blob: b79b1cc9937540558bd43520198c41fcd90b93ac [file] [log] [blame]
Shih-wei Liaof8fd82b2010-02-10 11:10:31 -08001//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "Lookup.h"
16#include "SemaInit.h"
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Lex/Preprocessor.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/TypeOrdering.h"
24#include "clang/Basic/PartialDiagnostic.h"
25#include "llvm/ADT/SmallPtrSet.h"
26#include "llvm/ADT/STLExtras.h"
27#include <algorithm>
28
29namespace clang {
30
31/// GetConversionCategory - Retrieve the implicit conversion
32/// category corresponding to the given implicit conversion kind.
33ImplicitConversionCategory
34GetConversionCategory(ImplicitConversionKind Kind) {
35 static const ImplicitConversionCategory
36 Category[(int)ICK_Num_Conversion_Kinds] = {
37 ICC_Identity,
38 ICC_Lvalue_Transformation,
39 ICC_Lvalue_Transformation,
40 ICC_Lvalue_Transformation,
41 ICC_Identity,
42 ICC_Qualification_Adjustment,
43 ICC_Promotion,
44 ICC_Promotion,
45 ICC_Promotion,
46 ICC_Conversion,
47 ICC_Conversion,
48 ICC_Conversion,
49 ICC_Conversion,
50 ICC_Conversion,
51 ICC_Conversion,
52 ICC_Conversion,
53 ICC_Conversion,
54 ICC_Conversion,
55 ICC_Conversion
56 };
57 return Category[(int)Kind];
58}
59
60/// GetConversionRank - Retrieve the implicit conversion rank
61/// corresponding to the given implicit conversion kind.
62ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
63 static const ImplicitConversionRank
64 Rank[(int)ICK_Num_Conversion_Kinds] = {
65 ICR_Exact_Match,
66 ICR_Exact_Match,
67 ICR_Exact_Match,
68 ICR_Exact_Match,
69 ICR_Exact_Match,
70 ICR_Exact_Match,
71 ICR_Promotion,
72 ICR_Promotion,
73 ICR_Promotion,
74 ICR_Conversion,
75 ICR_Conversion,
76 ICR_Conversion,
77 ICR_Conversion,
78 ICR_Conversion,
79 ICR_Conversion,
80 ICR_Conversion,
81 ICR_Conversion,
82 ICR_Conversion,
83 ICR_Conversion
84 };
85 return Rank[(int)Kind];
86}
87
88/// GetImplicitConversionName - Return the name of this kind of
89/// implicit conversion.
90const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
91 static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
92 "No conversion",
93 "Lvalue-to-rvalue",
94 "Array-to-pointer",
95 "Function-to-pointer",
96 "Noreturn adjustment",
97 "Qualification",
98 "Integral promotion",
99 "Floating point promotion",
100 "Complex promotion",
101 "Integral conversion",
102 "Floating conversion",
103 "Complex conversion",
104 "Floating-integral conversion",
105 "Complex-real conversion",
106 "Pointer conversion",
107 "Pointer-to-member conversion",
108 "Boolean conversion",
109 "Compatible-types conversion",
110 "Derived-to-base conversion"
111 };
112 return Name[Kind];
113}
114
115/// StandardConversionSequence - Set the standard conversion
116/// sequence to the identity conversion.
117void StandardConversionSequence::setAsIdentityConversion() {
118 First = ICK_Identity;
119 Second = ICK_Identity;
120 Third = ICK_Identity;
121 Deprecated = false;
122 ReferenceBinding = false;
123 DirectBinding = false;
124 RRefBinding = false;
125 CopyConstructor = 0;
126}
127
128/// getRank - Retrieve the rank of this standard conversion sequence
129/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
130/// implicit conversions.
131ImplicitConversionRank StandardConversionSequence::getRank() const {
132 ImplicitConversionRank Rank = ICR_Exact_Match;
133 if (GetConversionRank(First) > Rank)
134 Rank = GetConversionRank(First);
135 if (GetConversionRank(Second) > Rank)
136 Rank = GetConversionRank(Second);
137 if (GetConversionRank(Third) > Rank)
138 Rank = GetConversionRank(Third);
139 return Rank;
140}
141
142/// isPointerConversionToBool - Determines whether this conversion is
143/// a conversion of a pointer or pointer-to-member to bool. This is
144/// used as part of the ranking of standard conversion sequences
145/// (C++ 13.3.3.2p4).
146bool StandardConversionSequence::isPointerConversionToBool() const {
147 // Note that FromType has not necessarily been transformed by the
148 // array-to-pointer or function-to-pointer implicit conversions, so
149 // check for their presence as well as checking whether FromType is
150 // a pointer.
151 if (getToType(1)->isBooleanType() &&
152 (getFromType()->isPointerType() || getFromType()->isBlockPointerType() ||
153 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
154 return true;
155
156 return false;
157}
158
159/// isPointerConversionToVoidPointer - Determines whether this
160/// conversion is a conversion of a pointer to a void pointer. This is
161/// used as part of the ranking of standard conversion sequences (C++
162/// 13.3.3.2p4).
163bool
164StandardConversionSequence::
165isPointerConversionToVoidPointer(ASTContext& Context) const {
166 QualType FromType = getFromType();
167 QualType ToType = getToType(1);
168
169 // Note that FromType has not necessarily been transformed by the
170 // array-to-pointer implicit conversion, so check for its presence
171 // and redo the conversion to get a pointer.
172 if (First == ICK_Array_To_Pointer)
173 FromType = Context.getArrayDecayedType(FromType);
174
175 if (Second == ICK_Pointer_Conversion && FromType->isPointerType())
176 if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
177 return ToPtrType->getPointeeType()->isVoidType();
178
179 return false;
180}
181
182/// DebugPrint - Print this standard conversion sequence to standard
183/// error. Useful for debugging overloading issues.
184void StandardConversionSequence::DebugPrint() const {
185 llvm::raw_ostream &OS = llvm::errs();
186 bool PrintedSomething = false;
187 if (First != ICK_Identity) {
188 OS << GetImplicitConversionName(First);
189 PrintedSomething = true;
190 }
191
192 if (Second != ICK_Identity) {
193 if (PrintedSomething) {
194 OS << " -> ";
195 }
196 OS << GetImplicitConversionName(Second);
197
198 if (CopyConstructor) {
199 OS << " (by copy constructor)";
200 } else if (DirectBinding) {
201 OS << " (direct reference binding)";
202 } else if (ReferenceBinding) {
203 OS << " (reference binding)";
204 }
205 PrintedSomething = true;
206 }
207
208 if (Third != ICK_Identity) {
209 if (PrintedSomething) {
210 OS << " -> ";
211 }
212 OS << GetImplicitConversionName(Third);
213 PrintedSomething = true;
214 }
215
216 if (!PrintedSomething) {
217 OS << "No conversions required";
218 }
219}
220
221/// DebugPrint - Print this user-defined conversion sequence to standard
222/// error. Useful for debugging overloading issues.
223void UserDefinedConversionSequence::DebugPrint() const {
224 llvm::raw_ostream &OS = llvm::errs();
225 if (Before.First || Before.Second || Before.Third) {
226 Before.DebugPrint();
227 OS << " -> ";
228 }
229 OS << "'" << ConversionFunction->getNameAsString() << "'";
230 if (After.First || After.Second || After.Third) {
231 OS << " -> ";
232 After.DebugPrint();
233 }
234}
235
236/// DebugPrint - Print this implicit conversion sequence to standard
237/// error. Useful for debugging overloading issues.
238void ImplicitConversionSequence::DebugPrint() const {
239 llvm::raw_ostream &OS = llvm::errs();
240 switch (ConversionKind) {
241 case StandardConversion:
242 OS << "Standard conversion: ";
243 Standard.DebugPrint();
244 break;
245 case UserDefinedConversion:
246 OS << "User-defined conversion: ";
247 UserDefined.DebugPrint();
248 break;
249 case EllipsisConversion:
250 OS << "Ellipsis conversion";
251 break;
252 case AmbiguousConversion:
253 OS << "Ambiguous conversion";
254 break;
255 case BadConversion:
256 OS << "Bad conversion";
257 break;
258 }
259
260 OS << "\n";
261}
262
263void AmbiguousConversionSequence::construct() {
264 new (&conversions()) ConversionSet();
265}
266
267void AmbiguousConversionSequence::destruct() {
268 conversions().~ConversionSet();
269}
270
271void
272AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
273 FromTypePtr = O.FromTypePtr;
274 ToTypePtr = O.ToTypePtr;
275 new (&conversions()) ConversionSet(O.conversions());
276}
277
278
279// IsOverload - Determine whether the given New declaration is an
280// overload of the declarations in Old. This routine returns false if
281// New and Old cannot be overloaded, e.g., if New has the same
282// signature as some function in Old (C++ 1.3.10) or if the Old
283// declarations aren't functions (or function templates) at all. When
284// it does return false, MatchedDecl will point to the decl that New
285// cannot be overloaded with. This decl may be a UsingShadowDecl on
286// top of the underlying declaration.
287//
288// Example: Given the following input:
289//
290// void f(int, float); // #1
291// void f(int, int); // #2
292// int f(int, int); // #3
293//
294// When we process #1, there is no previous declaration of "f",
295// so IsOverload will not be used.
296//
297// When we process #2, Old contains only the FunctionDecl for #1. By
298// comparing the parameter types, we see that #1 and #2 are overloaded
299// (since they have different signatures), so this routine returns
300// false; MatchedDecl is unchanged.
301//
302// When we process #3, Old is an overload set containing #1 and #2. We
303// compare the signatures of #3 to #1 (they're overloaded, so we do
304// nothing) and then #3 to #2. Since the signatures of #3 and #2 are
305// identical (return types of functions are not part of the
306// signature), IsOverload returns false and MatchedDecl will be set to
307// point to the FunctionDecl for #2.
308Sema::OverloadKind
309Sema::CheckOverload(FunctionDecl *New, const LookupResult &Old,
310 NamedDecl *&Match) {
311 for (LookupResult::iterator I = Old.begin(), E = Old.end();
312 I != E; ++I) {
313 NamedDecl *OldD = (*I)->getUnderlyingDecl();
314 if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) {
315 if (!IsOverload(New, OldT->getTemplatedDecl())) {
316 Match = *I;
317 return Ovl_Match;
318 }
319 } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) {
320 if (!IsOverload(New, OldF)) {
321 Match = *I;
322 return Ovl_Match;
323 }
324 } else if (isa<UsingDecl>(OldD) || isa<TagDecl>(OldD)) {
325 // We can overload with these, which can show up when doing
326 // redeclaration checks for UsingDecls.
327 assert(Old.getLookupKind() == LookupUsingDeclName);
328 } else if (isa<UnresolvedUsingValueDecl>(OldD)) {
329 // Optimistically assume that an unresolved using decl will
330 // overload; if it doesn't, we'll have to diagnose during
331 // template instantiation.
332 } else {
333 // (C++ 13p1):
334 // Only function declarations can be overloaded; object and type
335 // declarations cannot be overloaded.
336 Match = *I;
337 return Ovl_NonFunction;
338 }
339 }
340
341 return Ovl_Overload;
342}
343
344bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old) {
345 FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
346 FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
347
348 // C++ [temp.fct]p2:
349 // A function template can be overloaded with other function templates
350 // and with normal (non-template) functions.
351 if ((OldTemplate == 0) != (NewTemplate == 0))
352 return true;
353
354 // Is the function New an overload of the function Old?
355 QualType OldQType = Context.getCanonicalType(Old->getType());
356 QualType NewQType = Context.getCanonicalType(New->getType());
357
358 // Compare the signatures (C++ 1.3.10) of the two functions to
359 // determine whether they are overloads. If we find any mismatch
360 // in the signature, they are overloads.
361
362 // If either of these functions is a K&R-style function (no
363 // prototype), then we consider them to have matching signatures.
364 if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
365 isa<FunctionNoProtoType>(NewQType.getTypePtr()))
366 return false;
367
368 FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
369 FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
370
371 // The signature of a function includes the types of its
372 // parameters (C++ 1.3.10), which includes the presence or absence
373 // of the ellipsis; see C++ DR 357).
374 if (OldQType != NewQType &&
375 (OldType->getNumArgs() != NewType->getNumArgs() ||
376 OldType->isVariadic() != NewType->isVariadic() ||
377 !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
378 NewType->arg_type_begin())))
379 return true;
380
381 // C++ [temp.over.link]p4:
382 // The signature of a function template consists of its function
383 // signature, its return type and its template parameter list. The names
384 // of the template parameters are significant only for establishing the
385 // relationship between the template parameters and the rest of the
386 // signature.
387 //
388 // We check the return type and template parameter lists for function
389 // templates first; the remaining checks follow.
390 if (NewTemplate &&
391 (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
392 OldTemplate->getTemplateParameters(),
393 false, TPL_TemplateMatch) ||
394 OldType->getResultType() != NewType->getResultType()))
395 return true;
396
397 // If the function is a class member, its signature includes the
398 // cv-qualifiers (if any) on the function itself.
399 //
400 // As part of this, also check whether one of the member functions
401 // is static, in which case they are not overloads (C++
402 // 13.1p2). While not part of the definition of the signature,
403 // this check is important to determine whether these functions
404 // can be overloaded.
405 CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
406 CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
407 if (OldMethod && NewMethod &&
408 !OldMethod->isStatic() && !NewMethod->isStatic() &&
409 OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
410 return true;
411
412 // The signatures match; this is not an overload.
413 return false;
414}
415
416/// TryImplicitConversion - Attempt to perform an implicit conversion
417/// from the given expression (Expr) to the given type (ToType). This
418/// function returns an implicit conversion sequence that can be used
419/// to perform the initialization. Given
420///
421/// void f(float f);
422/// void g(int i) { f(i); }
423///
424/// this routine would produce an implicit conversion sequence to
425/// describe the initialization of f from i, which will be a standard
426/// conversion sequence containing an lvalue-to-rvalue conversion (C++
427/// 4.1) followed by a floating-integral conversion (C++ 4.9).
428//
429/// Note that this routine only determines how the conversion can be
430/// performed; it does not actually perform the conversion. As such,
431/// it will not produce any diagnostics if no conversion is available,
432/// but will instead return an implicit conversion sequence of kind
433/// "BadConversion".
434///
435/// If @p SuppressUserConversions, then user-defined conversions are
436/// not permitted.
437/// If @p AllowExplicit, then explicit user-defined conversions are
438/// permitted.
439/// If @p ForceRValue, then overloading is performed as if From was an rvalue,
440/// no matter its actual lvalueness.
441/// If @p UserCast, the implicit conversion is being done for a user-specified
442/// cast.
443ImplicitConversionSequence
444Sema::TryImplicitConversion(Expr* From, QualType ToType,
445 bool SuppressUserConversions,
446 bool AllowExplicit, bool ForceRValue,
447 bool InOverloadResolution,
448 bool UserCast) {
449 ImplicitConversionSequence ICS;
450 if (IsStandardConversion(From, ToType, InOverloadResolution, ICS.Standard)) {
451 ICS.setStandard();
452 return ICS;
453 }
454
455 if (!getLangOptions().CPlusPlus) {
456 ICS.setBad();
457 ICS.Bad.init(BadConversionSequence::no_conversion, From, ToType);
458 return ICS;
459 }
460
461 OverloadCandidateSet Conversions(From->getExprLoc());
462 OverloadingResult UserDefResult
463 = IsUserDefinedConversion(From, ToType, ICS.UserDefined, Conversions,
464 !SuppressUserConversions, AllowExplicit,
465 ForceRValue, UserCast);
466
467 if (UserDefResult == OR_Success) {
468 ICS.setUserDefined();
469 // C++ [over.ics.user]p4:
470 // A conversion of an expression of class type to the same class
471 // type is given Exact Match rank, and a conversion of an
472 // expression of class type to a base class of that type is
473 // given Conversion rank, in spite of the fact that a copy
474 // constructor (i.e., a user-defined conversion function) is
475 // called for those cases.
476 if (CXXConstructorDecl *Constructor
477 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
478 QualType FromCanon
479 = Context.getCanonicalType(From->getType().getUnqualifiedType());
480 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
481 if (Constructor->isCopyConstructor() &&
482 (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon))) {
483 // Turn this into a "standard" conversion sequence, so that it
484 // gets ranked with standard conversion sequences.
485 ICS.setStandard();
486 ICS.Standard.setAsIdentityConversion();
487 ICS.Standard.setFromType(From->getType());
488 ICS.Standard.setAllToTypes(ToType);
489 ICS.Standard.CopyConstructor = Constructor;
490 if (ToCanon != FromCanon)
491 ICS.Standard.Second = ICK_Derived_To_Base;
492 }
493 }
494
495 // C++ [over.best.ics]p4:
496 // However, when considering the argument of a user-defined
497 // conversion function that is a candidate by 13.3.1.3 when
498 // invoked for the copying of the temporary in the second step
499 // of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
500 // 13.3.1.6 in all cases, only standard conversion sequences and
501 // ellipsis conversion sequences are allowed.
502 if (SuppressUserConversions && ICS.isUserDefined()) {
503 ICS.setBad();
504 ICS.Bad.init(BadConversionSequence::suppressed_user, From, ToType);
505 }
506 } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) {
507 ICS.setAmbiguous();
508 ICS.Ambiguous.setFromType(From->getType());
509 ICS.Ambiguous.setToType(ToType);
510 for (OverloadCandidateSet::iterator Cand = Conversions.begin();
511 Cand != Conversions.end(); ++Cand)
512 if (Cand->Viable)
513 ICS.Ambiguous.addConversion(Cand->Function);
514 } else {
515 ICS.setBad();
516 ICS.Bad.init(BadConversionSequence::no_conversion, From, ToType);
517 }
518
519 return ICS;
520}
521
522/// \brief Determine whether the conversion from FromType to ToType is a valid
523/// conversion that strips "noreturn" off the nested function type.
524static bool IsNoReturnConversion(ASTContext &Context, QualType FromType,
525 QualType ToType, QualType &ResultTy) {
526 if (Context.hasSameUnqualifiedType(FromType, ToType))
527 return false;
528
529 // Strip the noreturn off the type we're converting from; noreturn can
530 // safely be removed.
531 FromType = Context.getNoReturnType(FromType, false);
532 if (!Context.hasSameUnqualifiedType(FromType, ToType))
533 return false;
534
535 ResultTy = FromType;
536 return true;
537}
538
539/// IsStandardConversion - Determines whether there is a standard
540/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
541/// expression From to the type ToType. Standard conversion sequences
542/// only consider non-class types; for conversions that involve class
543/// types, use TryImplicitConversion. If a conversion exists, SCS will
544/// contain the standard conversion sequence required to perform this
545/// conversion and this routine will return true. Otherwise, this
546/// routine will return false and the value of SCS is unspecified.
547bool
548Sema::IsStandardConversion(Expr* From, QualType ToType,
549 bool InOverloadResolution,
550 StandardConversionSequence &SCS) {
551 QualType FromType = From->getType();
552
553 // Standard conversions (C++ [conv])
554 SCS.setAsIdentityConversion();
555 SCS.Deprecated = false;
556 SCS.IncompatibleObjC = false;
557 SCS.setFromType(FromType);
558 SCS.CopyConstructor = 0;
559
560 // There are no standard conversions for class types in C++, so
561 // abort early. When overloading in C, however, we do permit
562 if (FromType->isRecordType() || ToType->isRecordType()) {
563 if (getLangOptions().CPlusPlus)
564 return false;
565
566 // When we're overloading in C, we allow, as standard conversions,
567 }
568
569 // The first conversion can be an lvalue-to-rvalue conversion,
570 // array-to-pointer conversion, or function-to-pointer conversion
571 // (C++ 4p1).
572
573 // Lvalue-to-rvalue conversion (C++ 4.1):
574 // An lvalue (3.10) of a non-function, non-array type T can be
575 // converted to an rvalue.
576 Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
577 if (argIsLvalue == Expr::LV_Valid &&
578 !FromType->isFunctionType() && !FromType->isArrayType() &&
579 Context.getCanonicalType(FromType) != Context.OverloadTy) {
580 SCS.First = ICK_Lvalue_To_Rvalue;
581
582 // If T is a non-class type, the type of the rvalue is the
583 // cv-unqualified version of T. Otherwise, the type of the rvalue
584 // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
585 // just strip the qualifiers because they don't matter.
586 FromType = FromType.getUnqualifiedType();
587 } else if (FromType->isArrayType()) {
588 // Array-to-pointer conversion (C++ 4.2)
589 SCS.First = ICK_Array_To_Pointer;
590
591 // An lvalue or rvalue of type "array of N T" or "array of unknown
592 // bound of T" can be converted to an rvalue of type "pointer to
593 // T" (C++ 4.2p1).
594 FromType = Context.getArrayDecayedType(FromType);
595
596 if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
597 // This conversion is deprecated. (C++ D.4).
598 SCS.Deprecated = true;
599
600 // For the purpose of ranking in overload resolution
601 // (13.3.3.1.1), this conversion is considered an
602 // array-to-pointer conversion followed by a qualification
603 // conversion (4.4). (C++ 4.2p2)
604 SCS.Second = ICK_Identity;
605 SCS.Third = ICK_Qualification;
606 SCS.setAllToTypes(FromType);
607 return true;
608 }
609 } else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
610 // Function-to-pointer conversion (C++ 4.3).
611 SCS.First = ICK_Function_To_Pointer;
612
613 // An lvalue of function type T can be converted to an rvalue of
614 // type "pointer to T." The result is a pointer to the
615 // function. (C++ 4.3p1).
616 FromType = Context.getPointerType(FromType);
617 } else if (FunctionDecl *Fn
618 = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
619 // Address of overloaded function (C++ [over.over]).
620 SCS.First = ICK_Function_To_Pointer;
621
622 // We were able to resolve the address of the overloaded function,
623 // so we can convert to the type of that function.
624 FromType = Fn->getType();
625 if (ToType->isLValueReferenceType())
626 FromType = Context.getLValueReferenceType(FromType);
627 else if (ToType->isRValueReferenceType())
628 FromType = Context.getRValueReferenceType(FromType);
629 else if (ToType->isMemberPointerType()) {
630 // Resolve address only succeeds if both sides are member pointers,
631 // but it doesn't have to be the same class. See DR 247.
632 // Note that this means that the type of &Derived::fn can be
633 // Ret (Base::*)(Args) if the fn overload actually found is from the
634 // base class, even if it was brought into the derived class via a
635 // using declaration. The standard isn't clear on this issue at all.
636 CXXMethodDecl *M = cast<CXXMethodDecl>(Fn);
637 FromType = Context.getMemberPointerType(FromType,
638 Context.getTypeDeclType(M->getParent()).getTypePtr());
639 } else
640 FromType = Context.getPointerType(FromType);
641 } else {
642 // We don't require any conversions for the first step.
643 SCS.First = ICK_Identity;
644 }
645 SCS.setToType(0, FromType);
646
647 // The second conversion can be an integral promotion, floating
648 // point promotion, integral conversion, floating point conversion,
649 // floating-integral conversion, pointer conversion,
650 // pointer-to-member conversion, or boolean conversion (C++ 4p1).
651 // For overloading in C, this can also be a "compatible-type"
652 // conversion.
653 bool IncompatibleObjC = false;
654 if (Context.hasSameUnqualifiedType(FromType, ToType)) {
655 // The unqualified versions of the types are the same: there's no
656 // conversion to do.
657 SCS.Second = ICK_Identity;
658 } else if (IsIntegralPromotion(From, FromType, ToType)) {
659 // Integral promotion (C++ 4.5).
660 SCS.Second = ICK_Integral_Promotion;
661 FromType = ToType.getUnqualifiedType();
662 } else if (IsFloatingPointPromotion(FromType, ToType)) {
663 // Floating point promotion (C++ 4.6).
664 SCS.Second = ICK_Floating_Promotion;
665 FromType = ToType.getUnqualifiedType();
666 } else if (IsComplexPromotion(FromType, ToType)) {
667 // Complex promotion (Clang extension)
668 SCS.Second = ICK_Complex_Promotion;
669 FromType = ToType.getUnqualifiedType();
670 } else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
671 (ToType->isIntegralType() && !ToType->isEnumeralType())) {
672 // Integral conversions (C++ 4.7).
673 SCS.Second = ICK_Integral_Conversion;
674 FromType = ToType.getUnqualifiedType();
675 } else if (FromType->isFloatingType() && ToType->isFloatingType()) {
676 // Floating point conversions (C++ 4.8).
677 SCS.Second = ICK_Floating_Conversion;
678 FromType = ToType.getUnqualifiedType();
679 } else if (FromType->isComplexType() && ToType->isComplexType()) {
680 // Complex conversions (C99 6.3.1.6)
681 SCS.Second = ICK_Complex_Conversion;
682 FromType = ToType.getUnqualifiedType();
683 } else if ((FromType->isFloatingType() &&
684 ToType->isIntegralType() && (!ToType->isBooleanType() &&
685 !ToType->isEnumeralType())) ||
686 ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
687 ToType->isFloatingType())) {
688 // Floating-integral conversions (C++ 4.9).
689 SCS.Second = ICK_Floating_Integral;
690 FromType = ToType.getUnqualifiedType();
691 } else if ((FromType->isComplexType() && ToType->isArithmeticType()) ||
692 (ToType->isComplexType() && FromType->isArithmeticType())) {
693 // Complex-real conversions (C99 6.3.1.7)
694 SCS.Second = ICK_Complex_Real;
695 FromType = ToType.getUnqualifiedType();
696 } else if (IsPointerConversion(From, FromType, ToType, InOverloadResolution,
697 FromType, IncompatibleObjC)) {
698 // Pointer conversions (C++ 4.10).
699 SCS.Second = ICK_Pointer_Conversion;
700 SCS.IncompatibleObjC = IncompatibleObjC;
701 } else if (IsMemberPointerConversion(From, FromType, ToType,
702 InOverloadResolution, FromType)) {
703 // Pointer to member conversions (4.11).
704 SCS.Second = ICK_Pointer_Member;
705 } else if (ToType->isBooleanType() &&
706 (FromType->isArithmeticType() ||
707 FromType->isEnumeralType() ||
708 FromType->isAnyPointerType() ||
709 FromType->isBlockPointerType() ||
710 FromType->isMemberPointerType() ||
711 FromType->isNullPtrType())) {
712 // Boolean conversions (C++ 4.12).
713 SCS.Second = ICK_Boolean_Conversion;
714 FromType = Context.BoolTy;
715 } else if (!getLangOptions().CPlusPlus &&
716 Context.typesAreCompatible(ToType, FromType)) {
717 // Compatible conversions (Clang extension for C function overloading)
718 SCS.Second = ICK_Compatible_Conversion;
719 } else if (IsNoReturnConversion(Context, FromType, ToType, FromType)) {
720 // Treat a conversion that strips "noreturn" as an identity conversion.
721 SCS.Second = ICK_NoReturn_Adjustment;
722 } else {
723 // No second conversion required.
724 SCS.Second = ICK_Identity;
725 }
726 SCS.setToType(1, FromType);
727
728 QualType CanonFrom;
729 QualType CanonTo;
730 // The third conversion can be a qualification conversion (C++ 4p1).
731 if (IsQualificationConversion(FromType, ToType)) {
732 SCS.Third = ICK_Qualification;
733 FromType = ToType;
734 CanonFrom = Context.getCanonicalType(FromType);
735 CanonTo = Context.getCanonicalType(ToType);
736 } else {
737 // No conversion required
738 SCS.Third = ICK_Identity;
739
740 // C++ [over.best.ics]p6:
741 // [...] Any difference in top-level cv-qualification is
742 // subsumed by the initialization itself and does not constitute
743 // a conversion. [...]
744 CanonFrom = Context.getCanonicalType(FromType);
745 CanonTo = Context.getCanonicalType(ToType);
746 if (CanonFrom.getLocalUnqualifiedType()
747 == CanonTo.getLocalUnqualifiedType() &&
748 CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers()) {
749 FromType = ToType;
750 CanonFrom = CanonTo;
751 }
752 }
753 SCS.setToType(2, FromType);
754
755 // If we have not converted the argument type to the parameter type,
756 // this is a bad conversion sequence.
757 if (CanonFrom != CanonTo)
758 return false;
759
760 return true;
761}
762
763/// IsIntegralPromotion - Determines whether the conversion from the
764/// expression From (whose potentially-adjusted type is FromType) to
765/// ToType is an integral promotion (C++ 4.5). If so, returns true and
766/// sets PromotedType to the promoted type.
767bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
768 const BuiltinType *To = ToType->getAs<BuiltinType>();
769 // All integers are built-in.
770 if (!To) {
771 return false;
772 }
773
774 // An rvalue of type char, signed char, unsigned char, short int, or
775 // unsigned short int can be converted to an rvalue of type int if
776 // int can represent all the values of the source type; otherwise,
777 // the source rvalue can be converted to an rvalue of type unsigned
778 // int (C++ 4.5p1).
779 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
780 !FromType->isEnumeralType()) {
781 if (// We can promote any signed, promotable integer type to an int
782 (FromType->isSignedIntegerType() ||
783 // We can promote any unsigned integer type whose size is
784 // less than int to an int.
785 (!FromType->isSignedIntegerType() &&
786 Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
787 return To->getKind() == BuiltinType::Int;
788 }
789
790 return To->getKind() == BuiltinType::UInt;
791 }
792
793 // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
794 // can be converted to an rvalue of the first of the following types
795 // that can represent all the values of its underlying type: int,
796 // unsigned int, long, or unsigned long (C++ 4.5p2).
797
798 // We pre-calculate the promotion type for enum types.
799 if (const EnumType *FromEnumType = FromType->getAs<EnumType>())
800 if (ToType->isIntegerType())
801 return Context.hasSameUnqualifiedType(ToType,
802 FromEnumType->getDecl()->getPromotionType());
803
804 if (FromType->isWideCharType() && ToType->isIntegerType()) {
805 // Determine whether the type we're converting from is signed or
806 // unsigned.
807 bool FromIsSigned;
808 uint64_t FromSize = Context.getTypeSize(FromType);
809
810 // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
811 FromIsSigned = true;
812
813 // The types we'll try to promote to, in the appropriate
814 // order. Try each of these types.
815 QualType PromoteTypes[6] = {
816 Context.IntTy, Context.UnsignedIntTy,
817 Context.LongTy, Context.UnsignedLongTy ,
818 Context.LongLongTy, Context.UnsignedLongLongTy
819 };
820 for (int Idx = 0; Idx < 6; ++Idx) {
821 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
822 if (FromSize < ToSize ||
823 (FromSize == ToSize &&
824 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
825 // We found the type that we can promote to. If this is the
826 // type we wanted, we have a promotion. Otherwise, no
827 // promotion.
