blob: 0dbe1ea83890532da6785313e4666d2077967eb3 [file] [log] [blame]
Shih-wei Liaof8fd82b2010-02-10 11:10:31 -08001//===--- ParseExprCXX.cpp - C++ Expression Parsing ------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expression parsing implementation for C++.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Parse/ParseDiagnostic.h"
15#include "clang/Parse/Parser.h"
16#include "clang/Parse/DeclSpec.h"
17#include "clang/Parse/Template.h"
18#include "llvm/Support/ErrorHandling.h"
19
20using namespace clang;
21
22/// \brief Parse global scope or nested-name-specifier if present.
23///
24/// Parses a C++ global scope specifier ('::') or nested-name-specifier (which
25/// may be preceded by '::'). Note that this routine will not parse ::new or
26/// ::delete; it will just leave them in the token stream.
27///
28/// '::'[opt] nested-name-specifier
29/// '::'
30///
31/// nested-name-specifier:
32/// type-name '::'
33/// namespace-name '::'
34/// nested-name-specifier identifier '::'
35/// nested-name-specifier 'template'[opt] simple-template-id '::'
36///
37///
38/// \param SS the scope specifier that will be set to the parsed
39/// nested-name-specifier (or empty)
40///
41/// \param ObjectType if this nested-name-specifier is being parsed following
42/// the "." or "->" of a member access expression, this parameter provides the
43/// type of the object whose members are being accessed.
44///
45/// \param EnteringContext whether we will be entering into the context of
46/// the nested-name-specifier after parsing it.
47///
48/// \returns true if a scope specifier was parsed.
49bool Parser::ParseOptionalCXXScopeSpecifier(CXXScopeSpec &SS,
50 Action::TypeTy *ObjectType,
51 bool EnteringContext) {
52 assert(getLang().CPlusPlus &&
53 "Call sites of this function should be guarded by checking for C++");
54
55 if (Tok.is(tok::annot_cxxscope)) {
56 SS.setScopeRep(Tok.getAnnotationValue());
57 SS.setRange(Tok.getAnnotationRange());
58 ConsumeToken();
59 return true;
60 }
61
62 bool HasScopeSpecifier = false;
63
64 if (Tok.is(tok::coloncolon)) {
65 // ::new and ::delete aren't nested-name-specifiers.
66 tok::TokenKind NextKind = NextToken().getKind();
67 if (NextKind == tok::kw_new || NextKind == tok::kw_delete)
68 return false;
69
70 // '::' - Global scope qualifier.
71 SourceLocation CCLoc = ConsumeToken();
72 SS.setBeginLoc(CCLoc);
73 SS.setScopeRep(Actions.ActOnCXXGlobalScopeSpecifier(CurScope, CCLoc));
74 SS.setEndLoc(CCLoc);
75 HasScopeSpecifier = true;
76 }
77
78 while (true) {
79 if (HasScopeSpecifier) {
80 // C++ [basic.lookup.classref]p5:
81 // If the qualified-id has the form
82 //
83 // ::class-name-or-namespace-name::...
84 //
85 // the class-name-or-namespace-name is looked up in global scope as a
86 // class-name or namespace-name.
87 //
88 // To implement this, we clear out the object type as soon as we've
89 // seen a leading '::' or part of a nested-name-specifier.
90 ObjectType = 0;
91
92 if (Tok.is(tok::code_completion)) {
93 // Code completion for a nested-name-specifier, where the code
94 // code completion token follows the '::'.
95 Actions.CodeCompleteQualifiedId(CurScope, SS, EnteringContext);
96 ConsumeToken();
97 }
98 }
99
100 // nested-name-specifier:
101 // nested-name-specifier 'template'[opt] simple-template-id '::'
102
103 // Parse the optional 'template' keyword, then make sure we have
104 // 'identifier <' after it.
105 if (Tok.is(tok::kw_template)) {
106 // If we don't have a scope specifier or an object type, this isn't a
107 // nested-name-specifier, since they aren't allowed to start with
108 // 'template'.
109 if (!HasScopeSpecifier && !ObjectType)
110 break;
111
112 TentativeParsingAction TPA(*this);
113 SourceLocation TemplateKWLoc = ConsumeToken();
114
115 UnqualifiedId TemplateName;
116 if (Tok.is(tok::identifier)) {
117 // Consume the identifier.
118 TemplateName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
119 ConsumeToken();
120 } else if (Tok.is(tok::kw_operator)) {
121 if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType,
122 TemplateName)) {
123 TPA.Commit();
124 break;
125 }
126
127 if (TemplateName.getKind() != UnqualifiedId::IK_OperatorFunctionId &&
128 TemplateName.getKind() != UnqualifiedId::IK_LiteralOperatorId) {
129 Diag(TemplateName.getSourceRange().getBegin(),
130 diag::err_id_after_template_in_nested_name_spec)
131 << TemplateName.getSourceRange();
132 TPA.Commit();
133 break;
134 }
135 } else {
136 TPA.Revert();
137 break;
138 }
139
140 // If the next token is not '<', we have a qualified-id that refers
141 // to a template name, such as T::template apply, but is not a
142 // template-id.
143 if (Tok.isNot(tok::less)) {
144 TPA.Revert();
145 break;
146 }
147
148 // Commit to parsing the template-id.
149 TPA.Commit();
150 TemplateTy Template
151 = Actions.ActOnDependentTemplateName(TemplateKWLoc, SS, TemplateName,
152 ObjectType, EnteringContext);
153 if (!Template)
154 break;
155 if (AnnotateTemplateIdToken(Template, TNK_Dependent_template_name,
156 &SS, TemplateName, TemplateKWLoc, false))
157 break;
158
159 continue;
160 }
161
162 if (Tok.is(tok::annot_template_id) && NextToken().is(tok::coloncolon)) {
163 // We have
164 //
165 // simple-template-id '::'
166 //
167 // So we need to check whether the simple-template-id is of the
168 // right kind (it should name a type or be dependent), and then
169 // convert it into a type within the nested-name-specifier.
170 TemplateIdAnnotation *TemplateId
171 = static_cast<TemplateIdAnnotation *>(Tok.getAnnotationValue());
172
173 if (TemplateId->Kind == TNK_Type_template ||
174 TemplateId->Kind == TNK_Dependent_template_name) {
175 AnnotateTemplateIdTokenAsType(&SS);
176
177 assert(Tok.is(tok::annot_typename) &&
178 "AnnotateTemplateIdTokenAsType isn't working");
179 Token TypeToken = Tok;
180 ConsumeToken();
181 assert(Tok.is(tok::coloncolon) && "NextToken() not working properly!");
182 SourceLocation CCLoc = ConsumeToken();
183
184 if (!HasScopeSpecifier) {
185 SS.setBeginLoc(TypeToken.getLocation());
186 HasScopeSpecifier = true;
187 }
188
189 if (TypeToken.getAnnotationValue())
190 SS.setScopeRep(
191 Actions.ActOnCXXNestedNameSpecifier(CurScope, SS,
192 TypeToken.getAnnotationValue(),
193 TypeToken.getAnnotationRange(),
194 CCLoc));
195 else
196 SS.setScopeRep(0);
197 SS.setEndLoc(CCLoc);
198 continue;
199 }
200
201 assert(false && "FIXME: Only type template names supported here");
202 }
203
204
205 // The rest of the nested-name-specifier possibilities start with
206 // tok::identifier.
207 if (Tok.isNot(tok::identifier))
208 break;
209
210 IdentifierInfo &II = *Tok.getIdentifierInfo();
211
212 // nested-name-specifier:
213 // type-name '::'
214 // namespace-name '::'
215 // nested-name-specifier identifier '::'
216 Token Next = NextToken();
217
218 // If we get foo:bar, this is almost certainly a typo for foo::bar. Recover
219 // and emit a fixit hint for it.
220 if (Next.is(tok::colon) && !ColonIsSacred &&
221 Actions.IsInvalidUnlessNestedName(CurScope, SS, II, ObjectType,
222 EnteringContext) &&
223 // If the token after the colon isn't an identifier, it's still an
224 // error, but they probably meant something else strange so don't
225 // recover like this.
