI compliancy.
12//
13//===----------------------------------------------------------------------===//
14
15#include "TargetInfo.h"
16#include "ABIInfo.h"
17#include "CodeGenFunction.h"
18#include "clang/AST/RecordLayout.h"
19#include "llvm/Type.h"
20#include "llvm/ADT/StringExtras.h"
21#include "llvm/ADT/Triple.h"
22#include "llvm/Support/raw_ostream.h"
23using namespace clang;
24using namespace CodeGen;
25
26ABIInfo::~ABIInfo() {}
27
28void ABIArgInfo::dump() const {
29 llvm::raw_ostream &OS = llvm::errs();
30 OS << "(ABIArgInfo Kind=";
31 switch (TheKind) {
32 case Direct:
33 OS << "Direct";
34 break;
35 case Extend:
36 OS << "Extend";
37 break;
38 case Ignore:
39 OS << "Ignore";
40 break;
41 case Coerce:
42 OS << "Coerce Type=";
43 getCoerceToType()->print(OS);
44 break;
45 case Indirect:
46 OS << "Indirect Align=" << getIndirectAlign();
47 break;
48 case Expand:
49 OS << "Expand";
50 break;
51 }
52 OS << ")\n";
53}
54
55TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
56
57static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
58
59/// isEmptyField - Return true iff a the field is "empty", that is it
60/// is an unnamed bit-field or an (array of) empty record(s).
61static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
62 bool AllowArrays) {
63 if (FD->isUnnamedBitfield())
64 return true;
65
66 QualType FT = FD->getType();
67
68 // Constant arrays of empty records count as empty, strip them off.
69 if (AllowArrays)
70 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT))
71 FT = AT->getElementType();
72
73 return isEmptyRecord(Context, FT, AllowArrays);
74}
75
76/// isEmptyRecord - Return true iff a structure contains only empty
77/// fields. Note that a structure with a flexible array member is not
78/// considered empty.
79static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
80 const RecordType *RT = T->getAs<RecordType>();
81 if (!RT)
82 return 0;
83 const RecordDecl *RD = RT->getDecl();
84 if (RD->hasFlexibleArrayMember())
85 return false;
86 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
87 i != e; ++i)
88 if (!isEmptyField(Context, *i, AllowArrays))
89 return false;
90 return true;
91}
92
93/// hasNonTrivialDestructorOrCopyConstructor - Determine if a type has either
94/// a non-trivial destructor or a non-trivial copy constructor.
95static bool hasNonTrivialDestructorOrCopyConstructor(const RecordType *RT) {
96 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
97 if (!RD)
98 return false;
99
100 return !RD->hasTrivialDestructor() || !RD->hasTrivialCopyConstructor();
101}
102
103/// isRecordWithNonTrivialDestructorOrCopyConstructor - Determine if a type is
104/// a record type with either a non-trivial destructor or a non-trivial copy
105/// constructor.
106static bool isRecordWithNonTrivialDestructorOrCopyConstructor(QualType T) {
107 const RecordType *RT = T->getAs<RecordType>();
108 if (!RT)
109 return false;
110
111 return hasNonTrivialDestructorOrCopyConstructor(RT);
112}
113
114/// isSingleElementStruct - Determine if a structure is a "single
115/// element struct", i.e. it has exactly one non-empty field or
116/// exactly one field which is itself a single element
117/// struct. Structures with flexible array members are never
118/// considered single element structs.
119///
120/// \return The field declaration for the single non-empty field, if
121/// it exists.
122static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
123 const RecordType *RT = T->getAsStructureType();
124 if (!RT)
125 return 0;
126
127 const RecordDecl *RD = RT->getDecl();
128 if (RD->hasFlexibleArrayMember())
129 return 0;
130
131 const Type *Found = 0;
132 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
133 i != e; ++i) {
134 const FieldDecl *FD = *i;
135 QualType FT = FD->getType();
136
137 // Ignore empty fields.
138 if (isEmptyField(Context, FD, true))
139 continue;
140
141 // If we already found an element then this isn't a single-element
142 // struct.
143 if (Found)
144 return 0;
145
146 // Treat single element arrays as the element.
147 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
148 if (AT->getSize().getZExtValue() != 1)
149 break;
150 FT = AT->getElementType();
151 }
152
153 if (!CodeGenFunction::hasAggregateLLVMType(FT)) {
154 Found = FT.getTypePtr();
155 } else {
156 Found = isSingleElementStruct(FT, Context);
157 if (!Found)
158 return 0;
159 }
160 }
161
162 return Found;
163}
164
165static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
166 if (!Ty->getAs<BuiltinType>() && !Ty->isAnyPointerType() &&
167 !Ty->isAnyComplexType() && !Ty->isEnumeralType() &&
168 !Ty->isBlockPointerType())
169 return false;
170
171 uint64_t Size = Context.getTypeSize(Ty);
172 return Size == 32 || Size == 64;
173}
174
175/// canExpandIndirectArgument - Test whether an argument type which is to be
176/// passed indirectly (on the stack) would have the equivalent layout if it was
177/// expanded into separate arguments. If so, we prefer to do the latter to avoid
178/// inhibiting optimizations.
179///
180// FIXME: This predicate is missing many cases, currently it just follows
181// llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
182// should probably make this smarter, or better yet make the LLVM backend
183// capable of handling it.
184static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
185 // We can only expand structure types.
186 const RecordType *RT = Ty->getAs<RecordType>();
187 if (!RT)
188 return false;
189
190 // We can only expand (C) structures.
191 //
192 // FIXME: This needs to be generalized to handle classes as well.
193 const RecordDecl *RD = RT->getDecl();
194 if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
195 return false;
196
197 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
198 i != e; ++i) {
199 const FieldDecl *FD = *i;
200
201 if (!is32Or64BitBasicType(FD->getType(), Context))
202 return false;
203
204 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
205 // how to expand them yet, and the predicate for telling if a bitfield still
206 // counts as "basic" is more complicated than what we were doing previously.
207 if (FD->isBitField())
208 return false;
209 }
210
211 return true;
212}
213
214static bool typeContainsSSEVector(const RecordDecl *RD, ASTContext &Context) {
215 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
216 i != e; ++i) {
217 const FieldDecl *FD = *i;
218
219 if (FD->getType()->isVectorType() &&
220 Context.getTypeSize(FD->getType()) >= 128)
221 return true;
222
223 if (const RecordType* RT = FD->getType()->getAs<RecordType>())
224 if (typeContainsSSEVector(RT->getDecl(), Context))
225 return true;
226 }
227
228 return false;
229}
230
231namespace {
232/// DefaultABIInfo - The default implementation for ABI specific
233/// details. This implementation provides information which results in
234/// self-consistent and sensible LLVM IR generation, but does not
235/// conform to any particular ABI.
236class DefaultABIInfo : public ABIInfo {
237 ABIArgInfo classifyReturnType(QualType RetTy,
238 ASTContext &Context,
239 llvm::LLVMContext &VMContext) const;
240
241 ABIArgInfo classifyArgumentType(QualType RetTy,
242 ASTContext &Context,
243 llvm::LLVMContext &VMContext) const;
244
245 virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
246 llvm::LLVMContext &VMContext) const {
247 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context,
248 VMContext);
249 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
250 it != ie; ++it)
251 it->info = classifyArgumentType(it->type, Context, VMContext);
252 }
253
254 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
255 CodeGenFunction &CGF) const;
256};
257
258class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
259public:
260 DefaultTargetCodeGenInfo():TargetCodeGenInfo(new DefaultABIInfo()) {}
261};
262
263llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
264 CodeGenFunction &CGF) const {
265 return 0;
266}
267
268ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty,
269 ASTContext &Context,
270 llvm::LLVMContext &VMContext) const {
271 if (CodeGenFunction::hasAggregateLLVMType(Ty)) {
272 return ABIArgInfo::getIndirect(0);
273 } else {
274 // Treat an enum type as its underlying type.
275 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
276 Ty = EnumTy->getDecl()->getIntegerType();
277
278 return (Ty->isPromotableIntegerType() ?
279 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
280 }
281}
282
283/// X86_32ABIInfo - The X86-32 ABI information.
