blob: fdb6fc385ba1c9178c7db609c39734adbfbd66f2 [file] [log] [blame]
Shih-wei Liaof8fd82b2010-02-10 11:10:31 -08001//===--- RewriteRope.cpp - Rope specialized for rewriter --------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the RewriteRope class, which is a powerful string.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Rewrite/RewriteRope.h"
15#include "llvm/Support/Casting.h"
16#include <algorithm>
17using namespace clang;
18using llvm::dyn_cast;
19using llvm::cast;
20
21/// RewriteRope is a "strong" string class, designed to make insertions and
22/// deletions in the middle of the string nearly constant time (really, they are
23/// O(log N), but with a very low constant factor).
24///
25/// The implementation of this datastructure is a conceptual linear sequence of
26/// RopePiece elements. Each RopePiece represents a view on a separately
27/// allocated and reference counted string. This means that splitting a very
28/// long string can be done in constant time by splitting a RopePiece that
29/// references the whole string into two rope pieces that reference each half.
30/// Once split, another string can be inserted in between the two halves by
31/// inserting a RopePiece in between the two others. All of this is very
32/// inexpensive: it takes time proportional to the number of RopePieces, not the
33/// length of the strings they represent.
34///
35/// While a linear sequences of RopePieces is the conceptual model, the actual
36/// implementation captures them in an adapted B+ Tree. Using a B+ tree (which
37/// is a tree that keeps the values in the leaves and has where each node
38/// contains a reasonable number of pointers to children/values) allows us to
39/// maintain efficient operation when the RewriteRope contains a *huge* number
40/// of RopePieces. The basic idea of the B+ Tree is that it allows us to find
41/// the RopePiece corresponding to some offset very efficiently, and it
42/// automatically balances itself on insertions of RopePieces (which can happen
43/// for both insertions and erases of string ranges).
44///
45/// The one wrinkle on the theory is that we don't attempt to keep the tree
46/// properly balanced when erases happen. Erases of string data can both insert
47/// new RopePieces (e.g. when the middle of some other rope piece is deleted,
48/// which results in two rope pieces, which is just like an insert) or it can
49/// reduce the number of RopePieces maintained by the B+Tree. In the case when
50/// the number of RopePieces is reduced, we don't attempt to maintain the
51/// standard 'invariant' that each node in the tree contains at least
52/// 'WidthFactor' children/values. For our use cases, this doesn't seem to
53/// matter.
54///
55/// The implementation below is primarily implemented in terms of three classes:
56/// RopePieceBTreeNode - Common base class for:
57///
58/// RopePieceBTreeLeaf - Directly manages up to '2*WidthFactor' RopePiece
59/// nodes. This directly represents a chunk of the string with those
60/// RopePieces contatenated.
61/// RopePieceBTreeInterior - An interior node in the B+ Tree, which manages
62/// up to '2*WidthFactor' other nodes in the tree.
63
64
65//===----------------------------------------------------------------------===//
66// RopePieceBTreeNode Class
67//===----------------------------------------------------------------------===//
68
69namespace {
70 /// RopePieceBTreeNode - Common base class of RopePieceBTreeLeaf and
71 /// RopePieceBTreeInterior. This provides some 'virtual' dispatching methods
72 /// and a flag that determines which subclass the instance is. Also
73 /// important, this node knows the full extend of the node, including any
74 /// children that it has. This allows efficient skipping over entire subtrees
75 /// when looking for an offset in the BTree.
76 class RopePieceBTreeNode {
77 protected:
78 /// WidthFactor - This controls the number of K/V slots held in the BTree:
79 /// how wide it is. Each level of the BTree is guaranteed to have at least
80 /// 'WidthFactor' elements in it (either ropepieces or children), (except
81 /// the root, which may have less) and may have at most 2*WidthFactor
82 /// elements.
83 enum { WidthFactor = 8 };
84
85 /// Size - This is the number of bytes of file this node (including any
86 /// potential children) covers.
87 unsigned Size;
88
89 /// IsLeaf - True if this is an instance of RopePieceBTreeLeaf, false if it
90 /// is an instance of RopePieceBTreeInterior.