226 PP.LookAhead(1).is(tok::identifier)) {
227 Diag(Next, diag::err_unexected_colon_in_nested_name_spec)
228 << CodeModificationHint::CreateReplacement(Next.getLocation(), "::");
229
230 // Recover as if the user wrote '::'.
231 Next.setKind(tok::coloncolon);
232 }
233
234 if (Next.is(tok::coloncolon)) {
235 // We have an identifier followed by a '::'. Lookup this name
236 // as the name in a nested-name-specifier.
237 SourceLocation IdLoc = ConsumeToken();
238 assert((Tok.is(tok::coloncolon) || Tok.is(tok::colon)) &&
239 "NextToken() not working properly!");
240 SourceLocation CCLoc = ConsumeToken();
241
242 if (!HasScopeSpecifier) {
243 SS.setBeginLoc(IdLoc);
244 HasScopeSpecifier = true;
245 }
246
247 if (SS.isInvalid())
248 continue;
249
250 SS.setScopeRep(
251 Actions.ActOnCXXNestedNameSpecifier(CurScope, SS, IdLoc, CCLoc, II,
252 ObjectType, EnteringContext));
253 SS.setEndLoc(CCLoc);
254 continue;
255 }
256
257 // nested-name-specifier:
258 // type-name '<'
259 if (Next.is(tok::less)) {
260 TemplateTy Template;
261 UnqualifiedId TemplateName;
262 TemplateName.setIdentifier(&II, Tok.getLocation());
263 if (TemplateNameKind TNK = Actions.isTemplateName(CurScope, SS,
264 TemplateName,
265 ObjectType,
266 EnteringContext,
267 Template)) {
268 // We have found a template name, so annotate this this token
269 // with a template-id annotation. We do not permit the
270 // template-id to be translated into a type annotation,
271 // because some clients (e.g., the parsing of class template
272 // specializations) still want to see the original template-id
273 // token.
274 ConsumeToken();
275 if (AnnotateTemplateIdToken(Template, TNK, &SS, TemplateName,
276 SourceLocation(), false))
277 break;
278 continue;
279 }
280 }
281
282 // We don't have any tokens that form the beginning of a
283 // nested-name-specifier, so we're done.
284 break;
285 }
286
287 return HasScopeSpecifier;
288}
289
290/// ParseCXXIdExpression - Handle id-expression.
291///
292/// id-expression:
293/// unqualified-id
294/// qualified-id
295///
296/// qualified-id:
297/// '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
298/// '::' identifier
299/// '::' operator-function-id
300/// '::' template-id
301///
302/// NOTE: The standard specifies that, for qualified-id, the parser does not
303/// expect:
304///
305/// '::' conversion-function-id
306/// '::' '~' class-name
307///
308/// This may cause a slight inconsistency on diagnostics:
309///
310/// class C {};
311/// namespace A {}
312/// void f() {
313/// :: A :: ~ C(); // Some Sema error about using destructor with a
314/// // namespace.
315/// :: ~ C(); // Some Parser error like 'unexpected ~'.
316/// }
317///
318/// We simplify the parser a bit and make it work like:
319///
320/// qualified-id:
321/// '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
322/// '::' unqualified-id
323///
324/// That way Sema can handle and report similar errors for namespaces and the
325/// global scope.
326///
327/// The isAddressOfOperand parameter indicates that this id-expression is a
328/// direct operand of the address-of operator. This is, besides member contexts,
329/// the only place where a qualified-id naming a non-static class member may
330/// appear.
331///
332Parser::OwningExprResult Parser::ParseCXXIdExpression(bool isAddressOfOperand) {
333 // qualified-id:
334 // '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
335 // '::' unqualified-id
336 //
337 CXXScopeSpec SS;
338 ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/0, false);
339
340 UnqualifiedId Name;
341 if (ParseUnqualifiedId(SS,
342 /*EnteringContext=*/false,
343 /*AllowDestructorName=*/false,
344 /*AllowConstructorName=*/false,
345 /*ObjectType=*/0,
346 Name))
347 return ExprError();
348
349 // This is only the direct operand of an & operator if it is not
350 // followed by a postfix-expression suffix.
351 if (isAddressOfOperand) {
352 switch (Tok.getKind()) {
353 case tok::l_square:
354 case tok::l_paren:
355 case tok::arrow:
356 case tok::period:
357 case tok::plusplus:
358 case tok::minusminus:
359 isAddressOfOperand = false;
360 break;
361
362 default:
363 break;
364 }
365 }
366
367 return Actions.ActOnIdExpression(CurScope, SS, Name, Tok.is(tok::l_paren),
368 isAddressOfOperand);
369
370}
371
372/// ParseCXXCasts - This handles the various ways to cast expressions to another
373/// type.
374///
375/// postfix-expression: [C++ 5.2p1]
376/// 'dynamic_cast' '<' type-name '>' '(' expression ')'
377/// 'static_cast' '<' type-name '>' '(' expression ')'
378/// 'reinterpret_cast' '<' type-name '>' '(' expression ')'
379/// 'const_cast' '<' type-name '>' '(' expression ')'
380///
381Parser::OwningExprResult Parser::ParseCXXCasts() {
382 tok::TokenKind Kind = Tok.getKind();
383 const char *CastName = 0; // For error messages
384
385 switch (Kind) {
386 default: assert(0 && "Unknown C++ cast!"); abort();
387 case tok::kw_const_cast: CastName = "const_cast"; break;
388 case tok::kw_dynamic_cast: CastName = "dynamic_cast"; break;
389 case tok::kw_reinterpret_cast: CastName = "reinterpret_cast"; break;
390 case tok::kw_static_cast: CastName = "static_cast"; break;
391 }
392
393 SourceLocation OpLoc = ConsumeToken();
394 SourceLocation LAngleBracketLoc = Tok.getLocation();
395
396 if (ExpectAndConsume(tok::less, diag::err_expected_less_after, CastName))
397 return ExprError();
398
399 TypeResult CastTy = ParseTypeName();
400 SourceLocation RAngleBracketLoc = Tok.getLocation();
401
402 if (ExpectAndConsume(tok::greater, diag::err_expected_greater))
403 return ExprError(Diag(LAngleBracketLoc, diag::note_matching) << "<");
404
405 SourceLocation LParenLoc = Tok.getLocation(), RParenLoc;
406
407 if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, CastName))
408 return ExprError();
409
410 OwningExprResult Result = ParseExpression();
411
412 // Match the ')'.
413 RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
414
415 if (!Result.isInvalid() && !CastTy.isInvalid())
416 Result = Actions.ActOnCXXNamedCast(OpLoc, Kind,
417 LAngleBracketLoc, CastTy.get(),
418 RAngleBracketLoc,
419 LParenLoc, move(Result), RParenLoc);
420
421 return move(Result);
422}
423
424/// ParseCXXTypeid - This handles the C++ typeid expression.
425///
426/// postfix-expression: [C++ 5.2p1]
427/// 'typeid' '(' expression ')'
428/// 'typeid' '(' type-id ')'
429///
430Parser::OwningExprResult Parser::ParseCXXTypeid() {
431 assert(Tok.is(tok::kw_typeid) && "Not 'typeid'!");
432
433 SourceLocation OpLoc = ConsumeToken();
434 SourceLocation LParenLoc = Tok.getLocation();
435 SourceLocation RParenLoc;
436
437 // typeid expressions are always parenthesized.
438 if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
439 "typeid"))
440 return ExprError();
441
442 OwningExprResult Result(Actions);
443
444 if (isTypeIdInParens()) {
445 TypeResult Ty = ParseTypeName();
446
447 // Match the ')'.
448 MatchRHSPunctuation(tok::r_paren, LParenLoc);
449
450 if (Ty.isInvalid())
451 return ExprError();
452
453 Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/true,
454 Ty.get(), RParenLoc);
455 } else {
456 // C++0x [expr.typeid]p3:
457 // When typeid is applied to an expression other than an lvalue of a
458 // polymorphic class type [...] The expression is an unevaluated
459 // operand (Clause 5).