828 return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
829 }
830 }
831 }
832
833 // An rvalue for an integral bit-field (9.6) can be converted to an
834 // rvalue of type int if int can represent all the values of the
835 // bit-field; otherwise, it can be converted to unsigned int if
836 // unsigned int can represent all the values of the bit-field. If
837 // the bit-field is larger yet, no integral promotion applies to
838 // it. If the bit-field has an enumerated type, it is treated as any
839 // other value of that type for promotion purposes (C++ 4.5p3).
840 // FIXME: We should delay checking of bit-fields until we actually perform the
841 // conversion.
842 using llvm::APSInt;
843 if (From)
844 if (FieldDecl *MemberDecl = From->getBitField()) {
845 APSInt BitWidth;
846 if (FromType->isIntegralType() && !FromType->isEnumeralType() &&
847 MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
848 APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
849 ToSize = Context.getTypeSize(ToType);
850
851 // Are we promoting to an int from a bitfield that fits in an int?
852 if (BitWidth < ToSize ||
853 (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
854 return To->getKind() == BuiltinType::Int;
855 }
856
857 // Are we promoting to an unsigned int from an unsigned bitfield
858 // that fits into an unsigned int?
859 if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
860 return To->getKind() == BuiltinType::UInt;
861 }
862
863 return false;
864 }
865 }
866
867 // An rvalue of type bool can be converted to an rvalue of type int,
868 // with false becoming zero and true becoming one (C++ 4.5p4).
869 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
870 return true;
871 }
872
873 return false;
874}
875
876/// IsFloatingPointPromotion - Determines whether the conversion from
877/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
878/// returns true and sets PromotedType to the promoted type.
879bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
880 /// An rvalue of type float can be converted to an rvalue of type
881 /// double. (C++ 4.6p1).
882 if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
883 if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
884 if (FromBuiltin->getKind() == BuiltinType::Float &&
885 ToBuiltin->getKind() == BuiltinType::Double)
886 return true;
887
888 // C99 6.3.1.5p1:
889 // When a float is promoted to double or long double, or a
890 // double is promoted to long double [...].
891 if (!getLangOptions().CPlusPlus &&
892 (FromBuiltin->getKind() == BuiltinType::Float ||
893 FromBuiltin->getKind() == BuiltinType::Double) &&
894 (ToBuiltin->getKind() == BuiltinType::LongDouble))
895 return true;
896 }
897
898 return false;
899}
900
901/// \brief Determine if a conversion is a complex promotion.
902///
903/// A complex promotion is defined as a complex -> complex conversion
904/// where the conversion between the underlying real types is a
905/// floating-point or integral promotion.
906bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
907 const ComplexType *FromComplex = FromType->getAs<ComplexType>();
908 if (!FromComplex)
909 return false;
910
911 const ComplexType *ToComplex = ToType->getAs<ComplexType>();
912 if (!ToComplex)
913 return false;
914
915 return IsFloatingPointPromotion(FromComplex->getElementType(),
916 ToComplex->getElementType()) ||
917 IsIntegralPromotion(0, FromComplex->getElementType(),
918 ToComplex->getElementType());
919}
920
921/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
922/// the pointer type FromPtr to a pointer to type ToPointee, with the
923/// same type qualifiers as FromPtr has on its pointee type. ToType,
924/// if non-empty, will be a pointer to ToType that may or may not have
925/// the right set of qualifiers on its pointee.
926static QualType
927BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
928 QualType ToPointee, QualType ToType,
929 ASTContext &Context) {
930 QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
931 QualType CanonToPointee = Context.getCanonicalType(ToPointee);
932 Qualifiers Quals = CanonFromPointee.getQualifiers();
933
934 // Exact qualifier match -> return the pointer type we're converting to.
935 if (CanonToPointee.getLocalQualifiers() == Quals) {
936 // ToType is exactly what we need. Return it.
937 if (!ToType.isNull())
938 return ToType;
939
940 // Build a pointer to ToPointee. It has the right qualifiers
941 // already.
942 return Context.getPointerType(ToPointee);
943 }
944
945 // Just build a canonical type that has the right qualifiers.
946 return Context.getPointerType(
947 Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(),
948 Quals));
949}
950
951/// BuildSimilarlyQualifiedObjCObjectPointerType - In a pointer conversion from
952/// the FromType, which is an objective-c pointer, to ToType, which may or may
953/// not have the right set of qualifiers.
954static QualType
955BuildSimilarlyQualifiedObjCObjectPointerType(QualType FromType,
956 QualType ToType,
957 ASTContext &Context) {
958 QualType CanonFromType = Context.getCanonicalType(FromType);
959 QualType CanonToType = Context.getCanonicalType(ToType);
960 Qualifiers Quals = CanonFromType.getQualifiers();
961
962 // Exact qualifier match -> return the pointer type we're converting to.
963 if (CanonToType.getLocalQualifiers() == Quals)
964 return ToType;
965
966 // Just build a canonical type that has the right qualifiers.
967 return Context.getQualifiedType(CanonToType.getLocalUnqualifiedType(), Quals);
968}
969
970static bool isNullPointerConstantForConversion(Expr *Expr,
971 bool InOverloadResolution,
972 ASTContext &Context) {
973 // Handle value-dependent integral null pointer constants correctly.
974 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
975 if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
976 Expr->getType()->isIntegralType())
977 return !InOverloadResolution;
978
979 return Expr->isNullPointerConstant(Context,
980 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
981 : Expr::NPC_ValueDependentIsNull);
982}
983
984/// IsPointerConversion - Determines whether the conversion of the
985/// expression From, which has the (possibly adjusted) type FromType,
986/// can be converted to the type ToType via a pointer conversion (C++
987/// 4.10). If so, returns true and places the converted type (that
988/// might differ from ToType in its cv-qualifiers at some level) into
989/// ConvertedType.
990///
991/// This routine also supports conversions to and from block pointers
992/// and conversions with Objective-C's 'id', 'id<protocols...>', and
993/// pointers to interfaces. FIXME: Once we've determined the
994/// appropriate overloading rules for Objective-C, we may want to
995/// split the Objective-C checks into a different routine; however,
996/// GCC seems to consider all of these conversions to be pointer
997/// conversions, so for now they live here. IncompatibleObjC will be
998/// set if the conversion is an allowed Objective-C conversion that
999/// should result in a warning.
1000bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
1001 bool InOverloadResolution,
1002 QualType& ConvertedType,
1003 bool &IncompatibleObjC) {
1004 IncompatibleObjC = false;
1005 if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
1006 return true;
1007
1008 // Conversion from a null pointer constant to any Objective-C pointer type.
1009 if (ToType->isObjCObjectPointerType() &&
1010 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1011 ConvertedType = ToType;
1012 return true;
1013 }
1014
1015 // Blocks: Block pointers can be converted to void*.
1016 if (FromType->isBlockPointerType() && ToType->isPointerType() &&
1017 ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
1018 ConvertedType = ToType;
1019 return true;
1020 }
1021 // Blocks: A null pointer constant can be converted to a block
1022 // pointer type.
1023 if (ToType->isBlockPointerType() &&
1024 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1025 ConvertedType = ToType;
1026 return true;
1027 }
1028
1029 // If the left-hand-side is nullptr_t, the right side can be a null
1030 // pointer constant.
1031 if (ToType->isNullPtrType() &&
1032 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1033 ConvertedType = ToType;
1034 return true;
1035 }
1036
1037 const PointerType* ToTypePtr = ToType->getAs<PointerType>();
1038 if (!ToTypePtr)
1039 return false;
1040
1041 // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
1042 if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1043 ConvertedType = ToType;
1044 return true;
1045 }
1046
1047 // Beyond this point, both types need to be pointers
1048 // , including objective-c pointers.
1049 QualType ToPointeeType = ToTypePtr->getPointeeType();
1050 if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType()) {
1051 ConvertedType = BuildSimilarlyQualifiedObjCObjectPointerType(FromType,
1052 ToType, Context);
1053 return true;
1054
1055 }
1056 const PointerType *FromTypePtr = FromType->getAs<PointerType>();
1057 if (!FromTypePtr)
1058 return false;
1059
1060 QualType FromPointeeType = FromTypePtr->getPointeeType();
1061
1062 // An rvalue of type "pointer to cv T," where T is an object type,
1063 // can be converted to an rvalue of type "pointer to cv void" (C++
1064 // 4.10p2).
1065 if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) {
1066 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1067 ToPointeeType,
1068 ToType, Context);
1069 return true;
1070 }
1071
1072 // When we're overloading in C, we allow a special kind of pointer
1073 // conversion for compatible-but-not-identical pointee types.
1074 if (!getLangOptions().CPlusPlus &&
1075 Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
1076 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1077 ToPointeeType,
1078 ToType, Context);
1079 return true;
1080 }
1081
1082 // C++ [conv.ptr]p3:
1083 //
1084 // An rvalue of type "pointer to cv D," where D is a class type,
1085 // can be converted to an rvalue of type "pointer to cv B," where
1086 // B is a base class (clause 10) of D. If B is an inaccessible
1087 // (clause 11) or ambiguous (10.2) base class of D, a program that
1088 // necessitates this conversion is ill-formed. The result of the
1089 // conversion is a pointer to the base class sub-object of the
1090 // derived class object. The null pointer value is converted to
1091 // the null pointer value of the destination type.
1092 //
1093 // Note that we do not check for ambiguity or inaccessibility
1094 // here. That is handled by CheckPointerConversion.
1095 if (getLangOptions().CPlusPlus &&
1096 FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1097 !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) &&
1098 IsDerivedFrom(FromPointeeType, ToPointeeType)) {
1099 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1100 ToPointeeType,
1101 ToType, Context);
1102 return true;
1103 }
1104
1105 return false;
1106}
1107
1108/// isObjCPointerConversion - Determines whether this is an
1109/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
1110/// with the same arguments and return values.
1111bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
1112 QualType& ConvertedType,
1113 bool &IncompatibleObjC) {
1114 if (!getLangOptions().ObjC1)
1115 return false;
1116
1117 // First, we handle all conversions on ObjC object pointer types.
1118 const ObjCObjectPointerType* ToObjCPtr = ToType->getAs<ObjCObjectPointerType>();
1119 const ObjCObjectPointerType *FromObjCPtr =
1120 FromType->getAs<ObjCObjectPointerType>();
1121
1122 if (ToObjCPtr && FromObjCPtr) {
1123 // Objective C++: We're able to convert between "id" or "Class" and a
1124 // pointer to any interface (in both directions).
1125 if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
1126 ConvertedType = ToType;
1127 return true;
1128 }
1129 // Conversions with Objective-C's id<...>.
1130 if ((FromObjCPtr->isObjCQualifiedIdType() ||
1131 ToObjCPtr->isObjCQualifiedIdType()) &&
1132 Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
1133 /*compare=*/false)) {
1134 ConvertedType = ToType;
1135 return true;
1136 }
1137 // Objective C++: We're able to convert from a pointer to an
1138 // interface to a pointer to a different interface.
1139 if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
1140 ConvertedType = ToType;
1141 return true;
1142 }
1143
1144 if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
1145 // Okay: this is some kind of implicit downcast of Objective-C
1146 // interfaces, which is permitted. However, we're going to
1147 // complain about it.
1148 IncompatibleObjC = true;
1149 ConvertedType = FromType;
1150 return true;
1151 }
1152 }
1153 // Beyond this point, both types need to be C pointers or block pointers.
1154 QualType ToPointeeType;
1155 if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
1156 ToPointeeType = ToCPtr->getPointeeType();
1157 else if (const BlockPointerType *ToBlockPtr =
1158 ToType->getAs<BlockPointerType>()) {
1159 // Objective C++: We're able to convert from a pointer to any object
1160 // to a block pointer type.
1161 if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
1162 ConvertedType = ToType;
1163 return true;
1164 }
1165 ToPointeeType = ToBlockPtr->getPointeeType();
1166 }
1167 else if (FromType->getAs<BlockPointerType>() &&
1168 ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
1169 // Objective C++: We're able to convert from a block pointer type to a
1170 // pointer to any object.
1171 ConvertedType = ToType;
1172 return true;
1173 }
1174 else
1175 return false;
1176
1177 QualType FromPointeeType;
1178 if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
1179 FromPointeeType = FromCPtr->getPointeeType();
1180 else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>())
1181 FromPointeeType = FromBlockPtr->getPointeeType();
1182 else
1183 return false;
1184
1185 // If we have pointers to pointers, recursively check whether this
1186 // is an Objective-C conversion.
1187 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1188 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1189 IncompatibleObjC)) {
1190 // We always complain about this conversion.
1191 IncompatibleObjC = true;
1192 ConvertedType = ToType;
1193 return true;
1194 }
1195 // Allow conversion of pointee being objective-c pointer to another one;
1196 // as in I* to id.
1197 if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
1198 ToPointeeType->getAs<ObjCObjectPointerType>() &&
1199 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1200 IncompatibleObjC)) {
1201 ConvertedType = ToType;
1202 return true;
1203 }
1204
1205 // If we have pointers to functions or blocks, check whether the only
1206 // differences in the argument and result types are in Objective-C
1207 // pointer conversions. If so, we permit the conversion (but
1208 // complain about it).
1209 const FunctionProtoType *FromFunctionType
1210 = FromPointeeType->getAs<FunctionProtoType>();
1211 const FunctionProtoType *ToFunctionType
1212 = ToPointeeType->getAs<FunctionProtoType>();
1213 if (FromFunctionType && ToFunctionType) {
1214 // If the function types are exactly the same, this isn't an
1215 // Objective-C pointer conversion.
1216 if (Context.getCanonicalType(FromPointeeType)
1217 == Context.getCanonicalType(ToPointeeType))
1218 return false;
1219
1220 // Perform the quick checks that will tell us whether these
1221 // function types are obviously different.
1222 if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1223 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1224 FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1225 return false;
1226
1227 bool HasObjCConversion = false;
1228 if (Context.getCanonicalType(FromFunctionType->getResultType())
1229 == Context.getCanonicalType(ToFunctionType->getResultType())) {
1230 // Okay, the types match exactly. Nothing to do.
1231 } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1232 ToFunctionType->getResultType(),
1233 ConvertedType, IncompatibleObjC)) {
1234 // Okay, we have an Objective-C pointer conversion.
1235 HasObjCConversion = true;
1236 } else {
1237 // Function types are too different. Abort.
1238 return false;
1239 }
1240
1241 // Check argument types.
1242 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1243 ArgIdx != NumArgs; ++ArgIdx) {
1244 QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1245 QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1246 if (Context.getCanonicalType(FromArgType)
1247 == Context.getCanonicalType(ToArgType)) {
1248 // Okay, the types match exactly. Nothing to do.
1249 } else if (isObjCPointerConversion(FromArgType, ToArgType,
1250 ConvertedType, IncompatibleObjC)) {
1251 // Okay, we have an Objective-C pointer conversion.
1252 HasObjCConversion = true;
1253 } else {
1254 // Argument types are too different. Abort.
1255 return false;
1256 }
1257 }
1258
1259 if (HasObjCConversion) {
1260 // We had an Objective-C conversion. Allow this pointer
1261 // conversion, but complain about it.
1262 ConvertedType = ToType;
1263 IncompatibleObjC = true;
1264 return true;
1265 }
1266 }
1267
1268 return false;
1269}
1270
1271/// CheckPointerConversion - Check the pointer conversion from the
1272/// expression From to the type ToType. This routine checks for
1273/// ambiguous or inaccessible derived-to-base pointer
1274/// conversions for which IsPointerConversion has already returned
1275/// true. It returns true and produces a diagnostic if there was an
1276/// error, or returns false otherwise.
1277bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
1278 CastExpr::CastKind &Kind,
1279 bool IgnoreBaseAccess) {
1280 QualType FromType = From->getType();
1281
1282 if (const PointerType *FromPtrType = FromType->getAs<PointerType>())
1283 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
1284 QualType FromPointeeType = FromPtrType->getPointeeType(),
1285 ToPointeeType = ToPtrType->getPointeeType();
1286
1287 if (FromPointeeType->isRecordType() &&
1288 ToPointeeType->isRecordType()) {
1289 // We must have a derived-to-base conversion. Check an
1290 // ambiguous or inaccessible conversion.
1291 if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1292 From->getExprLoc(),
1293 From->getSourceRange(),
1294 IgnoreBaseAccess))
1295 return true;
1296
1297 // The conversion was successful.
1298 Kind = CastExpr::CK_DerivedToBase;
1299 }
1300 }
1301 if (const ObjCObjectPointerType *FromPtrType =
1302 FromType->getAs<ObjCObjectPointerType>())
1303 if (const ObjCObjectPointerType *ToPtrType =
1304 ToType->getAs<ObjCObjectPointerType>()) {
1305 // Objective-C++ conversions are always okay.
1306 // FIXME: We should have a different class of conversions for the
1307 // Objective-C++ implicit conversions.
1308 if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
1309 return false;
1310
1311 }
1312 return false;
1313}
1314
1315/// IsMemberPointerConversion - Determines whether the conversion of the
1316/// expression From, which has the (possibly adjusted) type FromType, can be
1317/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1318/// If so, returns true and places the converted type (that might differ from
1319/// ToType in its cv-qualifiers at some level) into ConvertedType.
1320bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1321 QualType ToType,
1322 bool InOverloadResolution,
1323 QualType &ConvertedType) {
1324 const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
1325 if (!ToTypePtr)
1326 return false;
1327
1328 // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1329 if (From->isNullPointerConstant(Context,
1330 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1331 : Expr::NPC_ValueDependentIsNull)) {
1332 ConvertedType = ToType;
1333 return true;
1334 }
1335
1336 // Otherwise, both types have to be member pointers.
1337 const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
1338 if (!FromTypePtr)
1339 return false;
1340
1341 // A pointer to member of B can be converted to a pointer to member of D,
1342 // where D is derived from B (C++ 4.11p2).
1343 QualType FromClass(FromTypePtr->getClass(), 0);
1344 QualType ToClass(ToTypePtr->getClass(), 0);
1345 // FIXME: What happens when these are dependent? Is this function even called?
1346
1347 if (IsDerivedFrom(ToClass, FromClass)) {
1348 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1349 ToClass.getTypePtr());
1350 return true;
1351 }
1352
1353 return false;
1354}
1355
1356/// CheckMemberPointerConversion - Check the member pointer conversion from the
1357/// expression From to the type ToType. This routine checks for ambiguous or
1358/// virtual or inaccessible base-to-derived member pointer conversions
1359/// for which IsMemberPointerConversion has already returned true. It returns
1360/// true and produces a diagnostic if there was an error, or returns false
1361/// otherwise.
1362bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
1363 CastExpr::CastKind &Kind,
1364 bool IgnoreBaseAccess) {
1365 QualType FromType = From->getType();
1366 const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
1367 if (!FromPtrType) {
1368 // This must be a null pointer to member pointer conversion
1369 assert(From->isNullPointerConstant(Context,
1370 Expr::NPC_ValueDependentIsNull) &&
1371 "Expr must be null pointer constant!");
1372 Kind = CastExpr::CK_NullToMemberPointer;
1373 return false;
1374 }
1375
1376 const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
1377 assert(ToPtrType && "No member pointer cast has a target type "
1378 "that is not a member pointer.");
1379
1380 QualType FromClass = QualType(FromPtrType->getClass(), 0);
1381 QualType ToClass = QualType(ToPtrType->getClass(), 0);
1382
1383 // FIXME: What about dependent types?
1384 assert(FromClass->isRecordType() && "Pointer into non-class.");
1385 assert(ToClass->isRecordType() && "Pointer into non-class.");
1386
1387 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/ true,
1388 /*DetectVirtual=*/true);
1389 bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1390 assert(DerivationOkay &&
1391 "Should not have been called if derivation isn't OK.");
1392 (void)DerivationOkay;
1393
1394 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1395 getUnqualifiedType())) {
1396 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1397 Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1398 << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1399 return true;
1400 }
1401
1402 if (const RecordType *VBase = Paths.getDetectedVirtual()) {
1403 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1404 << FromClass << ToClass << QualType(VBase, 0)
1405 << From->getSourceRange();
1406 return true;
1407 }
1408
1409 if (!IgnoreBaseAccess)
1410 CheckBaseClassAccess(From->getExprLoc(), /*BaseToDerived*/ true,
1411 FromClass, ToClass, Paths.front());
1412
1413 // Must be a base to derived member conversion.
1414 Kind = CastExpr::CK_BaseToDerivedMemberPointer;
1415 return false;
1416}
1417
1418/// IsQualificationConversion - Determines whether the conversion from
1419/// an rvalue of type FromType to ToType is a qualification conversion
1420/// (C++ 4.4).
1421bool
1422Sema::IsQualificationConversion(QualType FromType, QualType ToType) {
1423 FromType = Context.getCanonicalType(FromType);
1424 ToType = Context.getCanonicalType(ToType);
1425
1426 // If FromType and ToType are the same type, this is not a
1427 // qualification conversion.
1428 if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
1429 return false;
1430
1431 // (C++ 4.4p4):
1432 // A conversion can add cv-qualifiers at levels other than the first
1433 // in multi-level pointers, subject to the following rules: [...]
1434 bool PreviousToQualsIncludeConst = true;
1435 bool UnwrappedAnyPointer = false;
1436 while (UnwrapSimilarPointerTypes(FromType, ToType)) {
1437 // Within each iteration of the loop, we check the qualifiers to
1438 // determine if this still looks like a qualification
1439 // conversion. Then, if all is well, we unwrap one more level of
1440 // pointers or pointers-to-members and do it all again
1441 // until there are no more pointers or pointers-to-members left to
1442 // unwrap.
1443 UnwrappedAnyPointer = true;
1444
1445 // -- for every j > 0, if const is in cv 1,j then const is in cv
1446 // 2,j, and similarly for volatile.
1447 if (!ToType.isAtLeastAsQualifiedAs(FromType))
1448 return false;
1449
1450 // -- if the cv 1,j and cv 2,j are different, then const is in
1451 // every cv for 0 < k < j.
1452 if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
1453 && !PreviousToQualsIncludeConst)
1454 return false;
1455
1456 // Keep track of whether all prior cv-qualifiers in the "to" type
1457 // include const.
1458 PreviousToQualsIncludeConst
1459 = PreviousToQualsIncludeConst && ToType.isConstQualified();
1460 }
1461
1462 // We are left with FromType and ToType being the pointee types
1463 // after unwrapping the original FromType and ToType the same number
1464 // of types. If we unwrapped any pointers, and if FromType and
1465 // ToType have the same unqualified type (since we checked
1466 // qualifiers above), then this is a qualification conversion.
1467 return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
1468}
1469
1470/// Determines whether there is a user-defined conversion sequence
1471/// (C++ [over.ics.user]) that converts expression From to the type
1472/// ToType. If such a conversion exists, User will contain the
1473/// user-defined conversion sequence that performs such a conversion
1474/// and this routine will return true. Otherwise, this routine returns
1475/// false and User is unspecified.
1476///
1477/// \param AllowConversionFunctions true if the conversion should
1478/// consider conversion functions at all. If false, only constructors
1479/// will be considered.
1480///
1481/// \param AllowExplicit true if the conversion should consider C++0x
1482/// "explicit" conversion functions as well as non-explicit conversion
1483/// functions (C++0x [class.conv.fct]p2).
1484///
1485/// \param ForceRValue true if the expression should be treated as an rvalue
1486/// for overload resolution.
1487/// \param UserCast true if looking for user defined conversion for a static
1488/// cast.
1489OverloadingResult Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
1490 UserDefinedConversionSequence& User,
1491 OverloadCandidateSet& CandidateSet,
1492 bool AllowConversionFunctions,
1493 bool AllowExplicit,
1494 bool ForceRValue,
1495 bool UserCast) {
1496 if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
1497 if (RequireCompleteType(From->getLocStart(), ToType, PDiag())) {
1498 // We're not going to find any constructors.
1499 } else if (CXXRecordDecl *ToRecordDecl
1500 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
1501 // C++ [over.match.ctor]p1:
1502 // When objects of class type are direct-initialized (8.5), or
1503 // copy-initialized from an expression of the same or a
1504 // derived class type (8.5), overload resolution selects the
1505 // constructor. [...] For copy-initialization, the candidate
1506 // functions are all the converting constructors (12.3.1) of
1507 // that class. The argument list is the expression-list within
1508 // the parentheses of the initializer.
1509 bool SuppressUserConversions = !UserCast;
1510 if (Context.hasSameUnqualifiedType(ToType, From->getType()) ||
1511 IsDerivedFrom(From->getType(), ToType)) {
1512 SuppressUserConversions = false;
1513 AllowConversionFunctions = false;
1514 }
1515
1516 DeclarationName ConstructorName
1517 = Context.DeclarationNames.getCXXConstructorName(
1518 Context.getCanonicalType(ToType).getUnqualifiedType());
1519 DeclContext::lookup_iterator Con, ConEnd;
1520 for (llvm::tie(Con, ConEnd)
1521 = ToRecordDecl->lookup(ConstructorName);
1522 Con != ConEnd; ++Con) {
1523 // Find the constructor (which may be a template).
1524 CXXConstructorDecl *Constructor = 0;
1525 FunctionTemplateDecl *ConstructorTmpl
1526 = dyn_cast<FunctionTemplateDecl>(*Con);
1527 if (ConstructorTmpl)
1528 Constructor
1529 = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
1530 else
1531 Constructor = cast<CXXConstructorDecl>(*Con);
1532
1533 if (!Constructor->isInvalidDecl() &&
1534 Constructor->isConvertingConstructor(AllowExplicit)) {
1535 if (ConstructorTmpl)
1536 AddTemplateOverloadCandidate(ConstructorTmpl,
1537 ConstructorTmpl->getAccess(),
1538 /*ExplicitArgs*/ 0,
1539 &From, 1, CandidateSet,
1540 SuppressUserConversions, ForceRValue);
1541 else
1542 // Allow one user-defined conversion when user specifies a
1543 // From->ToType conversion via an static cast (c-style, etc).
1544 AddOverloadCandidate(Constructor, Constructor->getAccess(),
1545 &From, 1, CandidateSet,
1546 SuppressUserConversions, ForceRValue);
1547 }
1548 }
1549 }
1550 }
1551
1552 if (!AllowConversionFunctions) {
1553 // Don't allow any conversion functions to enter the overload set.
1554 } else if (RequireCompleteType(From->getLocStart(), From->getType(),
1555 PDiag(0)
1556 << From->getSourceRange())) {
1557 // No conversion functions from incomplete types.
1558 } else if (const RecordType *FromRecordType
1559 = From->getType()->getAs<RecordType>()) {
1560 if (CXXRecordDecl *FromRecordDecl
1561 = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
1562 // Add all of the conversion functions as candidates.
1563 const UnresolvedSetImpl *Conversions
1564 = FromRecordDecl->getVisibleConversionFunctions();
1565 for (UnresolvedSetImpl::iterator I = Conversions->begin(),
1566 E = Conversions->end(); I != E; ++I) {
1567 NamedDecl *D = *I;
1568 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
1569 if (isa<UsingShadowDecl>(D))
1570 D = cast<UsingShadowDecl>(D)->getTargetDecl();
1571
1572 CXXConversionDecl *Conv;
1573 FunctionTemplateDecl *ConvTemplate;
1574 if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(*I)))
1575 Conv = dyn_cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
1576 else
1577 Conv = dyn_cast<CXXConversionDecl>(*I);
1578
1579 if (AllowExplicit || !Conv->isExplicit()) {
1580 if (ConvTemplate)
1581 AddTemplateConversionCandidate(ConvTemplate, I.getAccess(),
1582 ActingContext, From, ToType,
1583 CandidateSet);
1584 else
1585 AddConversionCandidate(Conv, I.getAccess(), ActingContext,
1586 From, ToType, CandidateSet);
1587 }
1588 }
1589 }
1590 }
1591
1592 OverloadCandidateSet::iterator Best;
1593 switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) {
1594 case OR_Success:
1595 // Record the standard conversion we used and the conversion function.
1596 if (CXXConstructorDecl *Constructor
1597 = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1598 // C++ [over.ics.user]p1:
1599 // If the user-defined conversion is specified by a
1600 // constructor (12.3.1), the initial standard conversion
1601 // sequence converts the source type to the type required by
1602 // the argument of the constructor.
1603 //
1604 QualType ThisType = Constructor->getThisType(Context);
1605 if (Best->Conversions[0].isEllipsis())
1606 User.EllipsisConversion = true;
1607 else {
1608 User.Before = Best->Conversions[0].Standard;
1609 User.EllipsisConversion = false;
1610 }
1611 User.ConversionFunction = Constructor;
1612 User.After.setAsIdentityConversion();
1613 User.After.setFromType(
1614 ThisType->getAs<PointerType>()->getPointeeType());
1615 User.After.setAllToTypes(ToType);
1616 return OR_Success;
1617 } else if (CXXConversionDecl *Conversion
1618 = dyn_cast<CXXConversionDecl>(Best->Function)) {
1619 // C++ [over.ics.user]p1:
1620 //
1621 // [...] If the user-defined conversion is specified by a
1622 // conversion function (12.3.2), the initial standard
1623 // conversion sequence converts the source type to the
1624 // implicit object parameter of the conversion function.
1625 User.Before = Best->Conversions[0].Standard;
1626 User.ConversionFunction = Conversion;
1627 User.EllipsisConversion = false;
1628
1629 // C++ [over.ics.user]p2:
1630 // The second standard conversion sequence converts the
1631 // result of the user-defined conversion to the target type
1632 // for the sequence. Since an implicit conversion sequence
1633 // is an initialization, the special rules for
1634 // initialization by user-defined conversion apply when
1635 // selecting the best user-defined conversion for a
1636 // user-defined conversion sequence (see 13.3.3 and
1637 // 13.3.3.1).
1638 User.After = Best->FinalConversion;
1639 return OR_Success;
1640 } else {
1641 assert(false && "Not a constructor or conversion function?");
1642 return OR_No_Viable_Function;
1643 }
1644
1645 case OR_No_Viable_Function:
1646 return OR_No_Viable_Function;
1647 case OR_Deleted:
1648 // No conversion here! We're done.
1649 return OR_Deleted;
1650
1651 case OR_Ambiguous:
1652 return OR_Ambiguous;
1653 }
1654
1655 return OR_No_Viable_Function;
1656}
1657
1658bool
1659Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
1660 ImplicitConversionSequence ICS;
1661 OverloadCandidateSet CandidateSet(From->getExprLoc());
1662 OverloadingResult OvResult =
1663 IsUserDefinedConversion(From, ToType, ICS.UserDefined,
1664 CandidateSet, true, false, false);
1665 if (OvResult == OR_Ambiguous)
1666 Diag(From->getSourceRange().getBegin(),
1667 diag::err_typecheck_ambiguous_condition)
1668 << From->getType() << ToType << From->getSourceRange();
1669 else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty())
1670 Diag(From->getSourceRange().getBegin(),
1671 diag::err_typecheck_nonviable_condition)
1672 << From->getType() << ToType << From->getSourceRange();
1673 else
1674 return false;
1675 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &From, 1);
1676 return true;
1677}
1678
1679/// CompareImplicitConversionSequences - Compare two implicit
1680/// conversion sequences to determine whether one is better than the
1681/// other or if they are indistinguishable (C++ 13.3.3.2).