284class X86_32ABIInfo : public ABIInfo {
285 ASTContext &Context;
286 bool IsDarwinVectorABI;
287 bool IsSmallStructInRegABI;
288
289 static bool isRegisterSize(unsigned Size) {
290 return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
291 }
292
293 static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context);
294
295 static unsigned getIndirectArgumentAlignment(QualType Ty,
296 ASTContext &Context);
297
298public:
299 ABIArgInfo classifyReturnType(QualType RetTy,
300 ASTContext &Context,
301 llvm::LLVMContext &VMContext) const;
302
303 ABIArgInfo classifyArgumentType(QualType RetTy,
304 ASTContext &Context,
305 llvm::LLVMContext &VMContext) const;
306
307 virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
308 llvm::LLVMContext &VMContext) const {
309 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context,
310 VMContext);
311 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
312 it != ie; ++it)
313 it->info = classifyArgumentType(it->type, Context, VMContext);
314 }
315
316 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
317 CodeGenFunction &CGF) const;
318
319 X86_32ABIInfo(ASTContext &Context, bool d, bool p)
320 : ABIInfo(), Context(Context), IsDarwinVectorABI(d),
321 IsSmallStructInRegABI(p) {}
322};
323
324class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
325public:
326 X86_32TargetCodeGenInfo(ASTContext &Context, bool d, bool p)
327 :TargetCodeGenInfo(new X86_32ABIInfo(Context, d, p)) {}
328};
329
330}
331
332/// shouldReturnTypeInRegister - Determine if the given type should be
333/// passed in a register (for the Darwin ABI).
334bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
335 ASTContext &Context) {
336 uint64_t Size = Context.getTypeSize(Ty);
337
338 // Type must be register sized.
339 if (!isRegisterSize(Size))
340 return false;
341
342 if (Ty->isVectorType()) {
343 // 64- and 128- bit vectors inside structures are not returned in
344 // registers.
345 if (Size == 64 || Size == 128)
346 return false;
347
348 return true;
349 }
350
351 // If this is a builtin, pointer, enum, or complex type, it is ok.
352 if (Ty->getAs<BuiltinType>() || Ty->isAnyPointerType() ||
353 Ty->isAnyComplexType() || Ty->isEnumeralType() ||
354 Ty->isBlockPointerType())
355 return true;
356
357 // Arrays are treated like records.
358 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
359 return shouldReturnTypeInRegister(AT->getElementType(), Context);
360
361 // Otherwise, it must be a record type.
362 const RecordType *RT = Ty->getAs<RecordType>();
363 if (!RT) return false;
364
365 // FIXME: Traverse bases here too.
366
367 // Structure types are passed in register if all fields would be
368 // passed in a register.
369 for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(),
370 e = RT->getDecl()->field_end(); i != e; ++i) {
371 const FieldDecl *FD = *i;
372
373 // Empty fields are ignored.
374 if (isEmptyField(Context, FD, true))
375 continue;
376
377 // Check fields recursively.
378 if (!shouldReturnTypeInRegister(FD->getType(), Context))
379 return false;
380 }
381
382 return true;
383}
384
385ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
386 ASTContext &Context,
387 llvm::LLVMContext &VMContext) const {
388 if (RetTy->isVoidType()) {
389 return ABIArgInfo::getIgnore();
390 } else if (const VectorType *VT = RetTy->getAs<VectorType>()) {
391 // On Darwin, some vectors are returned in registers.
392 if (IsDarwinVectorABI) {
393 uint64_t Size = Context.getTypeSize(RetTy);
394
395 // 128-bit vectors are a special case; they are returned in
396 // registers and we need to make sure to pick a type the LLVM
397 // backend will like.
398 if (Size == 128)
399 return ABIArgInfo::getCoerce(llvm::VectorType::get(
400 llvm::Type::getInt64Ty(VMContext), 2));
401
402 // Always return in register if it fits in a general purpose
403 // register, or if it is 64 bits and has a single element.
404 if ((Size == 8 || Size == 16 || Size == 32) ||
405 (Size == 64 && VT->getNumElements() == 1))
406 return ABIArgInfo::getCoerce(llvm::IntegerType::get(VMContext, Size));
407
408 return ABIArgInfo::getIndirect(0);
409 }
410
411 return ABIArgInfo::getDirect();
412 } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
413 if (const RecordType *RT = RetTy->getAs<RecordType>()) {
414 // Structures with either a non-trivial destructor or a non-trivial
415 // copy constructor are always indirect.
416 if (hasNonTrivialDestructorOrCopyConstructor(RT))
417 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
418
419 // Structures with flexible arrays are always indirect.
420 if (RT->getDecl()->hasFlexibleArrayMember())
421 return ABIArgInfo::getIndirect(0);
422 }
423
424 // If specified, structs and unions are always indirect.
425 if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
426 return ABIArgInfo::getIndirect(0);
427
428 // Classify "single element" structs as their element type.
429 if (const Type *SeltTy = isSingleElementStruct(RetTy, Context)) {
430 if (const BuiltinType *BT = SeltTy->getAs<BuiltinType>()) {
431 if (BT->isIntegerType()) {
432 // We need to use the size of the structure, padding
433 // bit-fields can adjust that to be larger than the single
434 // element type.
435 uint64_t Size = Context.getTypeSize(RetTy);
436 return ABIArgInfo::getCoerce(
437 llvm::IntegerType::get(VMContext, (unsigned) Size));
438 } else if (BT->getKind() == BuiltinType::Float) {
439 assert(Context.getTypeSize(RetTy) == Context.getTypeSize(SeltTy) &&
440 "Unexpect single element structure size!");
441 return ABIArgInfo::getCoerce(llvm::Type::getFloatTy(VMContext));
442 } else if (BT->getKind() == BuiltinType::Double) {
443 assert(Context.getTypeSize(RetTy) == Context.getTypeSize(SeltTy) &&
444 "Unexpect single element structure size!");
445 return ABIArgInfo::getCoerce(llvm::Type::getDoubleTy(VMContext));
446 }
447 } else if (SeltTy->isPointerType()) {
448 // FIXME: It would be really nice if this could come out as the proper
449 // pointer type.
450 const llvm::Type *PtrTy = llvm::Type::getInt8PtrTy(VMContext);
451 return ABIArgInfo::getCoerce(PtrTy);
452 } else if (SeltTy->isVectorType()) {
453 // 64- and 128-bit vectors are never returned in a
454 // register when inside a structure.
455 uint64_t Size = Context.getTypeSize(RetTy);
456 if (Size == 64 || Size == 128)
457 return ABIArgInfo::getIndirect(0);
458
459 return classifyReturnType(QualType(SeltTy, 0), Context, VMContext);
460 }
461 }
462
463 // Small structures which are register sized are generally returned
464 // in a register.
465 if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, Context)) {
466 uint64_t Size = Context.getTypeSize(RetTy);
467 return ABIArgInfo::getCoerce(llvm::IntegerType::get(VMContext, Size));
468 }
469
470 return ABIArgInfo::getIndirect(0);
471 } else {
472 // Treat an enum type as its underlying type.
473 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
474 RetTy = EnumTy->getDecl()->getIntegerType();
475
476 return (RetTy->isPromotableIntegerType() ?
477 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
478 }
479}
480
481unsigned X86_32ABIInfo::getIndirectArgumentAlignment(QualType Ty,
482 ASTContext &Context) {
483 unsigned Align = Context.getTypeAlign(Ty);
484 if (Align < 128) return 0;
485 if (const RecordType* RT = Ty->getAs<RecordType>())
486 if (typeContainsSSEVector(RT->getDecl(), Context))
487 return 16;
488 return 0;
489}
490
491ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
492 ASTContext &Context,
493 llvm::LLVMContext &VMContext) const {
494 // FIXME: Set alignment on indirect arguments.
495 if (CodeGenFunction::hasAggregateLLVMType(Ty)) {
496 // Structures with flexible arrays are always indirect.
497 if (const RecordType *RT = Ty->getAs<RecordType>()) {
498 // Structures with either a non-trivial destructor or a non-trivial
499 // copy constructor are always indirect.
500 if (hasNonTrivialDestructorOrCopyConstructor(RT))
501 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
502
503 if (RT->getDecl()->hasFlexibleArrayMember())
504 return ABIArgInfo::getIndirect(getIndirectArgumentAlignment(Ty,
505 Context));
506 }
507
508 // Ignore empty structs.