460 //
461 // Note that we can't tell whether the expression is an lvalue of a
462 // polymorphic class type until after we've parsed the expression, so
463 // we the expression is potentially potentially evaluated.
464 EnterExpressionEvaluationContext Unevaluated(Actions,
465 Action::PotentiallyPotentiallyEvaluated);
466 Result = ParseExpression();
467
468 // Match the ')'.
469 if (Result.isInvalid())
470 SkipUntil(tok::r_paren);
471 else {
472 MatchRHSPunctuation(tok::r_paren, LParenLoc);
473
474 Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/false,
475 Result.release(), RParenLoc);
476 }
477 }
478
479 return move(Result);
480}
481
482/// ParseCXXBoolLiteral - This handles the C++ Boolean literals.
483///
484/// boolean-literal: [C++ 2.13.5]
485/// 'true'
486/// 'false'
487Parser::OwningExprResult Parser::ParseCXXBoolLiteral() {
488 tok::TokenKind Kind = Tok.getKind();
489 return Actions.ActOnCXXBoolLiteral(ConsumeToken(), Kind);
490}
491
492/// ParseThrowExpression - This handles the C++ throw expression.
493///
494/// throw-expression: [C++ 15]
495/// 'throw' assignment-expression[opt]
496Parser::OwningExprResult Parser::ParseThrowExpression() {
497 assert(Tok.is(tok::kw_throw) && "Not throw!");
498 SourceLocation ThrowLoc = ConsumeToken(); // Eat the throw token.
499
500 // If the current token isn't the start of an assignment-expression,
501 // then the expression is not present. This handles things like:
502 // "C ? throw : (void)42", which is crazy but legal.
503 switch (Tok.getKind()) { // FIXME: move this predicate somewhere common.
504 case tok::semi:
505 case tok::r_paren:
506 case tok::r_square:
507 case tok::r_brace:
508 case tok::colon:
509 case tok::comma:
510 return Actions.ActOnCXXThrow(ThrowLoc, ExprArg(Actions));
511
512 default:
513 OwningExprResult Expr(ParseAssignmentExpression());
514 if (Expr.isInvalid()) return move(Expr);
515 return Actions.ActOnCXXThrow(ThrowLoc, move(Expr));
516 }
517}
518
519/// ParseCXXThis - This handles the C++ 'this' pointer.
520///
521/// C++ 9.3.2: In the body of a non-static member function, the keyword this is
522/// a non-lvalue expression whose value is the address of the object for which
523/// the function is called.
524Parser::OwningExprResult Parser::ParseCXXThis() {
525 assert(Tok.is(tok::kw_this) && "Not 'this'!");
526 SourceLocation ThisLoc = ConsumeToken();
527 return Actions.ActOnCXXThis(ThisLoc);
528}
529
530/// ParseCXXTypeConstructExpression - Parse construction of a specified type.
531/// Can be interpreted either as function-style casting ("int(x)")
532/// or class type construction ("ClassType(x,y,z)")
533/// or creation of a value-initialized type ("int()").
534///
535/// postfix-expression: [C++ 5.2p1]
536/// simple-type-specifier '(' expression-list[opt] ')' [C++ 5.2.3]
537/// typename-specifier '(' expression-list[opt] ')' [TODO]
538///
539Parser::OwningExprResult
540Parser::ParseCXXTypeConstructExpression(const DeclSpec &DS) {
541 Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
542 TypeTy *TypeRep = Actions.ActOnTypeName(CurScope, DeclaratorInfo).get();
543
544 assert(Tok.is(tok::l_paren) && "Expected '('!");
545 SourceLocation LParenLoc = ConsumeParen();
546
547 ExprVector Exprs(Actions);
548 CommaLocsTy CommaLocs;
549
550 if (Tok.isNot(tok::r_paren)) {
551 if (ParseExpressionList(Exprs, CommaLocs)) {
552 SkipUntil(tok::r_paren);
553 return ExprError();
554 }
555 }
556
557 // Match the ')'.
558 SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
559
560 // TypeRep could be null, if it references an invalid typedef.
561 if (!TypeRep)
562 return ExprError();
563
564 assert((Exprs.size() == 0 || Exprs.size()-1 == CommaLocs.size())&&
565 "Unexpected number of commas!");
566 return Actions.ActOnCXXTypeConstructExpr(DS.getSourceRange(), TypeRep,
567 LParenLoc, move_arg(Exprs),
568 CommaLocs.data(), RParenLoc);
569}
570
571/// ParseCXXCondition - if/switch/while condition expression.
572///
573/// condition:
574/// expression
575/// type-specifier-seq declarator '=' assignment-expression
576/// [GNU] type-specifier-seq declarator simple-asm-expr[opt] attributes[opt]
577/// '=' assignment-expression
578///
579/// \param ExprResult if the condition was parsed as an expression, the
580/// parsed expression.
581///
582/// \param DeclResult if the condition was parsed as a declaration, the
583/// parsed declaration.
584///
585/// \returns true if there was a parsing, false otherwise.
586bool Parser::ParseCXXCondition(OwningExprResult &ExprResult,
587 DeclPtrTy &DeclResult) {
588 if (Tok.is(tok::code_completion)) {
589 Actions.CodeCompleteOrdinaryName(CurScope, Action::CCC_Condition);
590 ConsumeToken();
591 }
592
593 if (!isCXXConditionDeclaration()) {
594 ExprResult = ParseExpression(); // expression
595 DeclResult = DeclPtrTy();
596 return ExprResult.isInvalid();
597 }
598
599 // type-specifier-seq
600 DeclSpec DS;
601 ParseSpecifierQualifierList(DS);
602
603 // declarator
604 Declarator DeclaratorInfo(DS, Declarator::ConditionContext);
605 ParseDeclarator(DeclaratorInfo);
606
607 // simple-asm-expr[opt]
608 if (Tok.is(tok::kw_asm)) {
609 SourceLocation Loc;
610 OwningExprResult AsmLabel(ParseSimpleAsm(&Loc));
611 if (AsmLabel.isInvalid()) {
612 SkipUntil(tok::semi);
613 return true;
614 }
615 DeclaratorInfo.setAsmLabel(AsmLabel.release());
616 DeclaratorInfo.SetRangeEnd(Loc);
617 }
618
619 // If attributes are present, parse them.
620 if (Tok.is(tok::kw___attribute)) {
621 SourceLocation Loc;
622 AttributeList *AttrList = ParseGNUAttributes(&Loc);
623 DeclaratorInfo.AddAttributes(AttrList, Loc);
624 }
625
626 // Type-check the declaration itself.
627 Action::DeclResult Dcl = Actions.ActOnCXXConditionDeclaration(CurScope,
628 DeclaratorInfo);
629 DeclResult = Dcl.get();
630 ExprResult = ExprError();
631
632 // '=' assignment-expression
633 if (Tok.is(tok::equal)) {
634 SourceLocation EqualLoc = ConsumeToken();
635 OwningExprResult AssignExpr(ParseAssignmentExpression());
636 if (!AssignExpr.isInvalid())
637 Actions.AddInitializerToDecl(DeclResult, move(AssignExpr));
638 } else {
639 // FIXME: C++0x allows a braced-init-list
640 Diag(Tok, diag::err_expected_equal_after_declarator);
641 }
642
643 return false;
644}
645
646/// ParseCXXSimpleTypeSpecifier - [C++ 7.1.5.2] Simple type specifiers.
647/// This should only be called when the current token is known to be part of
648/// simple-type-specifier.