1682ImplicitConversionSequence::CompareKind
1683Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1684 const ImplicitConversionSequence& ICS2)
1685{
1686 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1687 // conversion sequences (as defined in 13.3.3.1)
1688 // -- a standard conversion sequence (13.3.3.1.1) is a better
1689 // conversion sequence than a user-defined conversion sequence or
1690 // an ellipsis conversion sequence, and
1691 // -- a user-defined conversion sequence (13.3.3.1.2) is a better
1692 // conversion sequence than an ellipsis conversion sequence
1693 // (13.3.3.1.3).
1694 //
1695 // C++0x [over.best.ics]p10:
1696 // For the purpose of ranking implicit conversion sequences as
1697 // described in 13.3.3.2, the ambiguous conversion sequence is
1698 // treated as a user-defined sequence that is indistinguishable
1699 // from any other user-defined conversion sequence.
1700 if (ICS1.getKind() < ICS2.getKind()) {
1701 if (!(ICS1.isUserDefined() && ICS2.isAmbiguous()))
1702 return ImplicitConversionSequence::Better;
1703 } else if (ICS2.getKind() < ICS1.getKind()) {
1704 if (!(ICS2.isUserDefined() && ICS1.isAmbiguous()))
1705 return ImplicitConversionSequence::Worse;
1706 }
1707
1708 if (ICS1.isAmbiguous() || ICS2.isAmbiguous())
1709 return ImplicitConversionSequence::Indistinguishable;
1710
1711 // Two implicit conversion sequences of the same form are
1712 // indistinguishable conversion sequences unless one of the
1713 // following rules apply: (C++ 13.3.3.2p3):
1714 if (ICS1.isStandard())
1715 return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1716 else if (ICS1.isUserDefined()) {
1717 // User-defined conversion sequence U1 is a better conversion
1718 // sequence than another user-defined conversion sequence U2 if
1719 // they contain the same user-defined conversion function or
1720 // constructor and if the second standard conversion sequence of
1721 // U1 is better than the second standard conversion sequence of
1722 // U2 (C++ 13.3.3.2p3).
1723 if (ICS1.UserDefined.ConversionFunction ==
1724 ICS2.UserDefined.ConversionFunction)
1725 return CompareStandardConversionSequences(ICS1.UserDefined.After,
1726 ICS2.UserDefined.After);
1727 }
1728
1729 return ImplicitConversionSequence::Indistinguishable;
1730}
1731
1732// Per 13.3.3.2p3, compare the given standard conversion sequences to
1733// determine if one is a proper subset of the other.
1734static ImplicitConversionSequence::CompareKind
1735compareStandardConversionSubsets(ASTContext &Context,
1736 const StandardConversionSequence& SCS1,
1737 const StandardConversionSequence& SCS2) {
1738 ImplicitConversionSequence::CompareKind Result
1739 = ImplicitConversionSequence::Indistinguishable;
1740
1741 if (SCS1.Second != SCS2.Second) {
1742 if (SCS1.Second == ICK_Identity)
1743 Result = ImplicitConversionSequence::Better;
1744 else if (SCS2.Second == ICK_Identity)
1745 Result = ImplicitConversionSequence::Worse;
1746 else
1747 return ImplicitConversionSequence::Indistinguishable;
1748 } else if (!Context.hasSameType(SCS1.getToType(1), SCS2.getToType(1)))
1749 return ImplicitConversionSequence::Indistinguishable;
1750
1751 if (SCS1.Third == SCS2.Third) {
1752 return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
1753 : ImplicitConversionSequence::Indistinguishable;
1754 }
1755
1756 if (SCS1.Third == ICK_Identity)
1757 return Result == ImplicitConversionSequence::Worse
1758 ? ImplicitConversionSequence::Indistinguishable
1759 : ImplicitConversionSequence::Better;
1760
1761 if (SCS2.Third == ICK_Identity)
1762 return Result == ImplicitConversionSequence::Better
1763 ? ImplicitConversionSequence::Indistinguishable
1764 : ImplicitConversionSequence::Worse;
1765
1766 return ImplicitConversionSequence::Indistinguishable;
1767}
1768
1769/// CompareStandardConversionSequences - Compare two standard
1770/// conversion sequences to determine whether one is better than the
1771/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1772ImplicitConversionSequence::CompareKind
1773Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1774 const StandardConversionSequence& SCS2)
1775{
1776 // Standard conversion sequence S1 is a better conversion sequence
1777 // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1778
1779 // -- S1 is a proper subsequence of S2 (comparing the conversion
1780 // sequences in the canonical form defined by 13.3.3.1.1,
1781 // excluding any Lvalue Transformation; the identity conversion
1782 // sequence is considered to be a subsequence of any
1783 // non-identity conversion sequence) or, if not that,
1784 if (ImplicitConversionSequence::CompareKind CK
1785 = compareStandardConversionSubsets(Context, SCS1, SCS2))
1786 return CK;
1787
1788 // -- the rank of S1 is better than the rank of S2 (by the rules
1789 // defined below), or, if not that,
1790 ImplicitConversionRank Rank1 = SCS1.getRank();
1791 ImplicitConversionRank Rank2 = SCS2.getRank();
1792 if (Rank1 < Rank2)
1793 return ImplicitConversionSequence::Better;
1794 else if (Rank2 < Rank1)
1795 return ImplicitConversionSequence::Worse;
1796
1797 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1798 // are indistinguishable unless one of the following rules
1799 // applies:
1800
1801 // A conversion that is not a conversion of a pointer, or
1802 // pointer to member, to bool is better than another conversion
1803 // that is such a conversion.
1804 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1805 return SCS2.isPointerConversionToBool()
1806 ? ImplicitConversionSequence::Better
1807 : ImplicitConversionSequence::Worse;
1808
1809 // C++ [over.ics.rank]p4b2:
1810 //
1811 // If class B is derived directly or indirectly from class A,
1812 // conversion of B* to A* is better than conversion of B* to
1813 // void*, and conversion of A* to void* is better than conversion
1814 // of B* to void*.
1815 bool SCS1ConvertsToVoid
1816 = SCS1.isPointerConversionToVoidPointer(Context);
1817 bool SCS2ConvertsToVoid
1818 = SCS2.isPointerConversionToVoidPointer(Context);
1819 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1820 // Exactly one of the conversion sequences is a conversion to
1821 // a void pointer; it's the worse conversion.
1822 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1823 : ImplicitConversionSequence::Worse;
1824 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1825 // Neither conversion sequence converts to a void pointer; compare
1826 // their derived-to-base conversions.
1827 if (ImplicitConversionSequence::CompareKind DerivedCK
1828 = CompareDerivedToBaseConversions(SCS1, SCS2))
1829 return DerivedCK;
1830 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1831 // Both conversion sequences are conversions to void
1832 // pointers. Compare the source types to determine if there's an
1833 // inheritance relationship in their sources.
1834 QualType FromType1 = SCS1.getFromType();
1835 QualType FromType2 = SCS2.getFromType();
1836
1837 // Adjust the types we're converting from via the array-to-pointer
1838 // conversion, if we need to.
1839 if (SCS1.First == ICK_Array_To_Pointer)
1840 FromType1 = Context.getArrayDecayedType(FromType1);
1841 if (SCS2.First == ICK_Array_To_Pointer)
1842 FromType2 = Context.getArrayDecayedType(FromType2);
1843
1844 QualType FromPointee1
1845 = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1846 QualType FromPointee2
1847 = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1848
1849 if (IsDerivedFrom(FromPointee2, FromPointee1))
1850 return ImplicitConversionSequence::Better;
1851 else if (IsDerivedFrom(FromPointee1, FromPointee2))
1852 return ImplicitConversionSequence::Worse;
1853
1854 // Objective-C++: If one interface is more specific than the
1855 // other, it is the better one.
1856 const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>();
1857 const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>();
1858 if (FromIface1 && FromIface1) {
1859 if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1860 return ImplicitConversionSequence::Better;
1861 else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1862 return ImplicitConversionSequence::Worse;
1863 }
1864 }
1865
1866 // Compare based on qualification conversions (C++ 13.3.3.2p3,
1867 // bullet 3).
1868 if (ImplicitConversionSequence::CompareKind QualCK
1869 = CompareQualificationConversions(SCS1, SCS2))
1870 return QualCK;
1871
1872 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
1873 // C++0x [over.ics.rank]p3b4:
1874 // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
1875 // implicit object parameter of a non-static member function declared
1876 // without a ref-qualifier, and S1 binds an rvalue reference to an
1877 // rvalue and S2 binds an lvalue reference.
1878 // FIXME: We don't know if we're dealing with the implicit object parameter,
1879 // or if the member function in this case has a ref qualifier.
1880 // (Of course, we don't have ref qualifiers yet.)
1881 if (SCS1.RRefBinding != SCS2.RRefBinding)
1882 return SCS1.RRefBinding ? ImplicitConversionSequence::Better
1883 : ImplicitConversionSequence::Worse;
1884
1885 // C++ [over.ics.rank]p3b4:
1886 // -- S1 and S2 are reference bindings (8.5.3), and the types to
1887 // which the references refer are the same type except for
1888 // top-level cv-qualifiers, and the type to which the reference
1889 // initialized by S2 refers is more cv-qualified than the type
1890 // to which the reference initialized by S1 refers.
1891 QualType T1 = SCS1.getToType(2);
1892 QualType T2 = SCS2.getToType(2);
1893 T1 = Context.getCanonicalType(T1);
1894 T2 = Context.getCanonicalType(T2);
1895 Qualifiers T1Quals, T2Quals;
1896 QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
1897 QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
1898 if (UnqualT1 == UnqualT2) {
1899 // If the type is an array type, promote the element qualifiers to the type
1900 // for comparison.
1901 if (isa<ArrayType>(T1) && T1Quals)
1902 T1 = Context.getQualifiedType(UnqualT1, T1Quals);
1903 if (isa<ArrayType>(T2) && T2Quals)
1904 T2 = Context.getQualifiedType(UnqualT2, T2Quals);
1905 if (T2.isMoreQualifiedThan(T1))
1906 return ImplicitConversionSequence::Better;
1907 else if (T1.isMoreQualifiedThan(T2))
1908 return ImplicitConversionSequence::Worse;
1909 }
1910 }
1911
1912 return ImplicitConversionSequence::Indistinguishable;
1913}
1914
1915/// CompareQualificationConversions - Compares two standard conversion
1916/// sequences to determine whether they can be ranked based on their
1917/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1918ImplicitConversionSequence::CompareKind
1919Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1920 const StandardConversionSequence& SCS2) {
1921 // C++ 13.3.3.2p3:
1922 // -- S1 and S2 differ only in their qualification conversion and
1923 // yield similar types T1 and T2 (C++ 4.4), respectively, and the
1924 // cv-qualification signature of type T1 is a proper subset of
1925 // the cv-qualification signature of type T2, and S1 is not the
1926 // deprecated string literal array-to-pointer conversion (4.2).
1927 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1928 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1929 return ImplicitConversionSequence::Indistinguishable;
1930
1931 // FIXME: the example in the standard doesn't use a qualification
1932 // conversion (!)
1933 QualType T1 = SCS1.getToType(2);
1934 QualType T2 = SCS2.getToType(2);
1935 T1 = Context.getCanonicalType(T1);
1936 T2 = Context.getCanonicalType(T2);
1937 Qualifiers T1Quals, T2Quals;
1938 QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
1939 QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
1940
1941 // If the types are the same, we won't learn anything by unwrapped
1942 // them.
1943 if (UnqualT1 == UnqualT2)
1944 return ImplicitConversionSequence::Indistinguishable;
1945
1946 // If the type is an array type, promote the element qualifiers to the type
1947 // for comparison.
1948 if (isa<ArrayType>(T1) && T1Quals)
1949 T1 = Context.getQualifiedType(UnqualT1, T1Quals);
1950 if (isa<ArrayType>(T2) && T2Quals)
1951 T2 = Context.getQualifiedType(UnqualT2, T2Quals);
1952
1953 ImplicitConversionSequence::CompareKind Result
1954 = ImplicitConversionSequence::Indistinguishable;
1955 while (UnwrapSimilarPointerTypes(T1, T2)) {
1956 // Within each iteration of the loop, we check the qualifiers to
1957 // determine if this still looks like a qualification
1958 // conversion. Then, if all is well, we unwrap one more level of
1959 // pointers or pointers-to-members and do it all again
1960 // until there are no more pointers or pointers-to-members left
1961 // to unwrap. This essentially mimics what
1962 // IsQualificationConversion does, but here we're checking for a
1963 // strict subset of qualifiers.
1964 if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1965 // The qualifiers are the same, so this doesn't tell us anything
1966 // about how the sequences rank.
1967 ;
1968 else if (T2.isMoreQualifiedThan(T1)) {
1969 // T1 has fewer qualifiers, so it could be the better sequence.
1970 if (Result == ImplicitConversionSequence::Worse)
1971 // Neither has qualifiers that are a subset of the other's
1972 // qualifiers.
1973 return ImplicitConversionSequence::Indistinguishable;
1974
1975 Result = ImplicitConversionSequence::Better;
1976 } else if (T1.isMoreQualifiedThan(T2)) {
1977 // T2 has fewer qualifiers, so it could be the better sequence.
1978 if (Result == ImplicitConversionSequence::Better)
1979 // Neither has qualifiers that are a subset of the other's
1980 // qualifiers.
1981 return ImplicitConversionSequence::Indistinguishable;
1982
1983 Result = ImplicitConversionSequence::Worse;
1984 } else {
1985 // Qualifiers are disjoint.
1986 return ImplicitConversionSequence::Indistinguishable;
1987 }
1988
1989 // If the types after this point are equivalent, we're done.
1990 if (Context.hasSameUnqualifiedType(T1, T2))
1991 break;
1992 }
1993
1994 // Check that the winning standard conversion sequence isn't using
1995 // the deprecated string literal array to pointer conversion.
1996 switch (Result) {
1997 case ImplicitConversionSequence::Better:
1998 if (SCS1.Deprecated)
1999 Result = ImplicitConversionSequence::Indistinguishable;
2000 break;
2001
2002 case ImplicitConversionSequence::Indistinguishable:
2003 break;
2004
2005 case ImplicitConversionSequence::Worse:
2006 if (SCS2.Deprecated)
2007 Result = ImplicitConversionSequence::Indistinguishable;
2008 break;
2009 }
2010
2011 return Result;
2012}
2013
2014/// CompareDerivedToBaseConversions - Compares two standard conversion
2015/// sequences to determine whether they can be ranked based on their
2016/// various kinds of derived-to-base conversions (C++
2017/// [over.ics.rank]p4b3). As part of these checks, we also look at
2018/// conversions between Objective-C interface types.
2019ImplicitConversionSequence::CompareKind
2020Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
2021 const StandardConversionSequence& SCS2) {
2022 QualType FromType1 = SCS1.getFromType();
2023 QualType ToType1 = SCS1.getToType(1);
2024 QualType FromType2 = SCS2.getFromType();
2025 QualType ToType2 = SCS2.getToType(1);
2026
2027 // Adjust the types we're converting from via the array-to-pointer
2028 // conversion, if we need to.
2029 if (SCS1.First == ICK_Array_To_Pointer)
2030 FromType1 = Context.getArrayDecayedType(FromType1);
2031 if (SCS2.First == ICK_Array_To_Pointer)
2032 FromType2 = Context.getArrayDecayedType(FromType2);
2033
2034 // Canonicalize all of the types.
2035 FromType1 = Context.getCanonicalType(FromType1);
2036 ToType1 = Context.getCanonicalType(ToType1);
2037 FromType2 = Context.getCanonicalType(FromType2);
2038 ToType2 = Context.getCanonicalType(ToType2);
2039
2040 // C++ [over.ics.rank]p4b3:
2041 //
2042 // If class B is derived directly or indirectly from class A and
2043 // class C is derived directly or indirectly from B,
2044 //
2045 // For Objective-C, we let A, B, and C also be Objective-C
2046 // interfaces.
2047
2048 // Compare based on pointer conversions.
2049 if (SCS1.Second == ICK_Pointer_Conversion &&
2050 SCS2.Second == ICK_Pointer_Conversion &&
2051 /*FIXME: Remove if Objective-C id conversions get their own rank*/
2052 FromType1->isPointerType() && FromType2->isPointerType() &&
2053 ToType1->isPointerType() && ToType2->isPointerType()) {
2054 QualType FromPointee1
2055 = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2056 QualType ToPointee1
2057 = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2058 QualType FromPointee2
2059 = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2060 QualType ToPointee2
2061 = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2062
2063 const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>();
2064 const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>();
2065 const ObjCInterfaceType* ToIface1 = ToPointee1->getAs<ObjCInterfaceType>();
2066 const ObjCInterfaceType* ToIface2 = ToPointee2->getAs<ObjCInterfaceType>();
2067
2068 // -- conversion of C* to B* is better than conversion of C* to A*,
2069 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
2070 if (IsDerivedFrom(ToPointee1, ToPointee2))
2071 return ImplicitConversionSequence::Better;
2072 else if (IsDerivedFrom(ToPointee2, ToPointee1))
2073 return ImplicitConversionSequence::Worse;
2074
2075 if (ToIface1 && ToIface2) {
2076 if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
2077 return ImplicitConversionSequence::Better;
2078 else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
2079 return ImplicitConversionSequence::Worse;
2080 }
2081 }
2082
2083 // -- conversion of B* to A* is better than conversion of C* to A*,
2084 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
2085 if (IsDerivedFrom(FromPointee2, FromPointee1))
2086 return ImplicitConversionSequence::Better;
2087 else if (IsDerivedFrom(FromPointee1, FromPointee2))
2088 return ImplicitConversionSequence::Worse;
2089
2090 if (FromIface1 && FromIface2) {
2091 if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
2092 return ImplicitConversionSequence::Better;
2093 else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
2094 return ImplicitConversionSequence::Worse;
2095 }
2096 }
2097 }
2098
2099 // Compare based on reference bindings.
2100 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding &&
2101 SCS1.Second == ICK_Derived_To_Base) {
2102 // -- binding of an expression of type C to a reference of type
2103 // B& is better than binding an expression of type C to a
2104 // reference of type A&,
2105 if (Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2106 !Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2107 if (IsDerivedFrom(ToType1, ToType2))
2108 return ImplicitConversionSequence::Better;
2109 else if (IsDerivedFrom(ToType2, ToType1))
2110 return ImplicitConversionSequence::Worse;
2111 }
2112
2113 // -- binding of an expression of type B to a reference of type
2114 // A& is better than binding an expression of type C to a
2115 // reference of type A&,
2116 if (!Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2117 Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2118 if (IsDerivedFrom(FromType2, FromType1))
2119 return ImplicitConversionSequence::Better;
2120 else if (IsDerivedFrom(FromType1, FromType2))
2121 return ImplicitConversionSequence::Worse;
2122 }
2123 }
2124
2125 // Ranking of member-pointer types.
2126 if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
2127 FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
2128 ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
2129 const MemberPointerType * FromMemPointer1 =
2130 FromType1->getAs<MemberPointerType>();
2131 const MemberPointerType * ToMemPointer1 =
2132 ToType1->getAs<MemberPointerType>();
2133 const MemberPointerType * FromMemPointer2 =
2134 FromType2->getAs<MemberPointerType>();
2135 const MemberPointerType * ToMemPointer2 =
2136 ToType2->getAs<MemberPointerType>();
2137 const Type *FromPointeeType1 = FromMemPointer1->getClass();
2138 const Type *ToPointeeType1 = ToMemPointer1->getClass();
2139 const Type *FromPointeeType2 = FromMemPointer2->getClass();
2140 const Type *ToPointeeType2 = ToMemPointer2->getClass();
2141 QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
2142 QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
2143 QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
2144 QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
2145 // conversion of A::* to B::* is better than conversion of A::* to C::*,
2146 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
2147 if (IsDerivedFrom(ToPointee1, ToPointee2))
2148 return ImplicitConversionSequence::Worse;
2149 else if (IsDerivedFrom(ToPointee2, ToPointee1))
2150 return ImplicitConversionSequence::Better;
2151 }
2152 // conversion of B::* to C::* is better than conversion of A::* to C::*
2153 if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
2154 if (IsDerivedFrom(FromPointee1, FromPointee2))
2155 return ImplicitConversionSequence::Better;
2156 else if (IsDerivedFrom(FromPointee2, FromPointee1))
2157 return ImplicitConversionSequence::Worse;
2158 }
2159 }
2160
2161 if (SCS1.CopyConstructor && SCS2.CopyConstructor &&
2162 SCS1.Second == ICK_Derived_To_Base) {
2163 // -- conversion of C to B is better than conversion of C to A,
2164 if (Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2165 !Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2166 if (IsDerivedFrom(ToType1, ToType2))
2167 return ImplicitConversionSequence::Better;
2168 else if (IsDerivedFrom(ToType2, ToType1))
2169 return ImplicitConversionSequence::Worse;
2170 }
2171
2172 // -- conversion of B to A is better than conversion of C to A.
2173 if (!Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2174 Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2175 if (IsDerivedFrom(FromType2, FromType1))
2176 return ImplicitConversionSequence::Better;
2177 else if (IsDerivedFrom(FromType1, FromType2))
2178 return ImplicitConversionSequence::Worse;
2179 }
2180 }
2181
2182 return ImplicitConversionSequence::Indistinguishable;
2183}
2184
2185/// TryCopyInitialization - Try to copy-initialize a value of type
2186/// ToType from the expression From. Return the implicit conversion
2187/// sequence required to pass this argument, which may be a bad
2188/// conversion sequence (meaning that the argument cannot be passed to
2189/// a parameter of this type). If @p SuppressUserConversions, then we
2190/// do not permit any user-defined conversion sequences. If @p ForceRValue,
2191/// then we treat @p From as an rvalue, even if it is an lvalue.
2192ImplicitConversionSequence
2193Sema::TryCopyInitialization(Expr *From, QualType ToType,
2194 bool SuppressUserConversions, bool ForceRValue,
2195 bool InOverloadResolution) {
2196 if (ToType->isReferenceType()) {
2197 ImplicitConversionSequence ICS;
2198 ICS.Bad.init(BadConversionSequence::no_conversion, From, ToType);
2199 CheckReferenceInit(From, ToType,
2200 /*FIXME:*/From->getLocStart(),
2201 SuppressUserConversions,
2202 /*AllowExplicit=*/false,
2203 ForceRValue,
2204 &ICS);
2205 return ICS;
2206 } else {
2207 return TryImplicitConversion(From, ToType,
2208 SuppressUserConversions,
2209 /*AllowExplicit=*/false,
2210 ForceRValue,
2211 InOverloadResolution);
2212 }
2213}
2214
2215/// PerformCopyInitialization - Copy-initialize an object of type @p ToType with
2216/// the expression @p From. Returns true (and emits a diagnostic) if there was
2217/// an error, returns false if the initialization succeeded. Elidable should
2218/// be true when the copy may be elided (C++ 12.8p15). Overload resolution works
2219/// differently in C++0x for this case.
2220bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
2221 AssignmentAction Action, bool Elidable) {
2222 if (!getLangOptions().CPlusPlus) {
2223 // In C, argument passing is the same as performing an assignment.
2224 QualType FromType = From->getType();
2225
2226 AssignConvertType ConvTy =
2227 CheckSingleAssignmentConstraints(ToType, From);
2228 if (ConvTy != Compatible &&
2229 CheckTransparentUnionArgumentConstraints(ToType, From) == Compatible)
2230 ConvTy = Compatible;
2231
2232 return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
2233 FromType, From, Action);
2234 }
2235
2236 if (ToType->isReferenceType())
2237 return CheckReferenceInit(From, ToType,
2238 /*FIXME:*/From->getLocStart(),
2239 /*SuppressUserConversions=*/false,
2240 /*AllowExplicit=*/false,
2241 /*ForceRValue=*/false);
2242
2243 if (!PerformImplicitConversion(From, ToType, Action,
2244 /*AllowExplicit=*/false, Elidable))
2245 return false;
2246 if (!DiagnoseMultipleUserDefinedConversion(From, ToType))
2247 return Diag(From->getSourceRange().getBegin(),
2248 diag::err_typecheck_convert_incompatible)
2249 << ToType << From->getType() << Action << From->getSourceRange();
2250 return true;
2251}
2252
2253/// TryObjectArgumentInitialization - Try to initialize the object
2254/// parameter of the given member function (@c Method) from the
2255/// expression @p From.
2256ImplicitConversionSequence
2257Sema::TryObjectArgumentInitialization(QualType OrigFromType,
2258 CXXMethodDecl *Method,
2259 CXXRecordDecl *ActingContext) {
2260 QualType ClassType = Context.getTypeDeclType(ActingContext);
2261 // [class.dtor]p2: A destructor can be invoked for a const, volatile or
2262 // const volatile object.
2263 unsigned Quals = isa<CXXDestructorDecl>(Method) ?
2264 Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
2265 QualType ImplicitParamType = Context.getCVRQualifiedType(ClassType, Quals);
2266
2267 // Set up the conversion sequence as a "bad" conversion, to allow us
2268 // to exit early.
2269 ImplicitConversionSequence ICS;
2270 ICS.Standard.setAsIdentityConversion();
2271 ICS.setBad();
2272
2273 // We need to have an object of class type.
2274 QualType FromType = OrigFromType;
2275 if (const PointerType *PT = FromType->getAs<PointerType>())
2276 FromType = PT->getPointeeType();
2277
2278 assert(FromType->isRecordType());
2279
2280 // The implicit object parameter is has the type "reference to cv X",
2281 // where X is the class of which the function is a member
2282 // (C++ [over.match.funcs]p4). However, when finding an implicit
2283 // conversion sequence for the argument, we are not allowed to
2284 // create temporaries or perform user-defined conversions
2285 // (C++ [over.match.funcs]p5). We perform a simplified version of
2286 // reference binding here, that allows class rvalues to bind to
2287 // non-constant references.
2288
2289 // First check the qualifiers. We don't care about lvalue-vs-rvalue
2290 // with the implicit object parameter (C++ [over.match.funcs]p5).
2291 QualType FromTypeCanon = Context.getCanonicalType(FromType);
2292 if (ImplicitParamType.getCVRQualifiers()
2293 != FromTypeCanon.getLocalCVRQualifiers() &&
2294 !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
2295 ICS.Bad.init(BadConversionSequence::bad_qualifiers,
2296 OrigFromType, ImplicitParamType);
2297 return ICS;
2298 }
2299
2300 // Check that we have either the same type or a derived type. It
2301 // affects the conversion rank.
2302 QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
2303 if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType())
2304 ICS.Standard.Second = ICK_Identity;
2305 else if (IsDerivedFrom(FromType, ClassType))
2306 ICS.Standard.Second = ICK_Derived_To_Base;
2307 else {
2308 ICS.Bad.init(BadConversionSequence::unrelated_class, FromType, ImplicitParamType);
2309 return ICS;
2310 }
2311
2312 // Success. Mark this as a reference binding.
2313 ICS.setStandard();
2314 ICS.Standard.setFromType(FromType);
2315 ICS.Standard.setAllToTypes(ImplicitParamType);
2316 ICS.Standard.ReferenceBinding = true;
2317 ICS.Standard.DirectBinding = true;
2318 ICS.Standard.RRefBinding = false;
2319 return ICS;
2320}
2321
2322/// PerformObjectArgumentInitialization - Perform initialization of
2323/// the implicit object parameter for the given Method with the given
2324/// expression.
2325bool
2326Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) {
2327 QualType FromRecordType, DestType;
2328 QualType ImplicitParamRecordType =
2329 Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
2330
2331 if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
2332 FromRecordType = PT->getPointeeType();
2333 DestType = Method->getThisType(Context);
2334 } else {
2335 FromRecordType = From->getType();
2336 DestType = ImplicitParamRecordType;
2337 }
2338
2339 // Note that we always use the true parent context when performing
2340 // the actual argument initialization.
2341 ImplicitConversionSequence ICS
2342 = TryObjectArgumentInitialization(From->getType(), Method,
2343 Method->getParent());
2344 if (ICS.isBad())
2345 return Diag(From->getSourceRange().getBegin(),
2346 diag::err_implicit_object_parameter_init)
2347 << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
2348
2349 if (ICS.Standard.Second == ICK_Derived_To_Base &&
2350 CheckDerivedToBaseConversion(FromRecordType,
2351 ImplicitParamRecordType,
2352 From->getSourceRange().getBegin(),
2353 From->getSourceRange()))
2354 return true;
2355
2356 ImpCastExprToType(From, DestType, CastExpr::CK_DerivedToBase,
2357 /*isLvalue=*/true);
2358 return false;
2359}
2360
2361/// TryContextuallyConvertToBool - Attempt to contextually convert the
2362/// expression From to bool (C++0x [conv]p3).
2363ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
2364 return TryImplicitConversion(From, Context.BoolTy,
2365 // FIXME: Are these flags correct?
2366 /*SuppressUserConversions=*/false,
2367 /*AllowExplicit=*/true,
2368 /*ForceRValue=*/false,
2369 /*InOverloadResolution=*/false);
2370}
2371
2372/// PerformContextuallyConvertToBool - Perform a contextual conversion
2373/// of the expression From to bool (C++0x [conv]p3).
2374bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
2375 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
2376 if (!ICS.isBad())
2377 return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
2378
2379 if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
2380 return Diag(From->getSourceRange().getBegin(),
2381 diag::err_typecheck_bool_condition)
2382 << From->getType() << From->getSourceRange();
2383 return true;
2384}
2385
2386/// AddOverloadCandidate - Adds the given function to the set of
2387/// candidate functions, using the given function call arguments. If
2388/// @p SuppressUserConversions, then don't allow user-defined
2389/// conversions via constructors or conversion operators.
2390/// If @p ForceRValue, treat all arguments as rvalues. This is a slightly
2391/// hacky way to implement the overloading rules for elidable copy
2392/// initialization in C++0x (C++0x 12.8p15).
2393///
2394/// \para PartialOverloading true if we are performing "partial" overloading
2395/// based on an incomplete set of function arguments. This feature is used by
2396/// code completion.
