| /* This file is distributed under the University of Illinois Open Source |
| * License. See LICENSE.TXT for details. |
| */ |
| |
| /* long double __gcc_qadd(long double x, long double y); |
| * This file implements the PowerPC 128-bit double-double add operation. |
| * This implementation is shamelessly cribbed from Apple's DDRT, circa 1993(!) |
| */ |
| |
| #include "DD.h" |
| |
| long double __gcc_qadd(long double x, long double y) |
| { |
| static const uint32_t infinityHi = UINT32_C(0x7ff00000); |
| |
| DD dst = { .ld = x }, src = { .ld = y }; |
| |
| register double A = dst.s.hi, a = dst.s.lo, |
| B = src.s.hi, b = src.s.lo; |
| |
| /* If both operands are zero: */ |
| if ((A == 0.0) && (B == 0.0)) { |
| dst.s.hi = A + B; |
| dst.s.lo = 0.0; |
| return dst.ld; |
| } |
| |
| /* If either operand is NaN or infinity: */ |
| const doublebits abits = { .d = A }; |
| const doublebits bbits = { .d = B }; |
| if ((((uint32_t)(abits.x >> 32) & infinityHi) == infinityHi) || |
| (((uint32_t)(bbits.x >> 32) & infinityHi) == infinityHi)) { |
| dst.s.hi = A + B; |
| dst.s.lo = 0.0; |
| return dst.ld; |
| } |
| |
| /* If the computation overflows: */ |
| /* This may be playing things a little bit fast and loose, but it will do for a start. */ |
| const double testForOverflow = A + (B + (a + b)); |
| const doublebits testbits = { .d = testForOverflow }; |
| if (((uint32_t)(testbits.x >> 32) & infinityHi) == infinityHi) { |
| dst.s.hi = testForOverflow; |
| dst.s.lo = 0.0; |
| return dst.ld; |
| } |
| |
| double H, h; |
| double T, t; |
| double W, w; |
| double Y; |
| |
| H = B + (A - (A + B)); |
| T = b + (a - (a + b)); |
| h = A + (B - (A + B)); |
| t = a + (b - (a + b)); |
| |
| if (fabs(A) <= fabs(B)) |
| w = (a + b) + h; |
| else |
| w = (a + b) + H; |
| |
| W = (A + B) + w; |
| Y = (A + B) - W; |
| Y += w; |
| |
| if (fabs(a) <= fabs(b)) |
| w = t + Y; |
| else |
| w = T + Y; |
| |
| dst.s.hi = Y = W + w; |
| dst.s.lo = (W - Y) + w; |
| |
| return dst.ld; |
| } |