| //===-- lib/comparedf2.c - Double-precision comparisons -----------*- C -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is dual licensed under the MIT and the University of Illinois Open |
| // Source Licenses. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // // This file implements the following soft-float comparison routines: |
| // |
| // __eqdf2 __gedf2 __unorddf2 |
| // __ledf2 __gtdf2 |
| // __ltdf2 |
| // __nedf2 |
| // |
| // The semantics of the routines grouped in each column are identical, so there |
| // is a single implementation for each, and wrappers to provide the other names. |
| // |
| // The main routines behave as follows: |
| // |
| // __ledf2(a,b) returns -1 if a < b |
| // 0 if a == b |
| // 1 if a > b |
| // 1 if either a or b is NaN |
| // |
| // __gedf2(a,b) returns -1 if a < b |
| // 0 if a == b |
| // 1 if a > b |
| // -1 if either a or b is NaN |
| // |
| // __unorddf2(a,b) returns 0 if both a and b are numbers |
| // 1 if either a or b is NaN |
| // |
| // Note that __ledf2( ) and __gedf2( ) are identical except in their handling of |
| // NaN values. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DOUBLE_PRECISION |
| #include "fp_lib.h" |
| |
| enum LE_RESULT { |
| LE_LESS = -1, |
| LE_EQUAL = 0, |
| LE_GREATER = 1, |
| LE_UNORDERED = 1 |
| }; |
| |
| enum LE_RESULT __ledf2(fp_t a, fp_t b) { |
| |
| const srep_t aInt = toRep(a); |
| const srep_t bInt = toRep(b); |
| const rep_t aAbs = aInt & absMask; |
| const rep_t bAbs = bInt & absMask; |
| |
| // If either a or b is NaN, they are unordered. |
| if (aAbs > infRep || bAbs > infRep) return LE_UNORDERED; |
| |
| // If a and b are both zeros, they are equal. |
| if ((aAbs | bAbs) == 0) return LE_EQUAL; |
| |
| // If at least one of a and b is positive, we get the same result comparing |
| // a and b as signed integers as we would with a floating-point compare. |
| if ((aInt & bInt) >= 0) { |
| if (aInt < bInt) return LE_LESS; |
| else if (aInt == bInt) return LE_EQUAL; |
| else return LE_GREATER; |
| } |
| |
| // Otherwise, both are negative, so we need to flip the sense of the |
| // comparison to get the correct result. (This assumes a twos- or ones- |
| // complement integer representation; if integers are represented in a |
| // sign-magnitude representation, then this flip is incorrect). |
| else { |
| if (aInt > bInt) return LE_LESS; |
| else if (aInt == bInt) return LE_EQUAL; |
| else return LE_GREATER; |
| } |
| } |
| |
| enum GE_RESULT { |
| GE_LESS = -1, |
| GE_EQUAL = 0, |
| GE_GREATER = 1, |
| GE_UNORDERED = -1 // Note: different from LE_UNORDERED |
| }; |
| |
| enum GE_RESULT __gedf2(fp_t a, fp_t b) { |
| |
| const srep_t aInt = toRep(a); |
| const srep_t bInt = toRep(b); |
| const rep_t aAbs = aInt & absMask; |
| const rep_t bAbs = bInt & absMask; |
| |
| if (aAbs > infRep || bAbs > infRep) return GE_UNORDERED; |
| if ((aAbs | bAbs) == 0) return GE_EQUAL; |
| if ((aInt & bInt) >= 0) { |
| if (aInt < bInt) return GE_LESS; |
| else if (aInt == bInt) return GE_EQUAL; |
| else return GE_GREATER; |
| } else { |
| if (aInt > bInt) return GE_LESS; |
| else if (aInt == bInt) return GE_EQUAL; |
| else return GE_GREATER; |
| } |
| } |
| |
| ARM_EABI_FNALIAS(dcmpun, unorddf2) |
| |
| int __unorddf2(fp_t a, fp_t b) { |
| const rep_t aAbs = toRep(a) & absMask; |
| const rep_t bAbs = toRep(b) & absMask; |
| return aAbs > infRep || bAbs > infRep; |
| } |
| |
| // The following are alternative names for the preceeding routines. |
| |
| enum LE_RESULT __eqdf2(fp_t a, fp_t b) { |
| return __ledf2(a, b); |
| } |
| |
| enum LE_RESULT __ltdf2(fp_t a, fp_t b) { |
| return __ledf2(a, b); |
| } |
| |
| enum LE_RESULT __nedf2(fp_t a, fp_t b) { |
| return __ledf2(a, b); |
| } |
| |
| enum GE_RESULT __gtdf2(fp_t a, fp_t b) { |
| return __gedf2(a, b); |
| } |
| |