91 bool IsLeaf;
92
93 RopePieceBTreeNode(bool isLeaf) : Size(0), IsLeaf(isLeaf) {}
94 ~RopePieceBTreeNode() {}
95 public:
96
97 bool isLeaf() const { return IsLeaf; }
98 unsigned size() const { return Size; }
99
100 void Destroy();
101
102 /// split - Split the range containing the specified offset so that we are
103 /// guaranteed that there is a place to do an insertion at the specified
104 /// offset. The offset is relative, so "0" is the start of the node.
105 ///
106 /// If there is no space in this subtree for the extra piece, the extra tree
107 /// node is returned and must be inserted into a parent.
108 RopePieceBTreeNode *split(unsigned Offset);
109
110 /// insert - Insert the specified ropepiece into this tree node at the
111 /// specified offset. The offset is relative, so "0" is the start of the
112 /// node.
113 ///
114 /// If there is no space in this subtree for the extra piece, the extra tree
115 /// node is returned and must be inserted into a parent.
116 RopePieceBTreeNode *insert(unsigned Offset, const RopePiece &R);
117
118 /// erase - Remove NumBytes from this node at the specified offset. We are
119 /// guaranteed that there is a split at Offset.
120 void erase(unsigned Offset, unsigned NumBytes);
121
122 static inline bool classof(const RopePieceBTreeNode *) { return true; }
123
124 };
125} // end anonymous namespace
126
127//===----------------------------------------------------------------------===//
128// RopePieceBTreeLeaf Class
129//===----------------------------------------------------------------------===//
130
131namespace {
132 /// RopePieceBTreeLeaf - Directly manages up to '2*WidthFactor' RopePiece
133 /// nodes. This directly represents a chunk of the string with those
134 /// RopePieces contatenated. Since this is a B+Tree, all values (in this case
135 /// instances of RopePiece) are stored in leaves like this. To make iteration
136 /// over the leaves efficient, they maintain a singly linked list through the
137 /// NextLeaf field. This allows the B+Tree forward iterator to be constant
138 /// time for all increments.
139 class RopePieceBTreeLeaf : public RopePieceBTreeNode {
140 /// NumPieces - This holds the number of rope pieces currently active in the
141 /// Pieces array.
142 unsigned char NumPieces;
143
144 /// Pieces - This tracks the file chunks currently in this leaf.
145 ///
146 RopePiece Pieces[2*WidthFactor];
147
148 /// NextLeaf - This is a pointer to the next leaf in the tree, allowing
149 /// efficient in-order forward iteration of the tree without traversal.
150 RopePieceBTreeLeaf **PrevLeaf, *NextLeaf;
151 public:
152 RopePieceBTreeLeaf() : RopePieceBTreeNode(true), NumPieces(0),
153 PrevLeaf(0), NextLeaf(0) {}
154 ~RopePieceBTreeLeaf() {
155 if (PrevLeaf || NextLeaf)
156 removeFromLeafInOrder();
157 clear();
158 }
159
160 bool isFull() const { return NumPieces == 2*WidthFactor; }
161
162 /// clear - Remove all rope pieces from this leaf.
163 void clear() {
164 while (NumPieces)
165 Pieces[--NumPieces] = RopePiece();
166 Size = 0;
167 }
168
169 unsigned getNumPieces() const { return NumPieces; }
170
171 const RopePiece &getPiece(unsigned i) const {
172 assert(i < getNumPieces() && "Invalid piece ID");
173 return Pieces[i];
174 }
175
176 const RopePieceBTreeLeaf *getNextLeafInOrder() const { return NextLeaf; }
177 void insertAfterLeafInOrder(RopePieceBTreeLeaf *Node) {
178 assert(PrevLeaf == 0 && NextLeaf == 0 && "Already in ordering");
179
180 NextLeaf = Node->NextLeaf;
181 if (NextLeaf)
182 NextLeaf->PrevLeaf = &NextLeaf;
183 PrevLeaf = &Node->NextLeaf;
184 Node->NextLeaf = this;
185 }
186
187 void removeFromLeafInOrder() {
188 if (PrevLeaf) {
189 *PrevLeaf = NextLeaf;
190 if (NextLeaf)
191 NextLeaf->PrevLeaf = PrevLeaf;
192 } else if (NextLeaf) {
193 NextLeaf->PrevLeaf = 0;
194 }
195 }
196
197 /// FullRecomputeSizeLocally - This method recomputes the 'Size' field by
198 /// summing the size of all RopePieces.
