blob: 1779bde666cbe51834a8f753e131b2c2116e4a2e [file] [log] [blame]
Shih-wei Liaof8fd82b2010-02-10 11:10:31 -08001//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9// This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===/
11
12#include "Sema.h"
13#include "Lookup.h"
14#include "TreeTransform.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/Expr.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/Parse/DeclSpec.h"
20#include "clang/Parse/Template.h"
21#include "clang/Basic/LangOptions.h"
22#include "clang/Basic/PartialDiagnostic.h"
23#include "llvm/ADT/StringExtras.h"
24using namespace clang;
25
26/// \brief Determine whether the declaration found is acceptable as the name
27/// of a template and, if so, return that template declaration. Otherwise,
28/// returns NULL.
29static NamedDecl *isAcceptableTemplateName(ASTContext &Context, NamedDecl *D) {
30 if (!D)
31 return 0;
32
33 if (isa<TemplateDecl>(D))
34 return D;
35
36 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
37 // C++ [temp.local]p1:
38 // Like normal (non-template) classes, class templates have an
39 // injected-class-name (Clause 9). The injected-class-name
40 // can be used with or without a template-argument-list. When
41 // it is used without a template-argument-list, it is
42 // equivalent to the injected-class-name followed by the
43 // template-parameters of the class template enclosed in
44 // <>. When it is used with a template-argument-list, it
45 // refers to the specified class template specialization,
46 // which could be the current specialization or another
47 // specialization.
48 if (Record->isInjectedClassName()) {
49 Record = cast<CXXRecordDecl>(Record->getDeclContext());
50 if (Record->getDescribedClassTemplate())
51 return Record->getDescribedClassTemplate();
52
53 if (ClassTemplateSpecializationDecl *Spec
54 = dyn_cast<ClassTemplateSpecializationDecl>(Record))
55 return Spec->getSpecializedTemplate();
56 }
57
58 return 0;
59 }
60
61 return 0;
62}
63
64static void FilterAcceptableTemplateNames(ASTContext &C, LookupResult &R) {
65 LookupResult::Filter filter = R.makeFilter();
66 while (filter.hasNext()) {
67 NamedDecl *Orig = filter.next();
68 NamedDecl *Repl = isAcceptableTemplateName(C, Orig->getUnderlyingDecl());
69 if (!Repl)
70 filter.erase();
71 else if (Repl != Orig)
72 filter.replace(Repl);
73 }
74 filter.done();
75}
76
77TemplateNameKind Sema::isTemplateName(Scope *S,
78 const CXXScopeSpec &SS,
79 UnqualifiedId &Name,
80 TypeTy *ObjectTypePtr,
81 bool EnteringContext,
82 TemplateTy &TemplateResult) {
83 assert(getLangOptions().CPlusPlus && "No template names in C!");
84
85 DeclarationName TName;
86
87 switch (Name.getKind()) {
88 case UnqualifiedId::IK_Identifier:
89 TName = DeclarationName(Name.Identifier);
90 break;
91
92 case UnqualifiedId::IK_OperatorFunctionId:
93 TName = Context.DeclarationNames.getCXXOperatorName(
94 Name.OperatorFunctionId.Operator);
95 break;
96
97 case UnqualifiedId::IK_LiteralOperatorId:
98 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
99 break;
100
101 default:
102 return TNK_Non_template;
103 }
104
105 QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
106
107 LookupResult R(*this, TName, Name.getSourceRange().getBegin(),
108 LookupOrdinaryName);
109 R.suppressDiagnostics();
110 LookupTemplateName(R, S, SS, ObjectType, EnteringContext);
111 if (R.empty())
112 return TNK_Non_template;
113
114 TemplateName Template;
115 TemplateNameKind TemplateKind;
116
117 unsigned ResultCount = R.end() - R.begin();
118 if (ResultCount > 1) {
119 // We assume that we'll preserve the qualifier from a function
120 // template name in other ways.
121 Template = Context.getOverloadedTemplateName(R.begin(), R.end());
122 TemplateKind = TNK_Function_template;
123 } else {
124 TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
125
126 if (SS.isSet() && !SS.isInvalid()) {
127 NestedNameSpecifier *Qualifier
128 = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
129 Template = Context.getQualifiedTemplateName(Qualifier, false, TD);
130 } else {
131 Template = TemplateName(TD);
132 }
133
134 if (isa<FunctionTemplateDecl>(TD))
135 TemplateKind = TNK_Function_template;
136 else {
137 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD));
138 TemplateKind = TNK_Type_template;
139 }
140 }
141
142 TemplateResult = TemplateTy::make(Template);
143 return TemplateKind;
144}
145
146bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
147 SourceLocation IILoc,
148 Scope *S,
149 const CXXScopeSpec *SS,
150 TemplateTy &SuggestedTemplate,
151 TemplateNameKind &SuggestedKind) {
152 // We can't recover unless there's a dependent scope specifier preceding the
153 // template name.
154 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
155 computeDeclContext(*SS))
156 return false;
157
158 // The code is missing a 'template' keyword prior to the dependent template
159 // name.
160 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
161 Diag(IILoc, diag::err_template_kw_missing)
162 << Qualifier << II.getName()
163 << CodeModificationHint::CreateInsertion(IILoc, "template ");
164 SuggestedTemplate
165 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
166 SuggestedKind = TNK_Dependent_template_name;
167 return true;
168}
169
170void Sema::LookupTemplateName(LookupResult &Found,
171 Scope *S, const CXXScopeSpec &SS,
172 QualType ObjectType,
173 bool EnteringContext) {
174 // Determine where to perform name lookup
175 DeclContext *LookupCtx = 0;
176 bool isDependent = false;
177 if (!ObjectType.isNull()) {
178 // This nested-name-specifier occurs in a member access expression, e.g.,
179 // x->B::f, and we are looking into the type of the object.
180 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
181 LookupCtx = computeDeclContext(ObjectType);
182 isDependent = ObjectType->isDependentType();
183 assert((isDependent || !ObjectType->isIncompleteType()) &&
184 "Caller should have completed object type");
185 } else if (SS.isSet()) {
186 // This nested-name-specifier occurs after another nested-name-specifier,
187 // so long into the context associated with the prior nested-name-specifier.
188 LookupCtx = computeDeclContext(SS, EnteringContext);
189 isDependent = isDependentScopeSpecifier(SS);
190
191 // The declaration context must be complete.
192 if (LookupCtx && RequireCompleteDeclContext(SS))
193 return;
194 }
195
196 bool ObjectTypeSearchedInScope = false;
197 if (LookupCtx) {
198 // Perform "qualified" name lookup into the declaration context we
199 // computed, which is either the type of the base of a member access
200 // expression or the declaration context associated with a prior
201 // nested-name-specifier.
202 LookupQualifiedName(Found, LookupCtx);
203
204 if (!ObjectType.isNull() && Found.empty()) {
205 // C++ [basic.lookup.classref]p1:
206 // In a class member access expression (5.2.5), if the . or -> token is
207 // immediately followed by an identifier followed by a <, the
208 // identifier must be looked up to determine whether the < is the
209 // beginning of a template argument list (14.2) or a less-than operator.
210 // The identifier is first looked up in the class of the object
211 // expression. If the identifier is not found, it is then looked up in
212 // the context of the entire postfix-expression and shall name a class
213 // or function template.
214 //
215 // FIXME: When we're instantiating a template, do we actually have to
216 // look in the scope of the template? Seems fishy...
217 if (S) LookupName(Found, S);
218 ObjectTypeSearchedInScope = true;
219 }
220 } else if (isDependent) {
221 // We cannot look into a dependent object type or nested nme
222 // specifier.
223 return;
224 } else {
225 // Perform unqualified name lookup in the current scope.
226 LookupName(Found, S);
227 }
228
229 // FIXME: Cope with ambiguous name-lookup results.
230 assert(!Found.isAmbiguous() &&
231 "Cannot handle template name-lookup ambiguities");
232
233 if (Found.empty() && !isDependent) {
234 // If we did not find any names, attempt to correct any typos.
235 DeclarationName Name = Found.getLookupName();
236 if (CorrectTypo(Found, S, &SS, LookupCtx)) {
237 FilterAcceptableTemplateNames(Context, Found);
238 if (!Found.empty() && isa<TemplateDecl>(*Found.begin())) {
239 if (LookupCtx)
240 Diag(Found.getNameLoc(), diag::err_no_member_template_suggest)
241 << Name << LookupCtx << Found.getLookupName() << SS.getRange()
242 << CodeModificationHint::CreateReplacement(Found.getNameLoc(),
243 Found.getLookupName().getAsString());
244 else
245 Diag(Found.getNameLoc(), diag::err_no_template_suggest)
246 << Name << Found.getLookupName()
247 << CodeModificationHint::CreateReplacement(Found.getNameLoc(),
248 Found.getLookupName().getAsString());
249 if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>())
250 Diag(Template->getLocation(), diag::note_previous_decl)
251 << Template->getDeclName();
252 } else
253 Found.clear();
254 } else {
255 Found.clear();
256 }
257 }
258
259 FilterAcceptableTemplateNames(Context, Found);
260 if (Found.empty())
261 return;
262
263 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) {
264 // C++ [basic.lookup.classref]p1:
265 // [...] If the lookup in the class of the object expression finds a
266 // template, the name is also looked up in the context of the entire
267 // postfix-expression and [...]
268 //
269 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
270 LookupOrdinaryName);
271 LookupName(FoundOuter, S);
272 FilterAcceptableTemplateNames(Context, FoundOuter);
273 // FIXME: Handle ambiguities in this lookup better
274
275 if (FoundOuter.empty()) {
276 // - if the name is not found, the name found in the class of the
277 // object expression is used, otherwise
278 } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) {
279 // - if the name is found in the context of the entire
280 // postfix-expression and does not name a class template, the name
281 // found in the class of the object expression is used, otherwise
282 } else {
283 // - if the name found is a class template, it must refer to the same
284 // entity as the one found in the class of the object expression,
285 // otherwise the program is ill-formed.
286 if (!Found.isSingleResult() ||
287 Found.getFoundDecl()->getCanonicalDecl()
288 != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
289 Diag(Found.getNameLoc(),
290 diag::err_nested_name_member_ref_lookup_ambiguous)
291 << Found.getLookupName();
292 Diag(Found.getRepresentativeDecl()->getLocation(),
293 diag::note_ambig_member_ref_object_type)
294 << ObjectType;
295 Diag(FoundOuter.getFoundDecl()->getLocation(),
296 diag::note_ambig_member_ref_scope);
297
298 // Recover by taking the template that we found in the object
299 // expression's type.
300 }
301 }
302 }
303}
304
305/// ActOnDependentIdExpression - Handle a dependent id-expression that
306/// was just parsed. This is only possible with an explicit scope
307/// specifier naming a dependent type.
308Sema::OwningExprResult
309Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
310 DeclarationName Name,
311 SourceLocation NameLoc,
312 bool isAddressOfOperand,
313 const TemplateArgumentListInfo *TemplateArgs) {
314 NestedNameSpecifier *Qualifier
315 = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
316
317 if (!isAddressOfOperand &&
318 isa<CXXMethodDecl>(CurContext) &&
319 cast<CXXMethodDecl>(CurContext)->isInstance()) {
320 QualType ThisType = cast<CXXMethodDecl>(CurContext)->getThisType(Context);
321
322 // Since the 'this' expression is synthesized, we don't need to
323 // perform the double-lookup check.
324 NamedDecl *FirstQualifierInScope = 0;
325
326 return Owned(CXXDependentScopeMemberExpr::Create(Context,
327 /*This*/ 0, ThisType,
328 /*IsArrow*/ true,
329 /*Op*/ SourceLocation(),
330 Qualifier, SS.getRange(),
331 FirstQualifierInScope,
332 Name, NameLoc,
333 TemplateArgs));
334 }
335
336 return BuildDependentDeclRefExpr(SS, Name, NameLoc, TemplateArgs);
337}
338
339Sema::OwningExprResult
340Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
341 DeclarationName Name,
342 SourceLocation NameLoc,
343 const TemplateArgumentListInfo *TemplateArgs) {
344 return Owned(DependentScopeDeclRefExpr::Create(Context,
345 static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
346 SS.getRange(),
347 Name, NameLoc,
348 TemplateArgs));
349}
350
351/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
352/// that the template parameter 'PrevDecl' is being shadowed by a new
353/// declaration at location Loc. Returns true to indicate that this is
354/// an error, and false otherwise.
355bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
356 assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
357
358 // Microsoft Visual C++ permits template parameters to be shadowed.
359 if (getLangOptions().Microsoft)
360 return false;
361
362 // C++ [temp.local]p4:
363 // A template-parameter shall not be redeclared within its
364 // scope (including nested scopes).
365 Diag(Loc, diag::err_template_param_shadow)
366 << cast<NamedDecl>(PrevDecl)->getDeclName();
367 Diag(PrevDecl->getLocation(), diag::note_template_param_here);
368 return true;
369}
370
371/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
372/// the parameter D to reference the templated declaration and return a pointer
373/// to the template declaration. Otherwise, do nothing to D and return null.
374TemplateDecl *Sema::AdjustDeclIfTemplate(DeclPtrTy &D) {
375 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D.getAs<Decl>())) {
376 D = DeclPtrTy::make(Temp->getTemplatedDecl());
377 return Temp;
378 }
379 return 0;
380}
381
382static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
383 const ParsedTemplateArgument &Arg) {
384
385 switch (Arg.getKind()) {
386 case ParsedTemplateArgument::Type: {
387 TypeSourceInfo *DI;
388 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
389 if (!DI)
390 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
391 return TemplateArgumentLoc(TemplateArgument(T), DI);
392 }
393
394 case ParsedTemplateArgument::NonType: {
395 Expr *E = static_cast<Expr *>(Arg.getAsExpr());
396 return TemplateArgumentLoc(TemplateArgument(E), E);
397 }
398
399 case ParsedTemplateArgument::Template: {
400 TemplateName Template
401 = TemplateName::getFromVoidPointer(Arg.getAsTemplate().get());
402 return TemplateArgumentLoc(TemplateArgument(Template),
403 Arg.getScopeSpec().getRange(),
404 Arg.getLocation());
405 }
406 }
407
408 llvm_unreachable("Unhandled parsed template argument");
409 return TemplateArgumentLoc();
410}
411
412/// \brief Translates template arguments as provided by the parser
413/// into template arguments used by semantic analysis.
414void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
415 TemplateArgumentListInfo &TemplateArgs) {
416 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
417 TemplateArgs.addArgument(translateTemplateArgument(*this,
418 TemplateArgsIn[I]));
419}
420
421/// ActOnTypeParameter - Called when a C++ template type parameter
422/// (e.g., "typename T") has been parsed. Typename specifies whether
423/// the keyword "typename" was used to declare the type parameter
424/// (otherwise, "class" was used), and KeyLoc is the location of the
425/// "class" or "typename" keyword. ParamName is the name of the
426/// parameter (NULL indicates an unnamed template parameter) and
427/// ParamName is the location of the parameter name (if any).
428/// If the type parameter has a default argument, it will be added
429/// later via ActOnTypeParameterDefault.
430Sema::DeclPtrTy Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
431 SourceLocation EllipsisLoc,
432 SourceLocation KeyLoc,
433 IdentifierInfo *ParamName,
434 SourceLocation ParamNameLoc,
435 unsigned Depth, unsigned Position) {
436 assert(S->isTemplateParamScope() &&
437 "Template type parameter not in template parameter scope!");
438 bool Invalid = false;
439
440 if (ParamName) {
441 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, LookupTagName);
442 if (PrevDecl && PrevDecl->isTemplateParameter())
443 Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
444 PrevDecl);
445 }
446
447 SourceLocation Loc = ParamNameLoc;
448 if (!ParamName)
449 Loc = KeyLoc;
450
451 TemplateTypeParmDecl *Param
452 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
453 Loc, Depth, Position, ParamName, Typename,
454 Ellipsis);
455 if (Invalid)
456 Param->setInvalidDecl();
457
458 if (ParamName) {
459 // Add the template parameter into the current scope.
460 S->AddDecl(DeclPtrTy::make(Param));
461 IdResolver.AddDecl(Param);
462 }
463
464 return DeclPtrTy::make(Param);
465}
466
467/// ActOnTypeParameterDefault - Adds a default argument (the type
468/// Default) to the given template type parameter (TypeParam).
469void Sema::ActOnTypeParameterDefault(DeclPtrTy TypeParam,
470 SourceLocation EqualLoc,
471 SourceLocation DefaultLoc,
472 TypeTy *DefaultT) {
473 TemplateTypeParmDecl *Parm
474 = cast<TemplateTypeParmDecl>(TypeParam.getAs<Decl>());
475
476 TypeSourceInfo *DefaultTInfo;
477 GetTypeFromParser(DefaultT, &DefaultTInfo);
478
479 assert(DefaultTInfo && "expected source information for type");
480
481 // C++0x [temp.param]p9:
482 // A default template-argument may be specified for any kind of
483 // template-parameter that is not a template parameter pack.
484 if (Parm->isParameterPack()) {
485 Diag(DefaultLoc, diag::err_template_param_pack_default_arg);
486 return;
487 }
488
489 // C++ [temp.param]p14:
490 // A template-parameter shall not be used in its own default argument.
491 // FIXME: Implement this check! Needs a recursive walk over the types.
492
493 // Check the template argument itself.
494 if (CheckTemplateArgument(Parm, DefaultTInfo)) {
495 Parm->setInvalidDecl();
496 return;
497 }
498
499 Parm->setDefaultArgument(DefaultTInfo, false);
500}
501
502/// \brief Check that the type of a non-type template parameter is
503/// well-formed.
504///
505/// \returns the (possibly-promoted) parameter type if valid;
506/// otherwise, produces a diagnostic and returns a NULL type.
507QualType
508Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
509 // C++ [temp.param]p4:
510 //
511 // A non-type template-parameter shall have one of the following
512 // (optionally cv-qualified) types:
513 //
514 // -- integral or enumeration type,
515 if (T->isIntegralType() || T->isEnumeralType() ||
516 // -- pointer to object or pointer to function,
517 (T->isPointerType() &&
518 (T->getAs<PointerType>()->getPointeeType()->isObjectType() ||
519 T->getAs<PointerType>()->getPointeeType()->isFunctionType())) ||
520 // -- reference to object or reference to function,
521 T->isReferenceType() ||
522 // -- pointer to member.
523 T->isMemberPointerType() ||
524 // If T is a dependent type, we can't do the check now, so we
525 // assume that it is well-formed.
526 T->isDependentType())
527 return T;
528 // C++ [temp.param]p8:
529 //
530 // A non-type template-parameter of type "array of T" or
531 // "function returning T" is adjusted to be of type "pointer to
532 // T" or "pointer to function returning T", respectively.
533 else if (T->isArrayType())
534 // FIXME: Keep the type prior to promotion?
535 return Context.getArrayDecayedType(T);
536 else if (T->isFunctionType())
537 // FIXME: Keep the type prior to promotion?
538 return Context.getPointerType(T);
539
540 Diag(Loc, diag::err_template_nontype_parm_bad_type)
541 << T;
542
543 return QualType();
544}
545
546/// ActOnNonTypeTemplateParameter - Called when a C++ non-type
547/// template parameter (e.g., "int Size" in "template<int Size>
548/// class Array") has been parsed. S is the current scope and D is
549/// the parsed declarator.
550Sema::DeclPtrTy Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
551 unsigned Depth,
552 unsigned Position) {
553 TypeSourceInfo *TInfo = 0;
554 QualType T = GetTypeForDeclarator(D, S, &TInfo);
555
556 assert(S->isTemplateParamScope() &&
557 "Non-type template parameter not in template parameter scope!");
558 bool Invalid = false;
559
560 IdentifierInfo *ParamName = D.getIdentifier();
561 if (ParamName) {
562 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, LookupTagName);
563 if (PrevDecl && PrevDecl->isTemplateParameter())
564 Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
565 PrevDecl);
566 }
567
568 T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
569 if (T.isNull()) {
570 T = Context.IntTy; // Recover with an 'int' type.
571 Invalid = true;
572 }
573
574 NonTypeTemplateParmDecl *Param
575 = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
576 D.getIdentifierLoc(),
577 Depth, Position, ParamName, T, TInfo);
578 if (Invalid)
579 Param->setInvalidDecl();
580
581 if (D.getIdentifier()) {
582 // Add the template parameter into the current scope.
583 S->AddDecl(DeclPtrTy::make(Param));
584 IdResolver.AddDecl(Param);
585 }
586 return DeclPtrTy::make(Param);
587}
588
589/// \brief Adds a default argument to the given non-type template
590/// parameter.
591void Sema::ActOnNonTypeTemplateParameterDefault(DeclPtrTy TemplateParamD,
592 SourceLocation EqualLoc,
593 ExprArg DefaultE) {
594 NonTypeTemplateParmDecl *TemplateParm
595 = cast<NonTypeTemplateParmDecl>(TemplateParamD.getAs<Decl>());
596 Expr *Default = static_cast<Expr *>(DefaultE.get());
597
598 // C++ [temp.param]p14:
599 // A template-parameter shall not be used in its own default argument.
600 // FIXME: Implement this check! Needs a recursive walk over the types.
601
602 // Check the well-formedness of the default template argument.
603 TemplateArgument Converted;
604 if (CheckTemplateArgument(TemplateParm, TemplateParm->getType(), Default,
605 Converted)) {
606 TemplateParm->setInvalidDecl();
607 return;
608 }
609
610 TemplateParm->setDefaultArgument(DefaultE.takeAs<Expr>());
611}
612
613
614/// ActOnTemplateTemplateParameter - Called when a C++ template template
615/// parameter (e.g. T in template <template <typename> class T> class array)
616/// has been parsed. S is the current scope.
617Sema::DeclPtrTy Sema::ActOnTemplateTemplateParameter(Scope* S,
618 SourceLocation TmpLoc,
619 TemplateParamsTy *Params,
620 IdentifierInfo *Name,
621 SourceLocation NameLoc,
622 unsigned Depth,
623 unsigned Position) {
624 assert(S->isTemplateParamScope() &&
625 "Template template parameter not in template parameter scope!");
626
627 // Construct the parameter object.
628 TemplateTemplateParmDecl *Param =
629 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
630 TmpLoc, Depth, Position, Name,
631 (TemplateParameterList*)Params);
632
633 // Make sure the parameter is valid.
634 // FIXME: Decl object is not currently invalidated anywhere so this doesn't
635 // do anything yet. However, if the template parameter list or (eventual)
636 // default value is ever invalidated, that will propagate here.
637 bool Invalid = false;
638 if (Invalid) {
639 Param->setInvalidDecl();
640 }
641
642 // If the tt-param has a name, then link the identifier into the scope
643 // and lookup mechanisms.
644 if (Name) {
645 S->AddDecl(DeclPtrTy::make(Param));
646 IdResolver.AddDecl(Param);
647 }
648
649 return DeclPtrTy::make(Param);
650}
651
652/// \brief Adds a default argument to the given template template
653/// parameter.
654void Sema::ActOnTemplateTemplateParameterDefault(DeclPtrTy TemplateParamD,
655 SourceLocation EqualLoc,
656 const ParsedTemplateArgument &Default) {
657 TemplateTemplateParmDecl *TemplateParm
658 = cast<TemplateTemplateParmDecl>(TemplateParamD.getAs<Decl>());
659
660 // C++ [temp.param]p14:
661 // A template-parameter shall not be used in its own default argument.
