| //===-- lib/mulsf3.c - Single-precision multiplication ------------*- C -*-===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is dual licensed under the MIT and the University of Illinois Open | 
 | // Source Licenses. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file implements single-precision soft-float multiplication | 
 | // with the IEEE-754 default rounding (to nearest, ties to even). | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #define SINGLE_PRECISION | 
 | #include "fp_lib.h" | 
 |  | 
 | ARM_EABI_FNALIAS(fmul, mulsf3); | 
 |  | 
 | COMPILER_RT_ABI fp_t | 
 | __mulsf3(fp_t a, fp_t b) { | 
 |      | 
 |     const unsigned int aExponent = toRep(a) >> significandBits & maxExponent; | 
 |     const unsigned int bExponent = toRep(b) >> significandBits & maxExponent; | 
 |     const rep_t productSign = (toRep(a) ^ toRep(b)) & signBit; | 
 |      | 
 |     rep_t aSignificand = toRep(a) & significandMask; | 
 |     rep_t bSignificand = toRep(b) & significandMask; | 
 |     int scale = 0; | 
 |      | 
 |     // Detect if a or b is zero, denormal, infinity, or NaN. | 
 |     if (aExponent-1U >= maxExponent-1U || bExponent-1U >= maxExponent-1U) { | 
 |          | 
 |         const rep_t aAbs = toRep(a) & absMask; | 
 |         const rep_t bAbs = toRep(b) & absMask; | 
 |          | 
 |         // NaN * anything = qNaN | 
 |         if (aAbs > infRep) return fromRep(toRep(a) | quietBit); | 
 |         // anything * NaN = qNaN | 
 |         if (bAbs > infRep) return fromRep(toRep(b) | quietBit); | 
 |          | 
 |         if (aAbs == infRep) { | 
 |             // infinity * non-zero = +/- infinity | 
 |             if (bAbs) return fromRep(aAbs | productSign); | 
 |             // infinity * zero = NaN | 
 |             else return fromRep(qnanRep); | 
 |         } | 
 |          | 
 |         if (bAbs == infRep) { | 
 |             // non-zero * infinity = +/- infinity | 
 |             if (aAbs) return fromRep(bAbs | productSign); | 
 |             // zero * infinity = NaN | 
 |             else return fromRep(qnanRep); | 
 |         } | 
 |          | 
 |         // zero * anything = +/- zero | 
 |         if (!aAbs) return fromRep(productSign); | 
 |         // anything * zero = +/- zero | 
 |         if (!bAbs) return fromRep(productSign); | 
 |          | 
 |         // one or both of a or b is denormal, the other (if applicable) is a | 
 |         // normal number.  Renormalize one or both of a and b, and set scale to | 
 |         // include the necessary exponent adjustment. | 
 |         if (aAbs < implicitBit) scale += normalize(&aSignificand); | 
 |         if (bAbs < implicitBit) scale += normalize(&bSignificand); | 
 |     } | 
 |      | 
 |     // Or in the implicit significand bit.  (If we fell through from the | 
 |     // denormal path it was already set by normalize( ), but setting it twice | 
 |     // won't hurt anything.) | 
 |     aSignificand |= implicitBit; | 
 |     bSignificand |= implicitBit; | 
 |      | 
 |     // Get the significand of a*b.  Before multiplying the significands, shift | 
 |     // one of them left to left-align it in the field.  Thus, the product will | 
 |     // have (exponentBits + 2) integral digits, all but two of which must be | 
 |     // zero.  Normalizing this result is just a conditional left-shift by one | 
 |     // and bumping the exponent accordingly. | 
 |     rep_t productHi, productLo; | 
 |     wideMultiply(aSignificand, bSignificand << exponentBits, | 
 |                  &productHi, &productLo); | 
 |      | 
 |     int productExponent = aExponent + bExponent - exponentBias + scale; | 
 |      | 
 |     // Normalize the significand, adjust exponent if needed. | 
 |     if (productHi & implicitBit) productExponent++; | 
 |     else wideLeftShift(&productHi, &productLo, 1); | 
 |      | 
 |     // If we have overflowed the type, return +/- infinity. | 
 |     if (productExponent >= maxExponent) return fromRep(infRep | productSign); | 
 |      | 
 |     if (productExponent <= 0) { | 
 |         // Result is denormal before rounding, the exponent is zero and we | 
 |         // need to shift the significand. | 
 |         wideRightShiftWithSticky(&productHi, &productLo, 1 - productExponent); | 
 |     } | 
 |      | 
 |     else { | 
 |         // Result is normal before rounding; insert the exponent. | 
 |         productHi &= significandMask; | 
 |         productHi |= (rep_t)productExponent << significandBits; | 
 |     } | 
 |      | 
 |     // Insert the sign of the result: | 
 |     productHi |= productSign; | 
 |      | 
 |     // Final rounding.  The final result may overflow to infinity, or underflow | 
 |     // to zero, but those are the correct results in those cases. | 
 |     if (productLo > signBit) productHi++; | 
 |     if (productLo == signBit) productHi += productHi & 1; | 
 |     return fromRep(productHi); | 
 | } |