199 void FullRecomputeSizeLocally() {
200 Size = 0;
201 for (unsigned i = 0, e = getNumPieces(); i != e; ++i)
202 Size += getPiece(i).size();
203 }
204
205 /// split - Split the range containing the specified offset so that we are
206 /// guaranteed that there is a place to do an insertion at the specified
207 /// offset. The offset is relative, so "0" is the start of the node.
208 ///
209 /// If there is no space in this subtree for the extra piece, the extra tree
210 /// node is returned and must be inserted into a parent.
211 RopePieceBTreeNode *split(unsigned Offset);
212
213 /// insert - Insert the specified ropepiece into this tree node at the
214 /// specified offset. The offset is relative, so "0" is the start of the
215 /// node.
216 ///
217 /// If there is no space in this subtree for the extra piece, the extra tree
218 /// node is returned and must be inserted into a parent.
219 RopePieceBTreeNode *insert(unsigned Offset, const RopePiece &R);
220
221
222 /// erase - Remove NumBytes from this node at the specified offset. We are
223 /// guaranteed that there is a split at Offset.
224 void erase(unsigned Offset, unsigned NumBytes);
225
226 static inline bool classof(const RopePieceBTreeLeaf *) { return true; }
227 static inline bool classof(const RopePieceBTreeNode *N) {
228 return N->isLeaf();
229 }
230 };
231} // end anonymous namespace
232
233/// split - Split the range containing the specified offset so that we are
234/// guaranteed that there is a place to do an insertion at the specified
235/// offset. The offset is relative, so "0" is the start of the node.
236///
237/// If there is no space in this subtree for the extra piece, the extra tree
238/// node is returned and must be inserted into a parent.
239RopePieceBTreeNode *RopePieceBTreeLeaf::split(unsigned Offset) {
240 // Find the insertion point. We are guaranteed that there is a split at the
241 // specified offset so find it.
242 if (Offset == 0 || Offset == size()) {
243 // Fastpath for a common case. There is already a splitpoint at the end.
244 return 0;
245 }
246
247 // Find the piece that this offset lands in.
248 unsigned PieceOffs = 0;
249 unsigned i = 0;
250 while (Offset >= PieceOffs+Pieces[i].size()) {
251 PieceOffs += Pieces[i].size();
252 ++i;
253 }
254
255 // If there is already a split point at the specified offset, just return
256 // success.
257 if (PieceOffs == Offset)
258 return 0;
259
260 // Otherwise, we need to split piece 'i' at Offset-PieceOffs. Convert Offset
261 // to being Piece relative.
262 unsigned IntraPieceOffset = Offset-PieceOffs;
263
264 // We do this by shrinking the RopePiece and then doing an insert of the tail.
265 RopePiece Tail(Pieces[i].StrData, Pieces[i].StartOffs+IntraPieceOffset,
266 Pieces[i].EndOffs);
267 Size -= Pieces[i].size();
268 Pieces[i].EndOffs = Pieces[i].StartOffs+IntraPieceOffset;
269 Size += Pieces[i].size();
270
271 return insert(Offset, Tail);
272}
273
274
275/// insert - Insert the specified RopePiece into this tree node at the
276/// specified offset. The offset is relative, so "0" is the start of the node.
277///
278/// If there is no space in this subtree for the extra piece, the extra tree
279/// node is returned and must be inserted into a parent.
280RopePieceBTreeNode *RopePieceBTreeLeaf::insert(unsigned Offset,
281 const RopePiece &R) {
282 // If this node is not full, insert the piece.
283 if (!isFull()) {
284 // Find the insertion point. We are guaranteed that there is a split at the
285 // specified offset so find it.
286 unsigned i = 0, e = getNumPieces();
287 if (Offset == size()) {
288 // Fastpath for a common case.