662 // FIXME: Implement this check! Needs a recursive walk over the types.
663
664 // Check only that we have a template template argument. We don't want to
665 // try to check well-formedness now, because our template template parameter
666 // might have dependent types in its template parameters, which we wouldn't
667 // be able to match now.
668 //
669 // If none of the template template parameter's template arguments mention
670 // other template parameters, we could actually perform more checking here.
671 // However, it isn't worth doing.
672 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
673 if (DefaultArg.getArgument().getAsTemplate().isNull()) {
674 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
675 << DefaultArg.getSourceRange();
676 return;
677 }
678
679 TemplateParm->setDefaultArgument(DefaultArg);
680}
681
682/// ActOnTemplateParameterList - Builds a TemplateParameterList that
683/// contains the template parameters in Params/NumParams.
684Sema::TemplateParamsTy *
685Sema::ActOnTemplateParameterList(unsigned Depth,
686 SourceLocation ExportLoc,
687 SourceLocation TemplateLoc,
688 SourceLocation LAngleLoc,
689 DeclPtrTy *Params, unsigned NumParams,
690 SourceLocation RAngleLoc) {
691 if (ExportLoc.isValid())
692 Diag(ExportLoc, diag::warn_template_export_unsupported);
693
694 return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
695 (NamedDecl**)Params, NumParams,
696 RAngleLoc);
697}
698
699Sema::DeclResult
700Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
701 SourceLocation KWLoc, const CXXScopeSpec &SS,
702 IdentifierInfo *Name, SourceLocation NameLoc,
703 AttributeList *Attr,
704 TemplateParameterList *TemplateParams,
705 AccessSpecifier AS) {
706 assert(TemplateParams && TemplateParams->size() > 0 &&
707 "No template parameters");
708 assert(TUK != TUK_Reference && "Can only declare or define class templates");
709 bool Invalid = false;
710
711 // Check that we can declare a template here.
712 if (CheckTemplateDeclScope(S, TemplateParams))
713 return true;
714
715 TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
716 assert(Kind != TagDecl::TK_enum && "can't build template of enumerated type");
717
718 // There is no such thing as an unnamed class template.
719 if (!Name) {
720 Diag(KWLoc, diag::err_template_unnamed_class);
721 return true;
722 }
723
724 // Find any previous declaration with this name.
725 DeclContext *SemanticContext;
726 LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
727 ForRedeclaration);
728 if (SS.isNotEmpty() && !SS.isInvalid()) {
729 if (RequireCompleteDeclContext(SS))
730 return true;
731
732 SemanticContext = computeDeclContext(SS, true);
733 if (!SemanticContext) {
734 // FIXME: Produce a reasonable diagnostic here
735 return true;
736 }
737
738 LookupQualifiedName(Previous, SemanticContext);
739 } else {
740 SemanticContext = CurContext;
741 LookupName(Previous, S);
742 }
743
744 assert(!Previous.isAmbiguous() && "Ambiguity in class template redecl?");
745 NamedDecl *PrevDecl = 0;
746 if (Previous.begin() != Previous.end())
747 PrevDecl = *Previous.begin();
748
749 // If there is a previous declaration with the same name, check
750 // whether this is a valid redeclaration.
751 ClassTemplateDecl *PrevClassTemplate
752 = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
753
754 // We may have found the injected-class-name of a class template,
755 // class template partial specialization, or class template specialization.
756 // In these cases, grab the template that is being defined or specialized.
757 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
758 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
759 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
760 PrevClassTemplate
761 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
762 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
763 PrevClassTemplate
764 = cast<ClassTemplateSpecializationDecl>(PrevDecl)
765 ->getSpecializedTemplate();
766 }
767 }
768
769 if (TUK == TUK_Friend) {
770 // C++ [namespace.memdef]p3:
771 // [...] When looking for a prior declaration of a class or a function
772 // declared as a friend, and when the name of the friend class or
773 // function is neither a qualified name nor a template-id, scopes outside
774 // the innermost enclosing namespace scope are not considered.
775 DeclContext *OutermostContext = CurContext;
776 while (!OutermostContext->isFileContext())
777 OutermostContext = OutermostContext->getLookupParent();
778
779 if (PrevDecl &&
780 (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
781 OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
782 SemanticContext = PrevDecl->getDeclContext();
783 } else {
784 // Declarations in outer scopes don't matter. However, the outermost
785 // context we computed is the semantic context for our new
786 // declaration.
787 PrevDecl = PrevClassTemplate = 0;
788 SemanticContext = OutermostContext;
789 }
790
791 if (CurContext->isDependentContext()) {
792 // If this is a dependent context, we don't want to link the friend
793 // class template to the template in scope, because that would perform
794 // checking of the template parameter lists that can't be performed
795 // until the outer context is instantiated.
796 PrevDecl = PrevClassTemplate = 0;
797 }
798 } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
799 PrevDecl = PrevClassTemplate = 0;
800
801 if (PrevClassTemplate) {
802 // Ensure that the template parameter lists are compatible.
803 if (!TemplateParameterListsAreEqual(TemplateParams,
804 PrevClassTemplate->getTemplateParameters(),
805 /*Complain=*/true,
806 TPL_TemplateMatch))
807 return true;
808
809 // C++ [temp.class]p4:
810 // In a redeclaration, partial specialization, explicit
811 // specialization or explicit instantiation of a class template,
812 // the class-key shall agree in kind with the original class
813 // template declaration (7.1.5.3).
814 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
815 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) {
816 Diag(KWLoc, diag::err_use_with_wrong_tag)
817 << Name
818 << CodeModificationHint::CreateReplacement(KWLoc,
819 PrevRecordDecl->getKindName());
820 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
821 Kind = PrevRecordDecl->getTagKind();
822 }
823
824 // Check for redefinition of this class template.
825 if (TUK == TUK_Definition) {
826 if (TagDecl *Def = PrevRecordDecl->getDefinition(Context)) {
827 Diag(NameLoc, diag::err_redefinition) << Name;
828 Diag(Def->getLocation(), diag::note_previous_definition);
829 // FIXME: Would it make sense to try to "forget" the previous
830 // definition, as part of error recovery?
831 return true;
832 }
833 }
834 } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
835 // Maybe we will complain about the shadowed template parameter.
836 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
837 // Just pretend that we didn't see the previous declaration.
838 PrevDecl = 0;
839 } else if (PrevDecl) {
840 // C++ [temp]p5:
841 // A class template shall not have the same name as any other
842 // template, class, function, object, enumeration, enumerator,
843 // namespace, or type in the same scope (3.3), except as specified
844 // in (14.5.4).
845 Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
846 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
847 return true;
848 }
849
850 // Check the template parameter list of this declaration, possibly
851 // merging in the template parameter list from the previous class
852 // template declaration.
853 if (CheckTemplateParameterList(TemplateParams,
854 PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0,
855 TPC_ClassTemplate))
856 Invalid = true;
857
858 // FIXME: If we had a scope specifier, we better have a previous template
859 // declaration!
860
861 CXXRecordDecl *NewClass =
862 CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc,
863 PrevClassTemplate?
864 PrevClassTemplate->getTemplatedDecl() : 0,
865 /*DelayTypeCreation=*/true);
866
867 ClassTemplateDecl *NewTemplate
868 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
869 DeclarationName(Name), TemplateParams,
870 NewClass, PrevClassTemplate);
871 NewClass->setDescribedClassTemplate(NewTemplate);
872
873 // Build the type for the class template declaration now.
874 QualType T =
875 Context.getTypeDeclType(NewClass,
876 PrevClassTemplate?
877 PrevClassTemplate->getTemplatedDecl() : 0);
878 assert(T->isDependentType() && "Class template type is not dependent?");
879 (void)T;
880
881 // If we are providing an explicit specialization of a member that is a
882 // class template, make a note of that.
883 if (PrevClassTemplate &&
884 PrevClassTemplate->getInstantiatedFromMemberTemplate())
885 PrevClassTemplate->setMemberSpecialization();
886
887 // Set the access specifier.
888 if (!Invalid && TUK != TUK_Friend)
889 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
890
891 // Set the lexical context of these templates
892 NewClass->setLexicalDeclContext(CurContext);
893 NewTemplate->setLexicalDeclContext(CurContext);
894
895 if (TUK == TUK_Definition)
896 NewClass->startDefinition();
897
898 if (Attr)
899 ProcessDeclAttributeList(S, NewClass, Attr);
900
901 if (TUK != TUK_Friend)
902 PushOnScopeChains(NewTemplate, S);
903 else {
904 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
905 NewTemplate->setAccess(PrevClassTemplate->getAccess());
906 NewClass->setAccess(PrevClassTemplate->getAccess());
907 }
908
909 NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
910 PrevClassTemplate != NULL);
911
912 // Friend templates are visible in fairly strange ways.
913 if (!CurContext->isDependentContext()) {
914 DeclContext *DC = SemanticContext->getLookupContext();
915 DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false);
916 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
917 PushOnScopeChains(NewTemplate, EnclosingScope,
918 /* AddToContext = */ false);
919 }
920
921 FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
922 NewClass->getLocation(),
923 NewTemplate,
924 /*FIXME:*/NewClass->getLocation());
925 Friend->setAccess(AS_public);
926 CurContext->addDecl(Friend);
927 }
928
929 if (Invalid) {
930 NewTemplate->setInvalidDecl();
931 NewClass->setInvalidDecl();
932 }
933 return DeclPtrTy::make(NewTemplate);
934}
935
936/// \brief Diagnose the presence of a default template argument on a
937/// template parameter, which is ill-formed in certain contexts.
938///
939/// \returns true if the default template argument should be dropped.
940static bool DiagnoseDefaultTemplateArgument(Sema &S,
941 Sema::TemplateParamListContext TPC,
942 SourceLocation ParamLoc,
943 SourceRange DefArgRange) {
944 switch (TPC) {
945 case Sema::TPC_ClassTemplate:
946 return false;
947
948 case Sema::TPC_FunctionTemplate:
949 // C++ [temp.param]p9:
950 // A default template-argument shall not be specified in a
951 // function template declaration or a function template
952 // definition [...]
953 // (This sentence is not in C++0x, per DR226).
954 if (!S.getLangOptions().CPlusPlus0x)
955 S.Diag(ParamLoc,
956 diag::err_template_parameter_default_in_function_template)
957 << DefArgRange;
958 return false;
959
960 case Sema::TPC_ClassTemplateMember:
961 // C++0x [temp.param]p9:
962 // A default template-argument shall not be specified in the
963 // template-parameter-lists of the definition of a member of a
964 // class template that appears outside of the member's class.
965 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
966 << DefArgRange;
967 return true;
968
969 case Sema::TPC_FriendFunctionTemplate:
970 // C++ [temp.param]p9:
971 // A default template-argument shall not be specified in a
972 // friend template declaration.
973 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
974 << DefArgRange;
975 return true;
976
977 // FIXME: C++0x [temp.param]p9 allows default template-arguments
978 // for friend function templates if there is only a single
979 // declaration (and it is a definition). Strange!
980 }
981
982 return false;
983}
984
985/// \brief Checks the validity of a template parameter list, possibly
986/// considering the template parameter list from a previous
987/// declaration.
988///
989/// If an "old" template parameter list is provided, it must be
990/// equivalent (per TemplateParameterListsAreEqual) to the "new"
991/// template parameter list.
992///
993/// \param NewParams Template parameter list for a new template
994/// declaration. This template parameter list will be updated with any
995/// default arguments that are carried through from the previous
996/// template parameter list.
997///
998/// \param OldParams If provided, template parameter list from a
999/// previous declaration of the same template. Default template
1000/// arguments will be merged from the old template parameter list to
1001/// the new template parameter list.
1002///
1003/// \param TPC Describes the context in which we are checking the given
1004/// template parameter list.
1005///
1006/// \returns true if an error occurred, false otherwise.
1007bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1008 TemplateParameterList *OldParams,
1009 TemplateParamListContext TPC) {
1010 bool Invalid = false;
1011
1012 // C++ [temp.param]p10:
1013 // The set of default template-arguments available for use with a
1014 // template declaration or definition is obtained by merging the
1015 // default arguments from the definition (if in scope) and all
1016 // declarations in scope in the same way default function
1017 // arguments are (8.3.6).
1018 bool SawDefaultArgument = false;
1019 SourceLocation PreviousDefaultArgLoc;
1020
1021 bool SawParameterPack = false;
1022 SourceLocation ParameterPackLoc;
1023
1024 // Dummy initialization to avoid warnings.
1025 TemplateParameterList::iterator OldParam = NewParams->end();
1026 if (OldParams)
1027 OldParam = OldParams->begin();
1028
1029 for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1030 NewParamEnd = NewParams->end();
1031 NewParam != NewParamEnd; ++NewParam) {
1032 // Variables used to diagnose redundant default arguments
1033 bool RedundantDefaultArg = false;
1034 SourceLocation OldDefaultLoc;
1035 SourceLocation NewDefaultLoc;
1036
1037 // Variables used to diagnose missing default arguments
1038 bool MissingDefaultArg = false;
1039
1040 // C++0x [temp.param]p11:
1041 // If a template parameter of a class template is a template parameter pack,
1042 // it must be the last template parameter.
1043 if (SawParameterPack) {
1044 Diag(ParameterPackLoc,
1045 diag::err_template_param_pack_must_be_last_template_parameter);
1046 Invalid = true;
1047 }
1048
1049 if (TemplateTypeParmDecl *NewTypeParm
1050 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1051 // Check the presence of a default argument here.
1052 if (NewTypeParm->hasDefaultArgument() &&
1053 DiagnoseDefaultTemplateArgument(*this, TPC,
1054 NewTypeParm->getLocation(),
1055 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1056 .getFullSourceRange()))
1057 NewTypeParm->removeDefaultArgument();
1058
1059 // Merge default arguments for template type parameters.
1060 TemplateTypeParmDecl *OldTypeParm
1061 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
1062
1063 if (NewTypeParm->isParameterPack()) {
1064 assert(!NewTypeParm->hasDefaultArgument() &&
1065 "Parameter packs can't have a default argument!");
1066 SawParameterPack = true;
1067 ParameterPackLoc = NewTypeParm->getLocation();
1068 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1069 NewTypeParm->hasDefaultArgument()) {
1070 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1071 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1072 SawDefaultArgument = true;
1073 RedundantDefaultArg = true;
1074 PreviousDefaultArgLoc = NewDefaultLoc;
1075 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1076 // Merge the default argument from the old declaration to the
1077 // new declaration.
1078 SawDefaultArgument = true;
1079 NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1080 true);
1081 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1082 } else if (NewTypeParm->hasDefaultArgument()) {
1083 SawDefaultArgument = true;
1084 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1085 } else if (SawDefaultArgument)
1086 MissingDefaultArg = true;
1087 } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1088 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1089 // Check the presence of a default argument here.
1090 if (NewNonTypeParm->hasDefaultArgument() &&
1091 DiagnoseDefaultTemplateArgument(*this, TPC,
1092 NewNonTypeParm->getLocation(),
1093 NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1094 NewNonTypeParm->getDefaultArgument()->Destroy(Context);
1095 NewNonTypeParm->setDefaultArgument(0);
1096 }
1097
1098 // Merge default arguments for non-type template parameters
1099 NonTypeTemplateParmDecl *OldNonTypeParm
1100 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
1101 if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1102 NewNonTypeParm->hasDefaultArgument()) {
1103 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1104 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1105 SawDefaultArgument = true;
1106 RedundantDefaultArg = true;
1107 PreviousDefaultArgLoc = NewDefaultLoc;
1108 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1109 // Merge the default argument from the old declaration to the
1110 // new declaration.
1111 SawDefaultArgument = true;
1112 // FIXME: We need to create a new kind of "default argument"
1113 // expression that points to a previous template template
1114 // parameter.
1115 NewNonTypeParm->setDefaultArgument(
1116 OldNonTypeParm->getDefaultArgument());
1117 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1118 } else if (NewNonTypeParm->hasDefaultArgument()) {
1119 SawDefaultArgument = true;
1120 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1121 } else if (SawDefaultArgument)
1122 MissingDefaultArg = true;
1123 } else {
1124 // Check the presence of a default argument here.
1125 TemplateTemplateParmDecl *NewTemplateParm
1126 = cast<TemplateTemplateParmDecl>(*NewParam);
1127 if (NewTemplateParm->hasDefaultArgument() &&
1128 DiagnoseDefaultTemplateArgument(*this, TPC,
1129 NewTemplateParm->getLocation(),
1130 NewTemplateParm->getDefaultArgument().getSourceRange()))
1131 NewTemplateParm->setDefaultArgument(TemplateArgumentLoc());
1132
1133 // Merge default arguments for template template parameters
1134 TemplateTemplateParmDecl *OldTemplateParm
1135 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
1136 if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1137 NewTemplateParm->hasDefaultArgument()) {
1138 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1139 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1140 SawDefaultArgument = true;
1141 RedundantDefaultArg = true;
1142 PreviousDefaultArgLoc = NewDefaultLoc;
1143 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1144 // Merge the default argument from the old declaration to the
1145 // new declaration.
1146 SawDefaultArgument = true;
1147 // FIXME: We need to create a new kind of "default argument" expression
1148 // that points to a previous template template parameter.
1149 NewTemplateParm->setDefaultArgument(
1150 OldTemplateParm->getDefaultArgument());
1151 PreviousDefaultArgLoc
1152 = OldTemplateParm->getDefaultArgument().getLocation();
1153 } else if (NewTemplateParm->hasDefaultArgument()) {
1154 SawDefaultArgument = true;
1155 PreviousDefaultArgLoc
1156 = NewTemplateParm->getDefaultArgument().getLocation();
1157 } else if (SawDefaultArgument)
1158 MissingDefaultArg = true;
1159 }
1160
1161 if (RedundantDefaultArg) {
1162 // C++ [temp.param]p12:
1163 // A template-parameter shall not be given default arguments
1164 // by two different declarations in the same scope.
1165 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1166 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1167 Invalid = true;
1168 } else if (MissingDefaultArg) {
1169 // C++ [temp.param]p11:
1170 // If a template-parameter has a default template-argument,
1171 // all subsequent template-parameters shall have a default
1172 // template-argument supplied.
1173 Diag((*NewParam)->getLocation(),
1174 diag::err_template_param_default_arg_missing);
1175 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1176 Invalid = true;
1177 }
1178
1179 // If we have an old template parameter list that we're merging
1180 // in, move on to the next parameter.
1181 if (OldParams)
1182 ++OldParam;
1183 }
1184
1185 return Invalid;
1186}
1187
1188/// \brief Match the given template parameter lists to the given scope
1189/// specifier, returning the template parameter list that applies to the
1190/// name.
1191///
1192/// \param DeclStartLoc the start of the declaration that has a scope
1193/// specifier or a template parameter list.
1194///
1195/// \param SS the scope specifier that will be matched to the given template
1196/// parameter lists. This scope specifier precedes a qualified name that is
1197/// being declared.
1198///
1199/// \param ParamLists the template parameter lists, from the outermost to the
1200/// innermost template parameter lists.
1201///
1202/// \param NumParamLists the number of template parameter lists in ParamLists.
1203///
1204/// \param IsExplicitSpecialization will be set true if the entity being
1205/// declared is an explicit specialization, false otherwise.
1206///
1207/// \returns the template parameter list, if any, that corresponds to the
1208/// name that is preceded by the scope specifier @p SS. This template
1209/// parameter list may be have template parameters (if we're declaring a
1210/// template) or may have no template parameters (if we're declaring a
1211/// template specialization), or may be NULL (if we were's declaring isn't
1212/// itself a template).
1213TemplateParameterList *
1214Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
1215 const CXXScopeSpec &SS,
1216 TemplateParameterList **ParamLists,
1217 unsigned NumParamLists,
1218 bool &IsExplicitSpecialization) {
1219 IsExplicitSpecialization = false;
1220
1221 // Find the template-ids that occur within the nested-name-specifier. These
1222 // template-ids will match up with the template parameter lists.
1223 llvm::SmallVector<const TemplateSpecializationType *, 4>
1224 TemplateIdsInSpecifier;
1225 llvm::SmallVector<ClassTemplateSpecializationDecl *, 4>
1226 ExplicitSpecializationsInSpecifier;
1227 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
1228 NNS; NNS = NNS->getPrefix()) {
1229 const Type *T = NNS->getAsType();
1230 if (!T) break;
1231
1232 // C++0x [temp.expl.spec]p17:
1233 // A member or a member template may be nested within many
1234 // enclosing class templates. In an explicit specialization for
1235 // such a member, the member declaration shall be preceded by a
1236 // template<> for each enclosing class template that is
1237 // explicitly specialized.
1238 // We interpret this as forbidding typedefs of template
1239 // specializations in the scope specifiers of out-of-line decls.
1240 if (const TypedefType *TT = dyn_cast<TypedefType>(T)) {
1241 const Type *UnderlyingT = TT->LookThroughTypedefs().getTypePtr();
1242 if (isa<TemplateSpecializationType>(UnderlyingT))
1243 // FIXME: better source location information.
1244 Diag(DeclStartLoc, diag::err_typedef_in_def_scope) << QualType(T,0);
1245 T = UnderlyingT;
1246 }
1247
1248 if (const TemplateSpecializationType *SpecType
1249 = dyn_cast<TemplateSpecializationType>(T)) {
1250 TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl();
1251 if (!Template)
1252 continue; // FIXME: should this be an error? probably...
1253
1254 if (const RecordType *Record = SpecType->getAs<RecordType>()) {
1255 ClassTemplateSpecializationDecl *SpecDecl
1256 = cast<ClassTemplateSpecializationDecl>(Record->getDecl());
1257 // If the nested name specifier refers to an explicit specialization,
1258 // we don't need a template<> header.
1259 if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) {
1260 ExplicitSpecializationsInSpecifier.push_back(SpecDecl);
1261 continue;
1262 }
1263 }
1264
1265 TemplateIdsInSpecifier.push_back(SpecType);
1266 }
1267 }
1268
1269 // Reverse the list of template-ids in the scope specifier, so that we can
1270 // more easily match up the template-ids and the template parameter lists.
1271 std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end());
1272
1273 SourceLocation FirstTemplateLoc = DeclStartLoc;
1274 if (NumParamLists)
1275 FirstTemplateLoc = ParamLists[0]->getTemplateLoc();
1276
1277 // Match the template-ids found in the specifier to the template parameter
1278 // lists.
1279 unsigned Idx = 0;
1280 for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size();
1281 Idx != NumTemplateIds; ++Idx) {
1282 QualType TemplateId = QualType(TemplateIdsInSpecifier[Idx], 0);
1283 bool DependentTemplateId = TemplateId->isDependentType();
1284 if (Idx >= NumParamLists) {
1285 // We have a template-id without a corresponding template parameter
1286 // list.
1287 if (DependentTemplateId) {
1288 // FIXME: the location information here isn't great.
1289 Diag(SS.getRange().getBegin(),
1290 diag::err_template_spec_needs_template_parameters)
1291 << TemplateId
1292 << SS.getRange();
1293 } else {
1294 Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header)
1295 << SS.getRange()
1296 << CodeModificationHint::CreateInsertion(FirstTemplateLoc,
1297 "template<> ");
1298 IsExplicitSpecialization = true;
1299 }
1300 return 0;
1301 }
1302
1303 // Check the template parameter list against its corresponding template-id.