2397void
2398Sema::AddOverloadCandidate(FunctionDecl *Function,
2399 AccessSpecifier Access,
2400 Expr **Args, unsigned NumArgs,
2401 OverloadCandidateSet& CandidateSet,
2402 bool SuppressUserConversions,
2403 bool ForceRValue,
2404 bool PartialOverloading) {
2405 const FunctionProtoType* Proto
2406 = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
2407 assert(Proto && "Functions without a prototype cannot be overloaded");
2408 assert(!Function->getDescribedFunctionTemplate() &&
2409 "Use AddTemplateOverloadCandidate for function templates");
2410
2411 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
2412 if (!isa<CXXConstructorDecl>(Method)) {
2413 // If we get here, it's because we're calling a member function
2414 // that is named without a member access expression (e.g.,
2415 // "this->f") that was either written explicitly or created
2416 // implicitly. This can happen with a qualified call to a member
2417 // function, e.g., X::f(). We use an empty type for the implied
2418 // object argument (C++ [over.call.func]p3), and the acting context
2419 // is irrelevant.
2420 AddMethodCandidate(Method, Access, Method->getParent(),
2421 QualType(), Args, NumArgs, CandidateSet,
2422 SuppressUserConversions, ForceRValue);
2423 return;
2424 }
2425 // We treat a constructor like a non-member function, since its object
2426 // argument doesn't participate in overload resolution.
2427 }
2428
2429 if (!CandidateSet.isNewCandidate(Function))
2430 return;
2431
2432 // Overload resolution is always an unevaluated context.
2433 EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2434
2435 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){
2436 // C++ [class.copy]p3:
2437 // A member function template is never instantiated to perform the copy
2438 // of a class object to an object of its class type.
2439 QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
2440 if (NumArgs == 1 &&
2441 Constructor->isCopyConstructorLikeSpecialization() &&
2442 Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()))
2443 return;
2444 }
2445
2446 // Add this candidate
2447 CandidateSet.push_back(OverloadCandidate());
2448 OverloadCandidate& Candidate = CandidateSet.back();
2449 Candidate.Function = Function;
2450 Candidate.Access = Access;
2451 Candidate.Viable = true;
2452 Candidate.IsSurrogate = false;
2453 Candidate.IgnoreObjectArgument = false;
2454
2455 unsigned NumArgsInProto = Proto->getNumArgs();
2456
2457 // (C++ 13.3.2p2): A candidate function having fewer than m
2458 // parameters is viable only if it has an ellipsis in its parameter
2459 // list (8.3.5).
2460 if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto &&
2461 !Proto->isVariadic()) {
2462 Candidate.Viable = false;
2463 Candidate.FailureKind = ovl_fail_too_many_arguments;
2464 return;
2465 }
2466
2467 // (C++ 13.3.2p2): A candidate function having more than m parameters
2468 // is viable only if the (m+1)st parameter has a default argument
2469 // (8.3.6). For the purposes of overload resolution, the
2470 // parameter list is truncated on the right, so that there are
2471 // exactly m parameters.
2472 unsigned MinRequiredArgs = Function->getMinRequiredArguments();
2473 if (NumArgs < MinRequiredArgs && !PartialOverloading) {
2474 // Not enough arguments.
2475 Candidate.Viable = false;
2476 Candidate.FailureKind = ovl_fail_too_few_arguments;
2477 return;
2478 }
2479
2480 // Determine the implicit conversion sequences for each of the
2481 // arguments.
2482 Candidate.Conversions.resize(NumArgs);
2483 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2484 if (ArgIdx < NumArgsInProto) {
2485 // (C++ 13.3.2p3): for F to be a viable function, there shall
2486 // exist for each argument an implicit conversion sequence
2487 // (13.3.3.1) that converts that argument to the corresponding
2488 // parameter of F.
2489 QualType ParamType = Proto->getArgType(ArgIdx);
2490 Candidate.Conversions[ArgIdx]
2491 = TryCopyInitialization(Args[ArgIdx], ParamType,
2492 SuppressUserConversions, ForceRValue,
2493 /*InOverloadResolution=*/true);
2494 if (Candidate.Conversions[ArgIdx].isBad()) {
2495 Candidate.Viable = false;
2496 Candidate.FailureKind = ovl_fail_bad_conversion;
2497 break;
2498 }
2499 } else {
2500 // (C++ 13.3.2p2): For the purposes of overload resolution, any
2501 // argument for which there is no corresponding parameter is
2502 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2503 Candidate.Conversions[ArgIdx].setEllipsis();
2504 }
2505 }
2506}
2507
2508/// \brief Add all of the function declarations in the given function set to
2509/// the overload canddiate set.
2510void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
2511 Expr **Args, unsigned NumArgs,
2512 OverloadCandidateSet& CandidateSet,
2513 bool SuppressUserConversions) {
2514 for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
2515 // FIXME: using declarations
2516 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*F)) {
2517 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2518 AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getAccess(),
2519 cast<CXXMethodDecl>(FD)->getParent(),
2520 Args[0]->getType(), Args + 1, NumArgs - 1,
2521 CandidateSet, SuppressUserConversions);
2522 else
2523 AddOverloadCandidate(FD, AS_none, Args, NumArgs, CandidateSet,
2524 SuppressUserConversions);
2525 } else {
2526 FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(*F);
2527 if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
2528 !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
2529 AddMethodTemplateCandidate(FunTmpl, F.getAccess(),
2530 cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
2531 /*FIXME: explicit args */ 0,
2532 Args[0]->getType(), Args + 1, NumArgs - 1,
2533 CandidateSet,
2534 SuppressUserConversions);
2535 else
2536 AddTemplateOverloadCandidate(FunTmpl, AS_none,
2537 /*FIXME: explicit args */ 0,
2538 Args, NumArgs, CandidateSet,
2539 SuppressUserConversions);
2540 }
2541 }
2542}
2543
2544/// AddMethodCandidate - Adds a named decl (which is some kind of
2545/// method) as a method candidate to the given overload set.
2546void Sema::AddMethodCandidate(NamedDecl *Decl,
2547 AccessSpecifier Access,
2548 QualType ObjectType,
2549 Expr **Args, unsigned NumArgs,
2550 OverloadCandidateSet& CandidateSet,
2551 bool SuppressUserConversions, bool ForceRValue) {
2552 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
2553
2554 if (isa<UsingShadowDecl>(Decl))
2555 Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
2556
2557 if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
2558 assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
2559 "Expected a member function template");
2560 AddMethodTemplateCandidate(TD, Access, ActingContext, /*ExplicitArgs*/ 0,
2561 ObjectType, Args, NumArgs,
2562 CandidateSet,
2563 SuppressUserConversions,
2564 ForceRValue);
2565 } else {
2566 AddMethodCandidate(cast<CXXMethodDecl>(Decl), Access, ActingContext,
2567 ObjectType, Args, NumArgs,
2568 CandidateSet, SuppressUserConversions, ForceRValue);
2569 }
2570}
2571
2572/// AddMethodCandidate - Adds the given C++ member function to the set
2573/// of candidate functions, using the given function call arguments
2574/// and the object argument (@c Object). For example, in a call
2575/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
2576/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
2577/// allow user-defined conversions via constructors or conversion
2578/// operators. If @p ForceRValue, treat all arguments as rvalues. This is
2579/// a slightly hacky way to implement the overloading rules for elidable copy
2580/// initialization in C++0x (C++0x 12.8p15).
2581void
2582Sema::AddMethodCandidate(CXXMethodDecl *Method, AccessSpecifier Access,
2583 CXXRecordDecl *ActingContext, QualType ObjectType,
2584 Expr **Args, unsigned NumArgs,
2585 OverloadCandidateSet& CandidateSet,
2586 bool SuppressUserConversions, bool ForceRValue) {
2587 const FunctionProtoType* Proto
2588 = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
2589 assert(Proto && "Methods without a prototype cannot be overloaded");
2590 assert(!isa<CXXConstructorDecl>(Method) &&
2591 "Use AddOverloadCandidate for constructors");
2592
2593 if (!CandidateSet.isNewCandidate(Method))
2594 return;
2595
2596 // Overload resolution is always an unevaluated context.
2597 EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2598
2599 // Add this candidate
2600 CandidateSet.push_back(OverloadCandidate());
2601 OverloadCandidate& Candidate = CandidateSet.back();
2602 Candidate.Function = Method;
2603 Candidate.Access = Access;
2604 Candidate.IsSurrogate = false;
2605 Candidate.IgnoreObjectArgument = false;
2606
2607 unsigned NumArgsInProto = Proto->getNumArgs();
2608
2609 // (C++ 13.3.2p2): A candidate function having fewer than m
2610 // parameters is viable only if it has an ellipsis in its parameter
2611 // list (8.3.5).
2612 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2613 Candidate.Viable = false;
2614 Candidate.FailureKind = ovl_fail_too_many_arguments;
2615 return;
2616 }
2617
2618 // (C++ 13.3.2p2): A candidate function having more than m parameters
2619 // is viable only if the (m+1)st parameter has a default argument
2620 // (8.3.6). For the purposes of overload resolution, the
2621 // parameter list is truncated on the right, so that there are
2622 // exactly m parameters.
2623 unsigned MinRequiredArgs = Method->getMinRequiredArguments();
2624 if (NumArgs < MinRequiredArgs) {
2625 // Not enough arguments.
2626 Candidate.Viable = false;
2627 Candidate.FailureKind = ovl_fail_too_few_arguments;
2628 return;
2629 }
2630
2631 Candidate.Viable = true;
2632 Candidate.Conversions.resize(NumArgs + 1);
2633
2634 if (Method->isStatic() || ObjectType.isNull())
2635 // The implicit object argument is ignored.
2636 Candidate.IgnoreObjectArgument = true;
2637 else {
2638 // Determine the implicit conversion sequence for the object
2639 // parameter.
2640 Candidate.Conversions[0]
2641 = TryObjectArgumentInitialization(ObjectType, Method, ActingContext);
2642 if (Candidate.Conversions[0].isBad()) {
2643 Candidate.Viable = false;
2644 Candidate.FailureKind = ovl_fail_bad_conversion;
2645 return;
2646 }
2647 }
2648
2649 // Determine the implicit conversion sequences for each of the
2650 // arguments.
2651 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2652 if (ArgIdx < NumArgsInProto) {
2653 // (C++ 13.3.2p3): for F to be a viable function, there shall
2654 // exist for each argument an implicit conversion sequence
2655 // (13.3.3.1) that converts that argument to the corresponding
2656 // parameter of F.
2657 QualType ParamType = Proto->getArgType(ArgIdx);
2658 Candidate.Conversions[ArgIdx + 1]
2659 = TryCopyInitialization(Args[ArgIdx], ParamType,
2660 SuppressUserConversions, ForceRValue,
2661 /*InOverloadResolution=*/true);
2662 if (Candidate.Conversions[ArgIdx + 1].isBad()) {
2663 Candidate.Viable = false;
2664 Candidate.FailureKind = ovl_fail_bad_conversion;
2665 break;
2666 }
2667 } else {
2668 // (C++ 13.3.2p2): For the purposes of overload resolution, any
2669 // argument for which there is no corresponding parameter is
2670 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2671 Candidate.Conversions[ArgIdx + 1].setEllipsis();
2672 }
2673 }
2674}
2675
2676/// \brief Add a C++ member function template as a candidate to the candidate
2677/// set, using template argument deduction to produce an appropriate member
2678/// function template specialization.
2679void
2680Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
2681 AccessSpecifier Access,
2682 CXXRecordDecl *ActingContext,
2683 const TemplateArgumentListInfo *ExplicitTemplateArgs,
2684 QualType ObjectType,
2685 Expr **Args, unsigned NumArgs,
2686 OverloadCandidateSet& CandidateSet,
2687 bool SuppressUserConversions,
2688 bool ForceRValue) {
2689 if (!CandidateSet.isNewCandidate(MethodTmpl))
2690 return;
2691
2692 // C++ [over.match.funcs]p7:
2693 // In each case where a candidate is a function template, candidate
2694 // function template specializations are generated using template argument
2695 // deduction (14.8.3, 14.8.2). Those candidates are then handled as
2696 // candidate functions in the usual way.113) A given name can refer to one
2697 // or more function templates and also to a set of overloaded non-template
2698 // functions. In such a case, the candidate functions generated from each
2699 // function template are combined with the set of non-template candidate
2700 // functions.
2701 TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
2702 FunctionDecl *Specialization = 0;
2703 if (TemplateDeductionResult Result
2704 = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs,
2705 Args, NumArgs, Specialization, Info)) {
2706 // FIXME: Record what happened with template argument deduction, so
2707 // that we can give the user a beautiful diagnostic.
2708 (void)Result;
2709 return;
2710 }
2711
2712 // Add the function template specialization produced by template argument
2713 // deduction as a candidate.
2714 assert(Specialization && "Missing member function template specialization?");
2715 assert(isa<CXXMethodDecl>(Specialization) &&
2716 "Specialization is not a member function?");
2717 AddMethodCandidate(cast<CXXMethodDecl>(Specialization), Access,
2718 ActingContext, ObjectType, Args, NumArgs,
2719 CandidateSet, SuppressUserConversions, ForceRValue);
2720}
2721
2722/// \brief Add a C++ function template specialization as a candidate
2723/// in the candidate set, using template argument deduction to produce
2724/// an appropriate function template specialization.
2725void
2726Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
2727 AccessSpecifier Access,
2728 const TemplateArgumentListInfo *ExplicitTemplateArgs,
2729 Expr **Args, unsigned NumArgs,
2730 OverloadCandidateSet& CandidateSet,
2731 bool SuppressUserConversions,
2732 bool ForceRValue) {
2733 if (!CandidateSet.isNewCandidate(FunctionTemplate))
2734 return;
2735
2736 // C++ [over.match.funcs]p7:
2737 // In each case where a candidate is a function template, candidate
2738 // function template specializations are generated using template argument
2739 // deduction (14.8.3, 14.8.2). Those candidates are then handled as
2740 // candidate functions in the usual way.113) A given name can refer to one
2741 // or more function templates and also to a set of overloaded non-template
2742 // functions. In such a case, the candidate functions generated from each
2743 // function template are combined with the set of non-template candidate
2744 // functions.
2745 TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
2746 FunctionDecl *Specialization = 0;
2747 if (TemplateDeductionResult Result
2748 = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
2749 Args, NumArgs, Specialization, Info)) {
2750 CandidateSet.push_back(OverloadCandidate());
2751 OverloadCandidate &Candidate = CandidateSet.back();
2752 Candidate.Function = FunctionTemplate->getTemplatedDecl();
2753 Candidate.Access = Access;
2754 Candidate.Viable = false;
2755 Candidate.FailureKind = ovl_fail_bad_deduction;
2756 Candidate.IsSurrogate = false;
2757 Candidate.IgnoreObjectArgument = false;
2758
2759 // TODO: record more information about failed template arguments
2760 Candidate.DeductionFailure.Result = Result;
2761 Candidate.DeductionFailure.TemplateParameter = Info.Param.getOpaqueValue();
2762 return;
2763 }
2764
2765 // Add the function template specialization produced by template argument
2766 // deduction as a candidate.
2767 assert(Specialization && "Missing function template specialization?");
2768 AddOverloadCandidate(Specialization, Access, Args, NumArgs, CandidateSet,
2769 SuppressUserConversions, ForceRValue);
2770}
2771
2772/// AddConversionCandidate - Add a C++ conversion function as a
2773/// candidate in the candidate set (C++ [over.match.conv],
2774/// C++ [over.match.copy]). From is the expression we're converting from,
2775/// and ToType is the type that we're eventually trying to convert to
2776/// (which may or may not be the same type as the type that the
2777/// conversion function produces).
2778void
2779Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
2780 AccessSpecifier Access,
2781 CXXRecordDecl *ActingContext,
2782 Expr *From, QualType ToType,
2783 OverloadCandidateSet& CandidateSet) {
2784 assert(!Conversion->getDescribedFunctionTemplate() &&
2785 "Conversion function templates use AddTemplateConversionCandidate");
2786
2787 if (!CandidateSet.isNewCandidate(Conversion))
2788 return;
2789
2790 // Overload resolution is always an unevaluated context.
2791 EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2792
2793 // Add this candidate
2794 CandidateSet.push_back(OverloadCandidate());
2795 OverloadCandidate& Candidate = CandidateSet.back();
2796 Candidate.Function = Conversion;
2797 Candidate.Access = Access;
2798 Candidate.IsSurrogate = false;
2799 Candidate.IgnoreObjectArgument = false;
2800 Candidate.FinalConversion.setAsIdentityConversion();
2801 Candidate.FinalConversion.setFromType(Conversion->getConversionType());
2802 Candidate.FinalConversion.setAllToTypes(ToType);
2803
2804 // Determine the implicit conversion sequence for the implicit
2805 // object parameter.
2806 Candidate.Viable = true;
2807 Candidate.Conversions.resize(1);
2808 Candidate.Conversions[0]
2809 = TryObjectArgumentInitialization(From->getType(), Conversion,
2810 ActingContext);
2811 // Conversion functions to a different type in the base class is visible in
2812 // the derived class. So, a derived to base conversion should not participate
2813 // in overload resolution.
2814 if (Candidate.Conversions[0].Standard.Second == ICK_Derived_To_Base)
2815 Candidate.Conversions[0].Standard.Second = ICK_Identity;
2816 if (Candidate.Conversions[0].isBad()) {
2817 Candidate.Viable = false;
2818 Candidate.FailureKind = ovl_fail_bad_conversion;
2819 return;
2820 }
2821
2822 // We won't go through a user-define type conversion function to convert a
2823 // derived to base as such conversions are given Conversion Rank. They only
2824 // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
2825 QualType FromCanon
2826 = Context.getCanonicalType(From->getType().getUnqualifiedType());
2827 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
2828 if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
2829 Candidate.Viable = false;
2830 Candidate.FailureKind = ovl_fail_trivial_conversion;
2831 return;
2832 }
2833
2834
2835 // To determine what the conversion from the result of calling the
2836 // conversion function to the type we're eventually trying to
2837 // convert to (ToType), we need to synthesize a call to the
2838 // conversion function and attempt copy initialization from it. This
2839 // makes sure that we get the right semantics with respect to
2840 // lvalues/rvalues and the type. Fortunately, we can allocate this
2841 // call on the stack and we don't need its arguments to be
2842 // well-formed.
2843 DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
2844 From->getLocStart());
2845 ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
2846 CastExpr::CK_FunctionToPointerDecay,
2847 &ConversionRef, false);
2848
2849 // Note that it is safe to allocate CallExpr on the stack here because
2850 // there are 0 arguments (i.e., nothing is allocated using ASTContext's
2851 // allocator).
2852 CallExpr Call(Context, &ConversionFn, 0, 0,
2853 Conversion->getConversionType().getNonReferenceType(),
2854 From->getLocStart());
2855 ImplicitConversionSequence ICS =
2856 TryCopyInitialization(&Call, ToType,
2857 /*SuppressUserConversions=*/true,
2858 /*ForceRValue=*/false,
2859 /*InOverloadResolution=*/false);
2860
2861 switch (ICS.getKind()) {
2862 case ImplicitConversionSequence::StandardConversion:
2863 Candidate.FinalConversion = ICS.Standard;
2864 break;
2865
2866 case ImplicitConversionSequence::BadConversion:
2867 Candidate.Viable = false;
2868 Candidate.FailureKind = ovl_fail_bad_final_conversion;
2869 break;
2870
2871 default:
2872 assert(false &&
2873 "Can only end up with a standard conversion sequence or failure");
2874 }
2875}
2876
2877/// \brief Adds a conversion function template specialization
2878/// candidate to the overload set, using template argument deduction
2879/// to deduce the template arguments of the conversion function
2880/// template from the type that we are converting to (C++
2881/// [temp.deduct.conv]).
2882void
2883Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
2884 AccessSpecifier Access,
2885 CXXRecordDecl *ActingDC,
2886 Expr *From, QualType ToType,
2887 OverloadCandidateSet &CandidateSet) {
2888 assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
2889 "Only conversion function templates permitted here");
2890
2891 if (!CandidateSet.isNewCandidate(FunctionTemplate))
2892 return;
2893
2894 TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
2895 CXXConversionDecl *Specialization = 0;
2896 if (TemplateDeductionResult Result
2897 = DeduceTemplateArguments(FunctionTemplate, ToType,
2898 Specialization, Info)) {
2899 // FIXME: Record what happened with template argument deduction, so
2900 // that we can give the user a beautiful diagnostic.
2901 (void)Result;
2902 return;
2903 }
2904
2905 // Add the conversion function template specialization produced by
2906 // template argument deduction as a candidate.
2907 assert(Specialization && "Missing function template specialization?");
2908 AddConversionCandidate(Specialization, Access, ActingDC, From, ToType,
2909 CandidateSet);
2910}
2911
2912/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
2913/// converts the given @c Object to a function pointer via the
2914/// conversion function @c Conversion, and then attempts to call it
2915/// with the given arguments (C++ [over.call.object]p2-4). Proto is
2916/// the type of function that we'll eventually be calling.
2917void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
2918 AccessSpecifier Access,
2919 CXXRecordDecl *ActingContext,
2920 const FunctionProtoType *Proto,
2921 QualType ObjectType,
2922 Expr **Args, unsigned NumArgs,
2923 OverloadCandidateSet& CandidateSet) {
2924 if (!CandidateSet.isNewCandidate(Conversion))
2925 return;
2926
2927 // Overload resolution is always an unevaluated context.
2928 EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2929
2930 CandidateSet.push_back(OverloadCandidate());
2931 OverloadCandidate& Candidate = CandidateSet.back();
2932 Candidate.Function = 0;
2933 Candidate.Access = Access;
2934 Candidate.Surrogate = Conversion;
2935 Candidate.Viable = true;
2936 Candidate.IsSurrogate = true;
2937 Candidate.IgnoreObjectArgument = false;
2938 Candidate.Conversions.resize(NumArgs + 1);
2939
2940 // Determine the implicit conversion sequence for the implicit
2941 // object parameter.
2942 ImplicitConversionSequence ObjectInit
2943 = TryObjectArgumentInitialization(ObjectType, Conversion, ActingContext);
2944 if (ObjectInit.isBad()) {
2945 Candidate.Viable = false;
2946 Candidate.FailureKind = ovl_fail_bad_conversion;
2947 Candidate.Conversions[0] = ObjectInit;
2948 return;
2949 }
2950
2951 // The first conversion is actually a user-defined conversion whose
2952 // first conversion is ObjectInit's standard conversion (which is
2953 // effectively a reference binding). Record it as such.
2954 Candidate.Conversions[0].setUserDefined();
2955 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
2956 Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
2957 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
2958 Candidate.Conversions[0].UserDefined.After
2959 = Candidate.Conversions[0].UserDefined.Before;
2960 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
2961
2962 // Find the
2963 unsigned NumArgsInProto = Proto->getNumArgs();
2964
2965 // (C++ 13.3.2p2): A candidate function having fewer than m
2966 // parameters is viable only if it has an ellipsis in its parameter
2967 // list (8.3.5).
2968 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2969 Candidate.Viable = false;
2970 Candidate.FailureKind = ovl_fail_too_many_arguments;
2971 return;
2972 }
2973
2974 // Function types don't have any default arguments, so just check if
2975 // we have enough arguments.
2976 if (NumArgs < NumArgsInProto) {
2977 // Not enough arguments.
2978 Candidate.Viable = false;
2979 Candidate.FailureKind = ovl_fail_too_few_arguments;
2980 return;
2981 }
2982
2983 // Determine the implicit conversion sequences for each of the
2984 // arguments.
2985 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2986 if (ArgIdx < NumArgsInProto) {
2987 // (C++ 13.3.2p3): for F to be a viable function, there shall
2988 // exist for each argument an implicit conversion sequence
2989 // (13.3.3.1) that converts that argument to the corresponding
2990 // parameter of F.
2991 QualType ParamType = Proto->getArgType(ArgIdx);
2992 Candidate.Conversions[ArgIdx + 1]
2993 = TryCopyInitialization(Args[ArgIdx], ParamType,
2994 /*SuppressUserConversions=*/false,
2995 /*ForceRValue=*/false,
2996 /*InOverloadResolution=*/false);
2997 if (Candidate.Conversions[ArgIdx + 1].isBad()) {
2998 Candidate.Viable = false;
2999 Candidate.FailureKind = ovl_fail_bad_conversion;
3000 break;
3001 }
3002 } else {
3003 // (C++ 13.3.2p2): For the purposes of overload resolution, any
3004 // argument for which there is no corresponding parameter is
3005 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
3006 Candidate.Conversions[ArgIdx + 1].setEllipsis();
3007 }
3008 }
3009}
3010
3011// FIXME: This will eventually be removed, once we've migrated all of the
3012// operator overloading logic over to the scheme used by binary operators, which
3013// works for template instantiation.
3014void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
3015 SourceLocation OpLoc,
3016 Expr **Args, unsigned NumArgs,
3017 OverloadCandidateSet& CandidateSet,
3018 SourceRange OpRange) {
3019 UnresolvedSet<16> Fns;
3020
3021 QualType T1 = Args[0]->getType();
3022 QualType T2;
3023 if (NumArgs > 1)
3024 T2 = Args[1]->getType();
3025
3026 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3027 if (S)
3028 LookupOverloadedOperatorName(Op, S, T1, T2, Fns);
3029 AddFunctionCandidates(Fns, Args, NumArgs, CandidateSet, false);
3030 AddArgumentDependentLookupCandidates(OpName, false, Args, NumArgs, 0,
3031 CandidateSet);
3032 AddMemberOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet, OpRange);
3033 AddBuiltinOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet);
3034}
3035
3036/// \brief Add overload candidates for overloaded operators that are
3037/// member functions.
3038///
3039/// Add the overloaded operator candidates that are member functions
3040/// for the operator Op that was used in an operator expression such
3041/// as "x Op y". , Args/NumArgs provides the operator arguments, and
3042/// CandidateSet will store the added overload candidates. (C++
3043/// [over.match.oper]).
3044void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
3045 SourceLocation OpLoc,
3046 Expr **Args, unsigned NumArgs,
3047 OverloadCandidateSet& CandidateSet,
3048 SourceRange OpRange) {
3049 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3050
3051 // C++ [over.match.oper]p3:
3052 // For a unary operator @ with an operand of a type whose
3053 // cv-unqualified version is T1, and for a binary operator @ with
3054 // a left operand of a type whose cv-unqualified version is T1 and
3055 // a right operand of a type whose cv-unqualified version is T2,
3056 // three sets of candidate functions, designated member
3057 // candidates, non-member candidates and built-in candidates, are
3058 // constructed as follows:
3059 QualType T1 = Args[0]->getType();
3060 QualType T2;
3061 if (NumArgs > 1)
3062 T2 = Args[1]->getType();
3063
3064 // -- If T1 is a class type, the set of member candidates is the
3065 // result of the qualified lookup of T1::operator@
3066 // (13.3.1.1.1); otherwise, the set of member candidates is
3067 // empty.
3068 if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
3069 // Complete the type if it can be completed. Otherwise, we're done.
3070 if (RequireCompleteType(OpLoc, T1, PDiag()))
3071 return;
3072
3073 LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
3074 LookupQualifiedName(Operators, T1Rec->getDecl());
3075 Operators.suppressDiagnostics();
3076
3077 for (LookupResult::iterator Oper = Operators.begin(),
3078 OperEnd = Operators.end();
3079 Oper != OperEnd;
3080 ++Oper)
3081 AddMethodCandidate(*Oper, Oper.getAccess(), Args[0]->getType(),
3082 Args + 1, NumArgs - 1, CandidateSet,
3083 /* SuppressUserConversions = */ false);
3084 }
3085}
3086
3087/// AddBuiltinCandidate - Add a candidate for a built-in
3088/// operator. ResultTy and ParamTys are the result and parameter types
3089/// of the built-in candidate, respectively. Args and NumArgs are the
3090/// arguments being passed to the candidate. IsAssignmentOperator
3091/// should be true when this built-in candidate is an assignment
3092/// operator. NumContextualBoolArguments is the number of arguments
3093/// (at the beginning of the argument list) that will be contextually
3094/// converted to bool.
3095void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
3096 Expr **Args, unsigned NumArgs,
3097 OverloadCandidateSet& CandidateSet,
3098 bool IsAssignmentOperator,
3099 unsigned NumContextualBoolArguments) {
3100 // Overload resolution is always an unevaluated context.
3101 EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
3102
3103 // Add this candidate
3104 CandidateSet.push_back(OverloadCandidate());
3105 OverloadCandidate& Candidate = CandidateSet.back();
3106 Candidate.Function = 0;
3107 Candidate.Access = AS_none;
3108 Candidate.IsSurrogate = false;
3109 Candidate.IgnoreObjectArgument = false;
3110 Candidate.BuiltinTypes.ResultTy = ResultTy;
3111 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3112 Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
3113
3114 // Determine the implicit conversion sequences for each of the
3115 // arguments.
3116 Candidate.Viable = true;
3117 Candidate.Conversions.resize(NumArgs);
3118 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
3119 // C++ [over.match.oper]p4:
3120 // For the built-in assignment operators, conversions of the
3121 // left operand are restricted as follows:
3122 // -- no temporaries are introduced to hold the left operand, and
3123 // -- no user-defined conversions are applied to the left
3124 // operand to achieve a type match with the left-most
3125 // parameter of a built-in candidate.
3126 //
3127 // We block these conversions by turning off user-defined
3128 // conversions, since that is the only way that initialization of
3129 // a reference to a non-class type can occur from something that
3130 // is not of the same type.
3131 if (ArgIdx < NumContextualBoolArguments) {
3132 assert(ParamTys[ArgIdx] == Context.BoolTy &&
3133 "Contextual conversion to bool requires bool type");
3134 Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
3135 } else {
3136 Candidate.Conversions[ArgIdx]
3137 = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx],
3138 ArgIdx == 0 && IsAssignmentOperator,
3139 /*ForceRValue=*/false,
3140 /*InOverloadResolution=*/false);
3141 }
3142 if (Candidate.Conversions[ArgIdx].isBad()) {
3143 Candidate.Viable = false;
3144 Candidate.FailureKind = ovl_fail_bad_conversion;
3145 break;
3146 }
3147 }
3148}
3149
3150/// BuiltinCandidateTypeSet - A set of types that will be used for the
3151/// candidate operator functions for built-in operators (C++
3152/// [over.built]). The types are separated into pointer types and
3153/// enumeration types.
3154class BuiltinCandidateTypeSet {
3155 /// TypeSet - A set of types.
3156 typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
3157
3158 /// PointerTypes - The set of pointer types that will be used in the
3159 /// built-in candidates.
3160 TypeSet PointerTypes;
3161
3162 /// MemberPointerTypes - The set of member pointer types that will be
3163 /// used in the built-in candidates.
3164 TypeSet MemberPointerTypes;
3165
3166 /// EnumerationTypes - The set of enumeration types that will be
3167 /// used in the built-in candidates.
3168 TypeSet EnumerationTypes;
3169
3170 /// Sema - The semantic analysis instance where we are building the
3171 /// candidate type set.
3172 Sema &SemaRef;
3173
3174 /// Context - The AST context in which we will build the type sets.