289 i = e;
290 } else {
291 unsigned SlotOffs = 0;
292 for (; Offset > SlotOffs; ++i)
293 SlotOffs += getPiece(i).size();
294 assert(SlotOffs == Offset && "Split didn't occur before insertion!");
295 }
296
297 // For an insertion into a non-full leaf node, just insert the value in
298 // its sorted position. This requires moving later values over.
299 for (; i != e; --e)
300 Pieces[e] = Pieces[e-1];
301 Pieces[i] = R;
302 ++NumPieces;
303 Size += R.size();
304 return 0;
305 }
306
307 // Otherwise, if this is leaf is full, split it in two halves. Since this
308 // node is full, it contains 2*WidthFactor values. We move the first
309 // 'WidthFactor' values to the LHS child (which we leave in this node) and
310 // move the last 'WidthFactor' values into the RHS child.
311
312 // Create the new node.
313 RopePieceBTreeLeaf *NewNode = new RopePieceBTreeLeaf();
314
315 // Move over the last 'WidthFactor' values from here to NewNode.
316 std::copy(&Pieces[WidthFactor], &Pieces[2*WidthFactor],
317 &NewNode->Pieces[0]);
318 // Replace old pieces with null RopePieces to drop refcounts.
319 std::fill(&Pieces[WidthFactor], &Pieces[2*WidthFactor], RopePiece());
320
321 // Decrease the number of values in the two nodes.
322 NewNode->NumPieces = NumPieces = WidthFactor;
323
324 // Recompute the two nodes' size.
325 NewNode->FullRecomputeSizeLocally();
326 FullRecomputeSizeLocally();
327
328 // Update the list of leaves.
329 NewNode->insertAfterLeafInOrder(this);
330
331 // These insertions can't fail.
332 if (this->size() >= Offset)
333 this->insert(Offset, R);
334 else
335 NewNode->insert(Offset - this->size(), R);
336 return NewNode;
337}
338
339/// erase - Remove NumBytes from this node at the specified offset. We are
340/// guaranteed that there is a split at Offset.
341void RopePieceBTreeLeaf::erase(unsigned Offset, unsigned NumBytes) {
342 // Since we are guaranteed that there is a split at Offset, we start by
343 // finding the Piece that starts there.
344 unsigned PieceOffs = 0;
345 unsigned i = 0;
346 for (; Offset > PieceOffs; ++i)
347 PieceOffs += getPiece(i).size();
348 assert(PieceOffs == Offset && "Split didn't occur before erase!");
349
350 unsigned StartPiece = i;
351
352 // Figure out how many pieces completely cover 'NumBytes'. We want to remove
353 // all of them.
354 for (; Offset+NumBytes > PieceOffs+getPiece(i).size(); ++i)
355 PieceOffs += getPiece(i).size();
356
357 // If we exactly include the last one, include it in the region to delete.
358 if (Offset+NumBytes == PieceOffs+getPiece(i).size())
359 PieceOffs += getPiece(i).size(), ++i;
360
361 // If we completely cover some RopePieces, erase them now.
362 if (i != StartPiece) {
363 unsigned NumDeleted = i-StartPiece;
364 for (; i != getNumPieces(); ++i)
365 Pieces[i-NumDeleted] = Pieces[i];
366
367 // Drop references to dead rope pieces.
368 std::fill(&Pieces[getNumPieces()-NumDeleted], &Pieces[getNumPieces()],
369 RopePiece());
370 NumPieces -= NumDeleted;
371
372 unsigned CoverBytes = PieceOffs-Offset;
373 NumBytes -= CoverBytes;
374 Size -= CoverBytes;
375 }
376
377 // If we completely removed some stuff, we could be done.
378 if (NumBytes == 0) return;
379
380 // Okay, now might be erasing part of some Piece. If this is the case, then
381 // move the start point of the piece.
382 assert(getPiece(StartPiece).size() > NumBytes);
383 Pieces[StartPiece].StartOffs += NumBytes;
384
385 // The size of this node just shrunk by NumBytes.
386 Size -= NumBytes;
387}
388
389//===----------------------------------------------------------------------===//
390// RopePieceBTreeInterior Class
391//===----------------------------------------------------------------------===//
392
393namespace {
394 /// RopePieceBTreeInterior - This represents an interior node in the B+Tree,
395 /// which holds up to 2*WidthFactor pointers to child nodes.