509 if (Ty->isStructureType() && Context.getTypeSize(Ty) == 0)
510 return ABIArgInfo::getIgnore();
511
512 // Expand small (<= 128-bit) record types when we know that the stack layout
513 // of those arguments will match the struct. This is important because the
514 // LLVM backend isn't smart enough to remove byval, which inhibits many
515 // optimizations.
516 if (Context.getTypeSize(Ty) <= 4*32 &&
517 canExpandIndirectArgument(Ty, Context))
518 return ABIArgInfo::getExpand();
519
520 return ABIArgInfo::getIndirect(getIndirectArgumentAlignment(Ty, Context));
521 } else {
522 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
523 Ty = EnumTy->getDecl()->getIntegerType();
524
525 return (Ty->isPromotableIntegerType() ?
526 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
527 }
528}
529
530llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
531 CodeGenFunction &CGF) const {
532 const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
533 const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
534
535 CGBuilderTy &Builder = CGF.Builder;
536 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
537 "ap");
538 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
539 llvm::Type *PTy =
540 llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
541 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
542
543 uint64_t Offset =
544 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
545 llvm::Value *NextAddr =
546 Builder.CreateGEP(Addr, llvm::ConstantInt::get(
547 llvm::Type::getInt32Ty(CGF.getLLVMContext()), Offset),
548 "ap.next");
549 Builder.CreateStore(NextAddr, VAListAddrAsBPP);
550
551 return AddrTyped;
552}
553
554namespace {
555/// X86_64ABIInfo - The X86_64 ABI information.
556class X86_64ABIInfo : public ABIInfo {
557 enum Class {
558 Integer = 0,
559 SSE,
560 SSEUp,
561 X87,
562 X87Up,
563 ComplexX87,
564 NoClass,
565 Memory
566 };
567
568 /// merge - Implement the X86_64 ABI merging algorithm.
569 ///
570 /// Merge an accumulating classification \arg Accum with a field
571 /// classification \arg Field.
572 ///
573 /// \param Accum - The accumulating classification. This should
574 /// always be either NoClass or the result of a previous merge
575 /// call. In addition, this should never be Memory (the caller
576 /// should just return Memory for the aggregate).
577 Class merge(Class Accum, Class Field) const;
578
579 /// classify - Determine the x86_64 register classes in which the
580 /// given type T should be passed.
581 ///
582 /// \param Lo - The classification for the parts of the type
583 /// residing in the low word of the containing object.
584 ///
585 /// \param Hi - The classification for the parts of the type
586 /// residing in the high word of the containing object.
587 ///
588 /// \param OffsetBase - The bit offset of this type in the
589 /// containing object. Some parameters are classified different
590 /// depending on whether they straddle an eightbyte boundary.
591 ///
592 /// If a word is unused its result will be NoClass; if a type should
593 /// be passed in Memory then at least the classification of \arg Lo
594 /// will be Memory.
595 ///
596 /// The \arg Lo class will be NoClass iff the argument is ignored.
597 ///
598 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
599 /// also be ComplexX87.
600 void classify(QualType T, ASTContext &Context, uint64_t OffsetBase,
601 Class &Lo, Class &Hi) const;
602
603 /// getCoerceResult - Given a source type \arg Ty and an LLVM type
604 /// to coerce to, chose the best way to pass Ty in the same place
605 /// that \arg CoerceTo would be passed, but while keeping the
606 /// emitted code as simple as possible.
607 ///
608 /// FIXME: Note, this should be cleaned up to just take an enumeration of all
609 /// the ways we might want to pass things, instead of constructing an LLVM
610 /// type. This makes this code more explicit, and it makes it clearer that we
611 /// are also doing this for correctness in the case of passing scalar types.
612 ABIArgInfo getCoerceResult(QualType Ty,
613 const llvm::Type *CoerceTo,
614 ASTContext &Context) const;
615
616 /// getIndirectResult - Give a source type \arg Ty, return a suitable result
617 /// such that the argument will be passed in memory.
618 ABIArgInfo getIndirectResult(QualType Ty,
619 ASTContext &Context) const;
620
621 ABIArgInfo classifyReturnType(QualType RetTy,
622 ASTContext &Context,
623 llvm::LLVMContext &VMContext) const;
624
625 ABIArgInfo classifyArgumentType(QualType Ty,
626 ASTContext &Context,
627 llvm::LLVMContext &VMContext,
628 unsigned &neededInt,
629 unsigned &neededSSE) const;
630
631public:
632 virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
633 llvm::LLVMContext &VMContext) const;
634
635 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
636 CodeGenFunction &CGF) const;
637};
638
639class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
640public:
641 X86_64TargetCodeGenInfo():TargetCodeGenInfo(new X86_64ABIInfo()) {}
642};
643
644}
645
646X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum,
647 Class Field) const {
648 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
649 // classified recursively so that always two fields are
650 // considered. The resulting class is calculated according to
651 // the classes of the fields in the eightbyte:
652 //
653 // (a) If both classes are equal, this is the resulting class.
654 //
655 // (b) If one of the classes is NO_CLASS, the resulting class is
656 // the other class.
657 //
658 // (c) If one of the classes is MEMORY, the result is the MEMORY
659 // class.
660 //
661 // (d) If one of the classes is INTEGER, the result is the
662 // INTEGER.
663 //
664 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
665 // MEMORY is used as class.
666 //
667 // (f) Otherwise class SSE is used.
668
669 // Accum should never be memory (we should have returned) or
670 // ComplexX87 (because this cannot be passed in a structure).
671 assert((Accum != Memory && Accum != ComplexX87) &&
672 "Invalid accumulated classification during merge.");
673 if (Accum == Field || Field == NoClass)
674 return Accum;
675 else if (Field == Memory)
676 return Memory;
677 else if (Accum == NoClass)
678 return Field;
679 else if (Accum == Integer || Field == Integer)
680 return Integer;
681 else if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
682 Accum == X87 || Accum == X87Up)
683 return Memory;
684 else
685 return SSE;
686}
687
688void X86_64ABIInfo::classify(QualType Ty,
689 ASTContext &Context,
690 uint64_t OffsetBase,
691 Class &Lo, Class &Hi) const {
692 // FIXME: This code can be simplified by introducing a simple value class for
693 // Class pairs with appropriate constructor methods for the various
694 // situations.
695
696 // FIXME: Some of the split computations are wrong; unaligned vectors
697 // shouldn't be passed in registers for example, so there is no chance they
698 // can straddle an eightbyte. Verify & simplify.
699
700 Lo = Hi = NoClass;
701
702 Class &Current = OffsetBase < 64 ? Lo : Hi;
703 Current = Memory;
704
705 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
706 BuiltinType::Kind k = BT->getKind();
707
708 if (k == BuiltinType::Void) {
709 Current = NoClass;
710 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
711 Lo = Integer;
712 Hi = Integer;
713 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
714 Current = Integer;
715 } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
716 Current = SSE;
717 } else if (k == BuiltinType::LongDouble) {
718 Lo = X87;
719 Hi = X87Up;
720 }
721 // FIXME: _Decimal32 and _Decimal64 are SSE.
722 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
723 } else if (const EnumType *ET = Ty->getAs<EnumType>()) {
724 // Classify the underlying integer type.
725 classify(ET->getDecl()->getIntegerType(), Context, OffsetBase, Lo, Hi);
726 } else if (Ty->hasPointerRepresentation()) {
727 Current = Integer;
728 } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
729 uint64_t Size = Context.getTypeSize(VT);
730 if (Size == 32) {
731 // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
732 // float> as integer.
733 Current = Integer;
734
735 // If this type crosses an eightbyte boundary, it should be
736 // split.
737 uint64_t EB_Real = (OffsetBase) / 64;
738 uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
739 if (EB_Real != EB_Imag)
740 Hi = Lo;
741 } else if (Size == 64) {
742 // gcc passes <1 x double> in memory. :(
743 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
744 return;
745
746 // gcc passes <1 x long long> as INTEGER.
747 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong))
748 Current = Integer;
749 else
750 Current = SSE;
751
752 // If this type crosses an eightbyte boundary, it should be
753 // split.