1304 if (DependentTemplateId) {
1305 TemplateDecl *Template
1306 = TemplateIdsInSpecifier[Idx]->getTemplateName().getAsTemplateDecl();
1307
1308 if (ClassTemplateDecl *ClassTemplate
1309 = dyn_cast<ClassTemplateDecl>(Template)) {
1310 TemplateParameterList *ExpectedTemplateParams = 0;
1311 // Is this template-id naming the primary template?
1312 if (Context.hasSameType(TemplateId,
1313 ClassTemplate->getInjectedClassNameType(Context)))
1314 ExpectedTemplateParams = ClassTemplate->getTemplateParameters();
1315 // ... or a partial specialization?
1316 else if (ClassTemplatePartialSpecializationDecl *PartialSpec
1317 = ClassTemplate->findPartialSpecialization(TemplateId))
1318 ExpectedTemplateParams = PartialSpec->getTemplateParameters();
1319
1320 if (ExpectedTemplateParams)
1321 TemplateParameterListsAreEqual(ParamLists[Idx],
1322 ExpectedTemplateParams,
1323 true, TPL_TemplateMatch);
1324 }
1325
1326 CheckTemplateParameterList(ParamLists[Idx], 0, TPC_ClassTemplateMember);
1327 } else if (ParamLists[Idx]->size() > 0)
1328 Diag(ParamLists[Idx]->getTemplateLoc(),
1329 diag::err_template_param_list_matches_nontemplate)
1330 << TemplateId
1331 << ParamLists[Idx]->getSourceRange();
1332 else
1333 IsExplicitSpecialization = true;
1334 }
1335
1336 // If there were at least as many template-ids as there were template
1337 // parameter lists, then there are no template parameter lists remaining for
1338 // the declaration itself.
1339 if (Idx >= NumParamLists)
1340 return 0;
1341
1342 // If there were too many template parameter lists, complain about that now.
1343 if (Idx != NumParamLists - 1) {
1344 while (Idx < NumParamLists - 1) {
1345 bool isExplicitSpecHeader = ParamLists[Idx]->size() == 0;
1346 Diag(ParamLists[Idx]->getTemplateLoc(),
1347 isExplicitSpecHeader? diag::warn_template_spec_extra_headers
1348 : diag::err_template_spec_extra_headers)
1349 << SourceRange(ParamLists[Idx]->getTemplateLoc(),
1350 ParamLists[Idx]->getRAngleLoc());
1351
1352 if (isExplicitSpecHeader && !ExplicitSpecializationsInSpecifier.empty()) {
1353 Diag(ExplicitSpecializationsInSpecifier.back()->getLocation(),
1354 diag::note_explicit_template_spec_does_not_need_header)
1355 << ExplicitSpecializationsInSpecifier.back();
1356 ExplicitSpecializationsInSpecifier.pop_back();
1357 }
1358
1359 ++Idx;
1360 }
1361 }
1362
1363 // Return the last template parameter list, which corresponds to the
1364 // entity being declared.
1365 return ParamLists[NumParamLists - 1];
1366}
1367
1368QualType Sema::CheckTemplateIdType(TemplateName Name,
1369 SourceLocation TemplateLoc,
1370 const TemplateArgumentListInfo &TemplateArgs) {
1371 TemplateDecl *Template = Name.getAsTemplateDecl();
1372 if (!Template) {
1373 // The template name does not resolve to a template, so we just
1374 // build a dependent template-id type.
1375 return Context.getTemplateSpecializationType(Name, TemplateArgs);
1376 }
1377
1378 // Check that the template argument list is well-formed for this
1379 // template.
1380 TemplateArgumentListBuilder Converted(Template->getTemplateParameters(),
1381 TemplateArgs.size());
1382 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
1383 false, Converted))
1384 return QualType();
1385
1386 assert((Converted.structuredSize() ==
1387 Template->getTemplateParameters()->size()) &&
1388 "Converted template argument list is too short!");
1389
1390 QualType CanonType;
1391
1392 if (Name.isDependent() ||
1393 TemplateSpecializationType::anyDependentTemplateArguments(
1394 TemplateArgs)) {
1395 // This class template specialization is a dependent
1396 // type. Therefore, its canonical type is another class template
1397 // specialization type that contains all of the converted
1398 // arguments in canonical form. This ensures that, e.g., A<T> and
1399 // A<T, T> have identical types when A is declared as:
1400 //
1401 // template<typename T, typename U = T> struct A;
1402 TemplateName CanonName = Context.getCanonicalTemplateName(Name);
1403 CanonType = Context.getTemplateSpecializationType(CanonName,
1404 Converted.getFlatArguments(),
1405 Converted.flatSize());
1406
1407 // FIXME: CanonType is not actually the canonical type, and unfortunately
1408 // it is a TemplateSpecializationType that we will never use again.
1409 // In the future, we need to teach getTemplateSpecializationType to only
1410 // build the canonical type and return that to us.
1411 CanonType = Context.getCanonicalType(CanonType);
1412 } else if (ClassTemplateDecl *ClassTemplate
1413 = dyn_cast<ClassTemplateDecl>(Template)) {
1414 // Find the class template specialization declaration that
1415 // corresponds to these arguments.
1416 llvm::FoldingSetNodeID ID;
1417 ClassTemplateSpecializationDecl::Profile(ID,
1418 Converted.getFlatArguments(),
1419 Converted.flatSize(),
1420 Context);
1421 void *InsertPos = 0;
1422 ClassTemplateSpecializationDecl *Decl
1423 = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
1424 if (!Decl) {
1425 // This is the first time we have referenced this class template
1426 // specialization. Create the canonical declaration and add it to
1427 // the set of specializations.
1428 Decl = ClassTemplateSpecializationDecl::Create(Context,
1429 ClassTemplate->getDeclContext(),
1430 ClassTemplate->getLocation(),
1431 ClassTemplate,
1432 Converted, 0);
1433 ClassTemplate->getSpecializations().InsertNode(Decl, InsertPos);
1434 Decl->setLexicalDeclContext(CurContext);
1435 }
1436
1437 CanonType = Context.getTypeDeclType(Decl);
1438 }
1439
1440 // Build the fully-sugared type for this class template
1441 // specialization, which refers back to the class template
1442 // specialization we created or found.
1443 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
1444}
1445
1446Action::TypeResult
1447Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc,
1448 SourceLocation LAngleLoc,
1449 ASTTemplateArgsPtr TemplateArgsIn,
1450 SourceLocation RAngleLoc) {
1451 TemplateName Template = TemplateD.getAsVal<TemplateName>();
1452
1453 // Translate the parser's template argument list in our AST format.
1454 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
1455 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
1456
1457 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
1458 TemplateArgsIn.release();
1459
1460 if (Result.isNull())
1461 return true;
1462
1463 TypeSourceInfo *DI = Context.CreateTypeSourceInfo(Result);
1464 TemplateSpecializationTypeLoc TL
1465 = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
1466 TL.setTemplateNameLoc(TemplateLoc);
1467 TL.setLAngleLoc(LAngleLoc);
1468 TL.setRAngleLoc(RAngleLoc);
1469 for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
1470 TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
1471
1472 return CreateLocInfoType(Result, DI).getAsOpaquePtr();
1473}
1474
1475Sema::TypeResult Sema::ActOnTagTemplateIdType(TypeResult TypeResult,
1476 TagUseKind TUK,
1477 DeclSpec::TST TagSpec,
1478 SourceLocation TagLoc) {
1479 if (TypeResult.isInvalid())
1480 return Sema::TypeResult();
1481
1482 // FIXME: preserve source info, ideally without copying the DI.
1483 TypeSourceInfo *DI;
1484 QualType Type = GetTypeFromParser(TypeResult.get(), &DI);
1485
1486 // Verify the tag specifier.
1487 TagDecl::TagKind TagKind = TagDecl::getTagKindForTypeSpec(TagSpec);
1488
1489 if (const RecordType *RT = Type->getAs<RecordType>()) {
1490 RecordDecl *D = RT->getDecl();
1491
1492 IdentifierInfo *Id = D->getIdentifier();
1493 assert(Id && "templated class must have an identifier");
1494
1495 if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) {
1496 Diag(TagLoc, diag::err_use_with_wrong_tag)
1497 << Type
1498 << CodeModificationHint::CreateReplacement(SourceRange(TagLoc),
1499 D->getKindName());
1500 Diag(D->getLocation(), diag::note_previous_use);
1501 }
1502 }
1503
1504 QualType ElabType = Context.getElaboratedType(Type, TagKind);
1505
1506 return ElabType.getAsOpaquePtr();
1507}
1508
1509Sema::OwningExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
1510 LookupResult &R,
1511 bool RequiresADL,
1512 const TemplateArgumentListInfo &TemplateArgs) {
1513 // FIXME: Can we do any checking at this point? I guess we could check the
1514 // template arguments that we have against the template name, if the template
1515 // name refers to a single template. That's not a terribly common case,
1516 // though.
1517
1518 // These should be filtered out by our callers.
1519 assert(!R.empty() && "empty lookup results when building templateid");
1520 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
1521
1522 NestedNameSpecifier *Qualifier = 0;
1523 SourceRange QualifierRange;
1524 if (SS.isSet()) {
1525 Qualifier = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1526 QualifierRange = SS.getRange();
1527 }
1528
1529 // We don't want lookup warnings at this point.
1530 R.suppressDiagnostics();
1531
1532 bool Dependent
1533 = UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(),
1534 &TemplateArgs);
1535 UnresolvedLookupExpr *ULE
1536 = UnresolvedLookupExpr::Create(Context, Dependent, R.getNamingClass(),
1537 Qualifier, QualifierRange,
1538 R.getLookupName(), R.getNameLoc(),
1539 RequiresADL, TemplateArgs);
1540 ULE->addDecls(R.begin(), R.end());
1541
1542 return Owned(ULE);
1543}
1544
1545// We actually only call this from template instantiation.
1546Sema::OwningExprResult
1547Sema::BuildQualifiedTemplateIdExpr(const CXXScopeSpec &SS,
1548 DeclarationName Name,
1549 SourceLocation NameLoc,
1550 const TemplateArgumentListInfo &TemplateArgs) {
1551 DeclContext *DC;
1552 if (!(DC = computeDeclContext(SS, false)) ||
1553 DC->isDependentContext() ||
1554 RequireCompleteDeclContext(SS))
1555 return BuildDependentDeclRefExpr(SS, Name, NameLoc, &TemplateArgs);
1556
1557 LookupResult R(*this, Name, NameLoc, LookupOrdinaryName);
1558 LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false);
1559
1560 if (R.isAmbiguous())
1561 return ExprError();
1562
1563 if (R.empty()) {
1564 Diag(NameLoc, diag::err_template_kw_refers_to_non_template)
1565 << Name << SS.getRange();
1566 return ExprError();
1567 }
1568
1569 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
1570 Diag(NameLoc, diag::err_template_kw_refers_to_class_template)
1571 << (NestedNameSpecifier*) SS.getScopeRep() << Name << SS.getRange();
1572 Diag(Temp->getLocation(), diag::note_referenced_class_template);
1573 return ExprError();
1574 }
1575
1576 return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs);
1577}
1578
1579/// \brief Form a dependent template name.
1580///
1581/// This action forms a dependent template name given the template
1582/// name and its (presumably dependent) scope specifier. For
1583/// example, given "MetaFun::template apply", the scope specifier \p
1584/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
1585/// of the "template" keyword, and "apply" is the \p Name.
1586Sema::TemplateTy
1587Sema::ActOnDependentTemplateName(SourceLocation TemplateKWLoc,
1588 const CXXScopeSpec &SS,
1589 UnqualifiedId &Name,
1590 TypeTy *ObjectType,
1591 bool EnteringContext) {
1592 DeclContext *LookupCtx = 0;
1593 if (SS.isSet())
1594 LookupCtx = computeDeclContext(SS, EnteringContext);
1595 if (!LookupCtx && ObjectType)
1596 LookupCtx = computeDeclContext(QualType::getFromOpaquePtr(ObjectType));
1597 if (LookupCtx) {
1598 // C++0x [temp.names]p5:
1599 // If a name prefixed by the keyword template is not the name of
1600 // a template, the program is ill-formed. [Note: the keyword
1601 // template may not be applied to non-template members of class
1602 // templates. -end note ] [ Note: as is the case with the
1603 // typename prefix, the template prefix is allowed in cases
1604 // where it is not strictly necessary; i.e., when the
1605 // nested-name-specifier or the expression on the left of the ->
1606 // or . is not dependent on a template-parameter, or the use
1607 // does not appear in the scope of a template. -end note]
1608 //
1609 // Note: C++03 was more strict here, because it banned the use of
1610 // the "template" keyword prior to a template-name that was not a
1611 // dependent name. C++ DR468 relaxed this requirement (the
1612 // "template" keyword is now permitted). We follow the C++0x
1613 // rules, even in C++03 mode, retroactively applying the DR.
1614 TemplateTy Template;
1615 TemplateNameKind TNK = isTemplateName(0, SS, Name, ObjectType,
1616 EnteringContext, Template);
1617 if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
1618 isa<CXXRecordDecl>(LookupCtx) &&
1619 cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()) {
1620 // This is a dependent template.
1621 } else if (TNK == TNK_Non_template) {
1622 Diag(Name.getSourceRange().getBegin(),
1623 diag::err_template_kw_refers_to_non_template)
1624 << GetNameFromUnqualifiedId(Name)
1625 << Name.getSourceRange();
1626 return TemplateTy();
1627 } else {
1628 // We found something; return it.
1629 return Template;
1630 }
1631 }
1632
1633 NestedNameSpecifier *Qualifier
1634 = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
1635
1636 switch (Name.getKind()) {
1637 case UnqualifiedId::IK_Identifier:
1638 return TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1639 Name.Identifier));
1640
1641 case UnqualifiedId::IK_OperatorFunctionId:
1642 return TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1643 Name.OperatorFunctionId.Operator));
1644
1645 case UnqualifiedId::IK_LiteralOperatorId:
1646 assert(false && "We don't support these; Parse shouldn't have allowed propagation");
1647
1648 default:
1649 break;
1650 }
1651
1652 Diag(Name.getSourceRange().getBegin(),
1653 diag::err_template_kw_refers_to_non_template)
1654 << GetNameFromUnqualifiedId(Name)
1655 << Name.getSourceRange();
1656 return TemplateTy();
1657}
1658
1659bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
1660 const TemplateArgumentLoc &AL,
1661 TemplateArgumentListBuilder &Converted) {
1662 const TemplateArgument &Arg = AL.getArgument();
1663
1664 // Check template type parameter.
1665 if (Arg.getKind() != TemplateArgument::Type) {
1666 // C++ [temp.arg.type]p1:
1667 // A template-argument for a template-parameter which is a
1668 // type shall be a type-id.
1669
1670 // We have a template type parameter but the template argument
1671 // is not a type.
1672 SourceRange SR = AL.getSourceRange();
1673 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
1674 Diag(Param->getLocation(), diag::note_template_param_here);
1675
1676 return true;
1677 }
1678
1679 if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
1680 return true;
1681
1682 // Add the converted template type argument.
1683 Converted.Append(
1684 TemplateArgument(Context.getCanonicalType(Arg.getAsType())));
1685 return false;
1686}
1687
1688/// \brief Substitute template arguments into the default template argument for
1689/// the given template type parameter.
1690///
1691/// \param SemaRef the semantic analysis object for which we are performing
1692/// the substitution.
1693///
1694/// \param Template the template that we are synthesizing template arguments
1695/// for.
1696///
1697/// \param TemplateLoc the location of the template name that started the
1698/// template-id we are checking.
1699///
1700/// \param RAngleLoc the location of the right angle bracket ('>') that
1701/// terminates the template-id.
1702///
1703/// \param Param the template template parameter whose default we are
1704/// substituting into.
1705///
1706/// \param Converted the list of template arguments provided for template
1707/// parameters that precede \p Param in the template parameter list.
1708///
1709/// \returns the substituted template argument, or NULL if an error occurred.
1710static TypeSourceInfo *
1711SubstDefaultTemplateArgument(Sema &SemaRef,
1712 TemplateDecl *Template,
1713 SourceLocation TemplateLoc,
1714 SourceLocation RAngleLoc,
1715 TemplateTypeParmDecl *Param,
1716 TemplateArgumentListBuilder &Converted) {
1717 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
1718
1719 // If the argument type is dependent, instantiate it now based
1720 // on the previously-computed template arguments.
1721 if (ArgType->getType()->isDependentType()) {
1722 TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1723 /*TakeArgs=*/false);
1724
1725 MultiLevelTemplateArgumentList AllTemplateArgs
1726 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1727
1728 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1729 Template, Converted.getFlatArguments(),
1730 Converted.flatSize(),
1731 SourceRange(TemplateLoc, RAngleLoc));
1732
1733 ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
1734 Param->getDefaultArgumentLoc(),
1735 Param->getDeclName());
1736 }
1737
1738 return ArgType;
1739}
1740
1741/// \brief Substitute template arguments into the default template argument for
1742/// the given non-type template parameter.
1743///
1744/// \param SemaRef the semantic analysis object for which we are performing
1745/// the substitution.
1746///
1747/// \param Template the template that we are synthesizing template arguments
1748/// for.
1749///
1750/// \param TemplateLoc the location of the template name that started the
1751/// template-id we are checking.
1752///
1753/// \param RAngleLoc the location of the right angle bracket ('>') that
1754/// terminates the template-id.
1755///
1756/// \param Param the non-type template parameter whose default we are
1757/// substituting into.
1758///
1759/// \param Converted the list of template arguments provided for template
1760/// parameters that precede \p Param in the template parameter list.
1761///
1762/// \returns the substituted template argument, or NULL if an error occurred.
1763static Sema::OwningExprResult
1764SubstDefaultTemplateArgument(Sema &SemaRef,
1765 TemplateDecl *Template,
1766 SourceLocation TemplateLoc,
1767 SourceLocation RAngleLoc,
1768 NonTypeTemplateParmDecl *Param,
1769 TemplateArgumentListBuilder &Converted) {
1770 TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1771 /*TakeArgs=*/false);
1772
1773 MultiLevelTemplateArgumentList AllTemplateArgs
1774 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1775
1776 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1777 Template, Converted.getFlatArguments(),
1778 Converted.flatSize(),
1779 SourceRange(TemplateLoc, RAngleLoc));
1780
1781 return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
1782}
1783
1784/// \brief Substitute template arguments into the default template argument for
1785/// the given template template parameter.
1786///
1787/// \param SemaRef the semantic analysis object for which we are performing
1788/// the substitution.
1789///
1790/// \param Template the template that we are synthesizing template arguments
1791/// for.
1792///
1793/// \param TemplateLoc the location of the template name that started the
1794/// template-id we are checking.
1795///
1796/// \param RAngleLoc the location of the right angle bracket ('>') that
1797/// terminates the template-id.
1798///
1799/// \param Param the template template parameter whose default we are
1800/// substituting into.
1801///
1802/// \param Converted the list of template arguments provided for template
1803/// parameters that precede \p Param in the template parameter list.
1804///
1805/// \returns the substituted template argument, or NULL if an error occurred.
1806static TemplateName
1807SubstDefaultTemplateArgument(Sema &SemaRef,
1808 TemplateDecl *Template,
1809 SourceLocation TemplateLoc,
1810 SourceLocation RAngleLoc,
1811 TemplateTemplateParmDecl *Param,
1812 TemplateArgumentListBuilder &Converted) {
1813 TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1814 /*TakeArgs=*/false);
1815
1816 MultiLevelTemplateArgumentList AllTemplateArgs
1817 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1818
1819 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1820 Template, Converted.getFlatArguments(),
1821 Converted.flatSize(),
1822 SourceRange(TemplateLoc, RAngleLoc));
1823
1824 return SemaRef.SubstTemplateName(
1825 Param->getDefaultArgument().getArgument().getAsTemplate(),
1826 Param->getDefaultArgument().getTemplateNameLoc(),
1827 AllTemplateArgs);
1828}
1829
1830/// \brief If the given template parameter has a default template
1831/// argument, substitute into that default template argument and
1832/// return the corresponding template argument.
1833TemplateArgumentLoc
1834Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
1835 SourceLocation TemplateLoc,
1836 SourceLocation RAngleLoc,
1837 Decl *Param,
1838 TemplateArgumentListBuilder &Converted) {
1839 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
1840 if (!TypeParm->hasDefaultArgument())
1841 return TemplateArgumentLoc();
1842
1843 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
1844 TemplateLoc,
1845 RAngleLoc,
1846 TypeParm,
1847 Converted);
1848 if (DI)
1849 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
1850
1851 return TemplateArgumentLoc();
1852 }
1853
1854 if (NonTypeTemplateParmDecl *NonTypeParm
1855 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
1856 if (!NonTypeParm->hasDefaultArgument())
1857 return TemplateArgumentLoc();
1858
1859 OwningExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
1860 TemplateLoc,
1861 RAngleLoc,
1862 NonTypeParm,
1863 Converted);
1864 if (Arg.isInvalid())
1865 return TemplateArgumentLoc();
1866
1867 Expr *ArgE = Arg.takeAs<Expr>();
1868 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
1869 }
1870
1871 TemplateTemplateParmDecl *TempTempParm
1872 = cast<TemplateTemplateParmDecl>(Param);
1873 if (!TempTempParm->hasDefaultArgument())
1874 return TemplateArgumentLoc();
1875
1876 TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
1877 TemplateLoc,
1878 RAngleLoc,
1879 TempTempParm,
1880 Converted);
1881 if (TName.isNull())
1882 return TemplateArgumentLoc();
1883
1884 return TemplateArgumentLoc(TemplateArgument(TName),
1885 TempTempParm->getDefaultArgument().getTemplateQualifierRange(),
1886 TempTempParm->getDefaultArgument().getTemplateNameLoc());
1887}
1888
1889/// \brief Check that the given template argument corresponds to the given
1890/// template parameter.
1891bool Sema::CheckTemplateArgument(NamedDecl *Param,
1892 const TemplateArgumentLoc &Arg,
1893 TemplateDecl *Template,
1894 SourceLocation TemplateLoc,
1895 SourceLocation RAngleLoc,
1896 TemplateArgumentListBuilder &Converted) {
1897 // Check template type parameters.
1898 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
1899 return CheckTemplateTypeArgument(TTP, Arg, Converted);
1900
1901 // Check non-type template parameters.
1902 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
1903 // Do substitution on the type of the non-type template parameter
1904 // with the template arguments we've seen thus far.
1905 QualType NTTPType = NTTP->getType();
1906 if (NTTPType->isDependentType()) {
1907 // Do substitution on the type of the non-type template parameter.
1908 InstantiatingTemplate Inst(*this, TemplateLoc, Template,
1909 NTTP, Converted.getFlatArguments(),
1910 Converted.flatSize(),
1911 SourceRange(TemplateLoc, RAngleLoc));
1912
1913 TemplateArgumentList TemplateArgs(Context, Converted,
1914 /*TakeArgs=*/false);
1915 NTTPType = SubstType(NTTPType,
1916 MultiLevelTemplateArgumentList(TemplateArgs),
1917 NTTP->getLocation(),
1918 NTTP->getDeclName());
1919 // If that worked, check the non-type template parameter type
1920 // for validity.