3175 ASTContext &Context;
3176
3177 bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
3178 const Qualifiers &VisibleQuals);
3179 bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
3180
3181public:
3182 /// iterator - Iterates through the types that are part of the set.
3183 typedef TypeSet::iterator iterator;
3184
3185 BuiltinCandidateTypeSet(Sema &SemaRef)
3186 : SemaRef(SemaRef), Context(SemaRef.Context) { }
3187
3188 void AddTypesConvertedFrom(QualType Ty,
3189 SourceLocation Loc,
3190 bool AllowUserConversions,
3191 bool AllowExplicitConversions,
3192 const Qualifiers &VisibleTypeConversionsQuals);
3193
3194 /// pointer_begin - First pointer type found;
3195 iterator pointer_begin() { return PointerTypes.begin(); }
3196
3197 /// pointer_end - Past the last pointer type found;
3198 iterator pointer_end() { return PointerTypes.end(); }
3199
3200 /// member_pointer_begin - First member pointer type found;
3201 iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
3202
3203 /// member_pointer_end - Past the last member pointer type found;
3204 iterator member_pointer_end() { return MemberPointerTypes.end(); }
3205
3206 /// enumeration_begin - First enumeration type found;
3207 iterator enumeration_begin() { return EnumerationTypes.begin(); }
3208
3209 /// enumeration_end - Past the last enumeration type found;
3210 iterator enumeration_end() { return EnumerationTypes.end(); }
3211};
3212
3213/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
3214/// the set of pointer types along with any more-qualified variants of
3215/// that type. For example, if @p Ty is "int const *", this routine
3216/// will add "int const *", "int const volatile *", "int const
3217/// restrict *", and "int const volatile restrict *" to the set of
3218/// pointer types. Returns true if the add of @p Ty itself succeeded,
3219/// false otherwise.
3220///
3221/// FIXME: what to do about extended qualifiers?
3222bool
3223BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
3224 const Qualifiers &VisibleQuals) {
3225
3226 // Insert this type.
3227 if (!PointerTypes.insert(Ty))
3228 return false;
3229
3230 const PointerType *PointerTy = Ty->getAs<PointerType>();
3231 assert(PointerTy && "type was not a pointer type!");
3232
3233 QualType PointeeTy = PointerTy->getPointeeType();
3234 // Don't add qualified variants of arrays. For one, they're not allowed
3235 // (the qualifier would sink to the element type), and for another, the
3236 // only overload situation where it matters is subscript or pointer +- int,
3237 // and those shouldn't have qualifier variants anyway.
3238 if (PointeeTy->isArrayType())
3239 return true;
3240 unsigned BaseCVR = PointeeTy.getCVRQualifiers();
3241 if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy))
3242 BaseCVR = Array->getElementType().getCVRQualifiers();
3243 bool hasVolatile = VisibleQuals.hasVolatile();
3244 bool hasRestrict = VisibleQuals.hasRestrict();
3245
3246 // Iterate through all strict supersets of BaseCVR.
3247 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
3248 if ((CVR | BaseCVR) != CVR) continue;
3249 // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere
3250 // in the types.
3251 if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
3252 if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue;
3253 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
3254 PointerTypes.insert(Context.getPointerType(QPointeeTy));
3255 }
3256
3257 return true;
3258}
3259
3260/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
3261/// to the set of pointer types along with any more-qualified variants of
3262/// that type. For example, if @p Ty is "int const *", this routine
3263/// will add "int const *", "int const volatile *", "int const
3264/// restrict *", and "int const volatile restrict *" to the set of
3265/// pointer types. Returns true if the add of @p Ty itself succeeded,
3266/// false otherwise.
3267///
3268/// FIXME: what to do about extended qualifiers?
3269bool
3270BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
3271 QualType Ty) {
3272 // Insert this type.
3273 if (!MemberPointerTypes.insert(Ty))
3274 return false;
3275
3276 const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
3277 assert(PointerTy && "type was not a member pointer type!");
3278
3279 QualType PointeeTy = PointerTy->getPointeeType();
3280 // Don't add qualified variants of arrays. For one, they're not allowed
3281 // (the qualifier would sink to the element type), and for another, the
3282 // only overload situation where it matters is subscript or pointer +- int,
3283 // and those shouldn't have qualifier variants anyway.
3284 if (PointeeTy->isArrayType())
3285 return true;
3286 const Type *ClassTy = PointerTy->getClass();
3287
3288 // Iterate through all strict supersets of the pointee type's CVR
3289 // qualifiers.
3290 unsigned BaseCVR = PointeeTy.getCVRQualifiers();
3291 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
3292 if ((CVR | BaseCVR) != CVR) continue;
3293
3294 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
3295 MemberPointerTypes.insert(Context.getMemberPointerType(QPointeeTy, ClassTy));
3296 }
3297
3298 return true;
3299}
3300
3301/// AddTypesConvertedFrom - Add each of the types to which the type @p
3302/// Ty can be implicit converted to the given set of @p Types. We're
3303/// primarily interested in pointer types and enumeration types. We also
3304/// take member pointer types, for the conditional operator.
3305/// AllowUserConversions is true if we should look at the conversion
3306/// functions of a class type, and AllowExplicitConversions if we
3307/// should also include the explicit conversion functions of a class
3308/// type.
3309void
3310BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
3311 SourceLocation Loc,
3312 bool AllowUserConversions,
3313 bool AllowExplicitConversions,
3314 const Qualifiers &VisibleQuals) {
3315 // Only deal with canonical types.
3316 Ty = Context.getCanonicalType(Ty);
3317
3318 // Look through reference types; they aren't part of the type of an
3319 // expression for the purposes of conversions.
3320 if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
3321 Ty = RefTy->getPointeeType();
3322
3323 // We don't care about qualifiers on the type.
3324 Ty = Ty.getLocalUnqualifiedType();
3325
3326 // If we're dealing with an array type, decay to the pointer.
3327 if (Ty->isArrayType())
3328 Ty = SemaRef.Context.getArrayDecayedType(Ty);
3329
3330 if (const PointerType *PointerTy = Ty->getAs<PointerType>()) {
3331 QualType PointeeTy = PointerTy->getPointeeType();
3332
3333 // Insert our type, and its more-qualified variants, into the set
3334 // of types.
3335 if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
3336 return;
3337 } else if (Ty->isMemberPointerType()) {
3338 // Member pointers are far easier, since the pointee can't be converted.
3339 if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
3340 return;
3341 } else if (Ty->isEnumeralType()) {
3342 EnumerationTypes.insert(Ty);
3343 } else if (AllowUserConversions) {
3344 if (const RecordType *TyRec = Ty->getAs<RecordType>()) {
3345 if (SemaRef.RequireCompleteType(Loc, Ty, 0)) {
3346 // No conversion functions in incomplete types.
3347 return;
3348 }
3349
3350 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
3351 const UnresolvedSetImpl *Conversions
3352 = ClassDecl->getVisibleConversionFunctions();
3353 for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3354 E = Conversions->end(); I != E; ++I) {
3355
3356 // Skip conversion function templates; they don't tell us anything
3357 // about which builtin types we can convert to.
3358 if (isa<FunctionTemplateDecl>(*I))
3359 continue;
3360
3361 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*I);
3362 if (AllowExplicitConversions || !Conv->isExplicit()) {
3363 AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
3364 VisibleQuals);
3365 }
3366 }
3367 }
3368 }
3369}
3370
3371/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
3372/// the volatile- and non-volatile-qualified assignment operators for the
3373/// given type to the candidate set.
3374static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
3375 QualType T,
3376 Expr **Args,
3377 unsigned NumArgs,
3378 OverloadCandidateSet &CandidateSet) {
3379 QualType ParamTypes[2];
3380
3381 // T& operator=(T&, T)
3382 ParamTypes[0] = S.Context.getLValueReferenceType(T);
3383 ParamTypes[1] = T;
3384 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3385 /*IsAssignmentOperator=*/true);
3386
3387 if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
3388 // volatile T& operator=(volatile T&, T)
3389 ParamTypes[0]
3390 = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
3391 ParamTypes[1] = T;
3392 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3393 /*IsAssignmentOperator=*/true);
3394 }
3395}
3396
3397/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
3398/// if any, found in visible type conversion functions found in ArgExpr's type.
3399static Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
3400 Qualifiers VRQuals;
3401 const RecordType *TyRec;
3402 if (const MemberPointerType *RHSMPType =
3403 ArgExpr->getType()->getAs<MemberPointerType>())
3404 TyRec = cast<RecordType>(RHSMPType->getClass());
3405 else
3406 TyRec = ArgExpr->getType()->getAs<RecordType>();
3407 if (!TyRec) {
3408 // Just to be safe, assume the worst case.
3409 VRQuals.addVolatile();
3410 VRQuals.addRestrict();
3411 return VRQuals;
3412 }
3413
3414 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
3415 if (!ClassDecl->hasDefinition())
3416 return VRQuals;
3417
3418 const UnresolvedSetImpl *Conversions =
3419 ClassDecl->getVisibleConversionFunctions();
3420
3421 for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3422 E = Conversions->end(); I != E; ++I) {
3423 if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(*I)) {
3424 QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
3425 if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
3426 CanTy = ResTypeRef->getPointeeType();
3427 // Need to go down the pointer/mempointer chain and add qualifiers
3428 // as see them.
3429 bool done = false;
3430 while (!done) {
3431 if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
3432 CanTy = ResTypePtr->getPointeeType();
3433 else if (const MemberPointerType *ResTypeMPtr =
3434 CanTy->getAs<MemberPointerType>())
3435 CanTy = ResTypeMPtr->getPointeeType();
3436 else
3437 done = true;
3438 if (CanTy.isVolatileQualified())
3439 VRQuals.addVolatile();
3440 if (CanTy.isRestrictQualified())
3441 VRQuals.addRestrict();
3442 if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
3443 return VRQuals;
3444 }
3445 }
3446 }
3447 return VRQuals;
3448}
3449
3450/// AddBuiltinOperatorCandidates - Add the appropriate built-in
3451/// operator overloads to the candidate set (C++ [over.built]), based
3452/// on the operator @p Op and the arguments given. For example, if the
3453/// operator is a binary '+', this routine might add "int
3454/// operator+(int, int)" to cover integer addition.
3455void
3456Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
3457 SourceLocation OpLoc,
3458 Expr **Args, unsigned NumArgs,
3459 OverloadCandidateSet& CandidateSet) {
3460 // The set of "promoted arithmetic types", which are the arithmetic
3461 // types are that preserved by promotion (C++ [over.built]p2). Note
3462 // that the first few of these types are the promoted integral
3463 // types; these types need to be first.
3464 // FIXME: What about complex?
3465 const unsigned FirstIntegralType = 0;
3466 const unsigned LastIntegralType = 13;
3467 const unsigned FirstPromotedIntegralType = 7,
3468 LastPromotedIntegralType = 13;
3469 const unsigned FirstPromotedArithmeticType = 7,
3470 LastPromotedArithmeticType = 16;
3471 const unsigned NumArithmeticTypes = 16;
3472 QualType ArithmeticTypes[NumArithmeticTypes] = {
3473 Context.BoolTy, Context.CharTy, Context.WCharTy,
3474// FIXME: Context.Char16Ty, Context.Char32Ty,
3475 Context.SignedCharTy, Context.ShortTy,
3476 Context.UnsignedCharTy, Context.UnsignedShortTy,
3477 Context.IntTy, Context.LongTy, Context.LongLongTy,
3478 Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
3479 Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
3480 };
3481 assert(ArithmeticTypes[FirstPromotedIntegralType] == Context.IntTy &&
3482 "Invalid first promoted integral type");
3483 assert(ArithmeticTypes[LastPromotedIntegralType - 1]
3484 == Context.UnsignedLongLongTy &&
3485 "Invalid last promoted integral type");
3486 assert(ArithmeticTypes[FirstPromotedArithmeticType] == Context.IntTy &&
3487 "Invalid first promoted arithmetic type");
3488 assert(ArithmeticTypes[LastPromotedArithmeticType - 1]
3489 == Context.LongDoubleTy &&
3490 "Invalid last promoted arithmetic type");
3491
3492 // Find all of the types that the arguments can convert to, but only
3493 // if the operator we're looking at has built-in operator candidates
3494 // that make use of these types.
3495 Qualifiers VisibleTypeConversionsQuals;
3496 VisibleTypeConversionsQuals.addConst();
3497 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3498 VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
3499
3500 BuiltinCandidateTypeSet CandidateTypes(*this);
3501 if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
3502 Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
3503 Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
3504 Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
3505 Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
3506 (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) {
3507 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3508 CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
3509 OpLoc,
3510 true,
3511 (Op == OO_Exclaim ||
3512 Op == OO_AmpAmp ||
3513 Op == OO_PipePipe),
3514 VisibleTypeConversionsQuals);
3515 }
3516
3517 bool isComparison = false;
3518 switch (Op) {
3519 case OO_None:
3520 case NUM_OVERLOADED_OPERATORS:
3521 assert(false && "Expected an overloaded operator");
3522 break;
3523
3524 case OO_Star: // '*' is either unary or binary
3525 if (NumArgs == 1)
3526 goto UnaryStar;
3527 else
3528 goto BinaryStar;
3529 break;
3530
3531 case OO_Plus: // '+' is either unary or binary
3532 if (NumArgs == 1)
3533 goto UnaryPlus;
3534 else
3535 goto BinaryPlus;
3536 break;
3537
3538 case OO_Minus: // '-' is either unary or binary
3539 if (NumArgs == 1)
3540 goto UnaryMinus;
3541 else
3542 goto BinaryMinus;
3543 break;
3544
3545 case OO_Amp: // '&' is either unary or binary
3546 if (NumArgs == 1)
3547 goto UnaryAmp;
3548 else
3549 goto BinaryAmp;
3550
3551 case OO_PlusPlus:
3552 case OO_MinusMinus:
3553 // C++ [over.built]p3:
3554 //
3555 // For every pair (T, VQ), where T is an arithmetic type, and VQ
3556 // is either volatile or empty, there exist candidate operator
3557 // functions of the form
3558 //
3559 // VQ T& operator++(VQ T&);
3560 // T operator++(VQ T&, int);
3561 //
3562 // C++ [over.built]p4:
3563 //
3564 // For every pair (T, VQ), where T is an arithmetic type other
3565 // than bool, and VQ is either volatile or empty, there exist
3566 // candidate operator functions of the form
3567 //
3568 // VQ T& operator--(VQ T&);
3569 // T operator--(VQ T&, int);
3570 for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
3571 Arith < NumArithmeticTypes; ++Arith) {
3572 QualType ArithTy = ArithmeticTypes[Arith];
3573 QualType ParamTypes[2]
3574 = { Context.getLValueReferenceType(ArithTy), Context.IntTy };
3575
3576 // Non-volatile version.
3577 if (NumArgs == 1)
3578 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3579 else
3580 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3581 // heuristic to reduce number of builtin candidates in the set.
3582 // Add volatile version only if there are conversions to a volatile type.
3583 if (VisibleTypeConversionsQuals.hasVolatile()) {
3584 // Volatile version
3585 ParamTypes[0]
3586 = Context.getLValueReferenceType(Context.getVolatileType(ArithTy));
3587 if (NumArgs == 1)
3588 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3589 else
3590 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3591 }
3592 }
3593
3594 // C++ [over.built]p5:
3595 //
3596 // For every pair (T, VQ), where T is a cv-qualified or
3597 // cv-unqualified object type, and VQ is either volatile or
3598 // empty, there exist candidate operator functions of the form
3599 //
3600 // T*VQ& operator++(T*VQ&);
3601 // T*VQ& operator--(T*VQ&);
3602 // T* operator++(T*VQ&, int);
3603 // T* operator--(T*VQ&, int);
3604 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3605 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3606 // Skip pointer types that aren't pointers to object types.
3607 if (!(*Ptr)->getAs<PointerType>()->getPointeeType()->isObjectType())
3608 continue;
3609
3610 QualType ParamTypes[2] = {
3611 Context.getLValueReferenceType(*Ptr), Context.IntTy
3612 };
3613
3614 // Without volatile
3615 if (NumArgs == 1)
3616 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3617 else
3618 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3619
3620 if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
3621 VisibleTypeConversionsQuals.hasVolatile()) {
3622 // With volatile
3623 ParamTypes[0]
3624 = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
3625 if (NumArgs == 1)
3626 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3627 else
3628 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3629 }
3630 }
3631 break;
3632
3633 UnaryStar:
3634 // C++ [over.built]p6:
3635 // For every cv-qualified or cv-unqualified object type T, there
3636 // exist candidate operator functions of the form
3637 //
3638 // T& operator*(T*);
3639 //
3640 // C++ [over.built]p7:
3641 // For every function type T, there exist candidate operator
3642 // functions of the form
3643 // T& operator*(T*);
3644 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3645 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3646 QualType ParamTy = *Ptr;
3647 QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType();
3648 AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy),
3649 &ParamTy, Args, 1, CandidateSet);
3650 }
3651 break;
3652
3653 UnaryPlus:
3654 // C++ [over.built]p8:
3655 // For every type T, there exist candidate operator functions of
3656 // the form
3657 //
3658 // T* operator+(T*);
3659 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3660 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3661 QualType ParamTy = *Ptr;
3662 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
3663 }
3664
3665 // Fall through
3666
3667 UnaryMinus:
3668 // C++ [over.built]p9:
3669 // For every promoted arithmetic type T, there exist candidate
3670 // operator functions of the form
3671 //
3672 // T operator+(T);
3673 // T operator-(T);
3674 for (unsigned Arith = FirstPromotedArithmeticType;
3675 Arith < LastPromotedArithmeticType; ++Arith) {
3676 QualType ArithTy = ArithmeticTypes[Arith];
3677 AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
3678 }
3679 break;
3680
3681 case OO_Tilde:
3682 // C++ [over.built]p10:
3683 // For every promoted integral type T, there exist candidate
3684 // operator functions of the form
3685 //
3686 // T operator~(T);
3687 for (unsigned Int = FirstPromotedIntegralType;
3688 Int < LastPromotedIntegralType; ++Int) {
3689 QualType IntTy = ArithmeticTypes[Int];
3690 AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
3691 }
3692 break;
3693
3694 case OO_New:
3695 case OO_Delete:
3696 case OO_Array_New:
3697 case OO_Array_Delete:
3698 case OO_Call:
3699 assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
3700 break;
3701
3702 case OO_Comma:
3703 UnaryAmp:
3704 case OO_Arrow:
3705 // C++ [over.match.oper]p3:
3706 // -- For the operator ',', the unary operator '&', or the
3707 // operator '->', the built-in candidates set is empty.
3708 break;
3709
3710 case OO_EqualEqual:
3711 case OO_ExclaimEqual:
3712 // C++ [over.match.oper]p16:
3713 // For every pointer to member type T, there exist candidate operator
3714 // functions of the form
3715 //
3716 // bool operator==(T,T);
3717 // bool operator!=(T,T);
3718 for (BuiltinCandidateTypeSet::iterator
3719 MemPtr = CandidateTypes.member_pointer_begin(),
3720 MemPtrEnd = CandidateTypes.member_pointer_end();
3721 MemPtr != MemPtrEnd;
3722 ++MemPtr) {
3723 QualType ParamTypes[2] = { *MemPtr, *MemPtr };
3724 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3725 }
3726
3727 // Fall through
3728
3729 case OO_Less:
3730 case OO_Greater:
3731 case OO_LessEqual:
3732 case OO_GreaterEqual:
3733 // C++ [over.built]p15:
3734 //
3735 // For every pointer or enumeration type T, there exist
3736 // candidate operator functions of the form
3737 //
3738 // bool operator<(T, T);
3739 // bool operator>(T, T);
3740 // bool operator<=(T, T);
3741 // bool operator>=(T, T);
3742 // bool operator==(T, T);
3743 // bool operator!=(T, T);
3744 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3745 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3746 QualType ParamTypes[2] = { *Ptr, *Ptr };
3747 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3748 }
3749 for (BuiltinCandidateTypeSet::iterator Enum
3750 = CandidateTypes.enumeration_begin();
3751 Enum != CandidateTypes.enumeration_end(); ++Enum) {
3752 QualType ParamTypes[2] = { *Enum, *Enum };
3753 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3754 }
3755
3756 // Fall through.
3757 isComparison = true;
3758
3759 BinaryPlus:
3760 BinaryMinus:
3761 if (!isComparison) {
3762 // We didn't fall through, so we must have OO_Plus or OO_Minus.
3763
3764 // C++ [over.built]p13:
3765 //
3766 // For every cv-qualified or cv-unqualified object type T
3767 // there exist candidate operator functions of the form
3768 //
3769 // T* operator+(T*, ptrdiff_t);
3770 // T& operator[](T*, ptrdiff_t); [BELOW]
3771 // T* operator-(T*, ptrdiff_t);
3772 // T* operator+(ptrdiff_t, T*);
3773 // T& operator[](ptrdiff_t, T*); [BELOW]
3774 //
3775 // C++ [over.built]p14:
3776 //
3777 // For every T, where T is a pointer to object type, there
3778 // exist candidate operator functions of the form
3779 //
3780 // ptrdiff_t operator-(T, T);
3781 for (BuiltinCandidateTypeSet::iterator Ptr
3782 = CandidateTypes.pointer_begin();
3783 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3784 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3785
3786 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
3787 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3788
3789 if (Op == OO_Plus) {
3790 // T* operator+(ptrdiff_t, T*);
3791 ParamTypes[0] = ParamTypes[1];
3792 ParamTypes[1] = *Ptr;
3793 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3794 } else {
3795 // ptrdiff_t operator-(T, T);
3796 ParamTypes[1] = *Ptr;
3797 AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
3798 Args, 2, CandidateSet);
3799 }
3800 }
3801 }
3802 // Fall through
3803
3804 case OO_Slash:
3805 BinaryStar:
3806 Conditional:
3807 // C++ [over.built]p12:
3808 //
3809 // For every pair of promoted arithmetic types L and R, there
3810 // exist candidate operator functions of the form
3811 //
3812 // LR operator*(L, R);
3813 // LR operator/(L, R);
3814 // LR operator+(L, R);
3815 // LR operator-(L, R);
3816 // bool operator<(L, R);
3817 // bool operator>(L, R);
3818 // bool operator<=(L, R);
3819 // bool operator>=(L, R);
3820 // bool operator==(L, R);
3821 // bool operator!=(L, R);
3822 //
3823 // where LR is the result of the usual arithmetic conversions
3824 // between types L and R.
3825 //
3826 // C++ [over.built]p24:
3827 //
3828 // For every pair of promoted arithmetic types L and R, there exist
3829 // candidate operator functions of the form
3830 //
3831 // LR operator?(bool, L, R);
3832 //
3833 // where LR is the result of the usual arithmetic conversions
3834 // between types L and R.
3835 // Our candidates ignore the first parameter.
3836 for (unsigned Left = FirstPromotedArithmeticType;
3837 Left < LastPromotedArithmeticType; ++Left) {
3838 for (unsigned Right = FirstPromotedArithmeticType;
3839 Right < LastPromotedArithmeticType; ++Right) {
3840 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3841 QualType Result
3842 = isComparison
3843 ? Context.BoolTy
3844 : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
3845 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3846 }
3847 }
3848 break;
3849
3850 case OO_Percent:
3851 BinaryAmp:
3852 case OO_Caret:
3853 case OO_Pipe:
3854 case OO_LessLess:
3855 case OO_GreaterGreater:
3856 // C++ [over.built]p17:
3857 //
3858 // For every pair of promoted integral types L and R, there
3859 // exist candidate operator functions of the form
3860 //
3861 // LR operator%(L, R);
3862 // LR operator&(L, R);
3863 // LR operator^(L, R);
3864 // LR operator|(L, R);
3865 // L operator<<(L, R);
3866 // L operator>>(L, R);
3867 //
3868 // where LR is the result of the usual arithmetic conversions
3869 // between types L and R.
3870 for (unsigned Left = FirstPromotedIntegralType;
3871 Left < LastPromotedIntegralType; ++Left) {
3872 for (unsigned Right = FirstPromotedIntegralType;
3873 Right < LastPromotedIntegralType; ++Right) {
3874 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3875 QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
3876 ? LandR[0]
3877 : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
3878 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3879 }
3880 }
3881 break;
3882
3883 case OO_Equal:
3884 // C++ [over.built]p20:
3885 //
3886 // For every pair (T, VQ), where T is an enumeration or
3887 // pointer to member type and VQ is either volatile or
3888 // empty, there exist candidate operator functions of the form
3889 //
3890 // VQ T& operator=(VQ T&, T);
3891 for (BuiltinCandidateTypeSet::iterator
3892 Enum = CandidateTypes.enumeration_begin(),
3893 EnumEnd = CandidateTypes.enumeration_end();
3894 Enum != EnumEnd; ++Enum)
3895 AddBuiltinAssignmentOperatorCandidates(*this, *Enum, Args, 2,
3896 CandidateSet);
3897 for (BuiltinCandidateTypeSet::iterator
3898 MemPtr = CandidateTypes.member_pointer_begin(),
3899 MemPtrEnd = CandidateTypes.member_pointer_end();
3900 MemPtr != MemPtrEnd; ++MemPtr)
3901 AddBuiltinAssignmentOperatorCandidates(*this, *MemPtr, Args, 2,
3902 CandidateSet);
3903 // Fall through.
3904
3905 case OO_PlusEqual:
3906 case OO_MinusEqual:
3907 // C++ [over.built]p19:
3908 //
3909 // For every pair (T, VQ), where T is any type and VQ is either
3910 // volatile or empty, there exist candidate operator functions
3911 // of the form
3912 //
3913 // T*VQ& operator=(T*VQ&, T*);
3914 //
3915 // C++ [over.built]p21:
3916 //
3917 // For every pair (T, VQ), where T is a cv-qualified or
3918 // cv-unqualified object type and VQ is either volatile or
3919 // empty, there exist candidate operator functions of the form
3920 //
3921 // T*VQ& operator+=(T*VQ&, ptrdiff_t);
3922 // T*VQ& operator-=(T*VQ&, ptrdiff_t);
3923 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3924 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3925 QualType ParamTypes[2];
3926 ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
3927
3928 // non-volatile version
3929 ParamTypes[0] = Context.getLValueReferenceType(*Ptr);
3930 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3931 /*IsAssigmentOperator=*/Op == OO_Equal);
3932
3933 if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
3934 VisibleTypeConversionsQuals.hasVolatile()) {
3935 // volatile version
3936 ParamTypes[0]
3937 = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
3938 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3939 /*IsAssigmentOperator=*/Op == OO_Equal);
3940 }
3941 }
3942 // Fall through.
3943
3944 case OO_StarEqual:
3945 case OO_SlashEqual:
3946 // C++ [over.built]p18:
3947 //
3948 // For every triple (L, VQ, R), where L is an arithmetic type,
3949 // VQ is either volatile or empty, and R is a promoted
3950 // arithmetic type, there exist candidate operator functions of
3951 // the form
3952 //
3953 // VQ L& operator=(VQ L&, R);
3954 // VQ L& operator*=(VQ L&, R);
3955 // VQ L& operator/=(VQ L&, R);
3956 // VQ L& operator+=(VQ L&, R);
3957 // VQ L& operator-=(VQ L&, R);
3958 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
3959 for (unsigned Right = FirstPromotedArithmeticType;
3960 Right < LastPromotedArithmeticType; ++Right) {
3961 QualType ParamTypes[2];
3962 ParamTypes[1] = ArithmeticTypes[Right];
3963
3964 // Add this built-in operator as a candidate (VQ is empty).
3965 ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3966 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3967 /*IsAssigmentOperator=*/Op == OO_Equal);
3968
3969 // Add this built-in operator as a candidate (VQ is 'volatile').
3970 if (VisibleTypeConversionsQuals.hasVolatile()) {
3971 ParamTypes[0] = Context.getVolatileType(ArithmeticTypes[Left]);
3972 ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3973 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3974 /*IsAssigmentOperator=*/Op == OO_Equal);
3975 }
3976 }
3977 }
3978 break;
3979
3980 case OO_PercentEqual:
3981 case OO_LessLessEqual:
3982 case OO_GreaterGreaterEqual:
3983 case OO_AmpEqual:
3984 case OO_CaretEqual:
3985 case OO_PipeEqual:
3986 // C++ [over.built]p22:
3987 //
3988 // For every triple (L, VQ, R), where L is an integral type, VQ
3989 // is either volatile or empty, and R is a promoted integral
3990 // type, there exist candidate operator functions of the form
3991 //
3992 // VQ L& operator%=(VQ L&, R);
3993 // VQ L& operator<<=(VQ L&, R);
3994 // VQ L& operator>>=(VQ L&, R);
3995 // VQ L& operator&=(VQ L&, R);
3996 // VQ L& operator^=(VQ L&, R);
3997 // VQ L& operator|=(VQ L&, R);
3998 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
3999 for (unsigned Right = FirstPromotedIntegralType;
4000 Right < LastPromotedIntegralType; ++Right) {
4001 QualType ParamTypes[2];
4002 ParamTypes[1] = ArithmeticTypes[Right];
4003
4004 // Add this built-in operator as a candidate (VQ is empty).
4005 ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
4006 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
4007 if (VisibleTypeConversionsQuals.hasVolatile()) {
4008 // Add this built-in operator as a candidate (VQ is 'volatile').
4009 ParamTypes[0] = ArithmeticTypes[Left];
4010 ParamTypes[0] = Context.getVolatileType(ParamTypes[0]);
4011 ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
4012 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
4013 }
4014 }
4015 }
4016 break;
4017
4018 case OO_Exclaim: {
4019 // C++ [over.operator]p23:
4020 //
4021 // There also exist candidate operator functions of the form
4022 //
4023 // bool operator!(bool);
4024 // bool operator&&(bool, bool); [BELOW]
4025 // bool operator||(bool, bool); [BELOW]
4026 QualType ParamTy = Context.BoolTy;
4027 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
4028 /*IsAssignmentOperator=*/false,
4029 /*NumContextualBoolArguments=*/1);
4030 break;
4031 }
4032
4033 case OO_AmpAmp:
4034 case OO_PipePipe: {
4035 // C++ [over.operator]p23:
4036 //
4037 // There also exist candidate operator functions of the form
4038 //
4039 // bool operator!(bool); [ABOVE]
4040 // bool operator&&(bool, bool);
4041 // bool operator||(bool, bool);
4042 QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
4043 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
4044 /*IsAssignmentOperator=*/false,
4045 /*NumContextualBoolArguments=*/2);
4046 break;
4047 }
4048
4049 case OO_Subscript:
4050 // C++ [over.built]p13:
4051 //
4052 // For every cv-qualified or cv-unqualified object type T there
4053 // exist candidate operator functions of the form
4054 //
4055 // T* operator+(T*, ptrdiff_t); [ABOVE]
4056 // T& operator[](T*, ptrdiff_t);
4057 // T* operator-(T*, ptrdiff_t); [ABOVE]
4058 // T* operator+(ptrdiff_t, T*); [ABOVE]
4059 // T& operator[](ptrdiff_t, T*);
4060 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4061 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4062 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
4063 QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType();
4064 QualType ResultTy = Context.getLValueReferenceType(PointeeType);
4065
4066 // T& operator[](T*, ptrdiff_t)
4067 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
4068
4069 // T& operator[](ptrdiff_t, T*);
4070 ParamTypes[0] = ParamTypes[1];
4071 ParamTypes[1] = *Ptr;
4072 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
4073 }
4074 break;
4075
4076 case OO_ArrowStar:
4077 // C++ [over.built]p11:
4078 // For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
4079 // C1 is the same type as C2 or is a derived class of C2, T is an object
4080 // type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
4081 // there exist candidate operator functions of the form
4082 // CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
4083 // where CV12 is the union of CV1 and CV2.