396 class RopePieceBTreeInterior : public RopePieceBTreeNode {
397 /// NumChildren - This holds the number of children currently active in the
398 /// Children array.
399 unsigned char NumChildren;
400 RopePieceBTreeNode *Children[2*WidthFactor];
401 public:
402 RopePieceBTreeInterior() : RopePieceBTreeNode(false), NumChildren(0) {}
403
404 RopePieceBTreeInterior(RopePieceBTreeNode *LHS, RopePieceBTreeNode *RHS)
405 : RopePieceBTreeNode(false) {
406 Children[0] = LHS;
407 Children[1] = RHS;
408 NumChildren = 2;
409 Size = LHS->size() + RHS->size();
410 }
411
412 bool isFull() const { return NumChildren == 2*WidthFactor; }
413
414 unsigned getNumChildren() const { return NumChildren; }
415 const RopePieceBTreeNode *getChild(unsigned i) const {
416 assert(i < NumChildren && "invalid child #");
417 return Children[i];
418 }
419 RopePieceBTreeNode *getChild(unsigned i) {
420 assert(i < NumChildren && "invalid child #");
421 return Children[i];
422 }
423
424 /// FullRecomputeSizeLocally - Recompute the Size field of this node by
425 /// summing up the sizes of the child nodes.
426 void FullRecomputeSizeLocally() {
427 Size = 0;
428 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
429 Size += getChild(i)->size();
430 }
431
432
433 /// split - Split the range containing the specified offset so that we are
434 /// guaranteed that there is a place to do an insertion at the specified
435 /// offset. The offset is relative, so "0" is the start of the node.
436 ///
437 /// If there is no space in this subtree for the extra piece, the extra tree
438 /// node is returned and must be inserted into a parent.
439 RopePieceBTreeNode *split(unsigned Offset);
440
441
442 /// insert - Insert the specified ropepiece into this tree node at the
443 /// specified offset. The offset is relative, so "0" is the start of the
444 /// node.
445 ///
446 /// If there is no space in this subtree for the extra piece, the extra tree
447 /// node is returned and must be inserted into a parent.
448 RopePieceBTreeNode *insert(unsigned Offset, const RopePiece &R);
449
450 /// HandleChildPiece - A child propagated an insertion result up to us.
451 /// Insert the new child, and/or propagate the result further up the tree.
452 RopePieceBTreeNode *HandleChildPiece(unsigned i, RopePieceBTreeNode *RHS);
453
454 /// erase - Remove NumBytes from this node at the specified offset. We are
455 /// guaranteed that there is a split at Offset.
456 void erase(unsigned Offset, unsigned NumBytes);
457
458 static inline bool classof(const RopePieceBTreeInterior *) { return true; }
459 static inline bool classof(const RopePieceBTreeNode *N) {
460 return !N->isLeaf();
461 }
462 };
463} // end anonymous namespace
464
465/// split - Split the range containing the specified offset so that we are
466/// guaranteed that there is a place to do an insertion at the specified
467/// offset. The offset is relative, so "0" is the start of the node.
468///
469/// If there is no space in this subtree for the extra piece, the extra tree
470/// node is returned and must be inserted into a parent.
471RopePieceBTreeNode *RopePieceBTreeInterior::split(unsigned Offset) {
472 // Figure out which child to split.
473 if (Offset == 0 || Offset == size())
474 return 0; // If we have an exact offset, we're already split.
475
476 unsigned ChildOffset = 0;
477 unsigned i = 0;
478 for (; Offset >= ChildOffset+getChild(i)->size(); ++i)
479 ChildOffset += getChild(i)->size();
480
481 // If already split there, we're done.
482 if (ChildOffset == Offset)
483 return 0;
484
485 // Otherwise, recursively split the child.
486 if (RopePieceBTreeNode *RHS = getChild(i)->split(Offset-ChildOffset))
487 return HandleChildPiece(i, RHS);
488 return 0; // Done!
489}
490
491/// insert - Insert the specified ropepiece into this tree node at the
492/// specified offset. The offset is relative, so "0" is the start of the
493/// node.
494///
495/// If there is no space in this subtree for the extra piece, the extra tree
496/// node is returned and must be inserted into a parent.