1921 if (!NTTPType.isNull())
1922 NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
1923 NTTP->getLocation());
1924 if (NTTPType.isNull())
1925 return true;
1926 }
1927
1928 switch (Arg.getArgument().getKind()) {
1929 case TemplateArgument::Null:
1930 assert(false && "Should never see a NULL template argument here");
1931 return true;
1932
1933 case TemplateArgument::Expression: {
1934 Expr *E = Arg.getArgument().getAsExpr();
1935 TemplateArgument Result;
1936 if (CheckTemplateArgument(NTTP, NTTPType, E, Result))
1937 return true;
1938
1939 Converted.Append(Result);
1940 break;
1941 }
1942
1943 case TemplateArgument::Declaration:
1944 case TemplateArgument::Integral:
1945 // We've already checked this template argument, so just copy
1946 // it to the list of converted arguments.
1947 Converted.Append(Arg.getArgument());
1948 break;
1949
1950 case TemplateArgument::Template:
1951 // We were given a template template argument. It may not be ill-formed;
1952 // see below.
1953 if (DependentTemplateName *DTN
1954 = Arg.getArgument().getAsTemplate().getAsDependentTemplateName()) {
1955 // We have a template argument such as \c T::template X, which we
1956 // parsed as a template template argument. However, since we now
1957 // know that we need a non-type template argument, convert this
1958 // template name into an expression.
1959 Expr *E = DependentScopeDeclRefExpr::Create(Context,
1960 DTN->getQualifier(),
1961 Arg.getTemplateQualifierRange(),
1962 DTN->getIdentifier(),
1963 Arg.getTemplateNameLoc());
1964
1965 TemplateArgument Result;
1966 if (CheckTemplateArgument(NTTP, NTTPType, E, Result))
1967 return true;
1968
1969 Converted.Append(Result);
1970 break;
1971 }
1972
1973 // We have a template argument that actually does refer to a class
1974 // template, template alias, or template template parameter, and
1975 // therefore cannot be a non-type template argument.
1976 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
1977 << Arg.getSourceRange();
1978
1979 Diag(Param->getLocation(), diag::note_template_param_here);
1980 return true;
1981
1982 case TemplateArgument::Type: {
1983 // We have a non-type template parameter but the template
1984 // argument is a type.
1985
1986 // C++ [temp.arg]p2:
1987 // In a template-argument, an ambiguity between a type-id and
1988 // an expression is resolved to a type-id, regardless of the
1989 // form of the corresponding template-parameter.
1990 //
1991 // We warn specifically about this case, since it can be rather
1992 // confusing for users.
1993 QualType T = Arg.getArgument().getAsType();
1994 SourceRange SR = Arg.getSourceRange();
1995 if (T->isFunctionType())
1996 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
1997 else
1998 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
1999 Diag(Param->getLocation(), diag::note_template_param_here);
2000 return true;
2001 }
2002
2003 case TemplateArgument::Pack:
2004 llvm_unreachable("Caller must expand template argument packs");
2005 break;
2006 }
2007
2008 return false;
2009 }
2010
2011
2012 // Check template template parameters.
2013 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
2014
2015 // Substitute into the template parameter list of the template
2016 // template parameter, since previously-supplied template arguments
2017 // may appear within the template template parameter.
2018 {
2019 // Set up a template instantiation context.
2020 LocalInstantiationScope Scope(*this);
2021 InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2022 TempParm, Converted.getFlatArguments(),
2023 Converted.flatSize(),
2024 SourceRange(TemplateLoc, RAngleLoc));
2025
2026 TemplateArgumentList TemplateArgs(Context, Converted,
2027 /*TakeArgs=*/false);
2028 TempParm = cast_or_null<TemplateTemplateParmDecl>(
2029 SubstDecl(TempParm, CurContext,
2030 MultiLevelTemplateArgumentList(TemplateArgs)));
2031 if (!TempParm)
2032 return true;
2033
2034 // FIXME: TempParam is leaked.
2035 }
2036
2037 switch (Arg.getArgument().getKind()) {
2038 case TemplateArgument::Null:
2039 assert(false && "Should never see a NULL template argument here");
2040 return true;
2041
2042 case TemplateArgument::Template:
2043 if (CheckTemplateArgument(TempParm, Arg))
2044 return true;
2045
2046 Converted.Append(Arg.getArgument());
2047 break;
2048
2049 case TemplateArgument::Expression:
2050 case TemplateArgument::Type:
2051 // We have a template template parameter but the template
2052 // argument does not refer to a template.
2053 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template);
2054 return true;
2055
2056 case TemplateArgument::Declaration:
2057 llvm_unreachable(
2058 "Declaration argument with template template parameter");
2059 break;
2060 case TemplateArgument::Integral:
2061 llvm_unreachable(
2062 "Integral argument with template template parameter");
2063 break;
2064
2065 case TemplateArgument::Pack:
2066 llvm_unreachable("Caller must expand template argument packs");
2067 break;
2068 }
2069
2070 return false;
2071}
2072
2073/// \brief Check that the given template argument list is well-formed
2074/// for specializing the given template.
2075bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
2076 SourceLocation TemplateLoc,
2077 const TemplateArgumentListInfo &TemplateArgs,
2078 bool PartialTemplateArgs,
2079 TemplateArgumentListBuilder &Converted) {
2080 TemplateParameterList *Params = Template->getTemplateParameters();
2081 unsigned NumParams = Params->size();
2082 unsigned NumArgs = TemplateArgs.size();
2083 bool Invalid = false;
2084
2085 SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
2086
2087 bool HasParameterPack =
2088 NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
2089
2090 if ((NumArgs > NumParams && !HasParameterPack) ||
2091 (NumArgs < Params->getMinRequiredArguments() &&
2092 !PartialTemplateArgs)) {
2093 // FIXME: point at either the first arg beyond what we can handle,
2094 // or the '>', depending on whether we have too many or too few
2095 // arguments.
2096 SourceRange Range;
2097 if (NumArgs > NumParams)
2098 Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
2099 Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2100 << (NumArgs > NumParams)
2101 << (isa<ClassTemplateDecl>(Template)? 0 :
2102 isa<FunctionTemplateDecl>(Template)? 1 :
2103 isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2104 << Template << Range;
2105 Diag(Template->getLocation(), diag::note_template_decl_here)
2106 << Params->getSourceRange();
2107 Invalid = true;
2108 }
2109
2110 // C++ [temp.arg]p1:
2111 // [...] The type and form of each template-argument specified in
2112 // a template-id shall match the type and form specified for the
2113 // corresponding parameter declared by the template in its
2114 // template-parameter-list.
2115 unsigned ArgIdx = 0;
2116 for (TemplateParameterList::iterator Param = Params->begin(),
2117 ParamEnd = Params->end();
2118 Param != ParamEnd; ++Param, ++ArgIdx) {
2119 if (ArgIdx > NumArgs && PartialTemplateArgs)
2120 break;
2121
2122 // If we have a template parameter pack, check every remaining template
2123 // argument against that template parameter pack.
2124 if ((*Param)->isTemplateParameterPack()) {
2125 Converted.BeginPack();
2126 for (; ArgIdx < NumArgs; ++ArgIdx) {
2127 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2128 TemplateLoc, RAngleLoc, Converted)) {
2129 Invalid = true;
2130 break;
2131 }
2132 }
2133 Converted.EndPack();
2134 continue;
2135 }
2136
2137 if (ArgIdx < NumArgs) {
2138 // Check the template argument we were given.
2139 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2140 TemplateLoc, RAngleLoc, Converted))
2141 return true;
2142
2143 continue;
2144 }
2145
2146 // We have a default template argument that we will use.
2147 TemplateArgumentLoc Arg;
2148
2149 // Retrieve the default template argument from the template
2150 // parameter. For each kind of template parameter, we substitute the
2151 // template arguments provided thus far and any "outer" template arguments
2152 // (when the template parameter was part of a nested template) into
2153 // the default argument.
2154 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
2155 if (!TTP->hasDefaultArgument()) {
2156 assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2157 break;
2158 }
2159
2160 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
2161 Template,
2162 TemplateLoc,
2163 RAngleLoc,
2164 TTP,
2165 Converted);
2166 if (!ArgType)
2167 return true;
2168
2169 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
2170 ArgType);
2171 } else if (NonTypeTemplateParmDecl *NTTP
2172 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
2173 if (!NTTP->hasDefaultArgument()) {
2174 assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2175 break;
2176 }
2177
2178 Sema::OwningExprResult E = SubstDefaultTemplateArgument(*this, Template,
2179 TemplateLoc,
2180 RAngleLoc,
2181 NTTP,
2182 Converted);
2183 if (E.isInvalid())
2184 return true;
2185
2186 Expr *Ex = E.takeAs<Expr>();
2187 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
2188 } else {
2189 TemplateTemplateParmDecl *TempParm
2190 = cast<TemplateTemplateParmDecl>(*Param);
2191
2192 if (!TempParm->hasDefaultArgument()) {
2193 assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2194 break;
2195 }
2196
2197 TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
2198 TemplateLoc,
2199 RAngleLoc,
2200 TempParm,
2201 Converted);
2202 if (Name.isNull())
2203 return true;
2204
2205 Arg = TemplateArgumentLoc(TemplateArgument(Name),
2206 TempParm->getDefaultArgument().getTemplateQualifierRange(),
2207 TempParm->getDefaultArgument().getTemplateNameLoc());
2208 }
2209
2210 // Introduce an instantiation record that describes where we are using
2211 // the default template argument.
2212 InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param,
2213 Converted.getFlatArguments(),
2214 Converted.flatSize(),
2215 SourceRange(TemplateLoc, RAngleLoc));
2216
2217 // Check the default template argument.
2218 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
2219 RAngleLoc, Converted))
2220 return true;
2221 }
2222
2223 return Invalid;
2224}
2225
2226/// \brief Check a template argument against its corresponding
2227/// template type parameter.
2228///
2229/// This routine implements the semantics of C++ [temp.arg.type]. It
2230/// returns true if an error occurred, and false otherwise.
2231bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
2232 TypeSourceInfo *ArgInfo) {
2233 assert(ArgInfo && "invalid TypeSourceInfo");
2234 QualType Arg = ArgInfo->getType();
2235
2236 // C++ [temp.arg.type]p2:
2237 // A local type, a type with no linkage, an unnamed type or a type
2238 // compounded from any of these types shall not be used as a
2239 // template-argument for a template type-parameter.
2240 //
2241 // FIXME: Perform the recursive and no-linkage type checks.
2242 const TagType *Tag = 0;
2243 if (const EnumType *EnumT = Arg->getAs<EnumType>())
2244 Tag = EnumT;
2245 else if (const RecordType *RecordT = Arg->getAs<RecordType>())
2246 Tag = RecordT;
2247 if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod()) {
2248 SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange();
2249 return Diag(SR.getBegin(), diag::err_template_arg_local_type)
2250 << QualType(Tag, 0) << SR;
2251 } else if (Tag && !Tag->getDecl()->getDeclName() &&
2252 !Tag->getDecl()->getTypedefForAnonDecl()) {
2253 SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange();
2254 Diag(SR.getBegin(), diag::err_template_arg_unnamed_type) << SR;
2255 Diag(Tag->getDecl()->getLocation(), diag::note_template_unnamed_type_here);
2256 return true;
2257 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
2258 SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange();
2259 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
2260 }
2261
2262 return false;
2263}
2264
2265/// \brief Checks whether the given template argument is the address
2266/// of an object or function according to C++ [temp.arg.nontype]p1.
2267bool Sema::CheckTemplateArgumentAddressOfObjectOrFunction(Expr *Arg,
2268 NamedDecl *&Entity) {
2269 bool Invalid = false;
2270
2271 // See through any implicit casts we added to fix the type.
2272 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2273 Arg = Cast->getSubExpr();
2274
2275 // C++0x allows nullptr, and there's no further checking to be done for that.
2276 if (Arg->getType()->isNullPtrType())
2277 return false;
2278
2279 // C++ [temp.arg.nontype]p1:
2280 //
2281 // A template-argument for a non-type, non-template
2282 // template-parameter shall be one of: [...]
2283 //
2284 // -- the address of an object or function with external
2285 // linkage, including function templates and function
2286 // template-ids but excluding non-static class members,
2287 // expressed as & id-expression where the & is optional if
2288 // the name refers to a function or array, or if the
2289 // corresponding template-parameter is a reference; or
2290 DeclRefExpr *DRE = 0;
2291
2292 // Ignore (and complain about) any excess parentheses.
2293 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2294 if (!Invalid) {
2295 Diag(Arg->getSourceRange().getBegin(),
2296 diag::err_template_arg_extra_parens)
2297 << Arg->getSourceRange();
2298 Invalid = true;
2299 }
2300
2301 Arg = Parens->getSubExpr();
2302 }
2303
2304 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2305 if (UnOp->getOpcode() == UnaryOperator::AddrOf)
2306 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2307 } else
2308 DRE = dyn_cast<DeclRefExpr>(Arg);
2309
2310 if (!DRE)
2311 return Diag(Arg->getSourceRange().getBegin(),
2312 diag::err_template_arg_not_decl_ref)
2313 << Arg->getSourceRange();
2314
2315 // Stop checking the precise nature of the argument if it is value dependent,
2316 // it should be checked when instantiated.
2317 if (Arg->isValueDependent())
2318 return false;
2319
2320 if (!isa<ValueDecl>(DRE->getDecl()))
2321 return Diag(Arg->getSourceRange().getBegin(),
2322 diag::err_template_arg_not_object_or_func_form)
2323 << Arg->getSourceRange();
2324
2325 // Cannot refer to non-static data members
2326 if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl()))
2327 return Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
2328 << Field << Arg->getSourceRange();
2329
2330 // Cannot refer to non-static member functions
2331 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
2332 if (!Method->isStatic())
2333 return Diag(Arg->getSourceRange().getBegin(),
2334 diag::err_template_arg_method)
2335 << Method << Arg->getSourceRange();
2336
2337 // Functions must have external linkage.
2338 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
2339 if (!isExternalLinkage(Func->getLinkage())) {
2340 Diag(Arg->getSourceRange().getBegin(),
2341 diag::err_template_arg_function_not_extern)
2342 << Func << Arg->getSourceRange();
2343 Diag(Func->getLocation(), diag::note_template_arg_internal_object)
2344 << true;
2345 return true;
2346 }
2347
2348 // Okay: we've named a function with external linkage.
2349 Entity = Func;
2350 return Invalid;
2351 }
2352
2353 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
2354 if (!isExternalLinkage(Var->getLinkage())) {
2355 Diag(Arg->getSourceRange().getBegin(),
2356 diag::err_template_arg_object_not_extern)
2357 << Var << Arg->getSourceRange();
2358 Diag(Var->getLocation(), diag::note_template_arg_internal_object)
2359 << true;
2360 return true;
2361 }
2362
2363 // Okay: we've named an object with external linkage
2364 Entity = Var;
2365 return Invalid;
2366 }
2367
2368 // We found something else, but we don't know specifically what it is.
2369 Diag(Arg->getSourceRange().getBegin(),
2370 diag::err_template_arg_not_object_or_func)
2371 << Arg->getSourceRange();
2372 Diag(DRE->getDecl()->getLocation(),
2373 diag::note_template_arg_refers_here);
2374 return true;
2375}
2376
2377/// \brief Checks whether the given template argument is a pointer to
2378/// member constant according to C++ [temp.arg.nontype]p1.
2379bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg,
2380 TemplateArgument &Converted) {
2381 bool Invalid = false;
2382
2383 // See through any implicit casts we added to fix the type.
2384 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2385 Arg = Cast->getSubExpr();
2386
2387 // C++0x allows nullptr, and there's no further checking to be done for that.
2388 if (Arg->getType()->isNullPtrType())
2389 return false;
2390
2391 // C++ [temp.arg.nontype]p1:
2392 //
2393 // A template-argument for a non-type, non-template
2394 // template-parameter shall be one of: [...]
2395 //
2396 // -- a pointer to member expressed as described in 5.3.1.
2397 DeclRefExpr *DRE = 0;
2398
2399 // Ignore (and complain about) any excess parentheses.
2400 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2401 if (!Invalid) {
2402 Diag(Arg->getSourceRange().getBegin(),
2403 diag::err_template_arg_extra_parens)
2404 << Arg->getSourceRange();
2405 Invalid = true;
2406 }
2407
2408 Arg = Parens->getSubExpr();
2409 }
2410
2411 // A pointer-to-member constant written &Class::member.
2412 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2413 if (UnOp->getOpcode() == UnaryOperator::AddrOf) {
2414 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2415 if (DRE && !DRE->getQualifier())
2416 DRE = 0;
2417 }
2418 }
2419 // A constant of pointer-to-member type.
2420 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
2421 if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
2422 if (VD->getType()->isMemberPointerType()) {
2423 if (isa<NonTypeTemplateParmDecl>(VD) ||
2424 (isa<VarDecl>(VD) &&
2425 Context.getCanonicalType(VD->getType()).isConstQualified())) {
2426 if (Arg->isTypeDependent() || Arg->isValueDependent())
2427 Converted = TemplateArgument(Arg->Retain());
2428 else
2429 Converted = TemplateArgument(VD->getCanonicalDecl());
2430 return Invalid;
2431 }
2432 }
2433 }
2434
2435 DRE = 0;
2436 }
2437
2438 if (!DRE)
2439 return Diag(Arg->getSourceRange().getBegin(),
2440 diag::err_template_arg_not_pointer_to_member_form)
2441 << Arg->getSourceRange();
2442
2443 if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
2444 assert((isa<FieldDecl>(DRE->getDecl()) ||
2445 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
2446 "Only non-static member pointers can make it here");
2447
2448 // Okay: this is the address of a non-static member, and therefore
2449 // a member pointer constant.
2450 if (Arg->isTypeDependent() || Arg->isValueDependent())
2451 Converted = TemplateArgument(Arg->Retain());
2452 else
2453 Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl());
2454 return Invalid;
2455 }
2456
2457 // We found something else, but we don't know specifically what it is.
2458 Diag(Arg->getSourceRange().getBegin(),
2459 diag::err_template_arg_not_pointer_to_member_form)
2460 << Arg->getSourceRange();
2461 Diag(DRE->getDecl()->getLocation(),
2462 diag::note_template_arg_refers_here);
2463 return true;
2464}
2465
2466/// \brief Check a template argument against its corresponding
2467/// non-type template parameter.
2468///
2469/// This routine implements the semantics of C++ [temp.arg.nontype].
2470/// It returns true if an error occurred, and false otherwise. \p
2471/// InstantiatedParamType is the type of the non-type template
2472/// parameter after it has been instantiated.
2473///
2474/// If no error was detected, Converted receives the converted template argument.
2475bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
2476 QualType InstantiatedParamType, Expr *&Arg,
2477 TemplateArgument &Converted) {
2478 SourceLocation StartLoc = Arg->getSourceRange().getBegin();
2479
2480 // If either the parameter has a dependent type or the argument is
2481 // type-dependent, there's nothing we can check now.
2482 // FIXME: Add template argument to Converted!
2483 if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
2484 // FIXME: Produce a cloned, canonical expression?
2485 Converted = TemplateArgument(Arg);
2486 return false;
2487 }
2488
2489 // C++ [temp.arg.nontype]p5:
2490 // The following conversions are performed on each expression used
2491 // as a non-type template-argument. If a non-type
2492 // template-argument cannot be converted to the type of the
2493 // corresponding template-parameter then the program is
2494 // ill-formed.
2495 //
2496 // -- for a non-type template-parameter of integral or
2497 // enumeration type, integral promotions (4.5) and integral
2498 // conversions (4.7) are applied.
2499 QualType ParamType = InstantiatedParamType;
2500 QualType ArgType = Arg->getType();
2501 if (ParamType->isIntegralType() || ParamType->isEnumeralType()) {
2502 // C++ [temp.arg.nontype]p1:
2503 // A template-argument for a non-type, non-template
2504 // template-parameter shall be one of:
2505 //
2506 // -- an integral constant-expression of integral or enumeration
2507 // type; or
2508 // -- the name of a non-type template-parameter; or
2509 SourceLocation NonConstantLoc;
2510 llvm::APSInt Value;
2511 if (!ArgType->isIntegralType() && !ArgType->isEnumeralType()) {
2512 Diag(Arg->getSourceRange().getBegin(),
2513 diag::err_template_arg_not_integral_or_enumeral)
2514 << ArgType << Arg->getSourceRange();
2515 Diag(Param->getLocation(), diag::note_template_param_here);
2516 return true;
2517 } else if (!Arg->isValueDependent() &&
2518 !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
2519 Diag(NonConstantLoc, diag::err_template_arg_not_ice)
2520 << ArgType << Arg->getSourceRange();
2521 return true;
2522 }
2523
2524 // FIXME: We need some way to more easily get the unqualified form
2525 // of the types without going all the way to the
2526 // canonical type.
2527 if (Context.getCanonicalType(ParamType).getCVRQualifiers())
2528 ParamType = Context.getCanonicalType(ParamType).getUnqualifiedType();
2529 if (Context.getCanonicalType(ArgType).getCVRQualifiers())
2530 ArgType = Context.getCanonicalType(ArgType).getUnqualifiedType();
2531
2532 // Try to convert the argument to the parameter's type.
2533 if (Context.hasSameType(ParamType, ArgType)) {
2534 // Okay: no conversion necessary
2535 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
2536 !ParamType->isEnumeralType()) {
2537 // This is an integral promotion or conversion.
2538 ImpCastExprToType(Arg, ParamType, CastExpr::CK_IntegralCast);
2539 } else {
2540 // We can't perform this conversion.
2541 Diag(Arg->getSourceRange().getBegin(),
2542 diag::err_template_arg_not_convertible)
2543 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2544 Diag(Param->getLocation(), diag::note_template_param_here);
2545 return true;
2546 }
2547
2548 QualType IntegerType = Context.getCanonicalType(ParamType);
2549 if (const EnumType *Enum = IntegerType->getAs<EnumType>())
2550 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
2551
2552 if (!Arg->isValueDependent()) {
2553 // Check that an unsigned parameter does not receive a negative
2554 // value.
2555 if (IntegerType->isUnsignedIntegerType()
2556 && (Value.isSigned() && Value.isNegative())) {
2557 Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_negative)
2558 << Value.toString(10) << Param->getType()
2559 << Arg->getSourceRange();
2560 Diag(Param->getLocation(), diag::note_template_param_here);
2561 return true;
2562 }
2563
2564 // Check that we don't overflow the template parameter type.
2565 unsigned AllowedBits = Context.getTypeSize(IntegerType);
2566 unsigned RequiredBits;
2567 if (IntegerType->isUnsignedIntegerType())
2568 RequiredBits = Value.getActiveBits();
2569 else if (Value.isUnsigned())
2570 RequiredBits = Value.getActiveBits() + 1;
2571 else
2572 RequiredBits = Value.getMinSignedBits();
2573 if (RequiredBits > AllowedBits) {
2574 Diag(Arg->getSourceRange().getBegin(),
2575 diag::err_template_arg_too_large)
2576 << Value.toString(10) << Param->getType()
2577 << Arg->getSourceRange();
2578 Diag(Param->getLocation(), diag::note_template_param_here);
2579 return true;
2580 }
2581
2582 if (Value.getBitWidth() != AllowedBits)
2583 Value.extOrTrunc(AllowedBits);
2584 Value.setIsSigned(IntegerType->isSignedIntegerType());
2585 }
2586
2587 // Add the value of this argument to the list of converted
2588 // arguments. We use the bitwidth and signedness of the template
2589 // parameter.