649///
650/// simple-type-specifier:
651/// '::'[opt] nested-name-specifier[opt] type-name
652/// '::'[opt] nested-name-specifier 'template' simple-template-id [TODO]
653/// char
654/// wchar_t
655/// bool
656/// short
657/// int
658/// long
659/// signed
660/// unsigned
661/// float
662/// double
663/// void
664/// [GNU] typeof-specifier
665/// [C++0x] auto [TODO]
666///
667/// type-name:
668/// class-name
669/// enum-name
670/// typedef-name
671///
672void Parser::ParseCXXSimpleTypeSpecifier(DeclSpec &DS) {
673 DS.SetRangeStart(Tok.getLocation());
674 const char *PrevSpec;
675 unsigned DiagID;
676 SourceLocation Loc = Tok.getLocation();
677
678 switch (Tok.getKind()) {
679 case tok::identifier: // foo::bar
680 case tok::coloncolon: // ::foo::bar
681 assert(0 && "Annotation token should already be formed!");
682 default:
683 assert(0 && "Not a simple-type-specifier token!");
684 abort();
685
686 // type-name
687 case tok::annot_typename: {
688 DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID,
689 Tok.getAnnotationValue());
690 break;
691 }
692
693 // builtin types
694 case tok::kw_short:
695 DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec, DiagID);
696 break;
697 case tok::kw_long:
698 DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec, DiagID);
699 break;
700 case tok::kw_signed:
701 DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec, DiagID);
702 break;
703 case tok::kw_unsigned:
704 DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec, DiagID);
705 break;
706 case tok::kw_void:
707 DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, DiagID);
708 break;
709 case tok::kw_char:
710 DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, DiagID);
711 break;
712 case tok::kw_int:
713 DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, DiagID);
714 break;
715 case tok::kw_float:
716 DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, DiagID);
717 break;
718 case tok::kw_double:
719 DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, DiagID);
720 break;
721 case tok::kw_wchar_t:
722 DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, DiagID);
723 break;
724 case tok::kw_char16_t:
725 DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, DiagID);
726 break;
727 case tok::kw_char32_t:
728 DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, DiagID);
729 break;
730 case tok::kw_bool:
731 DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, DiagID);
732 break;
733
734 // GNU typeof support.
735 case tok::kw_typeof:
736 ParseTypeofSpecifier(DS);
737 DS.Finish(Diags, PP);
738 return;
739 }
740 if (Tok.is(tok::annot_typename))
741 DS.SetRangeEnd(Tok.getAnnotationEndLoc());
742 else
743 DS.SetRangeEnd(Tok.getLocation());
744 ConsumeToken();
745 DS.Finish(Diags, PP);
746}
747
748/// ParseCXXTypeSpecifierSeq - Parse a C++ type-specifier-seq (C++
749/// [dcl.name]), which is a non-empty sequence of type-specifiers,
750/// e.g., "const short int". Note that the DeclSpec is *not* finished
751/// by parsing the type-specifier-seq, because these sequences are
752/// typically followed by some form of declarator. Returns true and
753/// emits diagnostics if this is not a type-specifier-seq, false
754/// otherwise.
755///
756/// type-specifier-seq: [C++ 8.1]
757/// type-specifier type-specifier-seq[opt]
758///
759bool Parser::ParseCXXTypeSpecifierSeq(DeclSpec &DS) {
760 DS.SetRangeStart(Tok.getLocation());
761 const char *PrevSpec = 0;
762 unsigned DiagID;
763 bool isInvalid = 0;
764
765 // Parse one or more of the type specifiers.
766 if (!ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, DiagID,
767 ParsedTemplateInfo(), /*SuppressDeclarations*/true)) {
768 Diag(Tok, diag::err_operator_missing_type_specifier);
769 return true;
770 }
771
772 while (ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, DiagID,
773 ParsedTemplateInfo(), /*SuppressDeclarations*/true))
774 {}
775
776 return false;
777}
778
779/// \brief Finish parsing a C++ unqualified-id that is a template-id of
780/// some form.
781///
782/// This routine is invoked when a '<' is encountered after an identifier or
783/// operator-function-id is parsed by \c ParseUnqualifiedId() to determine
784/// whether the unqualified-id is actually a template-id. This routine will
785/// then parse the template arguments and form the appropriate template-id to
786/// return to the caller.
787///
788/// \param SS the nested-name-specifier that precedes this template-id, if
789/// we're actually parsing a qualified-id.
790///
791/// \param Name for constructor and destructor names, this is the actual
792/// identifier that may be a template-name.
793///
794/// \param NameLoc the location of the class-name in a constructor or
795/// destructor.
796///
797/// \param EnteringContext whether we're entering the scope of the
798/// nested-name-specifier.
799///
800/// \param ObjectType if this unqualified-id occurs within a member access
801/// expression, the type of the base object whose member is being accessed.
802///
803/// \param Id as input, describes the template-name or operator-function-id
804/// that precedes the '<'. If template arguments were parsed successfully,
805/// will be updated with the template-id.
806///
807/// \returns true if a parse error occurred, false otherwise.
808bool Parser::ParseUnqualifiedIdTemplateId(CXXScopeSpec &SS,
809 IdentifierInfo *Name,
810 SourceLocation NameLoc,
811 bool EnteringContext,
812 TypeTy *ObjectType,
813 UnqualifiedId &Id) {
814 assert(Tok.is(tok::less) && "Expected '<' to finish parsing a template-id");
815
816 TemplateTy Template;
817 TemplateNameKind TNK = TNK_Non_template;
818 switch (Id.getKind()) {
819 case UnqualifiedId::IK_Identifier:
820 case UnqualifiedId::IK_OperatorFunctionId:
821 case UnqualifiedId::IK_LiteralOperatorId:
822 TNK = Actions.isTemplateName(CurScope, SS, Id, ObjectType, EnteringContext,
823 Template);
824 break;
825
826 case UnqualifiedId::IK_ConstructorName: {
827 UnqualifiedId TemplateName;
828 TemplateName.setIdentifier(Name, NameLoc);
829 TNK = Actions.isTemplateName(CurScope, SS, TemplateName, ObjectType,
830 EnteringContext, Template);
831 break;
832 }
833
834 case UnqualifiedId::IK_DestructorName: {
835 UnqualifiedId TemplateName;
836 TemplateName.setIdentifier(Name, NameLoc);
837 if (ObjectType) {
838 Template = Actions.ActOnDependentTemplateName(SourceLocation(), SS,
839 TemplateName, ObjectType,
840 EnteringContext);
841 TNK = TNK_Dependent_template_name;
842 if (!Template.get())
843 return true;
844 } else {
845 TNK = Actions.isTemplateName(CurScope, SS, TemplateName, ObjectType,
846 EnteringContext, Template);
847
848 if (TNK == TNK_Non_template && Id.DestructorName == 0) {
849 // The identifier following the destructor did not refer to a template
850 // or to a type. Complain.
851 if (ObjectType)
852 Diag(NameLoc, diag::err_ident_in_pseudo_dtor_not_a_type)
853 << Name;
854 else
855 Diag(NameLoc, diag::err_destructor_class_name);
856 return true;
857 }
858 }
859 break;
860 }
861
862 default:
863 return false;
864 }
865
866 if (TNK == TNK_Non_template)
867 return false;
868
869 // Parse the enclosed template argument list.
870 SourceLocation LAngleLoc, RAngleLoc;
871 TemplateArgList TemplateArgs;
872 if (ParseTemplateIdAfterTemplateName(Template, Id.StartLocation,
873 &SS, true, LAngleLoc,
874 TemplateArgs,
875 RAngleLoc))
876 return true;
877
878 if (Id.getKind() == UnqualifiedId::IK_Identifier ||
879 Id.getKind() == UnqualifiedId::IK_OperatorFunctionId ||
880 Id.getKind() == UnqualifiedId::IK_LiteralOperatorId) {
881 // Form a parsed representation of the template-id to be stored in the
882 // UnqualifiedId.