754 if (OffsetBase && OffsetBase != 64)
755 Hi = Lo;
756 } else if (Size == 128) {
757 Lo = SSE;
758 Hi = SSEUp;
759 }
760 } else if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
761 QualType ET = Context.getCanonicalType(CT->getElementType());
762
763 uint64_t Size = Context.getTypeSize(Ty);
764 if (ET->isIntegralType()) {
765 if (Size <= 64)
766 Current = Integer;
767 else if (Size <= 128)
768 Lo = Hi = Integer;
769 } else if (ET == Context.FloatTy)
770 Current = SSE;
771 else if (ET == Context.DoubleTy)
772 Lo = Hi = SSE;
773 else if (ET == Context.LongDoubleTy)
774 Current = ComplexX87;
775
776 // If this complex type crosses an eightbyte boundary then it
777 // should be split.
778 uint64_t EB_Real = (OffsetBase) / 64;
779 uint64_t EB_Imag = (OffsetBase + Context.getTypeSize(ET)) / 64;
780 if (Hi == NoClass && EB_Real != EB_Imag)
781 Hi = Lo;
782 } else if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
783 // Arrays are treated like structures.
784
785 uint64_t Size = Context.getTypeSize(Ty);
786
787 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
788 // than two eightbytes, ..., it has class MEMORY.
789 if (Size > 128)
790 return;
791
792 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
793 // fields, it has class MEMORY.
794 //
795 // Only need to check alignment of array base.
796 if (OffsetBase % Context.getTypeAlign(AT->getElementType()))
797 return;
798
799 // Otherwise implement simplified merge. We could be smarter about
800 // this, but it isn't worth it and would be harder to verify.
801 Current = NoClass;
802 uint64_t EltSize = Context.getTypeSize(AT->getElementType());
803 uint64_t ArraySize = AT->getSize().getZExtValue();
804 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
805 Class FieldLo, FieldHi;
806 classify(AT->getElementType(), Context, Offset, FieldLo, FieldHi);
807 Lo = merge(Lo, FieldLo);
808 Hi = merge(Hi, FieldHi);
809 if (Lo == Memory || Hi == Memory)
810 break;
811 }
812
813 // Do post merger cleanup (see below). Only case we worry about is Memory.
814 if (Hi == Memory)
815 Lo = Memory;
816 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
817 } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
818 uint64_t Size = Context.getTypeSize(Ty);
819
820 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
821 // than two eightbytes, ..., it has class MEMORY.
822 if (Size > 128)
823 return;
824
825 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
826 // copy constructor or a non-trivial destructor, it is passed by invisible
827 // reference.
828 if (hasNonTrivialDestructorOrCopyConstructor(RT))
829 return;
830
831 const RecordDecl *RD = RT->getDecl();
832
833 // Assume variable sized types are passed in memory.
834 if (RD->hasFlexibleArrayMember())
835 return;
836
837 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
838
839 // Reset Lo class, this will be recomputed.
840 Current = NoClass;
841
842 // If this is a C++ record, classify the bases first.
843 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
844 for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
845 e = CXXRD->bases_end(); i != e; ++i) {
846 assert(!i->isVirtual() && !i->getType()->isDependentType() &&
847 "Unexpected base class!");
848 const CXXRecordDecl *Base =
849 cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
850
851 // Classify this field.
852 //
853 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
854 // single eightbyte, each is classified separately. Each eightbyte gets
855 // initialized to class NO_CLASS.
856 Class FieldLo, FieldHi;
857 uint64_t Offset = OffsetBase + Layout.getBaseClassOffset(Base);
858 classify(i->getType(), Context, Offset, FieldLo, FieldHi);
859 Lo = merge(Lo, FieldLo);
860 Hi = merge(Hi, FieldHi);
861 if (Lo == Memory || Hi == Memory)
862 break;
863 }
864
865 // If this record has no fields but isn't empty, classify as INTEGER.
866 if (RD->field_empty() && Size)
867 Current = Integer;
868 }
869
870 // Classify the fields one at a time, merging the results.
871 unsigned idx = 0;
872 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
873 i != e; ++i, ++idx) {
874 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
875 bool BitField = i->isBitField();
876
877 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
878 // fields, it has class MEMORY.
879 //
880 // Note, skip this test for bit-fields, see below.
881 if (!BitField && Offset % Context.getTypeAlign(i->getType())) {
882 Lo = Memory;
883 return;
884 }
885
886 // Classify this field.
887 //
888 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
889 // exceeds a single eightbyte, each is classified
890 // separately. Each eightbyte gets initialized to class
891 // NO_CLASS.
892 Class FieldLo, FieldHi;
893
894 // Bit-fields require special handling, they do not force the
895 // structure to be passed in memory even if unaligned, and
896 // therefore they can straddle an eightbyte.
897 if (BitField) {
898 // Ignore padding bit-fields.
899 if (i->isUnnamedBitfield())
900 continue;
901
902 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
903 uint64_t Size = i->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
904
905 uint64_t EB_Lo = Offset / 64;
906 uint64_t EB_Hi = (Offset + Size - 1) / 64;
907 FieldLo = FieldHi = NoClass;
908 if (EB_Lo) {
909 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
910 FieldLo = NoClass;
911 FieldHi = Integer;
912 } else {
913 FieldLo = Integer;
914 FieldHi = EB_Hi ? Integer : NoClass;
915 }
916 } else
917 classify(i->getType(), Context, Offset, FieldLo, FieldHi);
918 Lo = merge(Lo, FieldLo);
919 Hi = merge(Hi, FieldHi);
920 if (Lo == Memory || Hi == Memory)
921 break;
922 }
923
924 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
925 //
926 // (a) If one of the classes is MEMORY, the whole argument is
927 // passed in memory.
928 //
929 // (b) If SSEUP is not preceeded by SSE, it is converted to SSE.
930
931 // The first of these conditions is guaranteed by how we implement
932 // the merge (just bail).
933 //
934 // The second condition occurs in the case of unions; for example
935 // union { _Complex double; unsigned; }.
936 if (Hi == Memory)
937 Lo = Memory;
938 if (Hi == SSEUp && Lo != SSE)
939 Hi = SSE;
940 }
941}
942
943ABIArgInfo X86_64ABIInfo::getCoerceResult(QualType Ty,
944 const llvm::Type *CoerceTo,
945 ASTContext &Context) const {
946 if (CoerceTo == llvm::Type::getInt64Ty(CoerceTo->getContext())) {
947 // Integer and pointer types will end up in a general purpose
948 // register.
949
950 // Treat an enum type as its underlying type.
951 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
952 Ty = EnumTy->getDecl()->getIntegerType();
953
954 if (Ty->isIntegralType() || Ty->hasPointerRepresentation())
955 return (Ty->isPromotableIntegerType() ?
956 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
957 } else if (CoerceTo == llvm::Type::getDoubleTy(CoerceTo->getContext())) {
958 // FIXME: It would probably be better to make CGFunctionInfo only map using
959 // canonical types than to canonize here.
960 QualType CTy = Context.getCanonicalType(Ty);
961
962 // Float and double end up in a single SSE reg.
963 if (CTy == Context.FloatTy || CTy == Context.DoubleTy)
964 return ABIArgInfo::getDirect();
965
966 }
967
968 return ABIArgInfo::getCoerce(CoerceTo);
969}
970
971ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
972 ASTContext &Context) const {
973 // If this is a scalar LLVM value then assume LLVM will pass it in the right
974 // place naturally.
975 if (!CodeGenFunction::hasAggregateLLVMType(Ty)) {
976 // Treat an enum type as its underlying type.
977 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
978 Ty = EnumTy->getDecl()->getIntegerType();
979
980 return (Ty->isPromotableIntegerType() ?
981 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
982 }
983
984 bool ByVal = !isRecordWithNonTrivialDestructorOrCopyConstructor(Ty);
985
986 // FIXME: Set alignment correctly.
987 return ABIArgInfo::getIndirect(0, ByVal);
988}
989
990ABIArgInfo X86_64ABIInfo::classifyReturnType(QualType RetTy,
991 ASTContext &Context,
992 llvm::LLVMContext &VMContext) const {
993 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
994 // classification algorithm.
995 X86_64ABIInfo::Class Lo, Hi;
996 classify(RetTy, Context, 0, Lo, Hi);
997
998 // Check some invariants.