2590 if (Arg->isValueDependent()) {
2591 // The argument is value-dependent. Create a new
2592 // TemplateArgument with the converted expression.
2593 Converted = TemplateArgument(Arg);
2594 return false;
2595 }
2596
2597 Converted = TemplateArgument(Value,
2598 ParamType->isEnumeralType() ? ParamType
2599 : IntegerType);
2600 return false;
2601 }
2602
2603 // Handle pointer-to-function, reference-to-function, and
2604 // pointer-to-member-function all in (roughly) the same way.
2605 if (// -- For a non-type template-parameter of type pointer to
2606 // function, only the function-to-pointer conversion (4.3) is
2607 // applied. If the template-argument represents a set of
2608 // overloaded functions (or a pointer to such), the matching
2609 // function is selected from the set (13.4).
2610 // In C++0x, any std::nullptr_t value can be converted.
2611 (ParamType->isPointerType() &&
2612 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
2613 // -- For a non-type template-parameter of type reference to
2614 // function, no conversions apply. If the template-argument
2615 // represents a set of overloaded functions, the matching
2616 // function is selected from the set (13.4).
2617 (ParamType->isReferenceType() &&
2618 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
2619 // -- For a non-type template-parameter of type pointer to
2620 // member function, no conversions apply. If the
2621 // template-argument represents a set of overloaded member
2622 // functions, the matching member function is selected from
2623 // the set (13.4).
2624 // Again, C++0x allows a std::nullptr_t value.
2625 (ParamType->isMemberPointerType() &&
2626 ParamType->getAs<MemberPointerType>()->getPointeeType()
2627 ->isFunctionType())) {
2628 if (Context.hasSameUnqualifiedType(ArgType,
2629 ParamType.getNonReferenceType())) {
2630 // We don't have to do anything: the types already match.
2631 } else if (ArgType->isNullPtrType() && (ParamType->isPointerType() ||
2632 ParamType->isMemberPointerType())) {
2633 ArgType = ParamType;
2634 if (ParamType->isMemberPointerType())
2635 ImpCastExprToType(Arg, ParamType, CastExpr::CK_NullToMemberPointer);
2636 else
2637 ImpCastExprToType(Arg, ParamType, CastExpr::CK_BitCast);
2638 } else if (ArgType->isFunctionType() && ParamType->isPointerType()) {
2639 ArgType = Context.getPointerType(ArgType);
2640 ImpCastExprToType(Arg, ArgType, CastExpr::CK_FunctionToPointerDecay);
2641 } else if (FunctionDecl *Fn
2642 = ResolveAddressOfOverloadedFunction(Arg, ParamType, true)) {
2643 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
2644 return true;
2645
2646 Arg = FixOverloadedFunctionReference(Arg, Fn);
2647 ArgType = Arg->getType();
2648 if (ArgType->isFunctionType() && ParamType->isPointerType()) {
2649 ArgType = Context.getPointerType(Arg->getType());
2650 ImpCastExprToType(Arg, ArgType, CastExpr::CK_FunctionToPointerDecay);
2651 }
2652 }
2653
2654 if (!Context.hasSameUnqualifiedType(ArgType,
2655 ParamType.getNonReferenceType())) {
2656 // We can't perform this conversion.
2657 Diag(Arg->getSourceRange().getBegin(),
2658 diag::err_template_arg_not_convertible)
2659 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2660 Diag(Param->getLocation(), diag::note_template_param_here);
2661 return true;
2662 }
2663
2664 if (ParamType->isMemberPointerType())
2665 return CheckTemplateArgumentPointerToMember(Arg, Converted);
2666
2667 NamedDecl *Entity = 0;
2668 if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
2669 return true;
2670
2671 if (Arg->isValueDependent()) {
2672 Converted = TemplateArgument(Arg);
2673 } else {
2674 if (Entity)
2675 Entity = cast<NamedDecl>(Entity->getCanonicalDecl());
2676 Converted = TemplateArgument(Entity);
2677 }
2678 return false;
2679 }
2680
2681 if (ParamType->isPointerType()) {
2682 // -- for a non-type template-parameter of type pointer to
2683 // object, qualification conversions (4.4) and the
2684 // array-to-pointer conversion (4.2) are applied.
2685 // C++0x also allows a value of std::nullptr_t.
2686 assert(ParamType->getAs<PointerType>()->getPointeeType()->isObjectType() &&
2687 "Only object pointers allowed here");
2688
2689 if (ArgType->isNullPtrType()) {
2690 ArgType = ParamType;
2691 ImpCastExprToType(Arg, ParamType, CastExpr::CK_BitCast);
2692 } else if (ArgType->isArrayType()) {
2693 ArgType = Context.getArrayDecayedType(ArgType);
2694 ImpCastExprToType(Arg, ArgType, CastExpr::CK_ArrayToPointerDecay);
2695 }
2696
2697 if (IsQualificationConversion(ArgType, ParamType)) {
2698 ArgType = ParamType;
2699 ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp);
2700 }
2701
2702 if (!Context.hasSameUnqualifiedType(ArgType, ParamType)) {
2703 // We can't perform this conversion.
2704 Diag(Arg->getSourceRange().getBegin(),
2705 diag::err_template_arg_not_convertible)
2706 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2707 Diag(Param->getLocation(), diag::note_template_param_here);
2708 return true;
2709 }
2710
2711 NamedDecl *Entity = 0;
2712 if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
2713 return true;
2714
2715 if (Arg->isValueDependent()) {
2716 Converted = TemplateArgument(Arg);
2717 } else {
2718 if (Entity)
2719 Entity = cast<NamedDecl>(Entity->getCanonicalDecl());
2720 Converted = TemplateArgument(Entity);
2721 }
2722 return false;
2723 }
2724
2725 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
2726 // -- For a non-type template-parameter of type reference to
2727 // object, no conversions apply. The type referred to by the
2728 // reference may be more cv-qualified than the (otherwise
2729 // identical) type of the template-argument. The
2730 // template-parameter is bound directly to the
2731 // template-argument, which must be an lvalue.
2732 assert(ParamRefType->getPointeeType()->isObjectType() &&
2733 "Only object references allowed here");
2734
2735 QualType ReferredType = ParamRefType->getPointeeType();
2736 if (!Context.hasSameUnqualifiedType(ReferredType, ArgType)) {
2737 Diag(Arg->getSourceRange().getBegin(),
2738 diag::err_template_arg_no_ref_bind)
2739 << InstantiatedParamType << Arg->getType()
2740 << Arg->getSourceRange();
2741 Diag(Param->getLocation(), diag::note_template_param_here);
2742 return true;
2743 }
2744
2745 unsigned ParamQuals
2746 = Context.getCanonicalType(ReferredType).getCVRQualifiers();
2747 unsigned ArgQuals = Context.getCanonicalType(ArgType).getCVRQualifiers();
2748
2749 if ((ParamQuals | ArgQuals) != ParamQuals) {
2750 Diag(Arg->getSourceRange().getBegin(),
2751 diag::err_template_arg_ref_bind_ignores_quals)
2752 << InstantiatedParamType << Arg->getType()
2753 << Arg->getSourceRange();
2754 Diag(Param->getLocation(), diag::note_template_param_here);
2755 return true;
2756 }
2757
2758 NamedDecl *Entity = 0;
2759 if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
2760 return true;
2761
2762 if (Arg->isValueDependent()) {
2763 Converted = TemplateArgument(Arg);
2764 } else {
2765 Entity = cast<NamedDecl>(Entity->getCanonicalDecl());
2766 Converted = TemplateArgument(Entity);
2767 }
2768 return false;
2769 }
2770
2771 // -- For a non-type template-parameter of type pointer to data
2772 // member, qualification conversions (4.4) are applied.
2773 // C++0x allows std::nullptr_t values.
2774 assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
2775
2776 if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
2777 // Types match exactly: nothing more to do here.
2778 } else if (ArgType->isNullPtrType()) {
2779 ImpCastExprToType(Arg, ParamType, CastExpr::CK_NullToMemberPointer);
2780 } else if (IsQualificationConversion(ArgType, ParamType)) {
2781 ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp);
2782 } else {
2783 // We can't perform this conversion.
2784 Diag(Arg->getSourceRange().getBegin(),
2785 diag::err_template_arg_not_convertible)
2786 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2787 Diag(Param->getLocation(), diag::note_template_param_here);
2788 return true;
2789 }
2790
2791 return CheckTemplateArgumentPointerToMember(Arg, Converted);
2792}
2793
2794/// \brief Check a template argument against its corresponding
2795/// template template parameter.
2796///
2797/// This routine implements the semantics of C++ [temp.arg.template].
2798/// It returns true if an error occurred, and false otherwise.
2799bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
2800 const TemplateArgumentLoc &Arg) {
2801 TemplateName Name = Arg.getArgument().getAsTemplate();
2802 TemplateDecl *Template = Name.getAsTemplateDecl();
2803 if (!Template) {
2804 // Any dependent template name is fine.
2805 assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
2806 return false;
2807 }
2808
2809 // C++ [temp.arg.template]p1:
2810 // A template-argument for a template template-parameter shall be
2811 // the name of a class template, expressed as id-expression. Only
2812 // primary class templates are considered when matching the
2813 // template template argument with the corresponding parameter;
2814 // partial specializations are not considered even if their
2815 // parameter lists match that of the template template parameter.
2816 //
2817 // Note that we also allow template template parameters here, which
2818 // will happen when we are dealing with, e.g., class template
2819 // partial specializations.
2820 if (!isa<ClassTemplateDecl>(Template) &&
2821 !isa<TemplateTemplateParmDecl>(Template)) {
2822 assert(isa<FunctionTemplateDecl>(Template) &&
2823 "Only function templates are possible here");
2824 Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
2825 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
2826 << Template;
2827 }
2828
2829 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
2830 Param->getTemplateParameters(),
2831 true,
2832 TPL_TemplateTemplateArgumentMatch,
2833 Arg.getLocation());
2834}
2835
2836/// \brief Determine whether the given template parameter lists are
2837/// equivalent.
2838///
2839/// \param New The new template parameter list, typically written in the
2840/// source code as part of a new template declaration.
2841///
2842/// \param Old The old template parameter list, typically found via
2843/// name lookup of the template declared with this template parameter
2844/// list.
2845///
2846/// \param Complain If true, this routine will produce a diagnostic if
2847/// the template parameter lists are not equivalent.
2848///
2849/// \param Kind describes how we are to match the template parameter lists.
2850///
2851/// \param TemplateArgLoc If this source location is valid, then we
2852/// are actually checking the template parameter list of a template
2853/// argument (New) against the template parameter list of its
2854/// corresponding template template parameter (Old). We produce
2855/// slightly different diagnostics in this scenario.
2856///
2857/// \returns True if the template parameter lists are equal, false
2858/// otherwise.
2859bool
2860Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
2861 TemplateParameterList *Old,
2862 bool Complain,
2863 TemplateParameterListEqualKind Kind,
2864 SourceLocation TemplateArgLoc) {
2865 if (Old->size() != New->size()) {
2866 if (Complain) {
2867 unsigned NextDiag = diag::err_template_param_list_different_arity;
2868 if (TemplateArgLoc.isValid()) {
2869 Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
2870 NextDiag = diag::note_template_param_list_different_arity;
2871 }
2872 Diag(New->getTemplateLoc(), NextDiag)
2873 << (New->size() > Old->size())
2874 << (Kind != TPL_TemplateMatch)
2875 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
2876 Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
2877 << (Kind != TPL_TemplateMatch)
2878 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
2879 }
2880
2881 return false;
2882 }
2883
2884 for (TemplateParameterList::iterator OldParm = Old->begin(),
2885 OldParmEnd = Old->end(), NewParm = New->begin();
2886 OldParm != OldParmEnd; ++OldParm, ++NewParm) {
2887 if ((*OldParm)->getKind() != (*NewParm)->getKind()) {
2888 if (Complain) {
2889 unsigned NextDiag = diag::err_template_param_different_kind;
2890 if (TemplateArgLoc.isValid()) {
2891 Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
2892 NextDiag = diag::note_template_param_different_kind;
2893 }
2894 Diag((*NewParm)->getLocation(), NextDiag)
2895 << (Kind != TPL_TemplateMatch);
2896 Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration)
2897 << (Kind != TPL_TemplateMatch);
2898 }
2899 return false;
2900 }
2901
2902 if (isa<TemplateTypeParmDecl>(*OldParm)) {
2903 // Okay; all template type parameters are equivalent (since we
2904 // know we're at the same index).
2905 } else if (NonTypeTemplateParmDecl *OldNTTP
2906 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) {
2907 // The types of non-type template parameters must agree.
2908 NonTypeTemplateParmDecl *NewNTTP
2909 = cast<NonTypeTemplateParmDecl>(*NewParm);
2910
2911 // If we are matching a template template argument to a template
2912 // template parameter and one of the non-type template parameter types
2913 // is dependent, then we must wait until template instantiation time
2914 // to actually compare the arguments.
2915 if (Kind == TPL_TemplateTemplateArgumentMatch &&
2916 (OldNTTP->getType()->isDependentType() ||
2917 NewNTTP->getType()->isDependentType()))
2918 continue;
2919
2920 if (Context.getCanonicalType(OldNTTP->getType()) !=
2921 Context.getCanonicalType(NewNTTP->getType())) {
2922 if (Complain) {
2923 unsigned NextDiag = diag::err_template_nontype_parm_different_type;
2924 if (TemplateArgLoc.isValid()) {
2925 Diag(TemplateArgLoc,
2926 diag::err_template_arg_template_params_mismatch);
2927 NextDiag = diag::note_template_nontype_parm_different_type;
2928 }
2929 Diag(NewNTTP->getLocation(), NextDiag)
2930 << NewNTTP->getType()
2931 << (Kind != TPL_TemplateMatch);
2932 Diag(OldNTTP->getLocation(),
2933 diag::note_template_nontype_parm_prev_declaration)
2934 << OldNTTP->getType();
2935 }
2936 return false;
2937 }
2938 } else {
2939 // The template parameter lists of template template
2940 // parameters must agree.
2941 assert(isa<TemplateTemplateParmDecl>(*OldParm) &&
2942 "Only template template parameters handled here");
2943 TemplateTemplateParmDecl *OldTTP
2944 = cast<TemplateTemplateParmDecl>(*OldParm);
2945 TemplateTemplateParmDecl *NewTTP
2946 = cast<TemplateTemplateParmDecl>(*NewParm);
2947 if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
2948 OldTTP->getTemplateParameters(),
2949 Complain,
2950 (Kind == TPL_TemplateMatch? TPL_TemplateTemplateParmMatch : Kind),
2951 TemplateArgLoc))
2952 return false;
2953 }
2954 }
2955
2956 return true;
2957}
2958
2959/// \brief Check whether a template can be declared within this scope.
2960///
2961/// If the template declaration is valid in this scope, returns
2962/// false. Otherwise, issues a diagnostic and returns true.
2963bool
2964Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
2965 // Find the nearest enclosing declaration scope.
2966 while ((S->getFlags() & Scope::DeclScope) == 0 ||
2967 (S->getFlags() & Scope::TemplateParamScope) != 0)
2968 S = S->getParent();
2969
2970 // C++ [temp]p2:
2971 // A template-declaration can appear only as a namespace scope or
2972 // class scope declaration.
2973 DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
2974 if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
2975 cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
2976 return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
2977 << TemplateParams->getSourceRange();
2978
2979 while (Ctx && isa<LinkageSpecDecl>(Ctx))
2980 Ctx = Ctx->getParent();
2981
2982 if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
2983 return false;
2984
2985 return Diag(TemplateParams->getTemplateLoc(),
2986 diag::err_template_outside_namespace_or_class_scope)
2987 << TemplateParams->getSourceRange();
2988}
2989
2990/// \brief Determine what kind of template specialization the given declaration
2991/// is.
2992static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) {
2993 if (!D)
2994 return TSK_Undeclared;
2995
2996 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
2997 return Record->getTemplateSpecializationKind();
2998 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
2999 return Function->getTemplateSpecializationKind();
3000 if (VarDecl *Var = dyn_cast<VarDecl>(D))
3001 return Var->getTemplateSpecializationKind();
3002
3003 return TSK_Undeclared;
3004}
3005
3006/// \brief Check whether a specialization is well-formed in the current
3007/// context.
3008///
3009/// This routine determines whether a template specialization can be declared
3010/// in the current context (C++ [temp.expl.spec]p2).
3011///
3012/// \param S the semantic analysis object for which this check is being
3013/// performed.
3014///
3015/// \param Specialized the entity being specialized or instantiated, which
3016/// may be a kind of template (class template, function template, etc.) or
3017/// a member of a class template (member function, static data member,
3018/// member class).
3019///
3020/// \param PrevDecl the previous declaration of this entity, if any.
3021///
3022/// \param Loc the location of the explicit specialization or instantiation of
3023/// this entity.
3024///
3025/// \param IsPartialSpecialization whether this is a partial specialization of
3026/// a class template.
3027///
3028/// \returns true if there was an error that we cannot recover from, false
3029/// otherwise.
3030static bool CheckTemplateSpecializationScope(Sema &S,
3031 NamedDecl *Specialized,
3032 NamedDecl *PrevDecl,
3033 SourceLocation Loc,
3034 bool IsPartialSpecialization) {
3035 // Keep these "kind" numbers in sync with the %select statements in the
3036 // various diagnostics emitted by this routine.
3037 int EntityKind = 0;
3038 bool isTemplateSpecialization = false;
3039 if (isa<ClassTemplateDecl>(Specialized)) {
3040 EntityKind = IsPartialSpecialization? 1 : 0;
3041 isTemplateSpecialization = true;
3042 } else if (isa<FunctionTemplateDecl>(Specialized)) {
3043 EntityKind = 2;
3044 isTemplateSpecialization = true;
3045 } else if (isa<CXXMethodDecl>(Specialized))
3046 EntityKind = 3;
3047 else if (isa<VarDecl>(Specialized))
3048 EntityKind = 4;
3049 else if (isa<RecordDecl>(Specialized))
3050 EntityKind = 5;
3051 else {
3052 S.Diag(Loc, diag::err_template_spec_unknown_kind);
3053 S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3054 return true;
3055 }
3056
3057 // C++ [temp.expl.spec]p2:
3058 // An explicit specialization shall be declared in the namespace
3059 // of which the template is a member, or, for member templates, in
3060 // the namespace of which the enclosing class or enclosing class
3061 // template is a member. An explicit specialization of a member
3062 // function, member class or static data member of a class
3063 // template shall be declared in the namespace of which the class
3064 // template is a member. Such a declaration may also be a
3065 // definition. If the declaration is not a definition, the
3066 // specialization may be defined later in the name- space in which
3067 // the explicit specialization was declared, or in a namespace
3068 // that encloses the one in which the explicit specialization was
3069 // declared.
3070 if (S.CurContext->getLookupContext()->isFunctionOrMethod()) {
3071 S.Diag(Loc, diag::err_template_spec_decl_function_scope)
3072 << Specialized;
3073 return true;
3074 }
3075
3076 if (S.CurContext->isRecord() && !IsPartialSpecialization) {
3077 S.Diag(Loc, diag::err_template_spec_decl_class_scope)
3078 << Specialized;
3079 return true;
3080 }
3081
3082 // C++ [temp.class.spec]p6:
3083 // A class template partial specialization may be declared or redeclared
3084 // in any namespace scope in which its definition may be defined (14.5.1
3085 // and 14.5.2).
3086 bool ComplainedAboutScope = false;
3087 DeclContext *SpecializedContext
3088 = Specialized->getDeclContext()->getEnclosingNamespaceContext();
3089 DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
3090 if ((!PrevDecl ||
3091 getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
3092 getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
3093 // There is no prior declaration of this entity, so this
3094 // specialization must be in the same context as the template
3095 // itself.
3096 if (!DC->Equals(SpecializedContext)) {
3097 if (isa<TranslationUnitDecl>(SpecializedContext))
3098 S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global)
3099 << EntityKind << Specialized;
3100 else if (isa<NamespaceDecl>(SpecializedContext))
3101 S.Diag(Loc, diag::err_template_spec_decl_out_of_scope)
3102 << EntityKind << Specialized
3103 << cast<NamedDecl>(SpecializedContext);
3104
3105 S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3106 ComplainedAboutScope = true;
3107 }
3108 }
3109
3110 // Make sure that this redeclaration (or definition) occurs in an enclosing
3111 // namespace.
3112 // Note that HandleDeclarator() performs this check for explicit
3113 // specializations of function templates, static data members, and member
3114 // functions, so we skip the check here for those kinds of entities.
3115 // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
3116 // Should we refactor that check, so that it occurs later?
3117 if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
3118 !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
3119 isa<FunctionDecl>(Specialized))) {
3120 if (isa<TranslationUnitDecl>(SpecializedContext))
3121 S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
3122 << EntityKind << Specialized;
3123 else if (isa<NamespaceDecl>(SpecializedContext))
3124 S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
3125 << EntityKind << Specialized
3126 << cast<NamedDecl>(SpecializedContext);
3127
3128 S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3129 }
3130
3131 // FIXME: check for specialization-after-instantiation errors and such.
3132
3133 return false;
3134}
3135
3136/// \brief Check the non-type template arguments of a class template
3137/// partial specialization according to C++ [temp.class.spec]p9.
3138///
3139/// \param TemplateParams the template parameters of the primary class
3140/// template.
3141///
3142/// \param TemplateArg the template arguments of the class template
3143/// partial specialization.
3144///
3145/// \param MirrorsPrimaryTemplate will be set true if the class
3146/// template partial specialization arguments are identical to the
3147/// implicit template arguments of the primary template. This is not
3148/// necessarily an error (C++0x), and it is left to the caller to diagnose
3149/// this condition when it is an error.
3150///
3151/// \returns true if there was an error, false otherwise.
3152bool Sema::CheckClassTemplatePartialSpecializationArgs(
3153 TemplateParameterList *TemplateParams,
3154 const TemplateArgumentListBuilder &TemplateArgs,
3155 bool &MirrorsPrimaryTemplate) {
3156 // FIXME: the interface to this function will have to change to
3157 // accommodate variadic templates.
3158 MirrorsPrimaryTemplate = true;
3159
3160 const TemplateArgument *ArgList = TemplateArgs.getFlatArguments();
3161
3162 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
3163 // Determine whether the template argument list of the partial
3164 // specialization is identical to the implicit argument list of
3165 // the primary template. The caller may need to diagnostic this as
3166 // an error per C++ [temp.class.spec]p9b3.