4084 {
4085 for (BuiltinCandidateTypeSet::iterator Ptr =
4086 CandidateTypes.pointer_begin();
4087 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4088 QualType C1Ty = (*Ptr);
4089 QualType C1;
4090 QualifierCollector Q1;
4091 if (const PointerType *PointerTy = C1Ty->getAs<PointerType>()) {
4092 C1 = QualType(Q1.strip(PointerTy->getPointeeType()), 0);
4093 if (!isa<RecordType>(C1))
4094 continue;
4095 // heuristic to reduce number of builtin candidates in the set.
4096 // Add volatile/restrict version only if there are conversions to a
4097 // volatile/restrict type.
4098 if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
4099 continue;
4100 if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
4101 continue;
4102 }
4103 for (BuiltinCandidateTypeSet::iterator
4104 MemPtr = CandidateTypes.member_pointer_begin(),
4105 MemPtrEnd = CandidateTypes.member_pointer_end();
4106 MemPtr != MemPtrEnd; ++MemPtr) {
4107 const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
4108 QualType C2 = QualType(mptr->getClass(), 0);
4109 C2 = C2.getUnqualifiedType();
4110 if (C1 != C2 && !IsDerivedFrom(C1, C2))
4111 break;
4112 QualType ParamTypes[2] = { *Ptr, *MemPtr };
4113 // build CV12 T&
4114 QualType T = mptr->getPointeeType();
4115 if (!VisibleTypeConversionsQuals.hasVolatile() &&
4116 T.isVolatileQualified())
4117 continue;
4118 if (!VisibleTypeConversionsQuals.hasRestrict() &&
4119 T.isRestrictQualified())
4120 continue;
4121 T = Q1.apply(T);
4122 QualType ResultTy = Context.getLValueReferenceType(T);
4123 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
4124 }
4125 }
4126 }
4127 break;
4128
4129 case OO_Conditional:
4130 // Note that we don't consider the first argument, since it has been
4131 // contextually converted to bool long ago. The candidates below are
4132 // therefore added as binary.
4133 //
4134 // C++ [over.built]p24:
4135 // For every type T, where T is a pointer or pointer-to-member type,
4136 // there exist candidate operator functions of the form
4137 //
4138 // T operator?(bool, T, T);
4139 //
4140 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(),
4141 E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) {
4142 QualType ParamTypes[2] = { *Ptr, *Ptr };
4143 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4144 }
4145 for (BuiltinCandidateTypeSet::iterator Ptr =
4146 CandidateTypes.member_pointer_begin(),
4147 E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) {
4148 QualType ParamTypes[2] = { *Ptr, *Ptr };
4149 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4150 }
4151 goto Conditional;
4152 }
4153}
4154
4155/// \brief Add function candidates found via argument-dependent lookup
4156/// to the set of overloading candidates.
4157///
4158/// This routine performs argument-dependent name lookup based on the
4159/// given function name (which may also be an operator name) and adds
4160/// all of the overload candidates found by ADL to the overload
4161/// candidate set (C++ [basic.lookup.argdep]).
4162void
4163Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
4164 bool Operator,
4165 Expr **Args, unsigned NumArgs,
4166 const TemplateArgumentListInfo *ExplicitTemplateArgs,
4167 OverloadCandidateSet& CandidateSet,
4168 bool PartialOverloading) {
4169 ADLResult Fns;
4170
4171 // FIXME: This approach for uniquing ADL results (and removing
4172 // redundant candidates from the set) relies on pointer-equality,
4173 // which means we need to key off the canonical decl. However,
4174 // always going back to the canonical decl might not get us the
4175 // right set of default arguments. What default arguments are
4176 // we supposed to consider on ADL candidates, anyway?
4177
4178 // FIXME: Pass in the explicit template arguments?
4179 ArgumentDependentLookup(Name, Operator, Args, NumArgs, Fns);
4180
4181 // Erase all of the candidates we already knew about.
4182 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
4183 CandEnd = CandidateSet.end();
4184 Cand != CandEnd; ++Cand)
4185 if (Cand->Function) {
4186 Fns.erase(Cand->Function);
4187 if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
4188 Fns.erase(FunTmpl);
4189 }
4190
4191 // For each of the ADL candidates we found, add it to the overload
4192 // set.
4193 for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
4194 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
4195 if (ExplicitTemplateArgs)
4196 continue;
4197
4198 AddOverloadCandidate(FD, AS_none, Args, NumArgs, CandidateSet,
4199 false, false, PartialOverloading);
4200 } else
4201 AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I),
4202 AS_none, ExplicitTemplateArgs,
4203 Args, NumArgs, CandidateSet);
4204 }
4205}
4206
4207/// isBetterOverloadCandidate - Determines whether the first overload
4208/// candidate is a better candidate than the second (C++ 13.3.3p1).
4209bool
4210Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
4211 const OverloadCandidate& Cand2,
4212 SourceLocation Loc) {
4213 // Define viable functions to be better candidates than non-viable
4214 // functions.
4215 if (!Cand2.Viable)
4216 return Cand1.Viable;
4217 else if (!Cand1.Viable)
4218 return false;
4219
4220 // C++ [over.match.best]p1:
4221 //
4222 // -- if F is a static member function, ICS1(F) is defined such
4223 // that ICS1(F) is neither better nor worse than ICS1(G) for
4224 // any function G, and, symmetrically, ICS1(G) is neither
4225 // better nor worse than ICS1(F).
4226 unsigned StartArg = 0;
4227 if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
4228 StartArg = 1;
4229
4230 // C++ [over.match.best]p1:
4231 // A viable function F1 is defined to be a better function than another
4232 // viable function F2 if for all arguments i, ICSi(F1) is not a worse
4233 // conversion sequence than ICSi(F2), and then...
4234 unsigned NumArgs = Cand1.Conversions.size();
4235 assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
4236 bool HasBetterConversion = false;
4237 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
4238 switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
4239 Cand2.Conversions[ArgIdx])) {
4240 case ImplicitConversionSequence::Better:
4241 // Cand1 has a better conversion sequence.
4242 HasBetterConversion = true;
4243 break;
4244
4245 case ImplicitConversionSequence::Worse:
4246 // Cand1 can't be better than Cand2.
4247 return false;
4248
4249 case ImplicitConversionSequence::Indistinguishable:
4250 // Do nothing.
4251 break;
4252 }
4253 }
4254
4255 // -- for some argument j, ICSj(F1) is a better conversion sequence than
4256 // ICSj(F2), or, if not that,
4257 if (HasBetterConversion)
4258 return true;
4259
4260 // - F1 is a non-template function and F2 is a function template
4261 // specialization, or, if not that,
4262 if (Cand1.Function && !Cand1.Function->getPrimaryTemplate() &&
4263 Cand2.Function && Cand2.Function->getPrimaryTemplate())
4264 return true;
4265
4266 // -- F1 and F2 are function template specializations, and the function
4267 // template for F1 is more specialized than the template for F2
4268 // according to the partial ordering rules described in 14.5.5.2, or,
4269 // if not that,
4270 if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
4271 Cand2.Function && Cand2.Function->getPrimaryTemplate())
4272 if (FunctionTemplateDecl *BetterTemplate
4273 = getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
4274 Cand2.Function->getPrimaryTemplate(),
4275 Loc,
4276 isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
4277 : TPOC_Call))
4278 return BetterTemplate == Cand1.Function->getPrimaryTemplate();
4279
4280 // -- the context is an initialization by user-defined conversion
4281 // (see 8.5, 13.3.1.5) and the standard conversion sequence
4282 // from the return type of F1 to the destination type (i.e.,
4283 // the type of the entity being initialized) is a better
4284 // conversion sequence than the standard conversion sequence
4285 // from the return type of F2 to the destination type.
4286 if (Cand1.Function && Cand2.Function &&
4287 isa<CXXConversionDecl>(Cand1.Function) &&
4288 isa<CXXConversionDecl>(Cand2.Function)) {
4289 switch (CompareStandardConversionSequences(Cand1.FinalConversion,
4290 Cand2.FinalConversion)) {
4291 case ImplicitConversionSequence::Better:
4292 // Cand1 has a better conversion sequence.
4293 return true;
4294
4295 case ImplicitConversionSequence::Worse:
4296 // Cand1 can't be better than Cand2.
4297 return false;
4298
4299 case ImplicitConversionSequence::Indistinguishable:
4300 // Do nothing
4301 break;
4302 }
4303 }
4304
4305 return false;
4306}
4307
4308/// \brief Computes the best viable function (C++ 13.3.3)
4309/// within an overload candidate set.
4310///
4311/// \param CandidateSet the set of candidate functions.
4312///
4313/// \param Loc the location of the function name (or operator symbol) for
4314/// which overload resolution occurs.
4315///
4316/// \param Best f overload resolution was successful or found a deleted
4317/// function, Best points to the candidate function found.
4318///
4319/// \returns The result of overload resolution.
4320OverloadingResult Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
4321 SourceLocation Loc,
4322 OverloadCandidateSet::iterator& Best) {
4323 // Find the best viable function.
4324 Best = CandidateSet.end();
4325 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4326 Cand != CandidateSet.end(); ++Cand) {
4327 if (Cand->Viable) {
4328 if (Best == CandidateSet.end() ||
4329 isBetterOverloadCandidate(*Cand, *Best, Loc))
4330 Best = Cand;
4331 }
4332 }
4333
4334 // If we didn't find any viable functions, abort.
4335 if (Best == CandidateSet.end())
4336 return OR_No_Viable_Function;
4337
4338 // Make sure that this function is better than every other viable
4339 // function. If not, we have an ambiguity.
4340 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4341 Cand != CandidateSet.end(); ++Cand) {
4342 if (Cand->Viable &&
4343 Cand != Best &&
4344 !isBetterOverloadCandidate(*Best, *Cand, Loc)) {
4345 Best = CandidateSet.end();
4346 return OR_Ambiguous;
4347 }
4348 }
4349
4350 // Best is the best viable function.
4351 if (Best->Function &&
4352 (Best->Function->isDeleted() ||
4353 Best->Function->getAttr<UnavailableAttr>()))
4354 return OR_Deleted;
4355
4356 // C++ [basic.def.odr]p2:
4357 // An overloaded function is used if it is selected by overload resolution
4358 // when referred to from a potentially-evaluated expression. [Note: this
4359 // covers calls to named functions (5.2.2), operator overloading
4360 // (clause 13), user-defined conversions (12.3.2), allocation function for
4361 // placement new (5.3.4), as well as non-default initialization (8.5).
4362 if (Best->Function)
4363 MarkDeclarationReferenced(Loc, Best->Function);
4364 return OR_Success;
4365}
4366
4367namespace {
4368
4369enum OverloadCandidateKind {
4370 oc_function,
4371 oc_method,
4372 oc_constructor,
4373 oc_function_template,
4374 oc_method_template,
4375 oc_constructor_template,
4376 oc_implicit_default_constructor,
4377 oc_implicit_copy_constructor,
4378 oc_implicit_copy_assignment
4379};
4380
4381OverloadCandidateKind ClassifyOverloadCandidate(Sema &S,
4382 FunctionDecl *Fn,
4383 std::string &Description) {
4384 bool isTemplate = false;
4385
4386 if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
4387 isTemplate = true;
4388 Description = S.getTemplateArgumentBindingsText(
4389 FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
4390 }
4391
4392 if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
4393 if (!Ctor->isImplicit())
4394 return isTemplate ? oc_constructor_template : oc_constructor;
4395
4396 return Ctor->isCopyConstructor() ? oc_implicit_copy_constructor
4397 : oc_implicit_default_constructor;
4398 }
4399
4400 if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
4401 // This actually gets spelled 'candidate function' for now, but
4402 // it doesn't hurt to split it out.
4403 if (!Meth->isImplicit())
4404 return isTemplate ? oc_method_template : oc_method;
4405
4406 assert(Meth->isCopyAssignment()
4407 && "implicit method is not copy assignment operator?");
4408 return oc_implicit_copy_assignment;
4409 }
4410
4411 return isTemplate ? oc_function_template : oc_function;
4412}
4413
4414} // end anonymous namespace
4415
4416// Notes the location of an overload candidate.
4417void Sema::NoteOverloadCandidate(FunctionDecl *Fn) {
4418 std::string FnDesc;
4419 OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc);
4420 Diag(Fn->getLocation(), diag::note_ovl_candidate)
4421 << (unsigned) K << FnDesc;
4422}
4423
4424/// Diagnoses an ambiguous conversion. The partial diagnostic is the
4425/// "lead" diagnostic; it will be given two arguments, the source and
4426/// target types of the conversion.
4427void Sema::DiagnoseAmbiguousConversion(const ImplicitConversionSequence &ICS,
4428 SourceLocation CaretLoc,
4429 const PartialDiagnostic &PDiag) {
4430 Diag(CaretLoc, PDiag)
4431 << ICS.Ambiguous.getFromType() << ICS.Ambiguous.getToType();
4432 for (AmbiguousConversionSequence::const_iterator
4433 I = ICS.Ambiguous.begin(), E = ICS.Ambiguous.end(); I != E; ++I) {
4434 NoteOverloadCandidate(*I);
4435 }
4436}
4437
4438namespace {
4439
4440void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) {
4441 const ImplicitConversionSequence &Conv = Cand->Conversions[I];
4442 assert(Conv.isBad());
4443 assert(Cand->Function && "for now, candidate must be a function");
4444 FunctionDecl *Fn = Cand->Function;
4445
4446 // There's a conversion slot for the object argument if this is a
4447 // non-constructor method. Note that 'I' corresponds the
4448 // conversion-slot index.
4449 bool isObjectArgument = false;
4450 if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
4451 if (I == 0)
4452 isObjectArgument = true;
4453 else
4454 I--;
4455 }
4456
4457 std::string FnDesc;
4458 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
4459
4460 Expr *FromExpr = Conv.Bad.FromExpr;
4461 QualType FromTy = Conv.Bad.getFromType();
4462 QualType ToTy = Conv.Bad.getToType();
4463
4464 if (FromTy == S.Context.OverloadTy) {
4465 assert(FromExpr);
4466 Expr *E = FromExpr->IgnoreParens();
4467 if (isa<UnaryOperator>(E))
4468 E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
4469 DeclarationName Name = cast<OverloadExpr>(E)->getName();
4470
4471 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
4472 << (unsigned) FnKind << FnDesc
4473 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4474 << ToTy << Name << I+1;
4475 return;
4476 }
4477
4478 // Do some hand-waving analysis to see if the non-viability is due
4479 // to a qualifier mismatch.
4480 CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
4481 CanQualType CToTy = S.Context.getCanonicalType(ToTy);
4482 if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
4483 CToTy = RT->getPointeeType();
4484 else {
4485 // TODO: detect and diagnose the full richness of const mismatches.
4486 if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
4487 if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>())
4488 CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType();
4489 }
4490
4491 if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
4492 !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
4493 // It is dumb that we have to do this here.
4494 while (isa<ArrayType>(CFromTy))
4495 CFromTy = CFromTy->getAs<ArrayType>()->getElementType();
4496 while (isa<ArrayType>(CToTy))
4497 CToTy = CFromTy->getAs<ArrayType>()->getElementType();
4498
4499 Qualifiers FromQs = CFromTy.getQualifiers();
4500 Qualifiers ToQs = CToTy.getQualifiers();
4501
4502 if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
4503 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
4504 << (unsigned) FnKind << FnDesc
4505 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4506 << FromTy
4507 << FromQs.getAddressSpace() << ToQs.getAddressSpace()
4508 << (unsigned) isObjectArgument << I+1;
4509 return;
4510 }
4511
4512 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
4513 assert(CVR && "unexpected qualifiers mismatch");
4514
4515 if (isObjectArgument) {
4516 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
4517 << (unsigned) FnKind << FnDesc
4518 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4519 << FromTy << (CVR - 1);
4520 } else {
4521 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
4522 << (unsigned) FnKind << FnDesc
4523 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4524 << FromTy << (CVR - 1) << I+1;
4525 }
4526 return;
4527 }
4528
4529 // Diagnose references or pointers to incomplete types differently,
4530 // since it's far from impossible that the incompleteness triggered
4531 // the failure.
4532 QualType TempFromTy = FromTy.getNonReferenceType();
4533 if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
4534 TempFromTy = PTy->getPointeeType();
4535 if (TempFromTy->isIncompleteType()) {
4536 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
4537 << (unsigned) FnKind << FnDesc
4538 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4539 << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
4540 return;
4541 }
4542
4543 // TODO: specialize more based on the kind of mismatch
4544 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv)
4545 << (unsigned) FnKind << FnDesc
4546 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4547 << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
4548}
4549
4550void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
4551 unsigned NumFormalArgs) {
4552 // TODO: treat calls to a missing default constructor as a special case
4553
4554 FunctionDecl *Fn = Cand->Function;
4555 const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
4556
4557 unsigned MinParams = Fn->getMinRequiredArguments();
4558
4559 // at least / at most / exactly
4560 unsigned mode, modeCount;
4561 if (NumFormalArgs < MinParams) {
4562 assert(Cand->FailureKind == ovl_fail_too_few_arguments);
4563 if (MinParams != FnTy->getNumArgs() || FnTy->isVariadic())
4564 mode = 0; // "at least"
4565 else
4566 mode = 2; // "exactly"
4567 modeCount = MinParams;
4568 } else {
4569 assert(Cand->FailureKind == ovl_fail_too_many_arguments);
4570 if (MinParams != FnTy->getNumArgs())
4571 mode = 1; // "at most"
4572 else
4573 mode = 2; // "exactly"
4574 modeCount = FnTy->getNumArgs();
4575 }
4576
4577 std::string Description;
4578 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description);
4579
4580 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
4581 << (unsigned) FnKind << Description << mode << modeCount << NumFormalArgs;
4582}
4583
4584/// Diagnose a failed template-argument deduction.
4585void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
4586 Expr **Args, unsigned NumArgs) {
4587 FunctionDecl *Fn = Cand->Function; // pattern
4588
4589 TemplateParameter Param = TemplateParameter::getFromOpaqueValue(
4590 Cand->DeductionFailure.TemplateParameter);
4591
4592 switch (Cand->DeductionFailure.Result) {
4593 case Sema::TDK_Success:
4594 llvm_unreachable("TDK_success while diagnosing bad deduction");
4595
4596 case Sema::TDK_Incomplete: {
4597 NamedDecl *ParamD;
4598 (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
4599 (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
4600 (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
4601 assert(ParamD && "no parameter found for incomplete deduction result");
4602 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_incomplete_deduction)
4603 << ParamD->getDeclName();
4604 return;
4605 }
4606
4607 // TODO: diagnose these individually, then kill off
4608 // note_ovl_candidate_bad_deduction, which is uselessly vague.
4609 case Sema::TDK_InstantiationDepth:
4610 case Sema::TDK_Inconsistent:
4611 case Sema::TDK_InconsistentQuals:
4612 case Sema::TDK_SubstitutionFailure:
4613 case Sema::TDK_NonDeducedMismatch:
4614 case Sema::TDK_TooManyArguments:
4615 case Sema::TDK_TooFewArguments:
4616 case Sema::TDK_InvalidExplicitArguments:
4617 case Sema::TDK_FailedOverloadResolution:
4618 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_deduction);
4619 return;
4620 }
4621}
4622
4623/// Generates a 'note' diagnostic for an overload candidate. We've
4624/// already generated a primary error at the call site.
4625///
4626/// It really does need to be a single diagnostic with its caret
4627/// pointed at the candidate declaration. Yes, this creates some
4628/// major challenges of technical writing. Yes, this makes pointing
4629/// out problems with specific arguments quite awkward. It's still
4630/// better than generating twenty screens of text for every failed
4631/// overload.
4632///
4633/// It would be great to be able to express per-candidate problems
4634/// more richly for those diagnostic clients that cared, but we'd
4635/// still have to be just as careful with the default diagnostics.
4636void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
4637 Expr **Args, unsigned NumArgs) {
4638 FunctionDecl *Fn = Cand->Function;
4639
4640 // Note deleted candidates, but only if they're viable.
4641 if (Cand->Viable && (Fn->isDeleted() || Fn->hasAttr<UnavailableAttr>())) {
4642 std::string FnDesc;
4643 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
4644
4645 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
4646 << FnKind << FnDesc << Fn->isDeleted();
4647 return;
4648 }
4649
4650 // We don't really have anything else to say about viable candidates.
4651 if (Cand->Viable) {
4652 S.NoteOverloadCandidate(Fn);
4653 return;
4654 }
4655
4656 switch (Cand->FailureKind) {
4657 case ovl_fail_too_many_arguments:
4658 case ovl_fail_too_few_arguments:
4659 return DiagnoseArityMismatch(S, Cand, NumArgs);
4660
4661 case ovl_fail_bad_deduction:
4662 return DiagnoseBadDeduction(S, Cand, Args, NumArgs);
4663
4664 case ovl_fail_trivial_conversion:
4665 case ovl_fail_bad_final_conversion:
4666 return S.NoteOverloadCandidate(Fn);
4667
4668 case ovl_fail_bad_conversion:
4669 for (unsigned I = 0, N = Cand->Conversions.size(); I != N; ++I)
4670 if (Cand->Conversions[I].isBad())
4671 return DiagnoseBadConversion(S, Cand, I);
4672
4673 // FIXME: this currently happens when we're called from SemaInit
4674 // when user-conversion overload fails. Figure out how to handle
4675 // those conditions and diagnose them well.
4676 return S.NoteOverloadCandidate(Fn);
4677 }
4678}
4679
4680void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
4681 // Desugar the type of the surrogate down to a function type,
4682 // retaining as many typedefs as possible while still showing
4683 // the function type (and, therefore, its parameter types).
4684 QualType FnType = Cand->Surrogate->getConversionType();
4685 bool isLValueReference = false;
4686 bool isRValueReference = false;
4687 bool isPointer = false;
4688 if (const LValueReferenceType *FnTypeRef =
4689 FnType->getAs<LValueReferenceType>()) {
4690 FnType = FnTypeRef->getPointeeType();
4691 isLValueReference = true;
4692 } else if (const RValueReferenceType *FnTypeRef =
4693 FnType->getAs<RValueReferenceType>()) {
4694 FnType = FnTypeRef->getPointeeType();
4695 isRValueReference = true;
4696 }
4697 if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
4698 FnType = FnTypePtr->getPointeeType();
4699 isPointer = true;
4700 }
4701 // Desugar down to a function type.
4702 FnType = QualType(FnType->getAs<FunctionType>(), 0);
4703 // Reconstruct the pointer/reference as appropriate.
4704 if (isPointer) FnType = S.Context.getPointerType(FnType);
4705 if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
4706 if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
4707
4708 S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
4709 << FnType;
4710}
4711
4712void NoteBuiltinOperatorCandidate(Sema &S,
4713 const char *Opc,
4714 SourceLocation OpLoc,
4715 OverloadCandidate *Cand) {
4716 assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary");
4717 std::string TypeStr("operator");
4718 TypeStr += Opc;
4719 TypeStr += "(";
4720 TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
4721 if (Cand->Conversions.size() == 1) {
4722 TypeStr += ")";
4723 S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
4724 } else {
4725 TypeStr += ", ";
4726 TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
4727 TypeStr += ")";
4728 S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
4729 }
4730}
4731
4732void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
4733 OverloadCandidate *Cand) {
4734 unsigned NoOperands = Cand->Conversions.size();
4735 for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
4736 const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
4737 if (ICS.isBad()) break; // all meaningless after first invalid
4738 if (!ICS.isAmbiguous()) continue;
4739
4740 S.DiagnoseAmbiguousConversion(ICS, OpLoc,
4741 PDiag(diag::note_ambiguous_type_conversion));
4742 }
4743}
4744
4745SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
4746 if (Cand->Function)
4747 return Cand->Function->getLocation();
4748 if (Cand->IsSurrogate)
4749 return Cand->Surrogate->getLocation();
4750 return SourceLocation();
4751}
4752
4753struct CompareOverloadCandidatesForDisplay {
4754 Sema &S;
4755 CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {}
4756
4757 bool operator()(const OverloadCandidate *L,
4758 const OverloadCandidate *R) {
4759 // Fast-path this check.
4760 if (L == R) return false;
4761
4762 // Order first by viability.
4763 if (L->Viable) {
4764 if (!R->Viable) return true;
4765
4766 // TODO: introduce a tri-valued comparison for overload
4767 // candidates. Would be more worthwhile if we had a sort
4768 // that could exploit it.
4769 if (S.isBetterOverloadCandidate(*L, *R, SourceLocation())) return true;
4770 if (S.isBetterOverloadCandidate(*R, *L, SourceLocation())) return false;
4771 } else if (R->Viable)
4772 return false;
4773
4774 assert(L->Viable == R->Viable);
4775
4776 // Criteria by which we can sort non-viable candidates:
4777 if (!L->Viable) {
4778 // 1. Arity mismatches come after other candidates.
4779 if (L->FailureKind == ovl_fail_too_many_arguments ||
4780 L->FailureKind == ovl_fail_too_few_arguments)
4781 return false;
4782 if (R->FailureKind == ovl_fail_too_many_arguments ||
4783 R->FailureKind == ovl_fail_too_few_arguments)
4784 return true;
4785
4786 // 2. Bad conversions come first and are ordered by the number
4787 // of bad conversions and quality of good conversions.
4788 if (L->FailureKind == ovl_fail_bad_conversion) {
4789 if (R->FailureKind != ovl_fail_bad_conversion)
4790 return true;
4791
4792 // If there's any ordering between the defined conversions...
4793 // FIXME: this might not be transitive.
4794 assert(L->Conversions.size() == R->Conversions.size());
4795
4796 int leftBetter = 0;
4797 for (unsigned I = 0, E = L->Conversions.size(); I != E; ++I) {
4798 switch (S.CompareImplicitConversionSequences(L->Conversions[I],
4799 R->Conversions[I])) {
4800 case ImplicitConversionSequence::Better:
4801 leftBetter++;
4802 break;
4803
4804 case ImplicitConversionSequence::Worse:
4805 leftBetter--;
4806 break;
4807
4808 case ImplicitConversionSequence::Indistinguishable:
4809 break;
4810 }
4811 }
4812 if (leftBetter > 0) return true;
4813 if (leftBetter < 0) return false;
4814
4815 } else if (R->FailureKind == ovl_fail_bad_conversion)
4816 return false;
4817
4818 // TODO: others?
4819 }
4820
4821 // Sort everything else by location.
4822 SourceLocation LLoc = GetLocationForCandidate(L);
4823 SourceLocation RLoc = GetLocationForCandidate(R);
4824
4825 // Put candidates without locations (e.g. builtins) at the end.
4826 if (LLoc.isInvalid()) return false;
4827 if (RLoc.isInvalid()) return true;
4828
4829 return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
4830 }
4831};
4832
4833/// CompleteNonViableCandidate - Normally, overload resolution only
4834/// computes up to the first
4835void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
4836 Expr **Args, unsigned NumArgs) {
4837 assert(!Cand->Viable);
4838
4839 // Don't do anything on failures other than bad conversion.
4840 if (Cand->FailureKind != ovl_fail_bad_conversion) return;
4841
4842 // Skip forward to the first bad conversion.
4843 unsigned ConvIdx = 0;
4844 unsigned ConvCount = Cand->Conversions.size();
4845 while (true) {
4846 assert(ConvIdx != ConvCount && "no bad conversion in candidate");
4847 ConvIdx++;
4848 if (Cand->Conversions[ConvIdx - 1].isBad())
4849 break;
4850 }
4851
4852 if (ConvIdx == ConvCount)
4853 return;
4854
4855 // FIXME: these should probably be preserved from the overload
4856 // operation somehow.
4857 bool SuppressUserConversions = false;
4858 bool ForceRValue = false;
4859
4860 const FunctionProtoType* Proto;
4861 unsigned ArgIdx = ConvIdx;
4862
4863 if (Cand->IsSurrogate) {
4864 QualType ConvType
4865 = Cand->Surrogate->getConversionType().getNonReferenceType();
4866 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
4867 ConvType = ConvPtrType->getPointeeType();
4868 Proto = ConvType->getAs<FunctionProtoType>();
4869 ArgIdx--;
4870 } else if (Cand->Function) {
4871 Proto = Cand->Function->getType()->getAs<FunctionProtoType>();
4872 if (isa<CXXMethodDecl>(Cand->Function) &&
4873 !isa<CXXConstructorDecl>(Cand->Function))
4874 ArgIdx--;
4875 } else {
4876 // Builtin binary operator with a bad first conversion.
4877 assert(ConvCount <= 3);
4878 for (; ConvIdx != ConvCount; ++ConvIdx)
4879 Cand->Conversions[ConvIdx]
4880 = S.TryCopyInitialization(Args[ConvIdx],
4881 Cand->BuiltinTypes.ParamTypes[ConvIdx],
4882 SuppressUserConversions, ForceRValue,
4883 /*InOverloadResolution*/ true);
4884 return;
4885 }
4886
4887 // Fill in the rest of the conversions.
4888 unsigned NumArgsInProto = Proto->getNumArgs();
4889 for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
4890 if (ArgIdx < NumArgsInProto)
4891 Cand->Conversions[ConvIdx]
4892 = S.TryCopyInitialization(Args[ArgIdx], Proto->getArgType(ArgIdx),
4893 SuppressUserConversions, ForceRValue,
4894 /*InOverloadResolution=*/true);
4895 else
4896 Cand->Conversions[ConvIdx].setEllipsis();
4897 }
4898}
4899
4900} // end anonymous namespace
4901
4902/// PrintOverloadCandidates - When overload resolution fails, prints
4903/// diagnostic messages containing the candidates in the candidate
4904/// set.
4905void
4906Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
4907 OverloadCandidateDisplayKind OCD,
4908 Expr **Args, unsigned NumArgs,
4909 const char *Opc,
4910 SourceLocation OpLoc) {
4911 // Sort the candidates by viability and position. Sorting directly would
4912 // be prohibitive, so we make a set of pointers and sort those.