497RopePieceBTreeNode *RopePieceBTreeInterior::insert(unsigned Offset,
498 const RopePiece &R) {
499 // Find the insertion point. We are guaranteed that there is a split at the
500 // specified offset so find it.
501 unsigned i = 0, e = getNumChildren();
502
503 unsigned ChildOffs = 0;
504 if (Offset == size()) {
505 // Fastpath for a common case. Insert at end of last child.
506 i = e-1;
507 ChildOffs = size()-getChild(i)->size();
508 } else {
509 for (; Offset > ChildOffs+getChild(i)->size(); ++i)
510 ChildOffs += getChild(i)->size();
511 }
512
513 Size += R.size();
514
515 // Insert at the end of this child.
516 if (RopePieceBTreeNode *RHS = getChild(i)->insert(Offset-ChildOffs, R))
517 return HandleChildPiece(i, RHS);
518
519 return 0;
520}
521
522/// HandleChildPiece - A child propagated an insertion result up to us.
523/// Insert the new child, and/or propagate the result further up the tree.
524RopePieceBTreeNode *
525RopePieceBTreeInterior::HandleChildPiece(unsigned i, RopePieceBTreeNode *RHS) {
526 // Otherwise the child propagated a subtree up to us as a new child. See if
527 // we have space for it here.
528 if (!isFull()) {
529 // Insert RHS after child 'i'.
530 if (i + 1 != getNumChildren())
531 memmove(&Children[i+2], &Children[i+1],
532 (getNumChildren()-i-1)*sizeof(Children[0]));
533 Children[i+1] = RHS;
534 ++NumChildren;
535 return false;
536 }
537
538 // Okay, this node is full. Split it in half, moving WidthFactor children to
539 // a newly allocated interior node.
540
541 // Create the new node.
542 RopePieceBTreeInterior *NewNode = new RopePieceBTreeInterior();
543
544 // Move over the last 'WidthFactor' values from here to NewNode.
545 memcpy(&NewNode->Children[0], &Children[WidthFactor],
546 WidthFactor*sizeof(Children[0]));
547
548 // Decrease the number of values in the two nodes.
549 NewNode->NumChildren = NumChildren = WidthFactor;
550
551 // Finally, insert the two new children in the side the can (now) hold them.
552 // These insertions can't fail.
553 if (i < WidthFactor)
554 this->HandleChildPiece(i, RHS);
555 else
556 NewNode->HandleChildPiece(i-WidthFactor, RHS);
557
558 // Recompute the two nodes' size.
559 NewNode->FullRecomputeSizeLocally();
560 FullRecomputeSizeLocally();
561 return NewNode;
562}
563
564/// erase - Remove NumBytes from this node at the specified offset. We are
565/// guaranteed that there is a split at Offset.
566void RopePieceBTreeInterior::erase(unsigned Offset, unsigned NumBytes) {
567 // This will shrink this node by NumBytes.
568 Size -= NumBytes;
569
570 // Find the first child that overlaps with Offset.
571 unsigned i = 0;
572 for (; Offset >= getChild(i)->size(); ++i)
573 Offset -= getChild(i)->size();
574
575 // Propagate the delete request into overlapping children, or completely
576 // delete the children as appropriate.
577 while (NumBytes) {
578 RopePieceBTreeNode *CurChild = getChild(i);
579
580 // If we are deleting something contained entirely in the child, pass on the
581 // request.
582 if (Offset+NumBytes < CurChild->size()) {
583 CurChild->erase(Offset, NumBytes);
584 return;
585 }
586
587 // If this deletion request starts somewhere in the middle of the child, it
588 // must be deleting to the end of the child.
589 if (Offset) {
590 unsigned BytesFromChild = CurChild->size()-Offset;
591 CurChild->erase(Offset, BytesFromChild);
592 NumBytes -= BytesFromChild;
593 // Start at the beginning of the next child.
594 Offset = 0;
595 ++i;
596 continue;
597 }
598
599 // If the deletion request completely covers the child, delete it and move
600 // the rest down.