999 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
1000 assert((Lo != NoClass || Hi == NoClass) && "Invalid null classification.");
1001 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
1002
1003 const llvm::Type *ResType = 0;
1004 switch (Lo) {
1005 case NoClass:
1006 return ABIArgInfo::getIgnore();
1007
1008 case SSEUp:
1009 case X87Up:
1010 assert(0 && "Invalid classification for lo word.");
1011
1012 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
1013 // hidden argument.
1014 case Memory:
1015 return getIndirectResult(RetTy, Context);
1016
1017 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
1018 // available register of the sequence %rax, %rdx is used.
1019 case Integer:
1020 ResType = llvm::Type::getInt64Ty(VMContext); break;
1021
1022 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
1023 // available SSE register of the sequence %xmm0, %xmm1 is used.
1024 case SSE:
1025 ResType = llvm::Type::getDoubleTy(VMContext); break;
1026
1027 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
1028 // returned on the X87 stack in %st0 as 80-bit x87 number.
1029 case X87:
1030 ResType = llvm::Type::getX86_FP80Ty(VMContext); break;
1031
1032 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
1033 // part of the value is returned in %st0 and the imaginary part in
1034 // %st1.
1035 case ComplexX87:
1036 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
1037 ResType = llvm::StructType::get(VMContext, llvm::Type::getX86_FP80Ty(VMContext),
1038 llvm::Type::getX86_FP80Ty(VMContext),
1039 NULL);
1040 break;
1041 }
1042
1043 switch (Hi) {
1044 // Memory was handled previously and X87 should
1045 // never occur as a hi class.
1046 case Memory:
1047 case X87:
1048 assert(0 && "Invalid classification for hi word.");
1049
1050 case ComplexX87: // Previously handled.
1051 case NoClass: break;
1052
1053 case Integer:
1054 ResType = llvm::StructType::get(VMContext, ResType,
1055 llvm::Type::getInt64Ty(VMContext), NULL);
1056 break;
1057 case SSE:
1058 ResType = llvm::StructType::get(VMContext, ResType,
1059 llvm::Type::getDoubleTy(VMContext), NULL);
1060 break;
1061
1062 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
1063 // is passed in the upper half of the last used SSE register.
1064 //
1065 // SSEUP should always be preceeded by SSE, just widen.
1066 case SSEUp:
1067 assert(Lo == SSE && "Unexpected SSEUp classification.");
1068 ResType = llvm::VectorType::get(llvm::Type::getDoubleTy(VMContext), 2);
1069 break;
1070
1071 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
1072 // returned together with the previous X87 value in %st0.
1073 case X87Up:
1074 // If X87Up is preceeded by X87, we don't need to do
1075 // anything. However, in some cases with unions it may not be
1076 // preceeded by X87. In such situations we follow gcc and pass the
1077 // extra bits in an SSE reg.
1078 if (Lo != X87)
1079 ResType = llvm::StructType::get(VMContext, ResType,
1080 llvm::Type::getDoubleTy(VMContext), NULL);
1081 break;
1082 }
1083
1084 return getCoerceResult(RetTy, ResType, Context);
1085}
1086
1087ABIArgInfo X86_64ABIInfo::classifyArgumentType(QualType Ty, ASTContext &Context,
1088 llvm::LLVMContext &VMContext,
1089 unsigned &neededInt,
1090 unsigned &neededSSE) const {
1091 X86_64ABIInfo::Class Lo, Hi;
1092 classify(Ty, Context, 0, Lo, Hi);
1093
1094 // Check some invariants.
1095 // FIXME: Enforce these by construction.
1096 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
1097 assert((Lo != NoClass || Hi == NoClass) && "Invalid null classification.");
1098 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
1099
1100 neededInt = 0;
1101 neededSSE = 0;
1102 const llvm::Type *ResType = 0;
1103 switch (Lo) {
1104 case NoClass:
1105 return ABIArgInfo::getIgnore();
1106
1107 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
1108 // on the stack.
1109 case Memory:
1110
1111 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
1112 // COMPLEX_X87, it is passed in memory.
1113 case X87:
1114 case ComplexX87:
1115 return getIndirectResult(Ty, Context);
1116
1117 case SSEUp:
1118 case X87Up:
1119 assert(0 && "Invalid classification for lo word.");
1120
1121 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
1122 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
1123 // and %r9 is used.
1124 case Integer:
1125 ++neededInt;
1126 ResType = llvm::Type::getInt64Ty(VMContext);
1127 break;
1128
1129 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
1130 // available SSE register is used, the registers are taken in the
1131 // order from %xmm0 to %xmm7.
1132 case SSE:
1133 ++neededSSE;
1134 ResType = llvm::Type::getDoubleTy(VMContext);
1135 break;
1136 }
1137
1138 switch (Hi) {
1139 // Memory was handled previously, ComplexX87 and X87 should
1140 // never occur as hi classes, and X87Up must be preceed by X87,
1141 // which is passed in memory.
1142 case Memory:
1143 case X87:
1144 case ComplexX87:
1145 assert(0 && "Invalid classification for hi word.");
1146 break;
1147
1148 case NoClass: break;
1149 case Integer:
1150 ResType = llvm::StructType::get(VMContext, ResType,
1151 llvm::Type::getInt64Ty(VMContext), NULL);
1152 ++neededInt;
1153 break;
1154
1155 // X87Up generally doesn't occur here (long double is passed in
1156 // memory), except in situations involving unions.
1157 case X87Up:
1158 case SSE:
1159 ResType = llvm::StructType::get(VMContext, ResType,
1160 llvm::Type::getDoubleTy(VMContext), NULL);
1161 ++neededSSE;
1162 break;
1163
1164 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
1165 // eightbyte is passed in the upper half of the last used SSE
1166 // register.
1167 case SSEUp:
1168 assert(Lo == SSE && "Unexpected SSEUp classification.");
1169 ResType = llvm::VectorType::get(llvm::Type::getDoubleTy(VMContext), 2);
1170 break;
1171 }
1172
1173 return getCoerceResult(Ty, ResType, Context);
1174}
1175
1176void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI, ASTContext &Context,
1177 llvm::LLVMContext &VMContext) const {
1178 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(),
1179 Context, VMContext);
1180
1181 // Keep track of the number of assigned registers.
1182 unsigned freeIntRegs = 6, freeSSERegs = 8;
1183
1184 // If the return value is indirect, then the hidden argument is consuming one
1185 // integer register.
1186 if (FI.getReturnInfo().isIndirect())
1187 --freeIntRegs;
1188
1189 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
1190 // get assigned (in left-to-right order) for passing as follows...
1191 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
1192 it != ie; ++it) {
1193 unsigned neededInt, neededSSE;
1194 it->info = classifyArgumentType(it->type, Context, VMContext,
1195 neededInt, neededSSE);
1196
1197 // AMD64-ABI 3.2.3p3: If there are no registers available for any
1198 // eightbyte of an argument, the whole argument is passed on the
1199 // stack. If registers have already been assigned for some
1200 // eightbytes of such an argument, the assignments get reverted.
1201 if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
1202 freeIntRegs -= neededInt;
1203 freeSSERegs -= neededSSE;
1204 } else {
1205 it->info = getIndirectResult(it->type, Context);
1206 }
1207 }
1208}
1209
1210static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
1211 QualType Ty,
1212 CodeGenFunction &CGF) {
1213 llvm::Value *overflow_arg_area_p =
1214 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
1215 llvm::Value *overflow_arg_area =
1216 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
1217
1218 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
1219 // byte boundary if alignment needed by type exceeds 8 byte boundary.
1220 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
1221 if (Align > 8) {
1222 // Note that we follow the ABI & gcc here, even though the type
1223 // could in theory have an alignment greater than 16. This case
1224 // shouldn't ever matter in practice.
1225
1226 // overflow_arg_area = (overflow_arg_area + 15) & ~15;
1227 llvm::Value *Offset =
1228 llvm::ConstantInt::get(llvm::Type::getInt32Ty(CGF.getLLVMContext()), 15);
1229 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
1230 llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
1231 llvm::Type::getInt64Ty(CGF.getLLVMContext()));
1232 llvm::Value *Mask = llvm::ConstantInt::get(
1233 llvm::Type::getInt64Ty(CGF.getLLVMContext()), ~15LL);
1234 overflow_arg_area =
1235 CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
1236 overflow_arg_area->getType(),
1237 "overflow_arg_area.align");
1238 }
1239
1240 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
1241 const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
1242 llvm::Value *Res =
1243 CGF.Builder.CreateBitCast(overflow_arg_area,
1244 llvm::PointerType::getUnqual(LTy));
1245
1246 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
1247 // l->overflow_arg_area + sizeof(type).