4913 llvm::SmallVector<OverloadCandidate*, 32> Cands;
4914 if (OCD == OCD_AllCandidates) Cands.reserve(CandidateSet.size());
4915 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
4916 LastCand = CandidateSet.end();
4917 Cand != LastCand; ++Cand) {
4918 if (Cand->Viable)
4919 Cands.push_back(Cand);
4920 else if (OCD == OCD_AllCandidates) {
4921 CompleteNonViableCandidate(*this, Cand, Args, NumArgs);
4922 Cands.push_back(Cand);
4923 }
4924 }
4925
4926 std::sort(Cands.begin(), Cands.end(),
4927 CompareOverloadCandidatesForDisplay(*this));
4928
4929 bool ReportedAmbiguousConversions = false;
4930
4931 llvm::SmallVectorImpl<OverloadCandidate*>::iterator I, E;
4932 for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
4933 OverloadCandidate *Cand = *I;
4934
4935 if (Cand->Function)
4936 NoteFunctionCandidate(*this, Cand, Args, NumArgs);
4937 else if (Cand->IsSurrogate)
4938 NoteSurrogateCandidate(*this, Cand);
4939
4940 // This a builtin candidate. We do not, in general, want to list
4941 // every possible builtin candidate.
4942 else if (Cand->Viable) {
4943 // Generally we only see ambiguities including viable builtin
4944 // operators if overload resolution got screwed up by an
4945 // ambiguous user-defined conversion.
4946 //
4947 // FIXME: It's quite possible for different conversions to see
4948 // different ambiguities, though.
4949 if (!ReportedAmbiguousConversions) {
4950 NoteAmbiguousUserConversions(*this, OpLoc, Cand);
4951 ReportedAmbiguousConversions = true;
4952 }
4953
4954 // If this is a viable builtin, print it.
4955 NoteBuiltinOperatorCandidate(*this, Opc, OpLoc, Cand);
4956 }
4957 }
4958}
4959
4960static bool CheckUnresolvedAccess(Sema &S, OverloadExpr *E, NamedDecl *D,
4961 AccessSpecifier AS) {
4962 if (isa<UnresolvedLookupExpr>(E))
4963 return S.CheckUnresolvedLookupAccess(cast<UnresolvedLookupExpr>(E), D, AS);
4964
4965 return S.CheckUnresolvedMemberAccess(cast<UnresolvedMemberExpr>(E), D, AS);
4966}
4967
4968/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
4969/// an overloaded function (C++ [over.over]), where @p From is an
4970/// expression with overloaded function type and @p ToType is the type
4971/// we're trying to resolve to. For example:
4972///
4973/// @code
4974/// int f(double);
4975/// int f(int);
4976///
4977/// int (*pfd)(double) = f; // selects f(double)
4978/// @endcode
4979///
4980/// This routine returns the resulting FunctionDecl if it could be
4981/// resolved, and NULL otherwise. When @p Complain is true, this
4982/// routine will emit diagnostics if there is an error.
4983FunctionDecl *
4984Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
4985 bool Complain) {
4986 QualType FunctionType = ToType;
4987 bool IsMember = false;
4988 if (const PointerType *ToTypePtr = ToType->getAs<PointerType>())
4989 FunctionType = ToTypePtr->getPointeeType();
4990 else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>())
4991 FunctionType = ToTypeRef->getPointeeType();
4992 else if (const MemberPointerType *MemTypePtr =
4993 ToType->getAs<MemberPointerType>()) {
4994 FunctionType = MemTypePtr->getPointeeType();
4995 IsMember = true;
4996 }
4997
4998 // We only look at pointers or references to functions.
4999 FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType();
5000 if (!FunctionType->isFunctionType())
5001 return 0;
5002
5003 // Find the actual overloaded function declaration.
5004 if (From->getType() != Context.OverloadTy)
5005 return 0;
5006
5007 // C++ [over.over]p1:
5008 // [...] [Note: any redundant set of parentheses surrounding the
5009 // overloaded function name is ignored (5.1). ]
5010 // C++ [over.over]p1:
5011 // [...] The overloaded function name can be preceded by the &
5012 // operator.
5013 OverloadExpr *OvlExpr = OverloadExpr::find(From).getPointer();
5014 TemplateArgumentListInfo ETABuffer, *ExplicitTemplateArgs = 0;
5015 if (OvlExpr->hasExplicitTemplateArgs()) {
5016 OvlExpr->getExplicitTemplateArgs().copyInto(ETABuffer);
5017 ExplicitTemplateArgs = &ETABuffer;
5018 }
5019
5020 // Look through all of the overloaded functions, searching for one
5021 // whose type matches exactly.
5022 UnresolvedSet<4> Matches; // contains only FunctionDecls
5023 bool FoundNonTemplateFunction = false;
5024 for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
5025 E = OvlExpr->decls_end(); I != E; ++I) {
5026 // Look through any using declarations to find the underlying function.
5027 NamedDecl *Fn = (*I)->getUnderlyingDecl();
5028
5029 // C++ [over.over]p3:
5030 // Non-member functions and static member functions match
5031 // targets of type "pointer-to-function" or "reference-to-function."
5032 // Nonstatic member functions match targets of
5033 // type "pointer-to-member-function."
5034 // Note that according to DR 247, the containing class does not matter.
5035
5036 if (FunctionTemplateDecl *FunctionTemplate
5037 = dyn_cast<FunctionTemplateDecl>(Fn)) {
5038 if (CXXMethodDecl *Method
5039 = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
5040 // Skip non-static function templates when converting to pointer, and
5041 // static when converting to member pointer.
5042 if (Method->isStatic() == IsMember)
5043 continue;
5044 } else if (IsMember)
5045 continue;
5046
5047 // C++ [over.over]p2:
5048 // If the name is a function template, template argument deduction is
5049 // done (14.8.2.2), and if the argument deduction succeeds, the
5050 // resulting template argument list is used to generate a single
5051 // function template specialization, which is added to the set of
5052 // overloaded functions considered.
5053 // FIXME: We don't really want to build the specialization here, do we?
5054 FunctionDecl *Specialization = 0;
5055 TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
5056 if (TemplateDeductionResult Result
5057 = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
5058 FunctionType, Specialization, Info)) {
5059 // FIXME: make a note of the failed deduction for diagnostics.
5060 (void)Result;
5061 } else {
5062 // FIXME: If the match isn't exact, shouldn't we just drop this as
5063 // a candidate? Find a testcase before changing the code.
5064 assert(FunctionType
5065 == Context.getCanonicalType(Specialization->getType()));
5066 Matches.addDecl(cast<FunctionDecl>(Specialization->getCanonicalDecl()),
5067 I.getAccess());
5068 }
5069
5070 continue;
5071 }
5072
5073 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
5074 // Skip non-static functions when converting to pointer, and static
5075 // when converting to member pointer.
5076 if (Method->isStatic() == IsMember)
5077 continue;
5078
5079 // If we have explicit template arguments, skip non-templates.
5080 if (OvlExpr->hasExplicitTemplateArgs())
5081 continue;
5082 } else if (IsMember)
5083 continue;
5084
5085 if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
5086 QualType ResultTy;
5087 if (Context.hasSameUnqualifiedType(FunctionType, FunDecl->getType()) ||
5088 IsNoReturnConversion(Context, FunDecl->getType(), FunctionType,
5089 ResultTy)) {
5090 Matches.addDecl(cast<FunctionDecl>(FunDecl->getCanonicalDecl()),
5091 I.getAccess());
5092 FoundNonTemplateFunction = true;
5093 }
5094 }
5095 }
5096
5097 // If there were 0 or 1 matches, we're done.
5098 if (Matches.empty())
5099 return 0;
5100 else if (Matches.size() == 1) {
5101 FunctionDecl *Result = cast<FunctionDecl>(*Matches.begin());
5102 MarkDeclarationReferenced(From->getLocStart(), Result);
5103 if (Complain)
5104 CheckUnresolvedAccess(*this, OvlExpr, Result, Matches.begin().getAccess());
5105 return Result;
5106 }
5107
5108 // C++ [over.over]p4:
5109 // If more than one function is selected, [...]
5110 if (!FoundNonTemplateFunction) {
5111 // [...] and any given function template specialization F1 is
5112 // eliminated if the set contains a second function template
5113 // specialization whose function template is more specialized
5114 // than the function template of F1 according to the partial
5115 // ordering rules of 14.5.5.2.
5116
5117 // The algorithm specified above is quadratic. We instead use a
5118 // two-pass algorithm (similar to the one used to identify the
5119 // best viable function in an overload set) that identifies the
5120 // best function template (if it exists).
5121
5122 UnresolvedSetIterator Result =
5123 getMostSpecialized(Matches.begin(), Matches.end(),
5124 TPOC_Other, From->getLocStart(),
5125 PDiag(),
5126 PDiag(diag::err_addr_ovl_ambiguous)
5127 << Matches[0]->getDeclName(),
5128 PDiag(diag::note_ovl_candidate)
5129 << (unsigned) oc_function_template);
5130 assert(Result != Matches.end() && "no most-specialized template");
5131 MarkDeclarationReferenced(From->getLocStart(), *Result);
5132 if (Complain)
5133 CheckUnresolvedAccess(*this, OvlExpr, *Result, Result.getAccess());
5134 return cast<FunctionDecl>(*Result);
5135 }
5136
5137 // [...] any function template specializations in the set are
5138 // eliminated if the set also contains a non-template function, [...]
5139 for (unsigned I = 0, N = Matches.size(); I != N; ) {
5140 if (cast<FunctionDecl>(Matches[I].getDecl())->getPrimaryTemplate() == 0)
5141 ++I;
5142 else {
5143 Matches.erase(I);
5144 --N;
5145 }
5146 }
5147
5148 // [...] After such eliminations, if any, there shall remain exactly one
5149 // selected function.
5150 if (Matches.size() == 1) {
5151 UnresolvedSetIterator Match = Matches.begin();
5152 MarkDeclarationReferenced(From->getLocStart(), *Match);
5153 if (Complain)
5154 CheckUnresolvedAccess(*this, OvlExpr, *Match, Match.getAccess());
5155 return cast<FunctionDecl>(*Match);
5156 }
5157
5158 // FIXME: We should probably return the same thing that BestViableFunction
5159 // returns (even if we issue the diagnostics here).
5160 Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous)
5161 << Matches[0]->getDeclName();
5162 for (UnresolvedSetIterator I = Matches.begin(),
5163 E = Matches.end(); I != E; ++I)
5164 NoteOverloadCandidate(cast<FunctionDecl>(*I));
5165 return 0;
5166}
5167
5168/// \brief Given an expression that refers to an overloaded function, try to
5169/// resolve that overloaded function expression down to a single function.
5170///
5171/// This routine can only resolve template-ids that refer to a single function
5172/// template, where that template-id refers to a single template whose template
5173/// arguments are either provided by the template-id or have defaults,
5174/// as described in C++0x [temp.arg.explicit]p3.
5175FunctionDecl *Sema::ResolveSingleFunctionTemplateSpecialization(Expr *From) {
5176 // C++ [over.over]p1:
5177 // [...] [Note: any redundant set of parentheses surrounding the
5178 // overloaded function name is ignored (5.1). ]
5179 // C++ [over.over]p1:
5180 // [...] The overloaded function name can be preceded by the &
5181 // operator.
5182
5183 if (From->getType() != Context.OverloadTy)
5184 return 0;
5185
5186 OverloadExpr *OvlExpr = OverloadExpr::find(From).getPointer();
5187
5188 // If we didn't actually find any template-ids, we're done.
5189 if (!OvlExpr->hasExplicitTemplateArgs())
5190 return 0;
5191
5192 TemplateArgumentListInfo ExplicitTemplateArgs;
5193 OvlExpr->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
5194
5195 // Look through all of the overloaded functions, searching for one
5196 // whose type matches exactly.
5197 FunctionDecl *Matched = 0;
5198 for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
5199 E = OvlExpr->decls_end(); I != E; ++I) {
5200 // C++0x [temp.arg.explicit]p3:
5201 // [...] In contexts where deduction is done and fails, or in contexts
5202 // where deduction is not done, if a template argument list is
5203 // specified and it, along with any default template arguments,
5204 // identifies a single function template specialization, then the
5205 // template-id is an lvalue for the function template specialization.
5206 FunctionTemplateDecl *FunctionTemplate = cast<FunctionTemplateDecl>(*I);
5207
5208 // C++ [over.over]p2:
5209 // If the name is a function template, template argument deduction is
5210 // done (14.8.2.2), and if the argument deduction succeeds, the
5211 // resulting template argument list is used to generate a single
5212 // function template specialization, which is added to the set of
5213 // overloaded functions considered.
5214 FunctionDecl *Specialization = 0;
5215 TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
5216 if (TemplateDeductionResult Result
5217 = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
5218 Specialization, Info)) {
5219 // FIXME: make a note of the failed deduction for diagnostics.
5220 (void)Result;
5221 continue;
5222 }
5223
5224 // Multiple matches; we can't resolve to a single declaration.
5225 if (Matched)
5226 return 0;
5227
5228 Matched = Specialization;
5229 }
5230
5231 return Matched;
5232}
5233
5234/// \brief Add a single candidate to the overload set.
5235static void AddOverloadedCallCandidate(Sema &S,
5236 NamedDecl *Callee,
5237 AccessSpecifier Access,
5238 const TemplateArgumentListInfo *ExplicitTemplateArgs,
5239 Expr **Args, unsigned NumArgs,
5240 OverloadCandidateSet &CandidateSet,
5241 bool PartialOverloading) {
5242 if (isa<UsingShadowDecl>(Callee))
5243 Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
5244
5245 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
5246 assert(!ExplicitTemplateArgs && "Explicit template arguments?");
5247 S.AddOverloadCandidate(Func, Access, Args, NumArgs, CandidateSet,
5248 false, false, PartialOverloading);
5249 return;
5250 }
5251
5252 if (FunctionTemplateDecl *FuncTemplate
5253 = dyn_cast<FunctionTemplateDecl>(Callee)) {
5254 S.AddTemplateOverloadCandidate(FuncTemplate, Access, ExplicitTemplateArgs,
5255 Args, NumArgs, CandidateSet);
5256 return;
5257 }
5258
5259 assert(false && "unhandled case in overloaded call candidate");
5260
5261 // do nothing?
5262}
5263
5264/// \brief Add the overload candidates named by callee and/or found by argument
5265/// dependent lookup to the given overload set.
5266void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
5267 Expr **Args, unsigned NumArgs,
5268 OverloadCandidateSet &CandidateSet,
5269 bool PartialOverloading) {
5270
5271#ifndef NDEBUG
5272 // Verify that ArgumentDependentLookup is consistent with the rules
5273 // in C++0x [basic.lookup.argdep]p3:
5274 //
5275 // Let X be the lookup set produced by unqualified lookup (3.4.1)
5276 // and let Y be the lookup set produced by argument dependent
5277 // lookup (defined as follows). If X contains
5278 //
5279 // -- a declaration of a class member, or
5280 //
5281 // -- a block-scope function declaration that is not a
5282 // using-declaration, or
5283 //
5284 // -- a declaration that is neither a function or a function
5285 // template
5286 //
5287 // then Y is empty.
5288
5289 if (ULE->requiresADL()) {
5290 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
5291 E = ULE->decls_end(); I != E; ++I) {
5292 assert(!(*I)->getDeclContext()->isRecord());
5293 assert(isa<UsingShadowDecl>(*I) ||
5294 !(*I)->getDeclContext()->isFunctionOrMethod());
5295 assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
5296 }
5297 }
5298#endif
5299
5300 // It would be nice to avoid this copy.
5301 TemplateArgumentListInfo TABuffer;
5302 const TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
5303 if (ULE->hasExplicitTemplateArgs()) {
5304 ULE->copyTemplateArgumentsInto(TABuffer);
5305 ExplicitTemplateArgs = &TABuffer;
5306 }
5307
5308 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
5309 E = ULE->decls_end(); I != E; ++I)
5310 AddOverloadedCallCandidate(*this, *I, I.getAccess(), ExplicitTemplateArgs,
5311 Args, NumArgs, CandidateSet,
5312 PartialOverloading);
5313
5314 if (ULE->requiresADL())
5315 AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false,
5316 Args, NumArgs,
5317 ExplicitTemplateArgs,
5318 CandidateSet,
5319 PartialOverloading);
5320}
5321
5322static Sema::OwningExprResult Destroy(Sema &SemaRef, Expr *Fn,
5323 Expr **Args, unsigned NumArgs) {
5324 Fn->Destroy(SemaRef.Context);
5325 for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
5326 Args[Arg]->Destroy(SemaRef.Context);
5327 return SemaRef.ExprError();
5328}
5329
5330/// Attempts to recover from a call where no functions were found.
5331///
5332/// Returns true if new candidates were found.
5333static Sema::OwningExprResult
5334BuildRecoveryCallExpr(Sema &SemaRef, Expr *Fn,
5335 UnresolvedLookupExpr *ULE,
5336 SourceLocation LParenLoc,
5337 Expr **Args, unsigned NumArgs,
5338 SourceLocation *CommaLocs,
5339 SourceLocation RParenLoc) {
5340
5341 CXXScopeSpec SS;
5342 if (ULE->getQualifier()) {
5343 SS.setScopeRep(ULE->getQualifier());
5344 SS.setRange(ULE->getQualifierRange());
5345 }
5346
5347 TemplateArgumentListInfo TABuffer;
5348 const TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
5349 if (ULE->hasExplicitTemplateArgs()) {
5350 ULE->copyTemplateArgumentsInto(TABuffer);
5351 ExplicitTemplateArgs = &TABuffer;
5352 }
5353
5354 LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
5355 Sema::LookupOrdinaryName);
5356 if (SemaRef.DiagnoseEmptyLookup(/*Scope=*/0, SS, R))
5357 return Destroy(SemaRef, Fn, Args, NumArgs);
5358
5359 assert(!R.empty() && "lookup results empty despite recovery");
5360
5361 // Build an implicit member call if appropriate. Just drop the
5362 // casts and such from the call, we don't really care.
5363 Sema::OwningExprResult NewFn = SemaRef.ExprError();
5364 if ((*R.begin())->isCXXClassMember())
5365 NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, R, ExplicitTemplateArgs);
5366 else if (ExplicitTemplateArgs)
5367 NewFn = SemaRef.BuildTemplateIdExpr(SS, R, false, *ExplicitTemplateArgs);
5368 else
5369 NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
5370
5371 if (NewFn.isInvalid())
5372 return Destroy(SemaRef, Fn, Args, NumArgs);
5373
5374 Fn->Destroy(SemaRef.Context);
5375
5376 // This shouldn't cause an infinite loop because we're giving it
5377 // an expression with non-empty lookup results, which should never
5378 // end up here.
5379 return SemaRef.ActOnCallExpr(/*Scope*/ 0, move(NewFn), LParenLoc,
5380 Sema::MultiExprArg(SemaRef, (void**) Args, NumArgs),
5381 CommaLocs, RParenLoc);
5382}
5383
5384/// ResolveOverloadedCallFn - Given the call expression that calls Fn
5385/// (which eventually refers to the declaration Func) and the call
5386/// arguments Args/NumArgs, attempt to resolve the function call down
5387/// to a specific function. If overload resolution succeeds, returns
5388/// the function declaration produced by overload
5389/// resolution. Otherwise, emits diagnostics, deletes all of the
5390/// arguments and Fn, and returns NULL.
5391Sema::OwningExprResult
5392Sema::BuildOverloadedCallExpr(Expr *Fn, UnresolvedLookupExpr *ULE,
5393 SourceLocation LParenLoc,
5394 Expr **Args, unsigned NumArgs,
5395 SourceLocation *CommaLocs,
5396 SourceLocation RParenLoc) {
5397#ifndef NDEBUG
5398 if (ULE->requiresADL()) {
5399 // To do ADL, we must have found an unqualified name.
5400 assert(!ULE->getQualifier() && "qualified name with ADL");
5401
5402 // We don't perform ADL for implicit declarations of builtins.
5403 // Verify that this was correctly set up.
5404 FunctionDecl *F;
5405 if (ULE->decls_begin() + 1 == ULE->decls_end() &&
5406 (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
5407 F->getBuiltinID() && F->isImplicit())
5408 assert(0 && "performing ADL for builtin");
5409
5410 // We don't perform ADL in C.
5411 assert(getLangOptions().CPlusPlus && "ADL enabled in C");
5412 }
5413#endif
5414
5415 OverloadCandidateSet CandidateSet(Fn->getExprLoc());
5416
5417 // Add the functions denoted by the callee to the set of candidate
5418 // functions, including those from argument-dependent lookup.
5419 AddOverloadedCallCandidates(ULE, Args, NumArgs, CandidateSet);
5420
5421 // If we found nothing, try to recover.
5422 // AddRecoveryCallCandidates diagnoses the error itself, so we just
5423 // bailout out if it fails.
5424 if (CandidateSet.empty())
5425 return BuildRecoveryCallExpr(*this, Fn, ULE, LParenLoc, Args, NumArgs,
5426 CommaLocs, RParenLoc);
5427
5428 OverloadCandidateSet::iterator Best;
5429 switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) {
5430 case OR_Success: {
5431 FunctionDecl *FDecl = Best->Function;
5432 CheckUnresolvedLookupAccess(ULE, FDecl, Best->getAccess());
5433 Fn = FixOverloadedFunctionReference(Fn, FDecl);
5434 return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, RParenLoc);
5435 }
5436
5437 case OR_No_Viable_Function:
5438 Diag(Fn->getSourceRange().getBegin(),
5439 diag::err_ovl_no_viable_function_in_call)
5440 << ULE->getName() << Fn->getSourceRange();
5441 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
5442 break;
5443
5444 case OR_Ambiguous:
5445 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
5446 << ULE->getName() << Fn->getSourceRange();
5447 PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs);
5448 break;
5449
5450 case OR_Deleted:
5451 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
5452 << Best->Function->isDeleted()
5453 << ULE->getName()
5454 << Fn->getSourceRange();
5455 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
5456 break;
5457 }
5458
5459 // Overload resolution failed. Destroy all of the subexpressions and
5460 // return NULL.
5461 Fn->Destroy(Context);
5462 for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
5463 Args[Arg]->Destroy(Context);
5464 return ExprError();
5465}
5466
5467static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
5468 return Functions.size() > 1 ||
5469 (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
5470}
5471
5472/// \brief Create a unary operation that may resolve to an overloaded
5473/// operator.
5474///
5475/// \param OpLoc The location of the operator itself (e.g., '*').
5476///
5477/// \param OpcIn The UnaryOperator::Opcode that describes this
5478/// operator.
5479///
5480/// \param Functions The set of non-member functions that will be
5481/// considered by overload resolution. The caller needs to build this
5482/// set based on the context using, e.g.,
5483/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
5484/// set should not contain any member functions; those will be added
5485/// by CreateOverloadedUnaryOp().
5486///
5487/// \param input The input argument.
5488Sema::OwningExprResult
5489Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn,
5490 const UnresolvedSetImpl &Fns,
5491 ExprArg input) {
5492 UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
5493 Expr *Input = (Expr *)input.get();
5494
5495 OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
5496 assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
5497 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
5498
5499 Expr *Args[2] = { Input, 0 };
5500 unsigned NumArgs = 1;
5501
5502 // For post-increment and post-decrement, add the implicit '0' as
5503 // the second argument, so that we know this is a post-increment or
5504 // post-decrement.
5505 if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) {
5506 llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
5507 Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy,
5508 SourceLocation());
5509 NumArgs = 2;
5510 }
5511
5512 if (Input->isTypeDependent()) {
5513 CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
5514 UnresolvedLookupExpr *Fn
5515 = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
5516 0, SourceRange(), OpName, OpLoc,
5517 /*ADL*/ true, IsOverloaded(Fns));
5518 Fn->addDecls(Fns.begin(), Fns.end());
5519
5520 input.release();
5521 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
5522 &Args[0], NumArgs,
5523 Context.DependentTy,
5524 OpLoc));
5525 }
5526
5527 // Build an empty overload set.
5528 OverloadCandidateSet CandidateSet(OpLoc);
5529
5530 // Add the candidates from the given function set.
5531 AddFunctionCandidates(Fns, &Args[0], NumArgs, CandidateSet, false);
5532
5533 // Add operator candidates that are member functions.
5534 AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
5535
5536 // Add candidates from ADL.
5537 AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
5538 Args, NumArgs,
5539 /*ExplicitTemplateArgs*/ 0,
5540 CandidateSet);
5541
5542 // Add builtin operator candidates.
5543 AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
5544
5545 // Perform overload resolution.
5546 OverloadCandidateSet::iterator Best;
5547 switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
5548 case OR_Success: {
5549 // We found a built-in operator or an overloaded operator.
5550 FunctionDecl *FnDecl = Best->Function;
5551
5552 if (FnDecl) {
5553 // We matched an overloaded operator. Build a call to that
5554 // operator.
5555
5556 // Convert the arguments.
5557 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
5558 CheckMemberOperatorAccess(OpLoc, Args[0], Method, Best->getAccess());
5559
5560 if (PerformObjectArgumentInitialization(Input, Method))
5561 return ExprError();
5562 } else {
5563 // Convert the arguments.
5564 OwningExprResult InputInit
5565 = PerformCopyInitialization(InitializedEntity::InitializeParameter(
5566 FnDecl->getParamDecl(0)),
5567 SourceLocation(),
5568 move(input));
5569 if (InputInit.isInvalid())
5570 return ExprError();
5571
5572 input = move(InputInit);
5573 Input = (Expr *)input.get();
5574 }
5575
5576 // Determine the result type
5577 QualType ResultTy = FnDecl->getResultType().getNonReferenceType();
5578
5579 // Build the actual expression node.
5580 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
5581 SourceLocation());
5582 UsualUnaryConversions(FnExpr);
5583
5584 input.release();
5585 Args[0] = Input;
5586 ExprOwningPtr<CallExpr> TheCall(this,
5587 new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
5588 Args, NumArgs, ResultTy, OpLoc));
5589
5590 if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
5591 FnDecl))
5592 return ExprError();
5593
5594 return MaybeBindToTemporary(TheCall.release());
5595 } else {
5596 // We matched a built-in operator. Convert the arguments, then
5597 // break out so that we will build the appropriate built-in
5598 // operator node.
5599 if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
5600 Best->Conversions[0], AA_Passing))
5601 return ExprError();
5602
5603 break;
5604 }
5605 }
5606
5607 case OR_No_Viable_Function:
5608 // No viable function; fall through to handling this as a
5609 // built-in operator, which will produce an error message for us.
5610 break;
5611
5612 case OR_Ambiguous:
5613 Diag(OpLoc, diag::err_ovl_ambiguous_oper)
5614 << UnaryOperator::getOpcodeStr(Opc)
5615 << Input->getSourceRange();
5616 PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs,
5617 UnaryOperator::getOpcodeStr(Opc), OpLoc);
5618 return ExprError();
5619
5620 case OR_Deleted:
5621 Diag(OpLoc, diag::err_ovl_deleted_oper)
5622 << Best->Function->isDeleted()
5623 << UnaryOperator::getOpcodeStr(Opc)
5624 << Input->getSourceRange();
5625 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
5626 return ExprError();
5627 }
5628
5629 // Either we found no viable overloaded operator or we matched a
5630 // built-in operator. In either case, fall through to trying to
5631 // build a built-in operation.
5632 input.release();
5633 return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input));
5634}
5635
5636/// \brief Create a binary operation that may resolve to an overloaded
5637/// operator.
5638///
5639/// \param OpLoc The location of the operator itself (e.g., '+').
5640///
5641/// \param OpcIn The BinaryOperator::Opcode that describes this
5642/// operator.
5643///
5644/// \param Functions The set of non-member functions that will be
5645/// considered by overload resolution. The caller needs to build this
5646/// set based on the context using, e.g.,
5647/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
5648/// set should not contain any member functions; those will be added
5649/// by CreateOverloadedBinOp().
5650///
5651/// \param LHS Left-hand argument.
5652/// \param RHS Right-hand argument.
5653Sema::OwningExprResult
5654Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
5655 unsigned OpcIn,
5656 const UnresolvedSetImpl &Fns,
5657 Expr *LHS, Expr *RHS) {
5658 Expr *Args[2] = { LHS, RHS };
5659 LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
5660
5661 BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
5662 OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
5663 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
5664
5665 // If either side is type-dependent, create an appropriate dependent
5666 // expression.
5667 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
5668 if (Fns.empty()) {
5669 // If there are no functions to store, just build a dependent
5670 // BinaryOperator or CompoundAssignment.
5671 if (Opc <= BinaryOperator::Assign || Opc > BinaryOperator::OrAssign)
5672 return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
5673 Context.DependentTy, OpLoc));
5674
5675 return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc,
5676 Context.DependentTy,
5677 Context.DependentTy,
5678 Context.DependentTy,
5679 OpLoc));
5680 }
5681
5682 // FIXME: save results of ADL from here?
5683 CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
5684 UnresolvedLookupExpr *Fn
5685 = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
5686 0, SourceRange(), OpName, OpLoc,
5687 /*ADL*/ true, IsOverloaded(Fns));
5688
5689 Fn->addDecls(Fns.begin(), Fns.end());
5690 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
5691 Args, 2,
5692 Context.DependentTy,
5693 OpLoc));
5694 }
5695
5696 // If this is the .* operator, which is not overloadable, just
5697 // create a built-in binary operator.
5698 if (Opc == BinaryOperator::PtrMemD)
5699 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
5700
5701 // If this is the assignment operator, we only perform overload resolution
5702 // if the left-hand side is a class or enumeration type. This is actually
5703 // a hack. The standard requires that we do overload resolution between the
5704 // various built-in candidates, but as DR507 points out, this can lead to
5705 // problems. So we do it this way, which pretty much follows what GCC does.
5706 // Note that we go the traditional code path for compound assignment forms.
5707 if (Opc==BinaryOperator::Assign && !Args[0]->getType()->isOverloadableType())
5708 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
5709
5710 // Build an empty overload set.
5711 OverloadCandidateSet CandidateSet(OpLoc);
5712
5713 // Add the candidates from the given function set.
5714 AddFunctionCandidates(Fns, Args, 2, CandidateSet, false);
5715
5716 // Add operator candidates that are member functions.
5717 AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
5718
5719 // Add candidates from ADL.
5720 AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
5721 Args, 2,
5722 /*ExplicitTemplateArgs*/ 0,
5723 CandidateSet);
5724
5725 // Add builtin operator candidates.
5726 AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
5727
5728 // Perform overload resolution.
5729 OverloadCandidateSet::iterator Best;
5730 switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
5731 case OR_Success: {
5732 // We found a built-in operator or an overloaded operator.