3167 if (MirrorsPrimaryTemplate) {
3168 if (TemplateTypeParmDecl *TTP
3169 = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) {
3170 if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) !=
3171 Context.getCanonicalType(ArgList[I].getAsType()))
3172 MirrorsPrimaryTemplate = false;
3173 } else if (TemplateTemplateParmDecl *TTP
3174 = dyn_cast<TemplateTemplateParmDecl>(
3175 TemplateParams->getParam(I))) {
3176 TemplateName Name = ArgList[I].getAsTemplate();
3177 TemplateTemplateParmDecl *ArgDecl
3178 = dyn_cast_or_null<TemplateTemplateParmDecl>(Name.getAsTemplateDecl());
3179 if (!ArgDecl ||
3180 ArgDecl->getIndex() != TTP->getIndex() ||
3181 ArgDecl->getDepth() != TTP->getDepth())
3182 MirrorsPrimaryTemplate = false;
3183 }
3184 }
3185
3186 NonTypeTemplateParmDecl *Param
3187 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
3188 if (!Param) {
3189 continue;
3190 }
3191
3192 Expr *ArgExpr = ArgList[I].getAsExpr();
3193 if (!ArgExpr) {
3194 MirrorsPrimaryTemplate = false;
3195 continue;
3196 }
3197
3198 // C++ [temp.class.spec]p8:
3199 // A non-type argument is non-specialized if it is the name of a
3200 // non-type parameter. All other non-type arguments are
3201 // specialized.
3202 //
3203 // Below, we check the two conditions that only apply to
3204 // specialized non-type arguments, so skip any non-specialized
3205 // arguments.
3206 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
3207 if (NonTypeTemplateParmDecl *NTTP
3208 = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) {
3209 if (MirrorsPrimaryTemplate &&
3210 (Param->getIndex() != NTTP->getIndex() ||
3211 Param->getDepth() != NTTP->getDepth()))
3212 MirrorsPrimaryTemplate = false;
3213
3214 continue;
3215 }
3216
3217 // C++ [temp.class.spec]p9:
3218 // Within the argument list of a class template partial
3219 // specialization, the following restrictions apply:
3220 // -- A partially specialized non-type argument expression
3221 // shall not involve a template parameter of the partial
3222 // specialization except when the argument expression is a
3223 // simple identifier.
3224 if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
3225 Diag(ArgExpr->getLocStart(),
3226 diag::err_dependent_non_type_arg_in_partial_spec)
3227 << ArgExpr->getSourceRange();
3228 return true;
3229 }
3230
3231 // -- The type of a template parameter corresponding to a
3232 // specialized non-type argument shall not be dependent on a
3233 // parameter of the specialization.
3234 if (Param->getType()->isDependentType()) {
3235 Diag(ArgExpr->getLocStart(),
3236 diag::err_dependent_typed_non_type_arg_in_partial_spec)
3237 << Param->getType()
3238 << ArgExpr->getSourceRange();
3239 Diag(Param->getLocation(), diag::note_template_param_here);
3240 return true;
3241 }
3242
3243 MirrorsPrimaryTemplate = false;
3244 }
3245
3246 return false;
3247}
3248
3249Sema::DeclResult
3250Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
3251 TagUseKind TUK,
3252 SourceLocation KWLoc,
3253 const CXXScopeSpec &SS,
3254 TemplateTy TemplateD,
3255 SourceLocation TemplateNameLoc,
3256 SourceLocation LAngleLoc,
3257 ASTTemplateArgsPtr TemplateArgsIn,
3258 SourceLocation RAngleLoc,
3259 AttributeList *Attr,
3260 MultiTemplateParamsArg TemplateParameterLists) {
3261 assert(TUK != TUK_Reference && "References are not specializations");
3262
3263 // Find the class template we're specializing
3264 TemplateName Name = TemplateD.getAsVal<TemplateName>();
3265 ClassTemplateDecl *ClassTemplate
3266 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
3267
3268 if (!ClassTemplate) {
3269 Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
3270 << (Name.getAsTemplateDecl() &&
3271 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
3272 return true;
3273 }
3274
3275 bool isExplicitSpecialization = false;
3276 bool isPartialSpecialization = false;
3277
3278 // Check the validity of the template headers that introduce this
3279 // template.
3280 // FIXME: We probably shouldn't complain about these headers for
3281 // friend declarations.
3282 TemplateParameterList *TemplateParams
3283 = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS,
3284 (TemplateParameterList**)TemplateParameterLists.get(),
3285 TemplateParameterLists.size(),
3286 isExplicitSpecialization);
3287 if (TemplateParams && TemplateParams->size() > 0) {
3288 isPartialSpecialization = true;
3289
3290 // C++ [temp.class.spec]p10:
3291 // The template parameter list of a specialization shall not
3292 // contain default template argument values.
3293 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
3294 Decl *Param = TemplateParams->getParam(I);
3295 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
3296 if (TTP->hasDefaultArgument()) {
3297 Diag(TTP->getDefaultArgumentLoc(),
3298 diag::err_default_arg_in_partial_spec);
3299 TTP->removeDefaultArgument();
3300 }
3301 } else if (NonTypeTemplateParmDecl *NTTP
3302 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3303 if (Expr *DefArg = NTTP->getDefaultArgument()) {
3304 Diag(NTTP->getDefaultArgumentLoc(),
3305 diag::err_default_arg_in_partial_spec)
3306 << DefArg->getSourceRange();
3307 NTTP->setDefaultArgument(0);
3308 DefArg->Destroy(Context);
3309 }
3310 } else {
3311 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
3312 if (TTP->hasDefaultArgument()) {
3313 Diag(TTP->getDefaultArgument().getLocation(),
3314 diag::err_default_arg_in_partial_spec)
3315 << TTP->getDefaultArgument().getSourceRange();
3316 TTP->setDefaultArgument(TemplateArgumentLoc());
3317 }
3318 }
3319 }
3320 } else if (TemplateParams) {
3321 if (TUK == TUK_Friend)
3322 Diag(KWLoc, diag::err_template_spec_friend)
3323 << CodeModificationHint::CreateRemoval(
3324 SourceRange(TemplateParams->getTemplateLoc(),
3325 TemplateParams->getRAngleLoc()))
3326 << SourceRange(LAngleLoc, RAngleLoc);
3327 else
3328 isExplicitSpecialization = true;
3329 } else if (TUK != TUK_Friend) {
3330 Diag(KWLoc, diag::err_template_spec_needs_header)
3331 << CodeModificationHint::CreateInsertion(KWLoc, "template<> ");
3332 isExplicitSpecialization = true;
3333 }
3334
3335 // Check that the specialization uses the same tag kind as the
3336 // original template.
3337 TagDecl::TagKind Kind;
3338 switch (TagSpec) {
3339 default: assert(0 && "Unknown tag type!");
3340 case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3341 case DeclSpec::TST_union: Kind = TagDecl::TK_union; break;
3342 case DeclSpec::TST_class: Kind = TagDecl::TK_class; break;
3343 }
3344 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
3345 Kind, KWLoc,
3346 *ClassTemplate->getIdentifier())) {
3347 Diag(KWLoc, diag::err_use_with_wrong_tag)
3348 << ClassTemplate
3349 << CodeModificationHint::CreateReplacement(KWLoc,
3350 ClassTemplate->getTemplatedDecl()->getKindName());
3351 Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
3352 diag::note_previous_use);
3353 Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
3354 }
3355
3356 // Translate the parser's template argument list in our AST format.
3357 TemplateArgumentListInfo TemplateArgs;
3358 TemplateArgs.setLAngleLoc(LAngleLoc);
3359 TemplateArgs.setRAngleLoc(RAngleLoc);
3360 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
3361
3362 // Check that the template argument list is well-formed for this
3363 // template.
3364 TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
3365 TemplateArgs.size());
3366 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
3367 TemplateArgs, false, Converted))
3368 return true;
3369
3370 assert((Converted.structuredSize() ==
3371 ClassTemplate->getTemplateParameters()->size()) &&
3372 "Converted template argument list is too short!");
3373
3374 // Find the class template (partial) specialization declaration that
3375 // corresponds to these arguments.
3376 llvm::FoldingSetNodeID ID;
3377 if (isPartialSpecialization) {
3378 bool MirrorsPrimaryTemplate;
3379 if (CheckClassTemplatePartialSpecializationArgs(
3380 ClassTemplate->getTemplateParameters(),
3381 Converted, MirrorsPrimaryTemplate))
3382 return true;
3383
3384 if (MirrorsPrimaryTemplate) {
3385 // C++ [temp.class.spec]p9b3:
3386 //
3387 // -- The argument list of the specialization shall not be identical
3388 // to the implicit argument list of the primary template.
3389 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
3390 << (TUK == TUK_Definition)
3391 << CodeModificationHint::CreateRemoval(SourceRange(LAngleLoc,
3392 RAngleLoc));
3393 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
3394 ClassTemplate->getIdentifier(),
3395 TemplateNameLoc,
3396 Attr,
3397 TemplateParams,
3398 AS_none);
3399 }
3400
3401 // FIXME: Diagnose friend partial specializations
3402
3403 if (!Name.isDependent() &&
3404 !TemplateSpecializationType::anyDependentTemplateArguments(
3405 TemplateArgs.getArgumentArray(),
3406 TemplateArgs.size())) {
3407 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
3408 << ClassTemplate->getDeclName();
3409 isPartialSpecialization = false;
3410 } else {
3411 // FIXME: Template parameter list matters, too
3412 ClassTemplatePartialSpecializationDecl::Profile(ID,
3413 Converted.getFlatArguments(),
3414 Converted.flatSize(),
3415 Context);
3416 }
3417 }
3418
3419 if (!isPartialSpecialization)
3420 ClassTemplateSpecializationDecl::Profile(ID,
3421 Converted.getFlatArguments(),
3422 Converted.flatSize(),
3423 Context);
3424 void *InsertPos = 0;
3425 ClassTemplateSpecializationDecl *PrevDecl = 0;
3426
3427 if (isPartialSpecialization)
3428 PrevDecl
3429 = ClassTemplate->getPartialSpecializations().FindNodeOrInsertPos(ID,
3430 InsertPos);
3431 else
3432 PrevDecl
3433 = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
3434
3435 ClassTemplateSpecializationDecl *Specialization = 0;
3436
3437 // Check whether we can declare a class template specialization in
3438 // the current scope.
3439 if (TUK != TUK_Friend &&
3440 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
3441 TemplateNameLoc,
3442 isPartialSpecialization))
3443 return true;
3444
3445 // The canonical type
3446 QualType CanonType;
3447 if (PrevDecl &&
3448 (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
3449 TUK == TUK_Friend)) {
3450 // Since the only prior class template specialization with these
3451 // arguments was referenced but not declared, or we're only
3452 // referencing this specialization as a friend, reuse that
3453 // declaration node as our own, updating its source location to
3454 // reflect our new declaration.
3455 Specialization = PrevDecl;
3456 Specialization->setLocation(TemplateNameLoc);
3457 PrevDecl = 0;
3458 CanonType = Context.getTypeDeclType(Specialization);
3459 } else if (isPartialSpecialization) {
3460 // Build the canonical type that describes the converted template
3461 // arguments of the class template partial specialization.
3462 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
3463 CanonType = Context.getTemplateSpecializationType(CanonTemplate,
3464 Converted.getFlatArguments(),
3465 Converted.flatSize());
3466
3467 // Create a new class template partial specialization declaration node.
3468 ClassTemplatePartialSpecializationDecl *PrevPartial
3469 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
3470 ClassTemplatePartialSpecializationDecl *Partial
3471 = ClassTemplatePartialSpecializationDecl::Create(Context,
3472 ClassTemplate->getDeclContext(),
3473 TemplateNameLoc,
3474 TemplateParams,
3475 ClassTemplate,
3476 Converted,
3477 TemplateArgs,
3478 PrevPartial);
3479
3480 if (PrevPartial) {
3481 ClassTemplate->getPartialSpecializations().RemoveNode(PrevPartial);
3482 ClassTemplate->getPartialSpecializations().GetOrInsertNode(Partial);
3483 } else {
3484 ClassTemplate->getPartialSpecializations().InsertNode(Partial, InsertPos);
3485 }
3486 Specialization = Partial;
3487
3488 // If we are providing an explicit specialization of a member class
3489 // template specialization, make a note of that.
3490 if (PrevPartial && PrevPartial->getInstantiatedFromMember())
3491 PrevPartial->setMemberSpecialization();
3492
3493 // Check that all of the template parameters of the class template
3494 // partial specialization are deducible from the template
3495 // arguments. If not, this class template partial specialization
3496 // will never be used.
3497 llvm::SmallVector<bool, 8> DeducibleParams;
3498 DeducibleParams.resize(TemplateParams->size());
3499 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
3500 TemplateParams->getDepth(),
3501 DeducibleParams);
3502 unsigned NumNonDeducible = 0;
3503 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I)
3504 if (!DeducibleParams[I])
3505 ++NumNonDeducible;
3506
3507 if (NumNonDeducible) {
3508 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
3509 << (NumNonDeducible > 1)
3510 << SourceRange(TemplateNameLoc, RAngleLoc);
3511 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
3512 if (!DeducibleParams[I]) {
3513 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
3514 if (Param->getDeclName())
3515 Diag(Param->getLocation(),
3516 diag::note_partial_spec_unused_parameter)
3517 << Param->getDeclName();
3518 else
3519 Diag(Param->getLocation(),
3520 diag::note_partial_spec_unused_parameter)
3521 << std::string("<anonymous>");
3522 }
3523 }
3524 }
3525 } else {
3526 // Create a new class template specialization declaration node for
3527 // this explicit specialization or friend declaration.
3528 Specialization
3529 = ClassTemplateSpecializationDecl::Create(Context,
3530 ClassTemplate->getDeclContext(),
3531 TemplateNameLoc,
3532 ClassTemplate,
3533 Converted,
3534 PrevDecl);
3535
3536 if (PrevDecl) {
3537 ClassTemplate->getSpecializations().RemoveNode(PrevDecl);
3538 ClassTemplate->getSpecializations().GetOrInsertNode(Specialization);
3539 } else {
3540 ClassTemplate->getSpecializations().InsertNode(Specialization,
3541 InsertPos);
3542 }
3543
3544 CanonType = Context.getTypeDeclType(Specialization);
3545 }
3546
3547 // C++ [temp.expl.spec]p6:
3548 // If a template, a member template or the member of a class template is
3549 // explicitly specialized then that specialization shall be declared
3550 // before the first use of that specialization that would cause an implicit
3551 // instantiation to take place, in every translation unit in which such a
3552 // use occurs; no diagnostic is required.
3553 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
3554 SourceRange Range(TemplateNameLoc, RAngleLoc);
3555 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
3556 << Context.getTypeDeclType(Specialization) << Range;
3557
3558 Diag(PrevDecl->getPointOfInstantiation(),
3559 diag::note_instantiation_required_here)
3560 << (PrevDecl->getTemplateSpecializationKind()
3561 != TSK_ImplicitInstantiation);
3562 return true;
3563 }
3564
3565 // If this is not a friend, note that this is an explicit specialization.
3566 if (TUK != TUK_Friend)
3567 Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
3568
3569 // Check that this isn't a redefinition of this specialization.
3570 if (TUK == TUK_Definition) {
3571 if (RecordDecl *Def = Specialization->getDefinition(Context)) {
3572 SourceRange Range(TemplateNameLoc, RAngleLoc);
3573 Diag(TemplateNameLoc, diag::err_redefinition)
3574 << Context.getTypeDeclType(Specialization) << Range;
3575 Diag(Def->getLocation(), diag::note_previous_definition);
3576 Specialization->setInvalidDecl();
3577 return true;
3578 }
3579 }
3580
3581 // Build the fully-sugared type for this class template
3582 // specialization as the user wrote in the specialization
3583 // itself. This means that we'll pretty-print the type retrieved
3584 // from the specialization's declaration the way that the user
3585 // actually wrote the specialization, rather than formatting the
3586 // name based on the "canonical" representation used to store the
3587 // template arguments in the specialization.
3588 QualType WrittenTy
3589 = Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
3590 if (TUK != TUK_Friend)
3591 Specialization->setTypeAsWritten(WrittenTy);
3592 TemplateArgsIn.release();
3593
3594 // C++ [temp.expl.spec]p9:
3595 // A template explicit specialization is in the scope of the
3596 // namespace in which the template was defined.
3597 //
3598 // We actually implement this paragraph where we set the semantic
3599 // context (in the creation of the ClassTemplateSpecializationDecl),
3600 // but we also maintain the lexical context where the actual
3601 // definition occurs.
3602 Specialization->setLexicalDeclContext(CurContext);
3603
3604 // We may be starting the definition of this specialization.
3605 if (TUK == TUK_Definition)
3606 Specialization->startDefinition();
3607
3608 if (TUK == TUK_Friend) {
3609 FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
3610 TemplateNameLoc,
3611 WrittenTy.getTypePtr(),
3612 /*FIXME:*/KWLoc);
3613 Friend->setAccess(AS_public);
3614 CurContext->addDecl(Friend);
3615 } else {
3616 // Add the specialization into its lexical context, so that it can
3617 // be seen when iterating through the list of declarations in that
3618 // context. However, specializations are not found by name lookup.
3619 CurContext->addDecl(Specialization);
3620 }
3621 return DeclPtrTy::make(Specialization);
3622}
3623
3624Sema::DeclPtrTy
3625Sema::ActOnTemplateDeclarator(Scope *S,
3626 MultiTemplateParamsArg TemplateParameterLists,
3627 Declarator &D) {
3628 return HandleDeclarator(S, D, move(TemplateParameterLists), false);
3629}
3630
3631Sema::DeclPtrTy
3632Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
3633 MultiTemplateParamsArg TemplateParameterLists,
3634 Declarator &D) {
3635 assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3636 assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3637 "Not a function declarator!");
3638 DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3639
3640 if (FTI.hasPrototype) {
3641 // FIXME: Diagnose arguments without names in C.
3642 }
3643
3644 Scope *ParentScope = FnBodyScope->getParent();
3645
3646 DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3647 move(TemplateParameterLists),
3648 /*IsFunctionDefinition=*/true);
3649 if (FunctionTemplateDecl *FunctionTemplate
3650 = dyn_cast_or_null<FunctionTemplateDecl>(DP.getAs<Decl>()))
3651 return ActOnStartOfFunctionDef(FnBodyScope,
3652 DeclPtrTy::make(FunctionTemplate->getTemplatedDecl()));
3653 if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP.getAs<Decl>()))
3654 return ActOnStartOfFunctionDef(FnBodyScope, DeclPtrTy::make(Function));
3655 return DeclPtrTy();
3656}
3657
3658/// \brief Diagnose cases where we have an explicit template specialization
3659/// before/after an explicit template instantiation, producing diagnostics
3660/// for those cases where they are required and determining whether the
3661/// new specialization/instantiation will have any effect.
3662///
3663/// \param NewLoc the location of the new explicit specialization or
3664/// instantiation.
3665///
3666/// \param NewTSK the kind of the new explicit specialization or instantiation.
3667///
3668/// \param PrevDecl the previous declaration of the entity.
3669///
3670/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
3671///
3672/// \param PrevPointOfInstantiation if valid, indicates where the previus
3673/// declaration was instantiated (either implicitly or explicitly).
3674///
3675/// \param SuppressNew will be set to true to indicate that the new
3676/// specialization or instantiation has no effect and should be ignored.
3677///
3678/// \returns true if there was an error that should prevent the introduction of
3679/// the new declaration into the AST, false otherwise.
3680bool
3681Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
3682 TemplateSpecializationKind NewTSK,
3683 NamedDecl *PrevDecl,
3684 TemplateSpecializationKind PrevTSK,
3685 SourceLocation PrevPointOfInstantiation,
3686 bool &SuppressNew) {
3687 SuppressNew = false;
3688
3689 switch (NewTSK) {
3690 case TSK_Undeclared:
3691 case TSK_ImplicitInstantiation:
3692 assert(false && "Don't check implicit instantiations here");
3693 return false;
3694
3695 case TSK_ExplicitSpecialization:
3696 switch (PrevTSK) {
3697 case TSK_Undeclared:
3698 case TSK_ExplicitSpecialization:
3699 // Okay, we're just specializing something that is either already
3700 // explicitly specialized or has merely been mentioned without any
3701 // instantiation.
3702 return false;
3703
3704 case TSK_ImplicitInstantiation:
3705 if (PrevPointOfInstantiation.isInvalid()) {
3706 // The declaration itself has not actually been instantiated, so it is
3707 // still okay to specialize it.
3708 return false;
3709 }
3710 // Fall through
3711
3712 case TSK_ExplicitInstantiationDeclaration:
3713 case TSK_ExplicitInstantiationDefinition:
3714 assert((PrevTSK == TSK_ImplicitInstantiation ||
3715 PrevPointOfInstantiation.isValid()) &&
3716 "Explicit instantiation without point of instantiation?");
3717
3718 // C++ [temp.expl.spec]p6:
3719 // If a template, a member template or the member of a class template
3720 // is explicitly specialized then that specialization shall be declared
3721 // before the first use of that specialization that would cause an
3722 // implicit instantiation to take place, in every translation unit in
3723 // which such a use occurs; no diagnostic is required.
3724 Diag(NewLoc, diag::err_specialization_after_instantiation)
3725 << PrevDecl;
3726 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
3727 << (PrevTSK != TSK_ImplicitInstantiation);
3728
3729 return true;
3730 }
3731 break;
3732
3733 case TSK_ExplicitInstantiationDeclaration:
3734 switch (PrevTSK) {
3735 case TSK_ExplicitInstantiationDeclaration:
3736 // This explicit instantiation declaration is redundant (that's okay).
3737 SuppressNew = true;
3738 return false;
3739
3740 case TSK_Undeclared:
3741 case TSK_ImplicitInstantiation:
3742 // We're explicitly instantiating something that may have already been
3743 // implicitly instantiated; that's fine.
3744 return false;
3745
3746 case TSK_ExplicitSpecialization:
3747 // C++0x [temp.explicit]p4:
3748 // For a given set of template parameters, if an explicit instantiation
3749 // of a template appears after a declaration of an explicit
3750 // specialization for that template, the explicit instantiation has no
3751 // effect.
3752 return false;
3753
3754 case TSK_ExplicitInstantiationDefinition:
3755 // C++0x [temp.explicit]p10:
3756 // If an entity is the subject of both an explicit instantiation
3757 // declaration and an explicit instantiation definition in the same
3758 // translation unit, the definition shall follow the declaration.
3759 Diag(NewLoc,
3760 diag::err_explicit_instantiation_declaration_after_definition);
3761 Diag(PrevPointOfInstantiation,
3762 diag::note_explicit_instantiation_definition_here);
3763 assert(PrevPointOfInstantiation.isValid() &&
3764 "Explicit instantiation without point of instantiation?");
3765 SuppressNew = true;
3766 return false;
3767 }
3768 break;
3769
3770 case TSK_ExplicitInstantiationDefinition:
3771 switch (PrevTSK) {
3772 case TSK_Undeclared:
3773 case TSK_ImplicitInstantiation:
3774 // We're explicitly instantiating something that may have already been
3775 // implicitly instantiated; that's fine.
3776 return false;
3777
3778 case TSK_ExplicitSpecialization:
3779 // C++ DR 259, C++0x [temp.explicit]p4:
3780 // For a given set of template parameters, if an explicit
3781 // instantiation of a template appears after a declaration of
3782 // an explicit specialization for that template, the explicit
3783 // instantiation has no effect.
3784 //
3785 // In C++98/03 mode, we only give an extension warning here, because it
3786 // is not not harmful to try to explicitly instantiate something that
3787 // has been explicitly specialized.