601 NumBytes -= CurChild->size();
602 CurChild->Destroy();
603 --NumChildren;
604 if (i != getNumChildren())
605 memmove(&Children[i], &Children[i+1],
606 (getNumChildren()-i)*sizeof(Children[0]));
607 }
608}
609
610//===----------------------------------------------------------------------===//
611// RopePieceBTreeNode Implementation
612//===----------------------------------------------------------------------===//
613
614void RopePieceBTreeNode::Destroy() {
615 if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
616 delete Leaf;
617 else
618 delete cast<RopePieceBTreeInterior>(this);
619}
620
621/// split - Split the range containing the specified offset so that we are
622/// guaranteed that there is a place to do an insertion at the specified
623/// offset. The offset is relative, so "0" is the start of the node.
624///
625/// If there is no space in this subtree for the extra piece, the extra tree
626/// node is returned and must be inserted into a parent.
627RopePieceBTreeNode *RopePieceBTreeNode::split(unsigned Offset) {
628 assert(Offset <= size() && "Invalid offset to split!");
629 if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
630 return Leaf->split(Offset);
631 return cast<RopePieceBTreeInterior>(this)->split(Offset);
632}
633
634/// insert - Insert the specified ropepiece into this tree node at the
635/// specified offset. The offset is relative, so "0" is the start of the
636/// node.
637///
638/// If there is no space in this subtree for the extra piece, the extra tree
639/// node is returned and must be inserted into a parent.
640RopePieceBTreeNode *RopePieceBTreeNode::insert(unsigned Offset,
641 const RopePiece &R) {
642 assert(Offset <= size() && "Invalid offset to insert!");
643 if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
644 return Leaf->insert(Offset, R);
645 return cast<RopePieceBTreeInterior>(this)->insert(Offset, R);
646}
647
648/// erase - Remove NumBytes from this node at the specified offset. We are
649/// guaranteed that there is a split at Offset.
650void RopePieceBTreeNode::erase(unsigned Offset, unsigned NumBytes) {
651 assert(Offset+NumBytes <= size() && "Invalid offset to erase!");
652 if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
653 return Leaf->erase(Offset, NumBytes);
654 return cast<RopePieceBTreeInterior>(this)->erase(Offset, NumBytes);
655}
656
657
658//===----------------------------------------------------------------------===//
659// RopePieceBTreeIterator Implementation
660//===----------------------------------------------------------------------===//
661
662static const RopePieceBTreeLeaf *getCN(const void *P) {
663 return static_cast<const RopePieceBTreeLeaf*>(P);
664}
665
666// begin iterator.
667RopePieceBTreeIterator::RopePieceBTreeIterator(const void *n) {
668 const RopePieceBTreeNode *N = static_cast<const RopePieceBTreeNode*>(n);
669
670 // Walk down the left side of the tree until we get to a leaf.
671 while (const RopePieceBTreeInterior *IN = dyn_cast<RopePieceBTreeInterior>(N))
672 N = IN->getChild(0);
673
674 // We must have at least one leaf.
675 CurNode = cast<RopePieceBTreeLeaf>(N);
676
677 // If we found a leaf that happens to be empty, skip over it until we get
678 // to something full.
679 while (CurNode && getCN(CurNode)->getNumPieces() == 0)
680 CurNode = getCN(CurNode)->getNextLeafInOrder();
681
682 if (CurNode != 0)
683 CurPiece = &getCN(CurNode)->getPiece(0);
684 else // Empty tree, this is an end() iterator.
685 CurPiece = 0;
686 CurChar = 0;
687}
688
689void RopePieceBTreeIterator::MoveToNextPiece() {
690 if (CurPiece != &getCN(CurNode)->getPiece(getCN(CurNode)->getNumPieces()-1)) {
691 CurChar = 0;
692 ++CurPiece;
693 return;
694 }
695
696 // Find the next non-empty leaf node.
697 do
698 CurNode = getCN(CurNode)->getNextLeafInOrder();
699 while (CurNode && getCN(CurNode)->getNumPieces() == 0);
700
701 if (CurNode != 0)
702 CurPiece = &getCN(CurNode)->getPiece(0);
703 else // Hit end().