1248 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
1249 // an 8 byte boundary.
1250
1251 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
1252 llvm::Value *Offset =
1253 llvm::ConstantInt::get(llvm::Type::getInt32Ty(CGF.getLLVMContext()),
1254 (SizeInBytes + 7) & ~7);
1255 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
1256 "overflow_arg_area.next");
1257 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
1258
1259 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
1260 return Res;
1261}
1262
1263llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1264 CodeGenFunction &CGF) const {
1265 llvm::LLVMContext &VMContext = CGF.getLLVMContext();
1266 const llvm::Type *i32Ty = llvm::Type::getInt32Ty(VMContext);
1267 const llvm::Type *DoubleTy = llvm::Type::getDoubleTy(VMContext);
1268
1269 // Assume that va_list type is correct; should be pointer to LLVM type:
1270 // struct {
1271 // i32 gp_offset;
1272 // i32 fp_offset;
1273 // i8* overflow_arg_area;
1274 // i8* reg_save_area;
1275 // };
1276 unsigned neededInt, neededSSE;
1277 ABIArgInfo AI = classifyArgumentType(Ty, CGF.getContext(), VMContext,
1278 neededInt, neededSSE);
1279
1280 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
1281 // in the registers. If not go to step 7.
1282 if (!neededInt && !neededSSE)
1283 return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
1284
1285 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
1286 // general purpose registers needed to pass type and num_fp to hold
1287 // the number of floating point registers needed.
1288
1289 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
1290 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
1291 // l->fp_offset > 304 - num_fp * 16 go to step 7.
1292 //
1293 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
1294 // register save space).
1295
1296 llvm::Value *InRegs = 0;
1297 llvm::Value *gp_offset_p = 0, *gp_offset = 0;
1298 llvm::Value *fp_offset_p = 0, *fp_offset = 0;
1299 if (neededInt) {
1300 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
1301 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
1302 InRegs =
1303 CGF.Builder.CreateICmpULE(gp_offset,
1304 llvm::ConstantInt::get(i32Ty,
1305 48 - neededInt * 8),
1306 "fits_in_gp");
1307 }
1308
1309 if (neededSSE) {
1310 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
1311 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
1312 llvm::Value *FitsInFP =
1313 CGF.Builder.CreateICmpULE(fp_offset,
1314 llvm::ConstantInt::get(i32Ty,
1315 176 - neededSSE * 16),
1316 "fits_in_fp");
1317 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
1318 }
1319
1320 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
1321 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
1322 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
1323 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
1324
1325 // Emit code to load the value if it was passed in registers.
1326
1327 CGF.EmitBlock(InRegBlock);
1328
1329 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
1330 // an offset of l->gp_offset and/or l->fp_offset. This may require
1331 // copying to a temporary location in case the parameter is passed
1332 // in different register classes or requires an alignment greater
1333 // than 8 for general purpose registers and 16 for XMM registers.
1334 //
1335 // FIXME: This really results in shameful code when we end up needing to
1336 // collect arguments from different places; often what should result in a
1337 // simple assembling of a structure from scattered addresses has many more
1338 // loads than necessary. Can we clean this up?
1339 const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
1340 llvm::Value *RegAddr =
1341 CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
1342 "reg_save_area");
1343 if (neededInt && neededSSE) {
1344 // FIXME: Cleanup.
1345 assert(AI.isCoerce() && "Unexpected ABI info for mixed regs");
1346 const llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
1347 llvm::Value *Tmp = CGF.CreateTempAlloca(ST);
1348 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
1349 const llvm::Type *TyLo = ST->getElementType(0);
1350 const llvm::Type *TyHi = ST->getElementType(1);
1351 assert((TyLo->isFloatingPoint() ^ TyHi->isFloatingPoint()) &&
1352 "Unexpected ABI info for mixed regs");
1353 const llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
1354 const llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
1355 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
1356 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
1357 llvm::Value *RegLoAddr = TyLo->isFloatingPoint() ? FPAddr : GPAddr;
1358 llvm::Value *RegHiAddr = TyLo->isFloatingPoint() ? GPAddr : FPAddr;
1359 llvm::Value *V =
1360 CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
1361 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
1362 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
1363 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
1364
1365 RegAddr = CGF.Builder.CreateBitCast(Tmp,
1366 llvm::PointerType::getUnqual(LTy));
1367 } else if (neededInt) {
1368 RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
1369 RegAddr = CGF.Builder.CreateBitCast(RegAddr,
1370 llvm::PointerType::getUnqual(LTy));
1371 } else {
1372 if (neededSSE == 1) {
1373 RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
1374 RegAddr = CGF.Builder.CreateBitCast(RegAddr,
1375 llvm::PointerType::getUnqual(LTy));
1376 } else {
1377 assert(neededSSE == 2 && "Invalid number of needed registers!");
1378 // SSE registers are spaced 16 bytes apart in the register save
1379 // area, we need to collect the two eightbytes together.
1380 llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
1381 llvm::Value *RegAddrHi =
1382 CGF.Builder.CreateGEP(RegAddrLo,
1383 llvm::ConstantInt::get(i32Ty, 16));
1384 const llvm::Type *DblPtrTy =
1385 llvm::PointerType::getUnqual(DoubleTy);
1386 const llvm::StructType *ST = llvm::StructType::get(VMContext, DoubleTy,
1387 DoubleTy, NULL);
1388 llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST);
1389 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
1390 DblPtrTy));
1391 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
1392 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
1393 DblPtrTy));
1394 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
1395 RegAddr = CGF.Builder.CreateBitCast(Tmp,
1396 llvm::PointerType::getUnqual(LTy));
1397 }
1398 }
1399
1400 // AMD64-ABI 3.5.7p5: Step 5. Set:
1401 // l->gp_offset = l->gp_offset + num_gp * 8
1402 // l->fp_offset = l->fp_offset + num_fp * 16.
1403 if (neededInt) {
1404 llvm::Value *Offset = llvm::ConstantInt::get(i32Ty, neededInt * 8);
1405 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
1406 gp_offset_p);
1407 }
1408 if (neededSSE) {
1409 llvm::Value *Offset = llvm::ConstantInt::get(i32Ty, neededSSE * 16);
1410 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
1411 fp_offset_p);
1412 }
1413 CGF.EmitBranch(ContBlock);
1414
1415 // Emit code to load the value if it was passed in memory.
1416
1417 CGF.EmitBlock(InMemBlock);
1418 llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
1419
1420 // Return the appropriate result.