3788 if (!getLangOptions().CPlusPlus0x) {
3789 Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization)
3790 << PrevDecl;
3791 Diag(PrevDecl->getLocation(),
3792 diag::note_previous_template_specialization);
3793 }
3794 SuppressNew = true;
3795 return false;
3796
3797 case TSK_ExplicitInstantiationDeclaration:
3798 // We're explicity instantiating a definition for something for which we
3799 // were previously asked to suppress instantiations. That's fine.
3800 return false;
3801
3802 case TSK_ExplicitInstantiationDefinition:
3803 // C++0x [temp.spec]p5:
3804 // For a given template and a given set of template-arguments,
3805 // - an explicit instantiation definition shall appear at most once
3806 // in a program,
3807 Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
3808 << PrevDecl;
3809 Diag(PrevPointOfInstantiation,
3810 diag::note_previous_explicit_instantiation);
3811 SuppressNew = true;
3812 return false;
3813 }
3814 break;
3815 }
3816
3817 assert(false && "Missing specialization/instantiation case?");
3818
3819 return false;
3820}
3821
3822/// \brief Perform semantic analysis for the given function template
3823/// specialization.
3824///
3825/// This routine performs all of the semantic analysis required for an
3826/// explicit function template specialization. On successful completion,
3827/// the function declaration \p FD will become a function template
3828/// specialization.
3829///
3830/// \param FD the function declaration, which will be updated to become a
3831/// function template specialization.
3832///
3833/// \param HasExplicitTemplateArgs whether any template arguments were
3834/// explicitly provided.
3835///
3836/// \param LAngleLoc the location of the left angle bracket ('<'), if
3837/// template arguments were explicitly provided.
3838///
3839/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
3840/// if any.
3841///
3842/// \param NumExplicitTemplateArgs the number of explicitly-provided template
3843/// arguments. This number may be zero even when HasExplicitTemplateArgs is
3844/// true as in, e.g., \c void sort<>(char*, char*);
3845///
3846/// \param RAngleLoc the location of the right angle bracket ('>'), if
3847/// template arguments were explicitly provided.
3848///
3849/// \param PrevDecl the set of declarations that
3850bool
3851Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
3852 const TemplateArgumentListInfo *ExplicitTemplateArgs,
3853 LookupResult &Previous) {
3854 // The set of function template specializations that could match this
3855 // explicit function template specialization.
3856 UnresolvedSet<8> Candidates;
3857
3858 DeclContext *FDLookupContext = FD->getDeclContext()->getLookupContext();
3859 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3860 I != E; ++I) {
3861 NamedDecl *Ovl = (*I)->getUnderlyingDecl();
3862 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
3863 // Only consider templates found within the same semantic lookup scope as
3864 // FD.
3865 if (!FDLookupContext->Equals(Ovl->getDeclContext()->getLookupContext()))
3866 continue;
3867
3868 // C++ [temp.expl.spec]p11:
3869 // A trailing template-argument can be left unspecified in the
3870 // template-id naming an explicit function template specialization
3871 // provided it can be deduced from the function argument type.
3872 // Perform template argument deduction to determine whether we may be
3873 // specializing this template.
3874 // FIXME: It is somewhat wasteful to build
3875 TemplateDeductionInfo Info(Context, FD->getLocation());
3876 FunctionDecl *Specialization = 0;
3877 if (TemplateDeductionResult TDK
3878 = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs,
3879 FD->getType(),
3880 Specialization,
3881 Info)) {
3882 // FIXME: Template argument deduction failed; record why it failed, so
3883 // that we can provide nifty diagnostics.
3884 (void)TDK;
3885 continue;
3886 }
3887
3888 // Record this candidate.
3889 Candidates.addDecl(Specialization, I.getAccess());
3890 }
3891 }
3892
3893 // Find the most specialized function template.
3894 UnresolvedSetIterator Result
3895 = getMostSpecialized(Candidates.begin(), Candidates.end(),
3896 TPOC_Other, FD->getLocation(),
3897 PartialDiagnostic(diag::err_function_template_spec_no_match)
3898 << FD->getDeclName(),
3899 PartialDiagnostic(diag::err_function_template_spec_ambiguous)
3900 << FD->getDeclName() << (ExplicitTemplateArgs != 0),
3901 PartialDiagnostic(diag::note_function_template_spec_matched));
3902 if (Result == Candidates.end())
3903 return true;
3904
3905 // Ignore access information; it doesn't figure into redeclaration checking.
3906 FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
3907
3908 // FIXME: Check if the prior specialization has a point of instantiation.
3909 // If so, we have run afoul of .
3910
3911 // Check the scope of this explicit specialization.
3912 if (CheckTemplateSpecializationScope(*this,
3913 Specialization->getPrimaryTemplate(),
3914 Specialization, FD->getLocation(),
3915 false))
3916 return true;
3917
3918 // C++ [temp.expl.spec]p6:
3919 // If a template, a member template or the member of a class template is
3920 // explicitly specialized then that specialization shall be declared
3921 // before the first use of that specialization that would cause an implicit
3922 // instantiation to take place, in every translation unit in which such a
3923 // use occurs; no diagnostic is required.
3924 FunctionTemplateSpecializationInfo *SpecInfo
3925 = Specialization->getTemplateSpecializationInfo();
3926 assert(SpecInfo && "Function template specialization info missing?");
3927 if (SpecInfo->getPointOfInstantiation().isValid()) {
3928 Diag(FD->getLocation(), diag::err_specialization_after_instantiation)
3929 << FD;
3930 Diag(SpecInfo->getPointOfInstantiation(),
3931 diag::note_instantiation_required_here)
3932 << (Specialization->getTemplateSpecializationKind()
3933 != TSK_ImplicitInstantiation);
3934 return true;
3935 }
3936
3937 // Mark the prior declaration as an explicit specialization, so that later
3938 // clients know that this is an explicit specialization.
3939 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
3940
3941 // Turn the given function declaration into a function template
3942 // specialization, with the template arguments from the previous
3943 // specialization.
3944 FD->setFunctionTemplateSpecialization(Context,
3945 Specialization->getPrimaryTemplate(),
3946 new (Context) TemplateArgumentList(
3947 *Specialization->getTemplateSpecializationArgs()),
3948 /*InsertPos=*/0,
3949 TSK_ExplicitSpecialization);
3950
3951 // The "previous declaration" for this function template specialization is
3952 // the prior function template specialization.
3953 Previous.clear();
3954 Previous.addDecl(Specialization);
3955 return false;
3956}
3957
3958/// \brief Perform semantic analysis for the given non-template member
3959/// specialization.
3960///
3961/// This routine performs all of the semantic analysis required for an
3962/// explicit member function specialization. On successful completion,
3963/// the function declaration \p FD will become a member function
3964/// specialization.
3965///
3966/// \param Member the member declaration, which will be updated to become a
3967/// specialization.
3968///
3969/// \param Previous the set of declarations, one of which may be specialized
3970/// by this function specialization; the set will be modified to contain the
3971/// redeclared member.
3972bool
3973Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
3974 assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
3975
3976 // Try to find the member we are instantiating.
3977 NamedDecl *Instantiation = 0;
3978 NamedDecl *InstantiatedFrom = 0;
3979 MemberSpecializationInfo *MSInfo = 0;
3980
3981 if (Previous.empty()) {
3982 // Nowhere to look anyway.
3983 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
3984 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3985 I != E; ++I) {
3986 NamedDecl *D = (*I)->getUnderlyingDecl();
3987 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
3988 if (Context.hasSameType(Function->getType(), Method->getType())) {
3989 Instantiation = Method;
3990 InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
3991 MSInfo = Method->getMemberSpecializationInfo();
3992 break;
3993 }
3994 }
3995 }
3996 } else if (isa<VarDecl>(Member)) {
3997 VarDecl *PrevVar;
3998 if (Previous.isSingleResult() &&
3999 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
4000 if (PrevVar->isStaticDataMember()) {
4001 Instantiation = PrevVar;
4002 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
4003 MSInfo = PrevVar->getMemberSpecializationInfo();
4004 }
4005 } else if (isa<RecordDecl>(Member)) {
4006 CXXRecordDecl *PrevRecord;
4007 if (Previous.isSingleResult() &&
4008 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
4009 Instantiation = PrevRecord;
4010 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
4011 MSInfo = PrevRecord->getMemberSpecializationInfo();
4012 }
4013 }
4014
4015 if (!Instantiation) {
4016 // There is no previous declaration that matches. Since member
4017 // specializations are always out-of-line, the caller will complain about
4018 // this mismatch later.
4019 return false;
4020 }
4021
4022 // Make sure that this is a specialization of a member.
4023 if (!InstantiatedFrom) {
4024 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
4025 << Member;
4026 Diag(Instantiation->getLocation(), diag::note_specialized_decl);
4027 return true;
4028 }
4029
4030 // C++ [temp.expl.spec]p6:
4031 // If a template, a member template or the member of a class template is
4032 // explicitly specialized then that spe- cialization shall be declared
4033 // before the first use of that specialization that would cause an implicit
4034 // instantiation to take place, in every translation unit in which such a
4035 // use occurs; no diagnostic is required.
4036 assert(MSInfo && "Member specialization info missing?");
4037 if (MSInfo->getPointOfInstantiation().isValid()) {
4038 Diag(Member->getLocation(), diag::err_specialization_after_instantiation)
4039 << Member;
4040 Diag(MSInfo->getPointOfInstantiation(),
4041 diag::note_instantiation_required_here)
4042 << (MSInfo->getTemplateSpecializationKind() != TSK_ImplicitInstantiation);
4043 return true;
4044 }
4045
4046 // Check the scope of this explicit specialization.
4047 if (CheckTemplateSpecializationScope(*this,
4048 InstantiatedFrom,
4049 Instantiation, Member->getLocation(),
4050 false))
4051 return true;
4052
4053 // Note that this is an explicit instantiation of a member.
4054 // the original declaration to note that it is an explicit specialization
4055 // (if it was previously an implicit instantiation). This latter step
4056 // makes bookkeeping easier.
4057 if (isa<FunctionDecl>(Member)) {
4058 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
4059 if (InstantiationFunction->getTemplateSpecializationKind() ==
4060 TSK_ImplicitInstantiation) {
4061 InstantiationFunction->setTemplateSpecializationKind(
4062 TSK_ExplicitSpecialization);
4063 InstantiationFunction->setLocation(Member->getLocation());
4064 }
4065
4066 cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
4067 cast<CXXMethodDecl>(InstantiatedFrom),
4068 TSK_ExplicitSpecialization);
4069 } else if (isa<VarDecl>(Member)) {
4070 VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
4071 if (InstantiationVar->getTemplateSpecializationKind() ==
4072 TSK_ImplicitInstantiation) {
4073 InstantiationVar->setTemplateSpecializationKind(
4074 TSK_ExplicitSpecialization);
4075 InstantiationVar->setLocation(Member->getLocation());
4076 }
4077
4078 Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
4079 cast<VarDecl>(InstantiatedFrom),
4080 TSK_ExplicitSpecialization);
4081 } else {
4082 assert(isa<CXXRecordDecl>(Member) && "Only member classes remain");
4083 CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
4084 if (InstantiationClass->getTemplateSpecializationKind() ==
4085 TSK_ImplicitInstantiation) {
4086 InstantiationClass->setTemplateSpecializationKind(
4087 TSK_ExplicitSpecialization);
4088 InstantiationClass->setLocation(Member->getLocation());
4089 }
4090
4091 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
4092 cast<CXXRecordDecl>(InstantiatedFrom),
4093 TSK_ExplicitSpecialization);
4094 }
4095
4096 // Save the caller the trouble of having to figure out which declaration
4097 // this specialization matches.
4098 Previous.clear();
4099 Previous.addDecl(Instantiation);
4100 return false;
4101}
4102
4103/// \brief Check the scope of an explicit instantiation.
4104static void CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
4105 SourceLocation InstLoc,
4106 bool WasQualifiedName) {
4107 DeclContext *ExpectedContext
4108 = D->getDeclContext()->getEnclosingNamespaceContext()->getLookupContext();
4109 DeclContext *CurContext = S.CurContext->getLookupContext();
4110
4111 // C++0x [temp.explicit]p2:
4112 // An explicit instantiation shall appear in an enclosing namespace of its
4113 // template.
4114 //
4115 // This is DR275, which we do not retroactively apply to C++98/03.
4116 if (S.getLangOptions().CPlusPlus0x &&
4117 !CurContext->Encloses(ExpectedContext)) {
4118 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ExpectedContext))
4119 S.Diag(InstLoc, diag::err_explicit_instantiation_out_of_scope)
4120 << D << NS;
4121 else
4122 S.Diag(InstLoc, diag::err_explicit_instantiation_must_be_global)
4123 << D;
4124 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
4125 return;
4126 }
4127
4128 // C++0x [temp.explicit]p2:
4129 // If the name declared in the explicit instantiation is an unqualified
4130 // name, the explicit instantiation shall appear in the namespace where
4131 // its template is declared or, if that namespace is inline (7.3.1), any
4132 // namespace from its enclosing namespace set.
4133 if (WasQualifiedName)
4134 return;
4135
4136 if (CurContext->Equals(ExpectedContext))
4137 return;
4138
4139 S.Diag(InstLoc, diag::err_explicit_instantiation_unqualified_wrong_namespace)
4140 << D << ExpectedContext;
4141 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
4142}
4143
4144/// \brief Determine whether the given scope specifier has a template-id in it.
4145static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
4146 if (!SS.isSet())
4147 return false;
4148
4149 // C++0x [temp.explicit]p2:
4150 // If the explicit instantiation is for a member function, a member class
4151 // or a static data member of a class template specialization, the name of
4152 // the class template specialization in the qualified-id for the member
4153 // name shall be a simple-template-id.
4154 //
4155 // C++98 has the same restriction, just worded differently.
4156 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
4157 NNS; NNS = NNS->getPrefix())
4158 if (Type *T = NNS->getAsType())
4159 if (isa<TemplateSpecializationType>(T))
4160 return true;
4161
4162 return false;
4163}
4164
4165// Explicit instantiation of a class template specialization
4166// FIXME: Implement extern template semantics
4167Sema::DeclResult
4168Sema::ActOnExplicitInstantiation(Scope *S,
4169 SourceLocation ExternLoc,
4170 SourceLocation TemplateLoc,
4171 unsigned TagSpec,
4172 SourceLocation KWLoc,
4173 const CXXScopeSpec &SS,
4174 TemplateTy TemplateD,
4175 SourceLocation TemplateNameLoc,
4176 SourceLocation LAngleLoc,
4177 ASTTemplateArgsPtr TemplateArgsIn,
4178 SourceLocation RAngleLoc,
4179 AttributeList *Attr) {
4180 // Find the class template we're specializing
4181 TemplateName Name = TemplateD.getAsVal<TemplateName>();
4182 ClassTemplateDecl *ClassTemplate
4183 = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
4184
4185 // Check that the specialization uses the same tag kind as the
4186 // original template.
4187 TagDecl::TagKind Kind;
4188 switch (TagSpec) {
4189 default: assert(0 && "Unknown tag type!");
4190 case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
4191 case DeclSpec::TST_union: Kind = TagDecl::TK_union; break;
4192 case DeclSpec::TST_class: Kind = TagDecl::TK_class; break;
4193 }
4194 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
4195 Kind, KWLoc,
4196 *ClassTemplate->getIdentifier())) {
4197 Diag(KWLoc, diag::err_use_with_wrong_tag)
4198 << ClassTemplate
4199 << CodeModificationHint::CreateReplacement(KWLoc,
4200 ClassTemplate->getTemplatedDecl()->getKindName());
4201 Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
4202 diag::note_previous_use);
4203 Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
4204 }
4205
4206 // C++0x [temp.explicit]p2:
4207 // There are two forms of explicit instantiation: an explicit instantiation
4208 // definition and an explicit instantiation declaration. An explicit
4209 // instantiation declaration begins with the extern keyword. [...]
4210 TemplateSpecializationKind TSK
4211 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4212 : TSK_ExplicitInstantiationDeclaration;
4213
4214 // Translate the parser's template argument list in our AST format.
4215 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
4216 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4217
4218 // Check that the template argument list is well-formed for this
4219 // template.
4220 TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
4221 TemplateArgs.size());
4222 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
4223 TemplateArgs, false, Converted))
4224 return true;
4225
4226 assert((Converted.structuredSize() ==
4227 ClassTemplate->getTemplateParameters()->size()) &&
4228 "Converted template argument list is too short!");
4229
4230 // Find the class template specialization declaration that
4231 // corresponds to these arguments.
4232 llvm::FoldingSetNodeID ID;
4233 ClassTemplateSpecializationDecl::Profile(ID,
4234 Converted.getFlatArguments(),
4235 Converted.flatSize(),
4236 Context);
4237 void *InsertPos = 0;
4238 ClassTemplateSpecializationDecl *PrevDecl
4239 = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
4240
4241 // C++0x [temp.explicit]p2:
4242 // [...] An explicit instantiation shall appear in an enclosing
4243 // namespace of its template. [...]
4244 //
4245 // This is C++ DR 275.
4246 CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
4247 SS.isSet());
4248
4249 ClassTemplateSpecializationDecl *Specialization = 0;
4250
4251 bool ReusedDecl = false;
4252 if (PrevDecl) {
4253 bool SuppressNew = false;
4254 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
4255 PrevDecl,
4256 PrevDecl->getSpecializationKind(),
4257 PrevDecl->getPointOfInstantiation(),
4258 SuppressNew))
4259 return DeclPtrTy::make(PrevDecl);
4260
4261 if (SuppressNew)
4262 return DeclPtrTy::make(PrevDecl);
4263
4264 if (PrevDecl->getSpecializationKind() == TSK_ImplicitInstantiation ||
4265 PrevDecl->getSpecializationKind() == TSK_Undeclared) {
4266 // Since the only prior class template specialization with these
4267 // arguments was referenced but not declared, reuse that
4268 // declaration node as our own, updating its source location to
4269 // reflect our new declaration.
4270 Specialization = PrevDecl;
4271 Specialization->setLocation(TemplateNameLoc);
4272 PrevDecl = 0;
4273 ReusedDecl = true;
4274 }
4275 }
4276
4277 if (!Specialization) {
4278 // Create a new class template specialization declaration node for
4279 // this explicit specialization.
4280 Specialization
4281 = ClassTemplateSpecializationDecl::Create(Context,
4282 ClassTemplate->getDeclContext(),
4283 TemplateNameLoc,
4284 ClassTemplate,
4285 Converted, PrevDecl);
4286
4287 if (PrevDecl) {
4288 // Remove the previous declaration from the folding set, since we want
4289 // to introduce a new declaration.
4290 ClassTemplate->getSpecializations().RemoveNode(PrevDecl);
4291 ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
4292 }
4293
4294 // Insert the new specialization.
4295 ClassTemplate->getSpecializations().InsertNode(Specialization, InsertPos);
4296 }
4297
4298 // Build the fully-sugared type for this explicit instantiation as
4299 // the user wrote in the explicit instantiation itself. This means
4300 // that we'll pretty-print the type retrieved from the
4301 // specialization's declaration the way that the user actually wrote
4302 // the explicit instantiation, rather than formatting the name based
4303 // on the "canonical" representation used to store the template
4304 // arguments in the specialization.
4305 QualType WrittenTy
4306 = Context.getTemplateSpecializationType(Name, TemplateArgs,
4307 Context.getTypeDeclType(Specialization));
4308 Specialization->setTypeAsWritten(WrittenTy);
4309 TemplateArgsIn.release();
4310
4311 if (!ReusedDecl) {
4312 // Add the explicit instantiation into its lexical context. However,
4313 // since explicit instantiations are never found by name lookup, we
4314 // just put it into the declaration context directly.
4315 Specialization->setLexicalDeclContext(CurContext);
4316 CurContext->addDecl(Specialization);
4317 }
4318
4319 // C++ [temp.explicit]p3:
4320 // A definition of a class template or class member template
4321 // shall be in scope at the point of the explicit instantiation of
4322 // the class template or class member template.
4323 //
4324 // This check comes when we actually try to perform the
4325 // instantiation.
4326 ClassTemplateSpecializationDecl *Def
4327 = cast_or_null<ClassTemplateSpecializationDecl>(
4328 Specialization->getDefinition(Context));
4329 if (!Def)
4330 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
4331
4332 // Instantiate the members of this class template specialization.
4333 Def = cast_or_null<ClassTemplateSpecializationDecl>(
4334 Specialization->getDefinition(Context));
4335 if (Def)
4336 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
4337
4338 return DeclPtrTy::make(Specialization);
4339}
4340
4341// Explicit instantiation of a member class of a class template.
4342Sema::DeclResult
4343Sema::ActOnExplicitInstantiation(Scope *S,
4344 SourceLocation ExternLoc,
4345 SourceLocation TemplateLoc,
4346 unsigned TagSpec,
4347 SourceLocation KWLoc,
4348 const CXXScopeSpec &SS,
4349 IdentifierInfo *Name,
4350 SourceLocation NameLoc,
4351 AttributeList *Attr) {
4352
4353 bool Owned = false;
4354 bool IsDependent = false;
4355 DeclPtrTy TagD = ActOnTag(S, TagSpec, Action::TUK_Reference,
4356 KWLoc, SS, Name, NameLoc, Attr, AS_none,
4357 MultiTemplateParamsArg(*this, 0, 0),
4358 Owned, IsDependent);
4359 assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
4360
4361 if (!TagD)
4362 return true;
4363
4364 TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4365 if (Tag->isEnum()) {
4366 Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
4367 << Context.getTypeDeclType(Tag);
4368 return true;
4369 }
4370
4371 if (Tag->isInvalidDecl())
4372 return true;
4373
4374 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
4375 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
4376 if (!Pattern) {
4377 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
4378 << Context.getTypeDeclType(Record);
4379 Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
4380 return true;
4381 }
4382
4383 // C++0x [temp.explicit]p2:
4384 // If the explicit instantiation is for a class or member class, the
4385 // elaborated-type-specifier in the declaration shall include a
4386 // simple-template-id.
4387 //
4388 // C++98 has the same restriction, just worded differently.
4389 if (!ScopeSpecifierHasTemplateId(SS))
4390 Diag(TemplateLoc, diag::err_explicit_instantiation_without_qualified_id)
4391 << Record << SS.getRange();
4392
4393 // C++0x [temp.explicit]p2:
4394 // There are two forms of explicit instantiation: an explicit instantiation
4395 // definition and an explicit instantiation declaration. An explicit
4396 // instantiation declaration begins with the extern keyword. [...]
4397 TemplateSpecializationKind TSK
4398 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4399 : TSK_ExplicitInstantiationDeclaration;
4400
4401 // C++0x [temp.explicit]p2:
4402 // [...] An explicit instantiation shall appear in an enclosing
4403 // namespace of its template. [...]
4404 //
4405 // This is C++ DR 275.
4406 CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
4407
4408 // Verify that it is okay to explicitly instantiate here.
4409 CXXRecordDecl *PrevDecl
4410 = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration());
4411 if (!PrevDecl && Record->getDefinition(Context))
4412 PrevDecl = Record;
4413 if (PrevDecl) {
4414 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
4415 bool SuppressNew = false;
4416 assert(MSInfo && "No member specialization information?");
4417 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
4418 PrevDecl,
4419 MSInfo->getTemplateSpecializationKind(),
4420 MSInfo->getPointOfInstantiation(),
4421 SuppressNew))
4422 return true;
4423 if (SuppressNew)
4424 return TagD;
4425 }
4426
4427 CXXRecordDecl *RecordDef
4428 = cast_or_null<CXXRecordDecl>(Record->getDefinition(Context));
4429 if (!RecordDef) {
4430 // C++ [temp.explicit]p3:
4431 // A definition of a member class of a class template shall be in scope
4432 // at the point of an explicit instantiation of the member class.