883 TemplateIdAnnotation *TemplateId
884 = TemplateIdAnnotation::Allocate(TemplateArgs.size());
885
886 if (Id.getKind() == UnqualifiedId::IK_Identifier) {
887 TemplateId->Name = Id.Identifier;
888 TemplateId->Operator = OO_None;
889 TemplateId->TemplateNameLoc = Id.StartLocation;
890 } else {
891 TemplateId->Name = 0;
892 TemplateId->Operator = Id.OperatorFunctionId.Operator;
893 TemplateId->TemplateNameLoc = Id.StartLocation;
894 }
895
896 TemplateId->Template = Template.getAs<void*>();
897 TemplateId->Kind = TNK;
898 TemplateId->LAngleLoc = LAngleLoc;
899 TemplateId->RAngleLoc = RAngleLoc;
900 ParsedTemplateArgument *Args = TemplateId->getTemplateArgs();
901 for (unsigned Arg = 0, ArgEnd = TemplateArgs.size();
902 Arg != ArgEnd; ++Arg)
903 Args[Arg] = TemplateArgs[Arg];
904
905 Id.setTemplateId(TemplateId);
906 return false;
907 }
908
909 // Bundle the template arguments together.
910 ASTTemplateArgsPtr TemplateArgsPtr(Actions, TemplateArgs.data(),
911 TemplateArgs.size());
912
913 // Constructor and destructor names.
914 Action::TypeResult Type
915 = Actions.ActOnTemplateIdType(Template, NameLoc,
916 LAngleLoc, TemplateArgsPtr,
917 RAngleLoc);
918 if (Type.isInvalid())
919 return true;
920
921 if (Id.getKind() == UnqualifiedId::IK_ConstructorName)
922 Id.setConstructorName(Type.get(), NameLoc, RAngleLoc);
923 else
924 Id.setDestructorName(Id.StartLocation, Type.get(), RAngleLoc);
925
926 return false;
927}
928
929/// \brief Parse an operator-function-id or conversion-function-id as part
930/// of a C++ unqualified-id.
931///
932/// This routine is responsible only for parsing the operator-function-id or
933/// conversion-function-id; it does not handle template arguments in any way.
934///
935/// \code
936/// operator-function-id: [C++ 13.5]
937/// 'operator' operator
938///
939/// operator: one of
940/// new delete new[] delete[]
941/// + - * / % ^ & | ~
942/// ! = < > += -= *= /= %=
943/// ^= &= |= << >> >>= <<= == !=
944/// <= >= && || ++ -- , ->* ->
945/// () []
946///
947/// conversion-function-id: [C++ 12.3.2]
948/// operator conversion-type-id
949///
950/// conversion-type-id:
951/// type-specifier-seq conversion-declarator[opt]
952///
953/// conversion-declarator:
954/// ptr-operator conversion-declarator[opt]
955/// \endcode
956///
957/// \param The nested-name-specifier that preceded this unqualified-id. If
958/// non-empty, then we are parsing the unqualified-id of a qualified-id.
959///
960/// \param EnteringContext whether we are entering the scope of the
961/// nested-name-specifier.
962///
963/// \param ObjectType if this unqualified-id occurs within a member access
964/// expression, the type of the base object whose member is being accessed.
965///
966/// \param Result on a successful parse, contains the parsed unqualified-id.
967///
968/// \returns true if parsing fails, false otherwise.
969bool Parser::ParseUnqualifiedIdOperator(CXXScopeSpec &SS, bool EnteringContext,
970 TypeTy *ObjectType,
971 UnqualifiedId &Result) {
972 assert(Tok.is(tok::kw_operator) && "Expected 'operator' keyword");
973
974 // Consume the 'operator' keyword.
975 SourceLocation KeywordLoc = ConsumeToken();
976
977 // Determine what kind of operator name we have.
978 unsigned SymbolIdx = 0;
979 SourceLocation SymbolLocations[3];
980 OverloadedOperatorKind Op = OO_None;
981 switch (Tok.getKind()) {
982 case tok::kw_new:
983 case tok::kw_delete: {
984 bool isNew = Tok.getKind() == tok::kw_new;
985 // Consume the 'new' or 'delete'.
986 SymbolLocations[SymbolIdx++] = ConsumeToken();
987 if (Tok.is(tok::l_square)) {
988 // Consume the '['.
989 SourceLocation LBracketLoc = ConsumeBracket();
990 // Consume the ']'.
991 SourceLocation RBracketLoc = MatchRHSPunctuation(tok::r_square,
992 LBracketLoc);
993 if (RBracketLoc.isInvalid())
994 return true;
995
996 SymbolLocations[SymbolIdx++] = LBracketLoc;
997 SymbolLocations[SymbolIdx++] = RBracketLoc;
998 Op = isNew? OO_Array_New : OO_Array_Delete;
999 } else {
1000 Op = isNew? OO_New : OO_Delete;
1001 }
1002 break;
1003 }
1004
1005#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
1006 case tok::Token: \
1007 SymbolLocations[SymbolIdx++] = ConsumeToken(); \
1008 Op = OO_##Name; \
1009 break;
1010#define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly)
1011#include "clang/Basic/OperatorKinds.def"
1012
1013 case tok::l_paren: {
1014 // Consume the '('.
1015 SourceLocation LParenLoc = ConsumeParen();
1016 // Consume the ')'.
1017 SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren,
1018 LParenLoc);
1019 if (RParenLoc.isInvalid())
1020 return true;
1021
1022 SymbolLocations[SymbolIdx++] = LParenLoc;
1023 SymbolLocations[SymbolIdx++] = RParenLoc;
1024 Op = OO_Call;
1025 break;
1026 }
1027
1028 case tok::l_square: {
1029 // Consume the '['.
1030 SourceLocation LBracketLoc = ConsumeBracket();
1031 // Consume the ']'.
1032 SourceLocation RBracketLoc = MatchRHSPunctuation(tok::r_square,
1033 LBracketLoc);
1034 if (RBracketLoc.isInvalid())
1035 return true;
1036
1037 SymbolLocations[SymbolIdx++] = LBracketLoc;
1038 SymbolLocations[SymbolIdx++] = RBracketLoc;
1039 Op = OO_Subscript;
1040 break;
1041 }
1042
1043 case tok::code_completion: {
1044 // Code completion for the operator name.
1045 Actions.CodeCompleteOperatorName(CurScope);
1046
1047 // Consume the operator token.
1048 ConsumeToken();
1049
1050 // Don't try to parse any further.
1051 return true;
1052 }
1053
1054 default:
1055 break;
1056 }
1057
1058 if (Op != OO_None) {
1059 // We have parsed an operator-function-id.
1060 Result.setOperatorFunctionId(KeywordLoc, Op, SymbolLocations);
1061 return false;
1062 }
1063
1064 // Parse a literal-operator-id.
1065 //
1066 // literal-operator-id: [C++0x 13.5.8]
1067 // operator "" identifier
1068
1069 if (getLang().CPlusPlus0x && Tok.is(tok::string_literal)) {
1070 if (Tok.getLength() != 2)
1071 Diag(Tok.getLocation(), diag::err_operator_string_not_empty);
1072 ConsumeStringToken();
1073
1074 if (Tok.isNot(tok::identifier)) {
1075 Diag(Tok.getLocation(), diag::err_expected_ident);
1076 return true;
1077 }
1078
1079 IdentifierInfo *II = Tok.getIdentifierInfo();
1080 Result.setLiteralOperatorId(II, KeywordLoc, ConsumeToken());
1081 return false;
1082 }
1083
1084 // Parse a conversion-function-id.
1085 //
1086 // conversion-function-id: [C++ 12.3.2]
1087 // operator conversion-type-id
1088 //
1089 // conversion-type-id:
1090 // type-specifier-seq conversion-declarator[opt]
1091 //
1092 // conversion-declarator:
1093 // ptr-operator conversion-declarator[opt]
1094
1095 // Parse the type-specifier-seq.
1096 DeclSpec DS;
1097 if (ParseCXXTypeSpecifierSeq(DS)) // FIXME: ObjectType?
1098 return true;
1099
1100 // Parse the conversion-declarator, which is merely a sequence of
1101 // ptr-operators.
1102 Declarator D(DS, Declarator::TypeNameContext);
1103 ParseDeclaratorInternal(D, /*DirectDeclParser=*/0);
1104
1105 // Finish up the type.
1106 Action::TypeResult Ty = Actions.ActOnTypeName(CurScope, D);
1107 if (Ty.isInvalid())
1108 return true;
1109
1110 // Note that this is a conversion-function-id.