5733 FunctionDecl *FnDecl = Best->Function;
5734
5735 if (FnDecl) {
5736 // We matched an overloaded operator. Build a call to that
5737 // operator.
5738
5739 // Convert the arguments.
5740 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
5741 // Best->Access is only meaningful for class members.
5742 CheckMemberOperatorAccess(OpLoc, Args[0], Method, Best->getAccess());
5743
5744 OwningExprResult Arg1
5745 = PerformCopyInitialization(
5746 InitializedEntity::InitializeParameter(
5747 FnDecl->getParamDecl(0)),
5748 SourceLocation(),
5749 Owned(Args[1]));
5750 if (Arg1.isInvalid())
5751 return ExprError();
5752
5753 if (PerformObjectArgumentInitialization(Args[0], Method))
5754 return ExprError();
5755
5756 Args[1] = RHS = Arg1.takeAs<Expr>();
5757 } else {
5758 // Convert the arguments.
5759 OwningExprResult Arg0
5760 = PerformCopyInitialization(
5761 InitializedEntity::InitializeParameter(
5762 FnDecl->getParamDecl(0)),
5763 SourceLocation(),
5764 Owned(Args[0]));
5765 if (Arg0.isInvalid())
5766 return ExprError();
5767
5768 OwningExprResult Arg1
5769 = PerformCopyInitialization(
5770 InitializedEntity::InitializeParameter(
5771 FnDecl->getParamDecl(1)),
5772 SourceLocation(),
5773 Owned(Args[1]));
5774 if (Arg1.isInvalid())
5775 return ExprError();
5776 Args[0] = LHS = Arg0.takeAs<Expr>();
5777 Args[1] = RHS = Arg1.takeAs<Expr>();
5778 }
5779
5780 // Determine the result type
5781 QualType ResultTy
5782 = FnDecl->getType()->getAs<FunctionType>()->getResultType();
5783 ResultTy = ResultTy.getNonReferenceType();
5784
5785 // Build the actual expression node.
5786 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
5787 OpLoc);
5788 UsualUnaryConversions(FnExpr);
5789
5790 ExprOwningPtr<CXXOperatorCallExpr>
5791 TheCall(this, new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
5792 Args, 2, ResultTy,
5793 OpLoc));
5794
5795 if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
5796 FnDecl))
5797 return ExprError();
5798
5799 return MaybeBindToTemporary(TheCall.release());
5800 } else {
5801 // We matched a built-in operator. Convert the arguments, then
5802 // break out so that we will build the appropriate built-in
5803 // operator node.
5804 if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
5805 Best->Conversions[0], AA_Passing) ||
5806 PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
5807 Best->Conversions[1], AA_Passing))
5808 return ExprError();
5809
5810 break;
5811 }
5812 }
5813
5814 case OR_No_Viable_Function: {
5815 // C++ [over.match.oper]p9:
5816 // If the operator is the operator , [...] and there are no
5817 // viable functions, then the operator is assumed to be the
5818 // built-in operator and interpreted according to clause 5.
5819 if (Opc == BinaryOperator::Comma)
5820 break;
5821
5822 // For class as left operand for assignment or compound assigment operator
5823 // do not fall through to handling in built-in, but report that no overloaded
5824 // assignment operator found
5825 OwningExprResult Result = ExprError();
5826 if (Args[0]->getType()->isRecordType() &&
5827 Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) {
5828 Diag(OpLoc, diag::err_ovl_no_viable_oper)
5829 << BinaryOperator::getOpcodeStr(Opc)
5830 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5831 } else {
5832 // No viable function; try to create a built-in operation, which will
5833 // produce an error. Then, show the non-viable candidates.
5834 Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
5835 }
5836 assert(Result.isInvalid() &&
5837 "C++ binary operator overloading is missing candidates!");
5838 if (Result.isInvalid())
5839 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
5840 BinaryOperator::getOpcodeStr(Opc), OpLoc);
5841 return move(Result);
5842 }
5843
5844 case OR_Ambiguous:
5845 Diag(OpLoc, diag::err_ovl_ambiguous_oper)
5846 << BinaryOperator::getOpcodeStr(Opc)
5847 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5848 PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2,
5849 BinaryOperator::getOpcodeStr(Opc), OpLoc);
5850 return ExprError();
5851
5852 case OR_Deleted:
5853 Diag(OpLoc, diag::err_ovl_deleted_oper)
5854 << Best->Function->isDeleted()
5855 << BinaryOperator::getOpcodeStr(Opc)
5856 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5857 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2);
5858 return ExprError();
5859 }
5860
5861 // We matched a built-in operator; build it.
5862 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
5863}
5864
5865Action::OwningExprResult
5866Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
5867 SourceLocation RLoc,
5868 ExprArg Base, ExprArg Idx) {
5869 Expr *Args[2] = { static_cast<Expr*>(Base.get()),
5870 static_cast<Expr*>(Idx.get()) };
5871 DeclarationName OpName =
5872 Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
5873
5874 // If either side is type-dependent, create an appropriate dependent
5875 // expression.
5876 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
5877
5878 CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
5879 UnresolvedLookupExpr *Fn
5880 = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
5881 0, SourceRange(), OpName, LLoc,
5882 /*ADL*/ true, /*Overloaded*/ false);
5883 // Can't add any actual overloads yet
5884
5885 Base.release();
5886 Idx.release();
5887 return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn,
5888 Args, 2,
5889 Context.DependentTy,
5890 RLoc));
5891 }
5892
5893 // Build an empty overload set.
5894 OverloadCandidateSet CandidateSet(LLoc);
5895
5896 // Subscript can only be overloaded as a member function.
5897
5898 // Add operator candidates that are member functions.
5899 AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
5900
5901 // Add builtin operator candidates.
5902 AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
5903
5904 // Perform overload resolution.
5905 OverloadCandidateSet::iterator Best;
5906 switch (BestViableFunction(CandidateSet, LLoc, Best)) {
5907 case OR_Success: {
5908 // We found a built-in operator or an overloaded operator.
5909 FunctionDecl *FnDecl = Best->Function;
5910
5911 if (FnDecl) {
5912 // We matched an overloaded operator. Build a call to that
5913 // operator.
5914
5915 CheckMemberOperatorAccess(LLoc, Args[0], FnDecl, Best->getAccess());
5916
5917 // Convert the arguments.
5918 CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
5919 if (PerformObjectArgumentInitialization(Args[0], Method))
5920 return ExprError();
5921
5922 // Convert the arguments.
5923 OwningExprResult InputInit
5924 = PerformCopyInitialization(InitializedEntity::InitializeParameter(
5925 FnDecl->getParamDecl(0)),
5926 SourceLocation(),
5927 Owned(Args[1]));
5928 if (InputInit.isInvalid())
5929 return ExprError();
5930
5931 Args[1] = InputInit.takeAs<Expr>();
5932
5933 // Determine the result type
5934 QualType ResultTy
5935 = FnDecl->getType()->getAs<FunctionType>()->getResultType();
5936 ResultTy = ResultTy.getNonReferenceType();
5937
5938 // Build the actual expression node.
5939 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
5940 LLoc);
5941 UsualUnaryConversions(FnExpr);
5942
5943 Base.release();
5944 Idx.release();
5945 ExprOwningPtr<CXXOperatorCallExpr>
5946 TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
5947 FnExpr, Args, 2,
5948 ResultTy, RLoc));
5949
5950 if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall.get(),
5951 FnDecl))
5952 return ExprError();
5953
5954 return MaybeBindToTemporary(TheCall.release());
5955 } else {
5956 // We matched a built-in operator. Convert the arguments, then
5957 // break out so that we will build the appropriate built-in
5958 // operator node.
5959 if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
5960 Best->Conversions[0], AA_Passing) ||
5961 PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
5962 Best->Conversions[1], AA_Passing))
5963 return ExprError();
5964
5965 break;
5966 }
5967 }
5968
5969 case OR_No_Viable_Function: {
5970 if (CandidateSet.empty())
5971 Diag(LLoc, diag::err_ovl_no_oper)
5972 << Args[0]->getType() << /*subscript*/ 0
5973 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5974 else
5975 Diag(LLoc, diag::err_ovl_no_viable_subscript)
5976 << Args[0]->getType()
5977 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5978 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
5979 "[]", LLoc);
5980 return ExprError();
5981 }
5982
5983 case OR_Ambiguous:
5984 Diag(LLoc, diag::err_ovl_ambiguous_oper)
5985 << "[]" << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5986 PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2,
5987 "[]", LLoc);
5988 return ExprError();
5989
5990 case OR_Deleted:
5991 Diag(LLoc, diag::err_ovl_deleted_oper)
5992 << Best->Function->isDeleted() << "[]"
5993 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5994 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
5995 "[]", LLoc);
5996 return ExprError();
5997 }
5998
5999 // We matched a built-in operator; build it.
6000 Base.release();
6001 Idx.release();
6002 return CreateBuiltinArraySubscriptExpr(Owned(Args[0]), LLoc,
6003 Owned(Args[1]), RLoc);
6004}
6005
6006/// BuildCallToMemberFunction - Build a call to a member
6007/// function. MemExpr is the expression that refers to the member
6008/// function (and includes the object parameter), Args/NumArgs are the
6009/// arguments to the function call (not including the object
6010/// parameter). The caller needs to validate that the member
6011/// expression refers to a member function or an overloaded member
6012/// function.
6013Sema::OwningExprResult
6014Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
6015 SourceLocation LParenLoc, Expr **Args,
6016 unsigned NumArgs, SourceLocation *CommaLocs,
6017 SourceLocation RParenLoc) {
6018 // Dig out the member expression. This holds both the object
6019 // argument and the member function we're referring to.
6020 Expr *NakedMemExpr = MemExprE->IgnoreParens();
6021
6022 MemberExpr *MemExpr;
6023 CXXMethodDecl *Method = 0;
6024 if (isa<MemberExpr>(NakedMemExpr)) {
6025 MemExpr = cast<MemberExpr>(NakedMemExpr);
6026 Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
6027 } else {
6028 UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
6029
6030 QualType ObjectType = UnresExpr->getBaseType();
6031
6032 // Add overload candidates
6033 OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc());
6034
6035 // FIXME: avoid copy.
6036 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
6037 if (UnresExpr->hasExplicitTemplateArgs()) {
6038 UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
6039 TemplateArgs = &TemplateArgsBuffer;
6040 }
6041
6042 for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
6043 E = UnresExpr->decls_end(); I != E; ++I) {
6044
6045 NamedDecl *Func = *I;
6046 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
6047 if (isa<UsingShadowDecl>(Func))
6048 Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
6049
6050 if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
6051 // If explicit template arguments were provided, we can't call a
6052 // non-template member function.
6053 if (TemplateArgs)
6054 continue;
6055
6056 AddMethodCandidate(Method, I.getAccess(), ActingDC, ObjectType,
6057 Args, NumArgs,
6058 CandidateSet, /*SuppressUserConversions=*/false);
6059 } else {
6060 AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func),
6061 I.getAccess(), ActingDC, TemplateArgs,
6062 ObjectType, Args, NumArgs,
6063 CandidateSet,
6064 /*SuppressUsedConversions=*/false);
6065 }
6066 }
6067
6068 DeclarationName DeclName = UnresExpr->getMemberName();
6069
6070 OverloadCandidateSet::iterator Best;
6071 switch (BestViableFunction(CandidateSet, UnresExpr->getLocStart(), Best)) {
6072 case OR_Success:
6073 Method = cast<CXXMethodDecl>(Best->Function);
6074 CheckUnresolvedMemberAccess(UnresExpr, Method, Best->getAccess());
6075 break;
6076
6077 case OR_No_Viable_Function:
6078 Diag(UnresExpr->getMemberLoc(),
6079 diag::err_ovl_no_viable_member_function_in_call)
6080 << DeclName << MemExprE->getSourceRange();
6081 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6082 // FIXME: Leaking incoming expressions!
6083 return ExprError();
6084
6085 case OR_Ambiguous:
6086 Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
6087 << DeclName << MemExprE->getSourceRange();
6088 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6089 // FIXME: Leaking incoming expressions!
6090 return ExprError();
6091
6092 case OR_Deleted:
6093 Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call)
6094 << Best->Function->isDeleted()
6095 << DeclName << MemExprE->getSourceRange();
6096 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6097 // FIXME: Leaking incoming expressions!
6098 return ExprError();
6099 }
6100
6101 MemExprE = FixOverloadedFunctionReference(MemExprE, Method);
6102
6103 // If overload resolution picked a static member, build a
6104 // non-member call based on that function.
6105 if (Method->isStatic()) {
6106 return BuildResolvedCallExpr(MemExprE, Method, LParenLoc,
6107 Args, NumArgs, RParenLoc);
6108 }
6109
6110 MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
6111 }
6112
6113 assert(Method && "Member call to something that isn't a method?");
6114 ExprOwningPtr<CXXMemberCallExpr>
6115 TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExprE, Args,
6116 NumArgs,
6117 Method->getResultType().getNonReferenceType(),
6118 RParenLoc));
6119
6120 // Check for a valid return type.
6121 if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(),
6122 TheCall.get(), Method))
6123 return ExprError();
6124
6125 // Convert the object argument (for a non-static member function call).
6126 Expr *ObjectArg = MemExpr->getBase();
6127 if (!Method->isStatic() &&
6128 PerformObjectArgumentInitialization(ObjectArg, Method))
6129 return ExprError();
6130 MemExpr->setBase(ObjectArg);
6131
6132 // Convert the rest of the arguments
6133 const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType());
6134 if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
6135 RParenLoc))
6136 return ExprError();
6137
6138 if (CheckFunctionCall(Method, TheCall.get()))
6139 return ExprError();
6140
6141 return MaybeBindToTemporary(TheCall.release());
6142}
6143
6144/// BuildCallToObjectOfClassType - Build a call to an object of class
6145/// type (C++ [over.call.object]), which can end up invoking an
6146/// overloaded function call operator (@c operator()) or performing a
6147/// user-defined conversion on the object argument.
6148Sema::ExprResult
6149Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
6150 SourceLocation LParenLoc,
6151 Expr **Args, unsigned NumArgs,
6152 SourceLocation *CommaLocs,
6153 SourceLocation RParenLoc) {
6154 assert(Object->getType()->isRecordType() && "Requires object type argument");
6155 const RecordType *Record = Object->getType()->getAs<RecordType>();
6156
6157 // C++ [over.call.object]p1:
6158 // If the primary-expression E in the function call syntax
6159 // evaluates to a class object of type "cv T", then the set of
6160 // candidate functions includes at least the function call
6161 // operators of T. The function call operators of T are obtained by
6162 // ordinary lookup of the name operator() in the context of
6163 // (E).operator().
6164 OverloadCandidateSet CandidateSet(LParenLoc);
6165 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
6166
6167 if (RequireCompleteType(LParenLoc, Object->getType(),
6168 PartialDiagnostic(diag::err_incomplete_object_call)
6169 << Object->getSourceRange()))
6170 return true;
6171
6172 LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
6173 LookupQualifiedName(R, Record->getDecl());
6174 R.suppressDiagnostics();
6175
6176 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
6177 Oper != OperEnd; ++Oper) {
6178 AddMethodCandidate(*Oper, Oper.getAccess(), Object->getType(),
6179 Args, NumArgs, CandidateSet,
6180 /*SuppressUserConversions=*/ false);
6181 }
6182
6183 // C++ [over.call.object]p2:
6184 // In addition, for each conversion function declared in T of the
6185 // form
6186 //
6187 // operator conversion-type-id () cv-qualifier;
6188 //
6189 // where cv-qualifier is the same cv-qualification as, or a
6190 // greater cv-qualification than, cv, and where conversion-type-id
6191 // denotes the type "pointer to function of (P1,...,Pn) returning
6192 // R", or the type "reference to pointer to function of
6193 // (P1,...,Pn) returning R", or the type "reference to function
6194 // of (P1,...,Pn) returning R", a surrogate call function [...]
6195 // is also considered as a candidate function. Similarly,
6196 // surrogate call functions are added to the set of candidate
6197 // functions for each conversion function declared in an
6198 // accessible base class provided the function is not hidden
6199 // within T by another intervening declaration.
6200 const UnresolvedSetImpl *Conversions
6201 = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
6202 for (UnresolvedSetImpl::iterator I = Conversions->begin(),
6203 E = Conversions->end(); I != E; ++I) {
6204 NamedDecl *D = *I;
6205 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
6206 if (isa<UsingShadowDecl>(D))
6207 D = cast<UsingShadowDecl>(D)->getTargetDecl();
6208
6209 // Skip over templated conversion functions; they aren't
6210 // surrogates.
6211 if (isa<FunctionTemplateDecl>(D))
6212 continue;
6213
6214 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
6215
6216 // Strip the reference type (if any) and then the pointer type (if
6217 // any) to get down to what might be a function type.
6218 QualType ConvType = Conv->getConversionType().getNonReferenceType();
6219 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
6220 ConvType = ConvPtrType->getPointeeType();
6221
6222 if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
6223 AddSurrogateCandidate(Conv, I.getAccess(), ActingContext, Proto,
6224 Object->getType(), Args, NumArgs,
6225 CandidateSet);
6226 }
6227
6228 // Perform overload resolution.
6229 OverloadCandidateSet::iterator Best;
6230 switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) {
6231 case OR_Success:
6232 // Overload resolution succeeded; we'll build the appropriate call
6233 // below.
6234 break;
6235
6236 case OR_No_Viable_Function:
6237 if (CandidateSet.empty())
6238 Diag(Object->getSourceRange().getBegin(), diag::err_ovl_no_oper)
6239 << Object->getType() << /*call*/ 1
6240 << Object->getSourceRange();
6241 else
6242 Diag(Object->getSourceRange().getBegin(),
6243 diag::err_ovl_no_viable_object_call)
6244 << Object->getType() << Object->getSourceRange();
6245 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6246 break;
6247
6248 case OR_Ambiguous:
6249 Diag(Object->getSourceRange().getBegin(),
6250 diag::err_ovl_ambiguous_object_call)
6251 << Object->getType() << Object->getSourceRange();
6252 PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs);
6253 break;
6254
6255 case OR_Deleted:
6256 Diag(Object->getSourceRange().getBegin(),
6257 diag::err_ovl_deleted_object_call)
6258 << Best->Function->isDeleted()
6259 << Object->getType() << Object->getSourceRange();
6260 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6261 break;
6262 }
6263
6264 if (Best == CandidateSet.end()) {
6265 // We had an error; delete all of the subexpressions and return
6266 // the error.
6267 Object->Destroy(Context);
6268 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
6269 Args[ArgIdx]->Destroy(Context);
6270 return true;
6271 }
6272
6273 if (Best->Function == 0) {
6274 // Since there is no function declaration, this is one of the
6275 // surrogate candidates. Dig out the conversion function.
6276 CXXConversionDecl *Conv
6277 = cast<CXXConversionDecl>(
6278 Best->Conversions[0].UserDefined.ConversionFunction);
6279
6280 CheckMemberOperatorAccess(LParenLoc, Object, Conv, Best->getAccess());
6281
6282 // We selected one of the surrogate functions that converts the
6283 // object parameter to a function pointer. Perform the conversion
6284 // on the object argument, then let ActOnCallExpr finish the job.
6285
6286 // Create an implicit member expr to refer to the conversion operator.
6287 // and then call it.
6288 CXXMemberCallExpr *CE = BuildCXXMemberCallExpr(Object, Conv);
6289
6290 return ActOnCallExpr(S, ExprArg(*this, CE), LParenLoc,
6291 MultiExprArg(*this, (ExprTy**)Args, NumArgs),
6292 CommaLocs, RParenLoc).release();
6293 }
6294
6295 CheckMemberOperatorAccess(LParenLoc, Object,
6296 Best->Function, Best->getAccess());
6297
6298 // We found an overloaded operator(). Build a CXXOperatorCallExpr
6299 // that calls this method, using Object for the implicit object
6300 // parameter and passing along the remaining arguments.
6301 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
6302 const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>();
6303
6304 unsigned NumArgsInProto = Proto->getNumArgs();
6305 unsigned NumArgsToCheck = NumArgs;
6306
6307 // Build the full argument list for the method call (the
6308 // implicit object parameter is placed at the beginning of the
6309 // list).
6310 Expr **MethodArgs;
6311 if (NumArgs < NumArgsInProto) {
6312 NumArgsToCheck = NumArgsInProto;
6313 MethodArgs = new Expr*[NumArgsInProto + 1];
6314 } else {
6315 MethodArgs = new Expr*[NumArgs + 1];
6316 }
6317 MethodArgs[0] = Object;
6318 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
6319 MethodArgs[ArgIdx + 1] = Args[ArgIdx];
6320
6321 Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
6322 SourceLocation());
6323 UsualUnaryConversions(NewFn);
6324
6325 // Once we've built TheCall, all of the expressions are properly
6326 // owned.
6327 QualType ResultTy = Method->getResultType().getNonReferenceType();
6328 ExprOwningPtr<CXXOperatorCallExpr>
6329 TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
6330 MethodArgs, NumArgs + 1,
6331 ResultTy, RParenLoc));
6332 delete [] MethodArgs;
6333
6334 if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall.get(),
6335 Method))
6336 return true;
6337
6338 // We may have default arguments. If so, we need to allocate more
6339 // slots in the call for them.
6340 if (NumArgs < NumArgsInProto)
6341 TheCall->setNumArgs(Context, NumArgsInProto + 1);
6342 else if (NumArgs > NumArgsInProto)
6343 NumArgsToCheck = NumArgsInProto;
6344
6345 bool IsError = false;
6346
6347 // Initialize the implicit object parameter.
6348 IsError |= PerformObjectArgumentInitialization(Object, Method);
6349 TheCall->setArg(0, Object);
6350
6351
6352 // Check the argument types.
6353 for (unsigned i = 0; i != NumArgsToCheck; i++) {
6354 Expr *Arg;
6355 if (i < NumArgs) {
6356 Arg = Args[i];
6357
6358 // Pass the argument.
6359
6360 OwningExprResult InputInit
6361 = PerformCopyInitialization(InitializedEntity::InitializeParameter(
6362 Method->getParamDecl(i)),
6363 SourceLocation(), Owned(Arg));
6364
6365 IsError |= InputInit.isInvalid();
6366 Arg = InputInit.takeAs<Expr>();
6367 } else {
6368 OwningExprResult DefArg
6369 = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
6370 if (DefArg.isInvalid()) {
6371 IsError = true;
6372 break;
6373 }
6374
6375 Arg = DefArg.takeAs<Expr>();
6376 }
6377
6378 TheCall->setArg(i + 1, Arg);
6379 }
6380
6381 // If this is a variadic call, handle args passed through "...".
6382 if (Proto->isVariadic()) {
6383 // Promote the arguments (C99 6.5.2.2p7).
6384 for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
6385 Expr *Arg = Args[i];
6386 IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod);
6387 TheCall->setArg(i + 1, Arg);
6388 }
6389 }
6390
6391 if (IsError) return true;
6392
6393 if (CheckFunctionCall(Method, TheCall.get()))
6394 return true;
6395
6396 return MaybeBindToTemporary(TheCall.release()).release();
6397}
6398
6399/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
6400/// (if one exists), where @c Base is an expression of class type and
6401/// @c Member is the name of the member we're trying to find.
6402Sema::OwningExprResult
6403Sema::BuildOverloadedArrowExpr(Scope *S, ExprArg BaseIn, SourceLocation OpLoc) {
6404 Expr *Base = static_cast<Expr *>(BaseIn.get());
6405 assert(Base->getType()->isRecordType() && "left-hand side must have class type");
6406
6407 SourceLocation Loc = Base->getExprLoc();
6408
6409 // C++ [over.ref]p1:
6410 //
6411 // [...] An expression x->m is interpreted as (x.operator->())->m
6412 // for a class object x of type T if T::operator->() exists and if
6413 // the operator is selected as the best match function by the
6414 // overload resolution mechanism (13.3).
6415 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
6416 OverloadCandidateSet CandidateSet(Loc);
6417 const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
6418
6419 if (RequireCompleteType(Loc, Base->getType(),
6420 PDiag(diag::err_typecheck_incomplete_tag)
6421 << Base->getSourceRange()))
6422 return ExprError();
6423
6424 LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
6425 LookupQualifiedName(R, BaseRecord->getDecl());
6426 R.suppressDiagnostics();
6427
6428 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
6429 Oper != OperEnd; ++Oper) {
6430 NamedDecl *D = *Oper;
6431 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
6432 if (isa<UsingShadowDecl>(D))
6433 D = cast<UsingShadowDecl>(D)->getTargetDecl();
6434
6435 AddMethodCandidate(cast<CXXMethodDecl>(D), Oper.getAccess(), ActingContext,
6436 Base->getType(), 0, 0, CandidateSet,
6437 /*SuppressUserConversions=*/false);
6438 }
6439
6440 // Perform overload resolution.
6441 OverloadCandidateSet::iterator Best;
6442 switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
6443 case OR_Success:
6444 // Overload resolution succeeded; we'll build the call below.
6445 break;
6446
6447 case OR_No_Viable_Function:
6448 if (CandidateSet.empty())
6449 Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
6450 << Base->getType() << Base->getSourceRange();
6451 else
6452 Diag(OpLoc, diag::err_ovl_no_viable_oper)
6453 << "operator->" << Base->getSourceRange();
6454 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1);
6455 return ExprError();
6456
6457 case OR_Ambiguous:
6458 Diag(OpLoc, diag::err_ovl_ambiguous_oper)
6459 << "->" << Base->getSourceRange();
6460 PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, &Base, 1);
6461 return ExprError();
6462
6463 case OR_Deleted:
6464 Diag(OpLoc, diag::err_ovl_deleted_oper)
6465 << Best->Function->isDeleted()
6466 << "->" << Base->getSourceRange();
6467 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1);
6468 return ExprError();
6469 }
6470
6471 // Convert the object parameter.
6472 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
6473 if (PerformObjectArgumentInitialization(Base, Method))
6474 return ExprError();
6475
6476 // No concerns about early exits now.
6477 BaseIn.release();
6478
6479 // Build the operator call.
6480 Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
6481 SourceLocation());
6482 UsualUnaryConversions(FnExpr);
6483
6484 QualType ResultTy = Method->getResultType().getNonReferenceType();
6485 ExprOwningPtr<CXXOperatorCallExpr>
6486 TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr,
6487 &Base, 1, ResultTy, OpLoc));
6488
6489 if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall.get(),
6490 Method))
6491 return ExprError();
6492 return move(TheCall);
6493}
6494
6495/// FixOverloadedFunctionReference - E is an expression that refers to
6496/// a C++ overloaded function (possibly with some parentheses and
6497/// perhaps a '&' around it). We have resolved the overloaded function
6498/// to the function declaration Fn, so patch up the expression E to
6499/// refer (possibly indirectly) to Fn. Returns the new expr.
6500Expr *Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
6501 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
6502 Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
6503 if (SubExpr == PE->getSubExpr())
6504 return PE->Retain();
6505
6506 return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
6507 }
6508
6509 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
6510 Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(), Fn);
6511 assert(Context.hasSameType(ICE->getSubExpr()->getType(),
6512 SubExpr->getType()) &&
6513 "Implicit cast type cannot be determined from overload");
6514 if (SubExpr == ICE->getSubExpr())
6515 return ICE->Retain();
6516
6517 return new (Context) ImplicitCastExpr(ICE->getType(),
6518 ICE->getCastKind(),
6519 SubExpr,
6520 ICE->isLvalueCast());
6521 }
6522
6523 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
6524 assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
6525 "Can only take the address of an overloaded function");
6526 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
6527 if (Method->isStatic()) {
6528 // Do nothing: static member functions aren't any different
6529 // from non-member functions.
6530 } else {
6531 // Fix the sub expression, which really has to be an
6532 // UnresolvedLookupExpr holding an overloaded member function
6533 // or template.
6534 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
6535 if (SubExpr == UnOp->getSubExpr())
6536 return UnOp->Retain();
6537
6538 assert(isa<DeclRefExpr>(SubExpr)
6539 && "fixed to something other than a decl ref");
6540 assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
6541 && "fixed to a member ref with no nested name qualifier");
6542
6543 // We have taken the address of a pointer to member
6544 // function. Perform the computation here so that we get the
6545 // appropriate pointer to member type.
6546 QualType ClassType
6547 = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
6548 QualType MemPtrType
6549 = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
6550
6551 return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf,
6552 MemPtrType, UnOp->getOperatorLoc());
6553 }
6554 }
6555 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
6556 if (SubExpr == UnOp->getSubExpr())
6557 return UnOp->Retain();
6558
6559 return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf,
6560 Context.getPointerType(SubExpr->getType()),
6561 UnOp->getOperatorLoc());
6562 }
6563
6564 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
6565 // FIXME: avoid copy.
6566 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
6567 if (ULE->hasExplicitTemplateArgs()) {
6568 ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
6569 TemplateArgs = &TemplateArgsBuffer;
6570 }
6571
6572 return DeclRefExpr::Create(Context,
6573 ULE->getQualifier(),
6574 ULE->getQualifierRange(),
6575 Fn,
6576 ULE->getNameLoc(),
6577 Fn->getType(),
6578 TemplateArgs);
6579 }
6580
6581 if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
6582 // FIXME: avoid copy.
6583 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
6584 if (MemExpr->hasExplicitTemplateArgs()) {
6585 MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
6586 TemplateArgs = &TemplateArgsBuffer;
6587 }
6588
6589 Expr *Base;
6590
6591 // If we're filling in
6592 if (MemExpr->isImplicitAccess()) {
6593 if (cast<CXXMethodDecl>(Fn)->isStatic()) {
6594 return DeclRefExpr::Create(Context,
6595 MemExpr->getQualifier(),
6596 MemExpr->getQualifierRange(),
6597 Fn,
6598 MemExpr->getMemberLoc(),
6599 Fn->getType(),
6600 TemplateArgs);
6601 } else {
6602 SourceLocation Loc = MemExpr->getMemberLoc();
6603 if (MemExpr->getQualifier())
6604 Loc = MemExpr->getQualifierRange().getBegin();
6605 Base = new (Context) CXXThisExpr(Loc,
6606 MemExpr->getBaseType(),
6607 /*isImplicit=*/true);
6608 }
6609 } else
6610 Base = MemExpr->getBase()->Retain();
6611
6612 return MemberExpr::Create(Context, Base,
6613 MemExpr->isArrow(),
6614 MemExpr->getQualifier(),
6615 MemExpr->getQualifierRange(),
6616 Fn,
6617 MemExpr->getMemberLoc(),
6618 TemplateArgs,
6619 Fn->getType());
6620 }
6621
6622 assert(false && "Invalid reference to overloaded function");
6623 return E->Retain();
6624}
6625
6626Sema::OwningExprResult Sema::FixOverloadedFunctionReference(OwningExprResult E,
6627 FunctionDecl *Fn) {
6628 return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Fn));
6629}
6630
6631} // end namespace clang