1421
1422 CGF.EmitBlock(ContBlock);
1423 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(),
1424 "vaarg.addr");
1425 ResAddr->reserveOperandSpace(2);
1426 ResAddr->addIncoming(RegAddr, InRegBlock);
1427 ResAddr->addIncoming(MemAddr, InMemBlock);
1428
1429 return ResAddr;
1430}
1431
1432// PIC16 ABI Implementation
1433
1434namespace {
1435
1436class PIC16ABIInfo : public ABIInfo {
1437 ABIArgInfo classifyReturnType(QualType RetTy,
1438 ASTContext &Context,
1439 llvm::LLVMContext &VMContext) const;
1440
1441 ABIArgInfo classifyArgumentType(QualType RetTy,
1442 ASTContext &Context,
1443 llvm::LLVMContext &VMContext) const;
1444
1445 virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
1446 llvm::LLVMContext &VMContext) const {
1447 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context,
1448 VMContext);
1449 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
1450 it != ie; ++it)
1451 it->info = classifyArgumentType(it->type, Context, VMContext);
1452 }
1453
1454 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1455 CodeGenFunction &CGF) const;
1456};
1457
1458class PIC16TargetCodeGenInfo : public TargetCodeGenInfo {
1459public:
1460 PIC16TargetCodeGenInfo():TargetCodeGenInfo(new PIC16ABIInfo()) {}
1461};
1462
1463}
1464
1465ABIArgInfo PIC16ABIInfo::classifyReturnType(QualType RetTy,
1466 ASTContext &Context,
1467 llvm::LLVMContext &VMContext) const {
1468 if (RetTy->isVoidType()) {
1469 return ABIArgInfo::getIgnore();
1470 } else {
1471 return ABIArgInfo::getDirect();
1472 }
1473}
1474
1475ABIArgInfo PIC16ABIInfo::classifyArgumentType(QualType Ty,
1476 ASTContext &Context,
1477 llvm::LLVMContext &VMContext) const {
1478 return ABIArgInfo::getDirect();
1479}
1480
1481llvm::Value *PIC16ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1482 CodeGenFunction &CGF) const {
1483 return 0;
1484}
1485
1486// ARM ABI Implementation
1487
1488namespace {
1489
1490class ARMABIInfo : public ABIInfo {
1491public:
1492 enum ABIKind {
1493 APCS = 0,
1494 AAPCS = 1,
1495 AAPCS_VFP
1496 };
1497
1498private:
1499 ABIKind Kind;
1500
1501public:
1502 ARMABIInfo(ABIKind _Kind) : Kind(_Kind) {}
1503
1504private:
1505 ABIKind getABIKind() const { return Kind; }
1506
1507 ABIArgInfo classifyReturnType(QualType RetTy,
1508 ASTContext &Context,
1509 llvm::LLVMContext &VMCOntext) const;
1510
1511 ABIArgInfo classifyArgumentType(QualType RetTy,
1512 ASTContext &Context,
1513 llvm::LLVMContext &VMContext) const;
1514
1515 virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
1516 llvm::LLVMContext &VMContext) const;
1517
1518 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1519 CodeGenFunction &CGF) const;
1520};
1521
1522class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
1523public:
1524 ARMTargetCodeGenInfo(ARMABIInfo::ABIKind K)
1525 :TargetCodeGenInfo(new ARMABIInfo(K)) {}
1526};
1527
1528}
1529
1530void ARMABIInfo::computeInfo(CGFunctionInfo &FI, ASTContext &Context,
1531 llvm::LLVMContext &VMContext) const {
1532 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context,
1533 VMContext);
1534 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
1535 it != ie; ++it) {
1536 it->info = classifyArgumentType(it->type, Context, VMContext);
1537 }
1538
1539 // ARM always overrides the calling convention.
1540 switch (getABIKind()) {
1541 case APCS:
1542 FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_APCS);
1543 break;
1544
1545 case AAPCS:
1546 FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS);
1547 break;
1548
1549 case AAPCS_VFP:
1550 FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS_VFP);
1551 break;
1552 }
1553}
1554
1555ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty,
1556 ASTContext &Context,
1557 llvm::LLVMContext &VMContext) const {
1558 if (!CodeGenFunction::hasAggregateLLVMType(Ty)) {
1559 // Treat an enum type as its underlying type.
1560 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1561 Ty = EnumTy->getDecl()->getIntegerType();
1562
1563 return (Ty->isPromotableIntegerType() ?
1564 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1565 }
1566
1567 // Ignore empty records.
1568 if (isEmptyRecord(Context, Ty, true))
1569 return ABIArgInfo::getIgnore();
1570
1571 // FIXME: This is kind of nasty... but there isn't much choice because the ARM
1572 // backend doesn't support byval.
1573 // FIXME: This doesn't handle alignment > 64 bits.
1574 const llvm::Type* ElemTy;
1575 unsigned SizeRegs;
1576 if (Context.getTypeAlign(Ty) > 32) {
1577 ElemTy = llvm::Type::getInt64Ty(VMContext);
1578 SizeRegs = (Context.getTypeSize(Ty) + 63) / 64;
1579 } else {
1580 ElemTy = llvm::Type::getInt32Ty(VMContext);
1581 SizeRegs = (Context.getTypeSize(Ty) + 31) / 32;
1582 }
1583 std::vector<const llvm::Type*> LLVMFields;
1584 LLVMFields.push_back(llvm::ArrayType::get(ElemTy, SizeRegs));
1585 const llvm::Type* STy = llvm::StructType::get(VMContext, LLVMFields, true);
1586 return ABIArgInfo::getCoerce(STy);
1587}
1588
1589static bool isIntegerLikeType(QualType Ty,
1590 ASTContext &Context,
1591 llvm::LLVMContext &VMContext) {
1592 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
1593 // is called integer-like if its size is less than or equal to one word, and
1594 // the offset of each of its addressable sub-fields is zero.
1595
1596 uint64_t Size = Context.getTypeSize(Ty);
1597
1598 // Check that the type fits in a word.
1599 if (Size > 32)
1600 return false;
1601
1602 // FIXME: Handle vector types!
1603 if (Ty->isVectorType())
1604 return false;
1605
1606 // Float types are never treated as "integer like".
1607 if (Ty->isRealFloatingType())
1608 return false;
1609
1610 // If this is a builtin or pointer type then it is ok.
1611 if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
1612 return true;
1613
1614 // Small complex integer types are "integer like".
1615 if (const ComplexType *CT = Ty->getAs<ComplexType>())
1616 return isIntegerLikeType(CT->getElementType(), Context, VMContext);
1617
1618 // Single element and zero sized arrays should be allowed, by the definition
1619 // above, but they are not.
1620
1621 // Otherwise, it must be a record type.
1622 const RecordType *RT = Ty->getAs<RecordType>();
1623 if (!RT) return false;
1624
1625 // Ignore records with flexible arrays.
1626 const RecordDecl *RD = RT->getDecl();
1627 if (RD->hasFlexibleArrayMember())
1628 return false;
1629
1630 // Check that all sub-fields are at offset 0, and are themselves "integer
1631 // like".
1632 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1633
1634 bool HadField = false;
1635 unsigned idx = 0;
1636 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1637 i != e; ++i, ++idx) {
1638 const FieldDecl *FD = *i;
1639
1640 // Bit-fields are not addressable, we only need to verify they are "integer
1641 // like". We still have to disallow a subsequent non-bitfield, for example:
1642 // struct { int : 0; int x }
1643 // is non-integer like according to gcc.
1644 if (FD->isBitField()) {
1645 if (!RD->isUnion())
1646 HadField = true;
1647
1648 if (!isIntegerLikeType(FD->getType(), Context, VMContext))
1649 return false;
1650
1651 continue;
1652 }
1653
1654 // Check if this field is at offset 0.
1655 if (Layout.getFieldOffset(idx) != 0)
1656 return false;
1657
1658 if (!isIntegerLikeType(FD->getType(), Context, VMContext))
1659 return false;
1660
1661 // Only allow at most one field in a structure. This doesn't match the
1662 // wording above, but follows gcc in situations with a field following an
1663 // empty structure.
1664 if (!RD->isUnion()) {
1665 if (HadField)
1666 return false;
1667
1668 HadField = true;
1669 }
1670 }
1671
1672 return true;
1673}
1674
1675ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy,
1676 ASTContext &Context,
1677 llvm::LLVMContext &VMContext) const {
1678 if (RetTy->isVoidType())
1679 return ABIArgInfo::getIgnore();
1680
1681 if (!CodeGenFunction::hasAggregateLLVMType(RetTy)) {
1682 // Treat an enum type as its underlying type.
1683 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1684 RetTy = EnumTy->getDecl()->getIntegerType();
1685
1686 return (RetTy->isPromotableIntegerType() ?
1687 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1688 }
1689
1690 // Are we following APCS?
1691 if (getABIKind() == APCS) {
1692 if (isEmptyRecord(Context, RetTy, false))
1693 return ABIArgInfo::getIgnore();
1694
1695 // Complex types are all returned as packed integers.
1696 //
1697 // FIXME: Consider using 2 x vector types if the back end handles them
1698 // correctly.
1699 if (RetTy->isAnyComplexType())
1700 return ABIArgInfo::getCoerce(llvm::IntegerType::get(
1701 VMContext, Context.getTypeSize(RetTy)));
1702
1703 // Integer like structures are returned in r0.
1704 if (isIntegerLikeType(RetTy, Context, VMContext)) {
1705 // Return in the smallest viable integer type.