1111 Result.setConversionFunctionId(KeywordLoc, Ty.get(),
1112 D.getSourceRange().getEnd());
1113 return false;
1114}
1115
1116/// \brief Parse a C++ unqualified-id (or a C identifier), which describes the
1117/// name of an entity.
1118///
1119/// \code
1120/// unqualified-id: [C++ expr.prim.general]
1121/// identifier
1122/// operator-function-id
1123/// conversion-function-id
1124/// [C++0x] literal-operator-id [TODO]
1125/// ~ class-name
1126/// template-id
1127///
1128/// \endcode
1129///
1130/// \param The nested-name-specifier that preceded this unqualified-id. If
1131/// non-empty, then we are parsing the unqualified-id of a qualified-id.
1132///
1133/// \param EnteringContext whether we are entering the scope of the
1134/// nested-name-specifier.
1135///
1136/// \param AllowDestructorName whether we allow parsing of a destructor name.
1137///
1138/// \param AllowConstructorName whether we allow parsing a constructor name.
1139///
1140/// \param ObjectType if this unqualified-id occurs within a member access
1141/// expression, the type of the base object whose member is being accessed.
1142///
1143/// \param Result on a successful parse, contains the parsed unqualified-id.
1144///
1145/// \returns true if parsing fails, false otherwise.
1146bool Parser::ParseUnqualifiedId(CXXScopeSpec &SS, bool EnteringContext,
1147 bool AllowDestructorName,
1148 bool AllowConstructorName,
1149 TypeTy *ObjectType,
1150 UnqualifiedId &Result) {
1151 // unqualified-id:
1152 // identifier
1153 // template-id (when it hasn't already been annotated)
1154 if (Tok.is(tok::identifier)) {
1155 // Consume the identifier.
1156 IdentifierInfo *Id = Tok.getIdentifierInfo();
1157 SourceLocation IdLoc = ConsumeToken();
1158
1159 if (!getLang().CPlusPlus) {
1160 // If we're not in C++, only identifiers matter. Record the
1161 // identifier and return.
1162 Result.setIdentifier(Id, IdLoc);
1163 return false;
1164 }
1165
1166 if (AllowConstructorName &&
1167 Actions.isCurrentClassName(*Id, CurScope, &SS)) {
1168 // We have parsed a constructor name.
1169 Result.setConstructorName(Actions.getTypeName(*Id, IdLoc, CurScope,
1170 &SS, false),
1171 IdLoc, IdLoc);
1172 } else {
1173 // We have parsed an identifier.
1174 Result.setIdentifier(Id, IdLoc);
1175 }
1176
1177 // If the next token is a '<', we may have a template.
1178 if (Tok.is(tok::less))
1179 return ParseUnqualifiedIdTemplateId(SS, Id, IdLoc, EnteringContext,
1180 ObjectType, Result);
1181
1182 return false;
1183 }
1184
1185 // unqualified-id:
1186 // template-id (already parsed and annotated)
1187 if (Tok.is(tok::annot_template_id)) {
1188 TemplateIdAnnotation *TemplateId
1189 = static_cast<TemplateIdAnnotation*>(Tok.getAnnotationValue());
1190
1191 // If the template-name names the current class, then this is a constructor
1192 if (AllowConstructorName && TemplateId->Name &&
1193 Actions.isCurrentClassName(*TemplateId->Name, CurScope, &SS)) {
1194 if (SS.isSet()) {
1195 // C++ [class.qual]p2 specifies that a qualified template-name
1196 // is taken as the constructor name where a constructor can be
1197 // declared. Thus, the template arguments are extraneous, so
1198 // complain about them and remove them entirely.
1199 Diag(TemplateId->TemplateNameLoc,
1200 diag::err_out_of_line_constructor_template_id)
1201 << TemplateId->Name
1202 << CodeModificationHint::CreateRemoval(
1203 SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc));
1204 Result.setConstructorName(Actions.getTypeName(*TemplateId->Name,
1205 TemplateId->TemplateNameLoc,
1206 CurScope,
1207 &SS, false),
1208 TemplateId->TemplateNameLoc,
1209 TemplateId->RAngleLoc);
1210 TemplateId->Destroy();
1211 ConsumeToken();
1212 return false;
1213 }
1214
1215 Result.setConstructorTemplateId(TemplateId);
1216 ConsumeToken();
1217 return false;
1218 }
1219
1220 // We have already parsed a template-id; consume the annotation token as
1221 // our unqualified-id.
1222 Result.setTemplateId(TemplateId);
1223 ConsumeToken();
1224 return false;
1225 }
1226
1227 // unqualified-id:
1228 // operator-function-id
1229 // conversion-function-id
1230 if (Tok.is(tok::kw_operator)) {
1231 if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType, Result))
1232 return true;
1233
1234 // If we have an operator-function-id or a literal-operator-id and the next
1235 // token is a '<', we may have a
1236 //
1237 // template-id:
1238 // operator-function-id < template-argument-list[opt] >
1239 if ((Result.getKind() == UnqualifiedId::IK_OperatorFunctionId ||
1240 Result.getKind() == UnqualifiedId::IK_LiteralOperatorId) &&
1241 Tok.is(tok::less))
1242 return ParseUnqualifiedIdTemplateId(SS, 0, SourceLocation(),
1243 EnteringContext, ObjectType,
1244 Result);
1245
1246 return false;
1247 }
1248
1249 if (getLang().CPlusPlus &&
1250 (AllowDestructorName || SS.isSet()) && Tok.is(tok::tilde)) {
1251 // C++ [expr.unary.op]p10:
1252 // There is an ambiguity in the unary-expression ~X(), where X is a
1253 // class-name. The ambiguity is resolved in favor of treating ~ as a
1254 // unary complement rather than treating ~X as referring to a destructor.
1255
1256 // Parse the '~'.
1257 SourceLocation TildeLoc = ConsumeToken();
1258
1259 // Parse the class-name.
1260 if (Tok.isNot(tok::identifier)) {
1261 Diag(Tok, diag::err_destructor_class_name);
1262 return true;
1263 }
1264
1265 // Parse the class-name (or template-name in a simple-template-id).
1266 IdentifierInfo *ClassName = Tok.getIdentifierInfo();
1267 SourceLocation ClassNameLoc = ConsumeToken();
1268
1269 if (Tok.is(tok::less)) {
1270 Result.setDestructorName(TildeLoc, 0, ClassNameLoc);
1271 return ParseUnqualifiedIdTemplateId(SS, ClassName, ClassNameLoc,
1272 EnteringContext, ObjectType, Result);
1273 }
1274
1275 // Note that this is a destructor name.
1276 Action::TypeTy *Ty = Actions.getTypeName(*ClassName, ClassNameLoc,
1277 CurScope, &SS, false, ObjectType);
1278 if (!Ty) {
1279 if (ObjectType)
1280 Diag(ClassNameLoc, diag::err_ident_in_pseudo_dtor_not_a_type)
1281 << ClassName;
1282 else
1283 Diag(ClassNameLoc, diag::err_destructor_class_name);
1284 return true;
1285 }
1286
1287 Result.setDestructorName(TildeLoc, Ty, ClassNameLoc);
1288 return false;
1289 }
1290
1291 Diag(Tok, diag::err_expected_unqualified_id)
1292 << getLang().CPlusPlus;
1293 return true;
1294}
1295
1296/// ParseCXXNewExpression - Parse a C++ new-expression. New is used to allocate
1297/// memory in a typesafe manner and call constructors.
1298///
1299/// This method is called to parse the new expression after the optional :: has
1300/// been already parsed. If the :: was present, "UseGlobal" is true and "Start"
1301/// is its location. Otherwise, "Start" is the location of the 'new' token.