4433 CXXRecordDecl *Def
4434 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition(Context));
4435 if (!Def) {
4436 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
4437 << 0 << Record->getDeclName() << Record->getDeclContext();
4438 Diag(Pattern->getLocation(), diag::note_forward_declaration)
4439 << Pattern;
4440 return true;
4441 } else {
4442 if (InstantiateClass(NameLoc, Record, Def,
4443 getTemplateInstantiationArgs(Record),
4444 TSK))
4445 return true;
4446
4447 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition(Context));
4448 if (!RecordDef)
4449 return true;
4450 }
4451 }
4452
4453 // Instantiate all of the members of the class.
4454 InstantiateClassMembers(NameLoc, RecordDef,
4455 getTemplateInstantiationArgs(Record), TSK);
4456
4457 // FIXME: We don't have any representation for explicit instantiations of
4458 // member classes. Such a representation is not needed for compilation, but it
4459 // should be available for clients that want to see all of the declarations in
4460 // the source code.
4461 return TagD;
4462}
4463
4464Sema::DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
4465 SourceLocation ExternLoc,
4466 SourceLocation TemplateLoc,
4467 Declarator &D) {
4468 // Explicit instantiations always require a name.
4469 DeclarationName Name = GetNameForDeclarator(D);
4470 if (!Name) {
4471 if (!D.isInvalidType())
4472 Diag(D.getDeclSpec().getSourceRange().getBegin(),
4473 diag::err_explicit_instantiation_requires_name)
4474 << D.getDeclSpec().getSourceRange()
4475 << D.getSourceRange();
4476
4477 return true;
4478 }
4479
4480 // The scope passed in may not be a decl scope. Zip up the scope tree until
4481 // we find one that is.
4482 while ((S->getFlags() & Scope::DeclScope) == 0 ||
4483 (S->getFlags() & Scope::TemplateParamScope) != 0)
4484 S = S->getParent();
4485
4486 // Determine the type of the declaration.
4487 QualType R = GetTypeForDeclarator(D, S, 0);
4488 if (R.isNull())
4489 return true;
4490
4491 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
4492 // Cannot explicitly instantiate a typedef.
4493 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
4494 << Name;
4495 return true;
4496 }
4497
4498 // C++0x [temp.explicit]p1:
4499 // [...] An explicit instantiation of a function template shall not use the
4500 // inline or constexpr specifiers.
4501 // Presumably, this also applies to member functions of class templates as
4502 // well.
4503 if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x)
4504 Diag(D.getDeclSpec().getInlineSpecLoc(),
4505 diag::err_explicit_instantiation_inline)
4506 <<CodeModificationHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
4507
4508 // FIXME: check for constexpr specifier.
4509
4510 // C++0x [temp.explicit]p2:
4511 // There are two forms of explicit instantiation: an explicit instantiation
4512 // definition and an explicit instantiation declaration. An explicit
4513 // instantiation declaration begins with the extern keyword. [...]
4514 TemplateSpecializationKind TSK
4515 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4516 : TSK_ExplicitInstantiationDeclaration;
4517
4518 LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName);
4519 LookupParsedName(Previous, S, &D.getCXXScopeSpec());
4520
4521 if (!R->isFunctionType()) {
4522 // C++ [temp.explicit]p1:
4523 // A [...] static data member of a class template can be explicitly
4524 // instantiated from the member definition associated with its class
4525 // template.
4526 if (Previous.isAmbiguous())
4527 return true;
4528
4529 VarDecl *Prev = Previous.getAsSingle<VarDecl>();
4530 if (!Prev || !Prev->isStaticDataMember()) {
4531 // We expect to see a data data member here.
4532 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
4533 << Name;
4534 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
4535 P != PEnd; ++P)
4536 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
4537 return true;
4538 }
4539
4540 if (!Prev->getInstantiatedFromStaticDataMember()) {
4541 // FIXME: Check for explicit specialization?
4542 Diag(D.getIdentifierLoc(),
4543 diag::err_explicit_instantiation_data_member_not_instantiated)
4544 << Prev;
4545 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
4546 // FIXME: Can we provide a note showing where this was declared?
4547 return true;
4548 }
4549
4550 // C++0x [temp.explicit]p2:
4551 // If the explicit instantiation is for a member function, a member class
4552 // or a static data member of a class template specialization, the name of
4553 // the class template specialization in the qualified-id for the member
4554 // name shall be a simple-template-id.
4555 //
4556 // C++98 has the same restriction, just worded differently.
4557 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
4558 Diag(D.getIdentifierLoc(),
4559 diag::err_explicit_instantiation_without_qualified_id)
4560 << Prev << D.getCXXScopeSpec().getRange();
4561
4562 // Check the scope of this explicit instantiation.
4563 CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
4564
4565 // Verify that it is okay to explicitly instantiate here.
4566 MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
4567 assert(MSInfo && "Missing static data member specialization info?");
4568 bool SuppressNew = false;
4569 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
4570 MSInfo->getTemplateSpecializationKind(),
4571 MSInfo->getPointOfInstantiation(),
4572 SuppressNew))
4573 return true;
4574 if (SuppressNew)
4575 return DeclPtrTy();
4576
4577 // Instantiate static data member.
4578 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
4579 if (TSK == TSK_ExplicitInstantiationDefinition)
4580 InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev, false,
4581 /*DefinitionRequired=*/true);
4582
4583 // FIXME: Create an ExplicitInstantiation node?
4584 return DeclPtrTy();
4585 }
4586
4587 // If the declarator is a template-id, translate the parser's template
4588 // argument list into our AST format.
4589 bool HasExplicitTemplateArgs = false;
4590 TemplateArgumentListInfo TemplateArgs;
4591 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
4592 TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4593 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
4594 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
4595 ASTTemplateArgsPtr TemplateArgsPtr(*this,
4596 TemplateId->getTemplateArgs(),
4597 TemplateId->NumArgs);
4598 translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
4599 HasExplicitTemplateArgs = true;
4600 TemplateArgsPtr.release();
4601 }
4602
4603 // C++ [temp.explicit]p1:
4604 // A [...] function [...] can be explicitly instantiated from its template.
4605 // A member function [...] of a class template can be explicitly
4606 // instantiated from the member definition associated with its class
4607 // template.
4608 UnresolvedSet<8> Matches;
4609 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
4610 P != PEnd; ++P) {
4611 NamedDecl *Prev = *P;
4612 if (!HasExplicitTemplateArgs) {
4613 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
4614 if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
4615 Matches.clear();
4616
4617 Matches.addDecl(Method, P.getAccess());
4618 if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
4619 break;
4620 }
4621 }
4622 }
4623
4624 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
4625 if (!FunTmpl)
4626 continue;
4627
4628 TemplateDeductionInfo Info(Context, D.getIdentifierLoc());
4629 FunctionDecl *Specialization = 0;
4630 if (TemplateDeductionResult TDK
4631 = DeduceTemplateArguments(FunTmpl,
4632 (HasExplicitTemplateArgs ? &TemplateArgs : 0),
4633 R, Specialization, Info)) {
4634 // FIXME: Keep track of almost-matches?
4635 (void)TDK;
4636 continue;
4637 }
4638
4639 Matches.addDecl(Specialization, P.getAccess());
4640 }
4641
4642 // Find the most specialized function template specialization.
4643 UnresolvedSetIterator Result
4644 = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other,
4645 D.getIdentifierLoc(),
4646 PartialDiagnostic(diag::err_explicit_instantiation_not_known) << Name,
4647 PartialDiagnostic(diag::err_explicit_instantiation_ambiguous) << Name,
4648 PartialDiagnostic(diag::note_explicit_instantiation_candidate));
4649
4650 if (Result == Matches.end())
4651 return true;
4652
4653 // Ignore access control bits, we don't need them for redeclaration checking.
4654 FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
4655
4656 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
4657 Diag(D.getIdentifierLoc(),
4658 diag::err_explicit_instantiation_member_function_not_instantiated)
4659 << Specialization
4660 << (Specialization->getTemplateSpecializationKind() ==
4661 TSK_ExplicitSpecialization);
4662 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
4663 return true;
4664 }
4665
4666 FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration();
4667 if (!PrevDecl && Specialization->isThisDeclarationADefinition())
4668 PrevDecl = Specialization;
4669
4670 if (PrevDecl) {
4671 bool SuppressNew = false;
4672 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
4673 PrevDecl,
4674 PrevDecl->getTemplateSpecializationKind(),
4675 PrevDecl->getPointOfInstantiation(),
4676 SuppressNew))
4677 return true;
4678
4679 // FIXME: We may still want to build some representation of this
4680 // explicit specialization.
4681 if (SuppressNew)
4682 return DeclPtrTy();
4683 }
4684
4685 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
4686
4687 if (TSK == TSK_ExplicitInstantiationDefinition)
4688 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization,
4689 false, /*DefinitionRequired=*/true);
4690
4691 // C++0x [temp.explicit]p2:
4692 // If the explicit instantiation is for a member function, a member class
4693 // or a static data member of a class template specialization, the name of
4694 // the class template specialization in the qualified-id for the member
4695 // name shall be a simple-template-id.
4696 //
4697 // C++98 has the same restriction, just worded differently.
4698 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
4699 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
4700 D.getCXXScopeSpec().isSet() &&
4701 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
4702 Diag(D.getIdentifierLoc(),
4703 diag::err_explicit_instantiation_without_qualified_id)
4704 << Specialization << D.getCXXScopeSpec().getRange();
4705
4706 CheckExplicitInstantiationScope(*this,
4707 FunTmpl? (NamedDecl *)FunTmpl
4708 : Specialization->getInstantiatedFromMemberFunction(),
4709 D.getIdentifierLoc(),
4710 D.getCXXScopeSpec().isSet());
4711
4712 // FIXME: Create some kind of ExplicitInstantiationDecl here.
4713 return DeclPtrTy();
4714}
4715
4716Sema::TypeResult
4717Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4718 const CXXScopeSpec &SS, IdentifierInfo *Name,
4719 SourceLocation TagLoc, SourceLocation NameLoc) {
4720 // This has to hold, because SS is expected to be defined.
4721 assert(Name && "Expected a name in a dependent tag");
4722
4723 NestedNameSpecifier *NNS
4724 = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4725 if (!NNS)
4726 return true;
4727
4728 QualType T = CheckTypenameType(NNS, *Name, SourceRange(TagLoc, NameLoc));
4729 if (T.isNull())
4730 return true;
4731
4732 TagDecl::TagKind TagKind = TagDecl::getTagKindForTypeSpec(TagSpec);
4733 QualType ElabType = Context.getElaboratedType(T, TagKind);
4734
4735 return ElabType.getAsOpaquePtr();
4736}
4737
4738Sema::TypeResult
4739Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
4740 const IdentifierInfo &II, SourceLocation IdLoc) {
4741 NestedNameSpecifier *NNS
4742 = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4743 if (!NNS)
4744 return true;
4745
4746 QualType T = CheckTypenameType(NNS, II, SourceRange(TypenameLoc, IdLoc));
4747 if (T.isNull())
4748 return true;
4749 return T.getAsOpaquePtr();
4750}
4751
4752Sema::TypeResult
4753Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
4754 SourceLocation TemplateLoc, TypeTy *Ty) {
4755 QualType T = GetTypeFromParser(Ty);
4756 NestedNameSpecifier *NNS
4757 = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4758 const TemplateSpecializationType *TemplateId
4759 = T->getAs<TemplateSpecializationType>();
4760 assert(TemplateId && "Expected a template specialization type");
4761
4762 if (computeDeclContext(SS, false)) {
4763 // If we can compute a declaration context, then the "typename"
4764 // keyword was superfluous. Just build a QualifiedNameType to keep
4765 // track of the nested-name-specifier.
4766
4767 // FIXME: Note that the QualifiedNameType had the "typename" keyword!
4768 return Context.getQualifiedNameType(NNS, T).getAsOpaquePtr();
4769 }
4770
4771 return Context.getTypenameType(NNS, TemplateId).getAsOpaquePtr();
4772}
4773
4774/// \brief Build the type that describes a C++ typename specifier,
4775/// e.g., "typename T::type".
4776QualType
4777Sema::CheckTypenameType(NestedNameSpecifier *NNS, const IdentifierInfo &II,
4778 SourceRange Range) {
4779 CXXRecordDecl *CurrentInstantiation = 0;
4780 if (NNS->isDependent()) {
4781 CurrentInstantiation = getCurrentInstantiationOf(NNS);
4782
4783 // If the nested-name-specifier does not refer to the current
4784 // instantiation, then build a typename type.
4785 if (!CurrentInstantiation)
4786 return Context.getTypenameType(NNS, &II);
4787
4788 // The nested-name-specifier refers to the current instantiation, so the
4789 // "typename" keyword itself is superfluous. In C++03, the program is
4790 // actually ill-formed. However, DR 382 (in C++0x CD1) allows such
4791 // extraneous "typename" keywords, and we retroactively apply this DR to
4792 // C++03 code.
4793 }
4794
4795 DeclContext *Ctx = 0;
4796
4797 if (CurrentInstantiation)
4798 Ctx = CurrentInstantiation;
4799 else {
4800 CXXScopeSpec SS;
4801 SS.setScopeRep(NNS);
4802 SS.setRange(Range);
4803 if (RequireCompleteDeclContext(SS))
4804 return QualType();
4805
4806 Ctx = computeDeclContext(SS);
4807 }
4808 assert(Ctx && "No declaration context?");
4809
4810 DeclarationName Name(&II);
4811 LookupResult Result(*this, Name, Range.getEnd(), LookupOrdinaryName);
4812 LookupQualifiedName(Result, Ctx);
4813 unsigned DiagID = 0;
4814 Decl *Referenced = 0;
4815 switch (Result.getResultKind()) {
4816 case LookupResult::NotFound:
4817 DiagID = diag::err_typename_nested_not_found;
4818 break;
4819
4820 case LookupResult::NotFoundInCurrentInstantiation:
4821 // Okay, it's a member of an unknown instantiation.
4822 return Context.getTypenameType(NNS, &II);
4823
4824 case LookupResult::Found:
4825 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
4826 // We found a type. Build a QualifiedNameType, since the
4827 // typename-specifier was just sugar. FIXME: Tell
4828 // QualifiedNameType that it has a "typename" prefix.
4829 return Context.getQualifiedNameType(NNS, Context.getTypeDeclType(Type));
4830 }
4831
4832 DiagID = diag::err_typename_nested_not_type;
4833 Referenced = Result.getFoundDecl();
4834 break;
4835
4836 case LookupResult::FoundUnresolvedValue:
4837 llvm_unreachable("unresolved using decl in non-dependent context");
4838 return QualType();
4839
4840 case LookupResult::FoundOverloaded:
4841 DiagID = diag::err_typename_nested_not_type;
4842 Referenced = *Result.begin();
4843 break;
4844
4845 case LookupResult::Ambiguous:
4846 return QualType();
4847 }
4848
4849 // If we get here, it's because name lookup did not find a
4850 // type. Emit an appropriate diagnostic and return an error.
4851 Diag(Range.getEnd(), DiagID) << Range << Name << Ctx;
4852 if (Referenced)
4853 Diag(Referenced->getLocation(), diag::note_typename_refers_here)
4854 << Name;
4855 return QualType();
4856}
4857
4858namespace {
4859 // See Sema::RebuildTypeInCurrentInstantiation
4860 class CurrentInstantiationRebuilder
4861 : public TreeTransform<CurrentInstantiationRebuilder> {
4862 SourceLocation Loc;
4863 DeclarationName Entity;
4864
4865 public:
4866 CurrentInstantiationRebuilder(Sema &SemaRef,
4867 SourceLocation Loc,
4868 DeclarationName Entity)
4869 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
4870 Loc(Loc), Entity(Entity) { }
4871
4872 /// \brief Determine whether the given type \p T has already been
4873 /// transformed.
4874 ///
4875 /// For the purposes of type reconstruction, a type has already been
4876 /// transformed if it is NULL or if it is not dependent.
4877 bool AlreadyTransformed(QualType T) {
4878 return T.isNull() || !T->isDependentType();
4879 }
4880
4881 /// \brief Returns the location of the entity whose type is being
4882 /// rebuilt.
4883 SourceLocation getBaseLocation() { return Loc; }
4884
4885 /// \brief Returns the name of the entity whose type is being rebuilt.
4886 DeclarationName getBaseEntity() { return Entity; }
4887
4888 /// \brief Sets the "base" location and entity when that
4889 /// information is known based on another transformation.
4890 void setBase(SourceLocation Loc, DeclarationName Entity) {
4891 this->Loc = Loc;
4892 this->Entity = Entity;
4893 }
4894
4895 /// \brief Transforms an expression by returning the expression itself
4896 /// (an identity function).
4897 ///
4898 /// FIXME: This is completely unsafe; we will need to actually clone the
4899 /// expressions.
4900 Sema::OwningExprResult TransformExpr(Expr *E) {
4901 return getSema().Owned(E);
4902 }
4903
4904 /// \brief Transforms a typename type by determining whether the type now
4905 /// refers to a member of the current instantiation, and then
4906 /// type-checking and building a QualifiedNameType (when possible).
4907 QualType TransformTypenameType(TypeLocBuilder &TLB, TypenameTypeLoc TL);
4908 };
4909}
4910
4911QualType
4912CurrentInstantiationRebuilder::TransformTypenameType(TypeLocBuilder &TLB,
4913 TypenameTypeLoc TL) {
4914 TypenameType *T = TL.getTypePtr();
4915
4916 NestedNameSpecifier *NNS
4917 = TransformNestedNameSpecifier(T->getQualifier(),
4918 /*FIXME:*/SourceRange(getBaseLocation()));
4919 if (!NNS)
4920 return QualType();
4921
4922 // If the nested-name-specifier did not change, and we cannot compute the
4923 // context corresponding to the nested-name-specifier, then this
4924 // typename type will not change; exit early.
4925 CXXScopeSpec SS;
4926 SS.setRange(SourceRange(getBaseLocation()));
4927 SS.setScopeRep(NNS);
4928
4929 QualType Result;
4930 if (NNS == T->getQualifier() && getSema().computeDeclContext(SS) == 0)
4931 Result = QualType(T, 0);
4932
4933 // Rebuild the typename type, which will probably turn into a
4934 // QualifiedNameType.
4935 else if (const TemplateSpecializationType *TemplateId = T->getTemplateId()) {
4936 QualType NewTemplateId
4937 = TransformType(QualType(TemplateId, 0));
4938 if (NewTemplateId.isNull())
4939 return QualType();
4940
4941 if (NNS == T->getQualifier() &&
4942 NewTemplateId == QualType(TemplateId, 0))
4943 Result = QualType(T, 0);
4944 else
4945 Result = getDerived().RebuildTypenameType(NNS, NewTemplateId);
4946 } else
4947 Result = getDerived().RebuildTypenameType(NNS, T->getIdentifier(),
4948 SourceRange(TL.getNameLoc()));
4949
4950 TypenameTypeLoc NewTL = TLB.push<TypenameTypeLoc>(Result);
4951 NewTL.setNameLoc(TL.getNameLoc());
4952 return Result;
4953}
4954
4955/// \brief Rebuilds a type within the context of the current instantiation.
4956///
4957/// The type \p T is part of the type of an out-of-line member definition of
4958/// a class template (or class template partial specialization) that was parsed
4959/// and constructed before we entered the scope of the class template (or
4960/// partial specialization thereof). This routine will rebuild that type now
4961/// that we have entered the declarator's scope, which may produce different
4962/// canonical types, e.g.,
4963///
4964/// \code
4965/// template<typename T>
4966/// struct X {
4967/// typedef T* pointer;
4968/// pointer data();
4969/// };
4970///
4971/// template<typename T>
4972/// typename X<T>::pointer X<T>::data() { ... }
4973/// \endcode
4974///
4975/// Here, the type "typename X<T>::pointer" will be created as a TypenameType,
4976/// since we do not know that we can look into X<T> when we parsed the type.
4977/// This function will rebuild the type, performing the lookup of "pointer"
4978/// in X<T> and returning a QualifiedNameType whose canonical type is the same
4979/// as the canonical type of T*, allowing the return types of the out-of-line
4980/// definition and the declaration to match.
4981QualType Sema::RebuildTypeInCurrentInstantiation(QualType T, SourceLocation Loc,
4982 DeclarationName Name) {
4983 if (T.isNull() || !T->isDependentType())
4984 return T;
4985
4986 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
4987 return Rebuilder.TransformType(T);
4988}
4989
4990/// \brief Produces a formatted string that describes the binding of
4991/// template parameters to template arguments.
4992std::string
4993Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
4994 const TemplateArgumentList &Args) {
4995 // FIXME: For variadic templates, we'll need to get the structured list.
4996 return getTemplateArgumentBindingsText(Params, Args.getFlatArgumentList(),
4997 Args.flat_size());
4998}
4999
5000std::string
5001Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
5002 const TemplateArgument *Args,
5003 unsigned NumArgs) {
5004 std::string Result;
5005
5006 if (!Params || Params->size() == 0 || NumArgs == 0)
5007 return Result;
5008
5009 for (unsigned I = 0, N = Params->size(); I != N; ++I) {
5010 if (I >= NumArgs)
5011 break;
5012
5013 if (I == 0)
5014 Result += "[with ";
5015 else
5016 Result += ", ";
5017
5018 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
5019 Result += Id->getName();
5020 } else {
5021 Result += '$';
5022 Result += llvm::utostr(I);
5023 }
5024
5025 Result += " = ";
5026
5027 switch (Args[I].getKind()) {
5028 case TemplateArgument::Null:
5029 Result += "<no value>";
5030 break;
5031
5032 case TemplateArgument::Type: {
5033 std::string TypeStr;
5034 Args[I].getAsType().getAsStringInternal(TypeStr,
5035 Context.PrintingPolicy);
5036 Result += TypeStr;
5037 break;
5038 }
5039
5040 case TemplateArgument::Declaration: {
5041 bool Unnamed = true;
5042 if (NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Args[I].getAsDecl())) {
5043 if (ND->getDeclName()) {
5044 Unnamed = false;
5045 Result += ND->getNameAsString();
5046 }
5047 }
5048
5049 if (Unnamed) {
5050 Result += "<anonymous>";
5051 }
5052 break;
5053 }
5054
5055 case TemplateArgument::Template: {
5056 std::string Str;
5057 llvm::raw_string_ostream OS(Str);
5058 Args[I].getAsTemplate().print(OS, Context.PrintingPolicy);
5059 Result += OS.str();
5060 break;
5061 }
5062
5063 case TemplateArgument::Integral: {
5064 Result += Args[I].getAsIntegral()->toString(10);
5065 break;
5066 }
5067
5068 case TemplateArgument::Expression: {
5069 assert(false && "No expressions in deduced template arguments!");
5070 Result += "<expression>";
5071 break;
5072 }
5073
5074 case TemplateArgument::Pack:
5075 // FIXME: Format template argument packs
5076 Result += "<template argument pack>";
5077 break;
5078 }
5079 }
5080
5081 Result += ']';
5082 return Result;
5083}