1706 uint64_t Size = Context.getTypeSize(RetTy);
1707 if (Size <= 8)
1708 return ABIArgInfo::getCoerce(llvm::Type::getInt8Ty(VMContext));
1709 if (Size <= 16)
1710 return ABIArgInfo::getCoerce(llvm::Type::getInt16Ty(VMContext));
1711 return ABIArgInfo::getCoerce(llvm::Type::getInt32Ty(VMContext));
1712 }
1713
1714 // Otherwise return in memory.
1715 return ABIArgInfo::getIndirect(0);
1716 }
1717
1718 // Otherwise this is an AAPCS variant.
1719
1720 if (isEmptyRecord(Context, RetTy, true))
1721 return ABIArgInfo::getIgnore();
1722
1723 // Aggregates <= 4 bytes are returned in r0; other aggregates
1724 // are returned indirectly.
1725 uint64_t Size = Context.getTypeSize(RetTy);
1726 if (Size <= 32) {
1727 // Return in the smallest viable integer type.
1728 if (Size <= 8)
1729 return ABIArgInfo::getCoerce(llvm::Type::getInt8Ty(VMContext));
1730 if (Size <= 16)
1731 return ABIArgInfo::getCoerce(llvm::Type::getInt16Ty(VMContext));
1732 return ABIArgInfo::getCoerce(llvm::Type::getInt32Ty(VMContext));
1733 }
1734
1735 return ABIArgInfo::getIndirect(0);
1736}
1737
1738llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1739 CodeGenFunction &CGF) const {
1740 // FIXME: Need to handle alignment
1741 const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
1742 const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
1743
1744 CGBuilderTy &Builder = CGF.Builder;
1745 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
1746 "ap");
1747 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
1748 llvm::Type *PTy =
1749 llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
1750 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
1751
1752 uint64_t Offset =
1753 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
1754 llvm::Value *NextAddr =
1755 Builder.CreateGEP(Addr, llvm::ConstantInt::get(
1756 llvm::Type::getInt32Ty(CGF.getLLVMContext()), Offset),
1757 "ap.next");
1758 Builder.CreateStore(NextAddr, VAListAddrAsBPP);
1759
1760 return AddrTyped;
1761}
1762
1763ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy,
1764 ASTContext &Context,
1765 llvm::LLVMContext &VMContext) const {
1766 if (RetTy->isVoidType()) {
1767 return ABIArgInfo::getIgnore();
1768 } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
1769 return ABIArgInfo::getIndirect(0);
1770 } else {
1771 // Treat an enum type as its underlying type.
1772 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1773 RetTy = EnumTy->getDecl()->getIntegerType();
1774
1775 return (RetTy->isPromotableIntegerType() ?
1776 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1777 }
1778}
1779
1780// SystemZ ABI Implementation
1781
1782namespace {
1783
1784class SystemZABIInfo : public ABIInfo {
1785 bool isPromotableIntegerType(QualType Ty) const;
1786
1787 ABIArgInfo classifyReturnType(QualType RetTy, ASTContext &Context,
1788 llvm::LLVMContext &VMContext) const;
1789
1790 ABIArgInfo classifyArgumentType(QualType RetTy, ASTContext &Context,
1791 llvm::LLVMContext &VMContext) const;
1792
1793 virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
1794 llvm::LLVMContext &VMContext) const {
1795 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(),
1796 Context, VMContext);
1797 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
1798 it != ie; ++it)
1799 it->info = classifyArgumentType(it->type, Context, VMContext);
1800 }
1801
1802 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1803 CodeGenFunction &CGF) const;
1804};
1805
1806class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
1807public:
1808 SystemZTargetCodeGenInfo():TargetCodeGenInfo(new SystemZABIInfo()) {}
1809};
1810
1811}
1812
1813bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
1814 // SystemZ ABI requires all 8, 16 and 32 bit quantities to be extended.
1815 if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
1816 switch (BT->getKind()) {
1817 case BuiltinType::Bool:
1818 case BuiltinType::Char_S:
1819 case BuiltinType::Char_U:
1820 case BuiltinType::SChar:
1821 case BuiltinType::UChar:
1822 case BuiltinType::Short:
1823 case BuiltinType::UShort:
1824 case BuiltinType::Int:
1825 case BuiltinType::UInt:
1826 return true;
1827 default:
1828 return false;
1829 }
1830 return false;
1831}
1832
1833llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1834 CodeGenFunction &CGF) const {
1835 // FIXME: Implement
1836 return 0;
1837}
1838
1839
1840ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy,
1841 ASTContext &Context,
1842 llvm::LLVMContext &VMContext) const {
1843 if (RetTy->isVoidType()) {
1844 return ABIArgInfo::getIgnore();
1845 } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
1846 return ABIArgInfo::getIndirect(0);
1847 } else {
1848 return (isPromotableIntegerType(RetTy) ?
1849 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1850 }
1851}
1852
1853ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty,
1854 ASTContext &Context,
1855 llvm::LLVMContext &VMContext) const {
1856 if (CodeGenFunction::hasAggregateLLVMType(Ty)) {
1857 return ABIArgInfo::getIndirect(0);
1858 } else {
1859 return (isPromotableIntegerType(Ty) ?
1860 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1861 }
1862}
1863
1864// MSP430 ABI Implementation
1865
1866namespace {
1867
1868class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
1869public:
1870 MSP430TargetCodeGenInfo():TargetCodeGenInfo(new DefaultABIInfo()) {}
1871 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1872 CodeGen::CodeGenModule &M) const;
1873};
1874
1875}
1876
1877void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
1878 llvm::GlobalValue *GV,
1879 CodeGen::CodeGenModule &M) const {
1880 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1881 if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
1882 // Handle 'interrupt' attribute:
1883 llvm::Function *F = cast<llvm::Function>(GV);
1884
1885 // Step 1: Set ISR calling convention.
1886 F->setCallingConv(llvm::CallingConv::MSP430_INTR);
1887
1888 // Step 2: Add attributes goodness.
1889 F->addFnAttr(llvm::Attribute::NoInline);
1890
1891 // Step 3: Emit ISR vector alias.
1892 unsigned Num = attr->getNumber() + 0xffe0;
1893 new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
1894 "vector_" +
1895 llvm::LowercaseString(llvm::utohexstr(Num)),
1896 GV, &M.getModule());
1897 }
1898 }
1899}
1900
1901const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() const {
1902 if (TheTargetCodeGenInfo)
1903 return *TheTargetCodeGenInfo;
1904
1905 // For now we just cache the TargetCodeGenInfo in CodeGenModule and don't
1906 // free it.
1907
1908 const llvm::Triple &Triple(getContext().Target.getTriple());
1909 switch (Triple.getArch()) {
1910 default:
1911 return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo);
1912
1913 case llvm::Triple::arm:
1914 case llvm::Triple::thumb:
1915 // FIXME: We want to know the float calling convention as well.
1916 if (strcmp(getContext().Target.getABI(), "apcs-gnu") == 0)
1917 return *(TheTargetCodeGenInfo =
1918 new ARMTargetCodeGenInfo(ARMABIInfo::APCS));
1919
1920 return *(TheTargetCodeGenInfo =
1921 new ARMTargetCodeGenInfo(ARMABIInfo::AAPCS));
1922
1923 case llvm::Triple::pic16:
1924 return *(TheTargetCodeGenInfo = new PIC16TargetCodeGenInfo());
1925
1926 case llvm::Triple::systemz:
1927 return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo());
1928
1929 case llvm::Triple::msp430:
1930 return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo());
1931
1932 case llvm::Triple::x86:
1933 switch (Triple.getOS()) {
1934 case llvm::Triple::Darwin:
1935 return *(TheTargetCodeGenInfo =
1936 new X86_32TargetCodeGenInfo(Context, true, true));
1937 case llvm::Triple::Cygwin:
1938 case llvm::Triple::MinGW32:
1939 case llvm::Triple::MinGW64:
1940 case llvm::Triple::AuroraUX:
1941 case llvm::Triple::DragonFly:
1942 case llvm::Triple::FreeBSD:
1943 case llvm::Triple::OpenBSD:
1944 return *(TheTargetCodeGenInfo =
1945 new X86_32TargetCodeGenInfo(Context, false, true));
1946
1947 default:
1948 return *(TheTargetCodeGenInfo =
1949 new X86_32TargetCodeGenInfo(Context, false, false));
1950 }
1951
1952 case llvm::Triple::x86_64:
1953 return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo());
1954 }
1955}