1302///
1303/// new-expression:
1304/// '::'[opt] 'new' new-placement[opt] new-type-id
1305/// new-initializer[opt]
1306/// '::'[opt] 'new' new-placement[opt] '(' type-id ')'
1307/// new-initializer[opt]
1308///
1309/// new-placement:
1310/// '(' expression-list ')'
1311///
1312/// new-type-id:
1313/// type-specifier-seq new-declarator[opt]
1314///
1315/// new-declarator:
1316/// ptr-operator new-declarator[opt]
1317/// direct-new-declarator
1318///
1319/// new-initializer:
1320/// '(' expression-list[opt] ')'
1321/// [C++0x] braced-init-list [TODO]
1322///
1323Parser::OwningExprResult
1324Parser::ParseCXXNewExpression(bool UseGlobal, SourceLocation Start) {
1325 assert(Tok.is(tok::kw_new) && "expected 'new' token");
1326 ConsumeToken(); // Consume 'new'
1327
1328 // A '(' now can be a new-placement or the '(' wrapping the type-id in the
1329 // second form of new-expression. It can't be a new-type-id.
1330
1331 ExprVector PlacementArgs(Actions);
1332 SourceLocation PlacementLParen, PlacementRParen;
1333
1334 bool ParenTypeId;
1335 DeclSpec DS;
1336 Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
1337 if (Tok.is(tok::l_paren)) {
1338 // If it turns out to be a placement, we change the type location.
1339 PlacementLParen = ConsumeParen();
1340 if (ParseExpressionListOrTypeId(PlacementArgs, DeclaratorInfo)) {
1341 SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
1342 return ExprError();
1343 }
1344
1345 PlacementRParen = MatchRHSPunctuation(tok::r_paren, PlacementLParen);
1346 if (PlacementRParen.isInvalid()) {
1347 SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
1348 return ExprError();
1349 }
1350
1351 if (PlacementArgs.empty()) {
1352 // Reset the placement locations. There was no placement.
1353 PlacementLParen = PlacementRParen = SourceLocation();
1354 ParenTypeId = true;
1355 } else {
1356 // We still need the type.
1357 if (Tok.is(tok::l_paren)) {
1358 SourceLocation LParen = ConsumeParen();
1359 ParseSpecifierQualifierList(DS);
1360 DeclaratorInfo.SetSourceRange(DS.getSourceRange());
1361 ParseDeclarator(DeclaratorInfo);
1362 MatchRHSPunctuation(tok::r_paren, LParen);
1363 ParenTypeId = true;
1364 } else {
1365 if (ParseCXXTypeSpecifierSeq(DS))
1366 DeclaratorInfo.setInvalidType(true);
1367 else {
1368 DeclaratorInfo.SetSourceRange(DS.getSourceRange());
1369 ParseDeclaratorInternal(DeclaratorInfo,
1370 &Parser::ParseDirectNewDeclarator);
1371 }
1372 ParenTypeId = false;
1373 }
1374 }
1375 } else {
1376 // A new-type-id is a simplified type-id, where essentially the
1377 // direct-declarator is replaced by a direct-new-declarator.
1378 if (ParseCXXTypeSpecifierSeq(DS))
1379 DeclaratorInfo.setInvalidType(true);
1380 else {
1381 DeclaratorInfo.SetSourceRange(DS.getSourceRange());
1382 ParseDeclaratorInternal(DeclaratorInfo,
1383 &Parser::ParseDirectNewDeclarator);
1384 }
1385 ParenTypeId = false;
1386 }
1387 if (DeclaratorInfo.isInvalidType()) {
1388 SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
1389 return ExprError();
1390 }
1391
1392 ExprVector ConstructorArgs(Actions);
1393 SourceLocation ConstructorLParen, ConstructorRParen;
1394
1395 if (Tok.is(tok::l_paren)) {
1396 ConstructorLParen = ConsumeParen();
1397 if (Tok.isNot(tok::r_paren)) {
1398 CommaLocsTy CommaLocs;
1399 if (ParseExpressionList(ConstructorArgs, CommaLocs)) {
1400 SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
1401 return ExprError();
1402 }
1403 }
1404 ConstructorRParen = MatchRHSPunctuation(tok::r_paren, ConstructorLParen);
1405 if (ConstructorRParen.isInvalid()) {
1406 SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
1407 return ExprError();
1408 }
1409 }
1410
1411 return Actions.ActOnCXXNew(Start, UseGlobal, PlacementLParen,
1412 move_arg(PlacementArgs), PlacementRParen,
1413 ParenTypeId, DeclaratorInfo, ConstructorLParen,
1414 move_arg(ConstructorArgs), ConstructorRParen);
1415}
1416
1417/// ParseDirectNewDeclarator - Parses a direct-new-declarator. Intended to be
1418/// passed to ParseDeclaratorInternal.
1419///
1420/// direct-new-declarator:
1421/// '[' expression ']'
1422/// direct-new-declarator '[' constant-expression ']'
1423///
1424void Parser::ParseDirectNewDeclarator(Declarator &D) {
1425 // Parse the array dimensions.
1426 bool first = true;
1427 while (Tok.is(tok::l_square)) {
1428 SourceLocation LLoc = ConsumeBracket();
1429 OwningExprResult Size(first ? ParseExpression()
1430 : ParseConstantExpression());
1431 if (Size.isInvalid()) {
1432 // Recover
1433 SkipUntil(tok::r_square);
1434 return;
1435 }
1436 first = false;
1437
1438 SourceLocation RLoc = MatchRHSPunctuation(tok::r_square, LLoc);
1439 D.AddTypeInfo(DeclaratorChunk::getArray(0, /*static=*/false, /*star=*/false,
1440 Size.release(), LLoc, RLoc),
1441 RLoc);
1442
1443 if (RLoc.isInvalid())
1444 return;
1445 }
1446}
1447
1448/// ParseExpressionListOrTypeId - Parse either an expression-list or a type-id.
1449/// This ambiguity appears in the syntax of the C++ new operator.
1450///
1451/// new-expression:
1452/// '::'[opt] 'new' new-placement[opt] '(' type-id ')'
1453/// new-initializer[opt]
1454///
1455/// new-placement:
1456/// '(' expression-list ')'
1457///
1458bool Parser::ParseExpressionListOrTypeId(ExprListTy &PlacementArgs,
1459 Declarator &D) {
1460 // The '(' was already consumed.
1461 if (isTypeIdInParens()) {
1462 ParseSpecifierQualifierList(D.getMutableDeclSpec());
1463 D.SetSourceRange(D.getDeclSpec().getSourceRange());
1464 ParseDeclarator(D);
1465 return D.isInvalidType();
1466 }
1467
1468 // It's not a type, it has to be an expression list.
1469 // Discard the comma locations - ActOnCXXNew has enough parameters.
1470 CommaLocsTy CommaLocs;
1471 return ParseExpressionList(PlacementArgs, CommaLocs);
1472}
1473
1474/// ParseCXXDeleteExpression - Parse a C++ delete-expression. Delete is used
1475/// to free memory allocated by new.
1476///
1477/// This method is called to parse the 'delete' expression after the optional
1478/// '::' has been already parsed. If the '::' was present, "UseGlobal" is true
1479/// and "Start" is its location. Otherwise, "Start" is the location of the
1480/// 'delete' token.
1481///
1482/// delete-expression:
1483/// '::'[opt] 'delete' cast-expression
1484/// '::'[opt] 'delete' '[' ']' cast-expression
1485Parser::OwningExprResult
1486Parser::ParseCXXDeleteExpression(bool UseGlobal, SourceLocation Start) {
1487 assert(Tok.is(tok::kw_delete) && "Expected 'delete' keyword");
1488 ConsumeToken(); // Consume 'delete'
1489
1490 // Array delete?