704 CurPiece = 0;
705 CurChar = 0;
706}
707
708//===----------------------------------------------------------------------===//
709// RopePieceBTree Implementation
710//===----------------------------------------------------------------------===//
711
712static RopePieceBTreeNode *getRoot(void *P) {
713 return static_cast<RopePieceBTreeNode*>(P);
714}
715
716RopePieceBTree::RopePieceBTree() {
717 Root = new RopePieceBTreeLeaf();
718}
719RopePieceBTree::RopePieceBTree(const RopePieceBTree &RHS) {
720 assert(RHS.empty() && "Can't copy non-empty tree yet");
721 Root = new RopePieceBTreeLeaf();
722}
723RopePieceBTree::~RopePieceBTree() {
724 getRoot(Root)->Destroy();
725}
726
727unsigned RopePieceBTree::size() const {
728 return getRoot(Root)->size();
729}
730
731void RopePieceBTree::clear() {
732 if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(getRoot(Root)))
733 Leaf->clear();
734 else {
735 getRoot(Root)->Destroy();
736 Root = new RopePieceBTreeLeaf();
737 }
738}
739
740void RopePieceBTree::insert(unsigned Offset, const RopePiece &R) {
741 // #1. Split at Offset.
742 if (RopePieceBTreeNode *RHS = getRoot(Root)->split(Offset))
743 Root = new RopePieceBTreeInterior(getRoot(Root), RHS);
744
745 // #2. Do the insertion.
746 if (RopePieceBTreeNode *RHS = getRoot(Root)->insert(Offset, R))
747 Root = new RopePieceBTreeInterior(getRoot(Root), RHS);
748}
749
750void RopePieceBTree::erase(unsigned Offset, unsigned NumBytes) {
751 // #1. Split at Offset.
752 if (RopePieceBTreeNode *RHS = getRoot(Root)->split(Offset))
753 Root = new RopePieceBTreeInterior(getRoot(Root), RHS);
754
755 // #2. Do the erasing.
756 getRoot(Root)->erase(Offset, NumBytes);
757}
758
759//===----------------------------------------------------------------------===//
760// RewriteRope Implementation
761//===----------------------------------------------------------------------===//
762
763/// MakeRopeString - This copies the specified byte range into some instance of
764/// RopeRefCountString, and return a RopePiece that represents it. This uses
765/// the AllocBuffer object to aggregate requests for small strings into one
766/// allocation instead of doing tons of tiny allocations.
767RopePiece RewriteRope::MakeRopeString(const char *Start, const char *End) {
768 unsigned Len = End-Start;
769 assert(Len && "Zero length RopePiece is invalid!");
770
771 // If we have space for this string in the current alloc buffer, use it.
772 if (AllocOffs+Len <= AllocChunkSize) {
773 memcpy(AllocBuffer->Data+AllocOffs, Start, Len);
774 AllocOffs += Len;
775 return RopePiece(AllocBuffer, AllocOffs-Len, AllocOffs);
776 }
777
778 // If we don't have enough room because this specific allocation is huge,
779 // just allocate a new rope piece for it alone.
780 if (Len > AllocChunkSize) {
781 unsigned Size = End-Start+sizeof(RopeRefCountString)-1;
782 RopeRefCountString *Res =
783 reinterpret_cast<RopeRefCountString *>(new char[Size]);
784 Res->RefCount = 0;
785 memcpy(Res->Data, Start, End-Start);
786 return RopePiece(Res, 0, End-Start);
787 }
788
789 // Otherwise, this was a small request but we just don't have space for it
790 // Make a new chunk and share it with later allocations.
791
792 // If we had an old allocation, drop our reference to it.
793 if (AllocBuffer && --AllocBuffer->RefCount == 0)
794 delete [] (char*)AllocBuffer;
795
796 unsigned AllocSize = offsetof(RopeRefCountString, Data) + AllocChunkSize;
797 AllocBuffer = reinterpret_cast<RopeRefCountString *>(new char[AllocSize]);
798 AllocBuffer->RefCount = 0;
799 memcpy(AllocBuffer->Data, Start, Len);
800 AllocOffs = Len;
801
802 // Start out the new allocation with a refcount of 1, since we have an
803 // internal reference to it.
804 AllocBuffer->addRef();
805 return RopePiece(AllocBuffer, 0, Len);
806}
807
808