1491 bool ArrayDelete = false;
1492 if (Tok.is(tok::l_square)) {
1493 ArrayDelete = true;
1494 SourceLocation LHS = ConsumeBracket();
1495 SourceLocation RHS = MatchRHSPunctuation(tok::r_square, LHS);
1496 if (RHS.isInvalid())
1497 return ExprError();
1498 }
1499
1500 OwningExprResult Operand(ParseCastExpression(false));
1501 if (Operand.isInvalid())
1502 return move(Operand);
1503
1504 return Actions.ActOnCXXDelete(Start, UseGlobal, ArrayDelete, move(Operand));
1505}
1506
1507static UnaryTypeTrait UnaryTypeTraitFromTokKind(tok::TokenKind kind) {
1508 switch(kind) {
1509 default: assert(false && "Not a known unary type trait.");
1510 case tok::kw___has_nothrow_assign: return UTT_HasNothrowAssign;
1511 case tok::kw___has_nothrow_copy: return UTT_HasNothrowCopy;
1512 case tok::kw___has_nothrow_constructor: return UTT_HasNothrowConstructor;
1513 case tok::kw___has_trivial_assign: return UTT_HasTrivialAssign;
1514 case tok::kw___has_trivial_copy: return UTT_HasTrivialCopy;
1515 case tok::kw___has_trivial_constructor: return UTT_HasTrivialConstructor;
1516 case tok::kw___has_trivial_destructor: return UTT_HasTrivialDestructor;
1517 case tok::kw___has_virtual_destructor: return UTT_HasVirtualDestructor;
1518 case tok::kw___is_abstract: return UTT_IsAbstract;
1519 case tok::kw___is_class: return UTT_IsClass;
1520 case tok::kw___is_empty: return UTT_IsEmpty;
1521 case tok::kw___is_enum: return UTT_IsEnum;
1522 case tok::kw___is_pod: return UTT_IsPOD;
1523 case tok::kw___is_polymorphic: return UTT_IsPolymorphic;
1524 case tok::kw___is_union: return UTT_IsUnion;
1525 case tok::kw___is_literal: return UTT_IsLiteral;
1526 }
1527}
1528
1529/// ParseUnaryTypeTrait - Parse the built-in unary type-trait
1530/// pseudo-functions that allow implementation of the TR1/C++0x type traits
1531/// templates.
1532///
1533/// primary-expression:
1534/// [GNU] unary-type-trait '(' type-id ')'
1535///
1536Parser::OwningExprResult Parser::ParseUnaryTypeTrait() {
1537 UnaryTypeTrait UTT = UnaryTypeTraitFromTokKind(Tok.getKind());
1538 SourceLocation Loc = ConsumeToken();
1539
1540 SourceLocation LParen = Tok.getLocation();
1541 if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen))
1542 return ExprError();
1543
1544 // FIXME: Error reporting absolutely sucks! If the this fails to parse a type
1545 // there will be cryptic errors about mismatched parentheses and missing
1546 // specifiers.
1547 TypeResult Ty = ParseTypeName();
1548
1549 SourceLocation RParen = MatchRHSPunctuation(tok::r_paren, LParen);
1550
1551 if (Ty.isInvalid())
1552 return ExprError();
1553
1554 return Actions.ActOnUnaryTypeTrait(UTT, Loc, LParen, Ty.get(), RParen);
1555}
1556
1557/// ParseCXXAmbiguousParenExpression - We have parsed the left paren of a
1558/// parenthesized ambiguous type-id. This uses tentative parsing to disambiguate
1559/// based on the context past the parens.
1560Parser::OwningExprResult
1561Parser::ParseCXXAmbiguousParenExpression(ParenParseOption &ExprType,
1562 TypeTy *&CastTy,
1563 SourceLocation LParenLoc,
1564 SourceLocation &RParenLoc) {
1565 assert(getLang().CPlusPlus && "Should only be called for C++!");
1566 assert(ExprType == CastExpr && "Compound literals are not ambiguous!");
1567 assert(isTypeIdInParens() && "Not a type-id!");
1568
1569 OwningExprResult Result(Actions, true);
1570 CastTy = 0;
1571
1572 // We need to disambiguate a very ugly part of the C++ syntax:
1573 //
1574 // (T())x; - type-id
1575 // (T())*x; - type-id
1576 // (T())/x; - expression
1577 // (T()); - expression
1578 //
1579 // The bad news is that we cannot use the specialized tentative parser, since
1580 // it can only verify that the thing inside the parens can be parsed as
1581 // type-id, it is not useful for determining the context past the parens.
1582 //
1583 // The good news is that the parser can disambiguate this part without
1584 // making any unnecessary Action calls.
1585 //
1586 // It uses a scheme similar to parsing inline methods. The parenthesized
1587 // tokens are cached, the context that follows is determined (possibly by
1588 // parsing a cast-expression), and then we re-introduce the cached tokens
1589 // into the token stream and parse them appropriately.
1590
1591 ParenParseOption ParseAs;
1592 CachedTokens Toks;
1593
1594 // Store the tokens of the parentheses. We will parse them after we determine
1595 // the context that follows them.
1596 if (!ConsumeAndStoreUntil(tok::r_paren, tok::unknown, Toks, tok::semi)) {
1597 // We didn't find the ')' we expected.
1598 MatchRHSPunctuation(tok::r_paren, LParenLoc);
1599 return ExprError();
1600 }
1601
1602 if (Tok.is(tok::l_brace)) {
1603 ParseAs = CompoundLiteral;
1604 } else {
1605 bool NotCastExpr;
1606 // FIXME: Special-case ++ and --: "(S())++;" is not a cast-expression
1607 if (Tok.is(tok::l_paren) && NextToken().is(tok::r_paren)) {
1608 NotCastExpr = true;
1609 } else {
1610 // Try parsing the cast-expression that may follow.
1611 // If it is not a cast-expression, NotCastExpr will be true and no token
1612 // will be consumed.
1613 Result = ParseCastExpression(false/*isUnaryExpression*/,
1614 false/*isAddressofOperand*/,
1615 NotCastExpr, false);
1616 }
1617
1618 // If we parsed a cast-expression, it's really a type-id, otherwise it's
1619 // an expression.
1620 ParseAs = NotCastExpr ? SimpleExpr : CastExpr;
1621 }
1622
1623 // The current token should go after the cached tokens.
1624 Toks.push_back(Tok);
1625 // Re-enter the stored parenthesized tokens into the token stream, so we may
1626 // parse them now.
1627 PP.EnterTokenStream(Toks.data(), Toks.size(),
1628 true/*DisableMacroExpansion*/, false/*OwnsTokens*/);
1629 // Drop the current token and bring the first cached one. It's the same token
1630 // as when we entered this function.
1631 ConsumeAnyToken();
1632
1633 if (ParseAs >= CompoundLiteral) {
1634 TypeResult Ty = ParseTypeName();
1635
1636 // Match the ')'.
1637 if (Tok.is(tok::r_paren))
1638 RParenLoc = ConsumeParen();
1639 else
1640 MatchRHSPunctuation(tok::r_paren, LParenLoc);
1641
1642 if (ParseAs == CompoundLiteral) {
1643 ExprType = CompoundLiteral;
1644 return ParseCompoundLiteralExpression(Ty.get(), LParenLoc, RParenLoc);
1645 }
1646
1647 // We parsed '(' type-id ')' and the thing after it wasn't a '{'.
1648 assert(ParseAs == CastExpr);
1649
1650 if (Ty.isInvalid())
1651 return ExprError();
1652
1653 CastTy = Ty.get();
1654
1655 // Result is what ParseCastExpression returned earlier.
1656 if (!Result.isInvalid())
1657 Result = Actions.ActOnCastExpr(CurScope, LParenLoc, CastTy, RParenLoc,
1658 move(Result));
1659 return move(Result);
1660 }
1661
1662 // Not a compound literal, and not followed by a cast-expression.
1663 assert(ParseAs == SimpleExpr);
1664
1665 ExprType = SimpleExpr;
1666 Result = ParseExpression();
1667 if (!Result.isInvalid() && Tok.is(tok::r_paren))
1668 Result = Actions.ActOnParenExpr(LParenLoc, Tok.getLocation(), move(Result));
1669
1670 // Match the ')'.
1671 if (Result.isInvalid()) {
1672 SkipUntil(tok::r_paren);
1673 return ExprError();
1674 }
1675
1676 if (Tok.is(tok::r_paren))
1677 RParenLoc = ConsumeParen();
1678 else
1679 MatchRHSPunctuation(tok::r_paren, LParenLoc);
1680
1681 return move(Result);
1682}