| //===-- lib/fp_lib.h - Floating-point utilities -------------------*- C -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is dual licensed under the MIT and the University of Illinois Open |
| // Source Licenses. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file is a configuration header for soft-float routines in compiler-rt. |
| // This file does not provide any part of the compiler-rt interface, but defines |
| // many useful constants and utility routines that are used in the |
| // implementation of the soft-float routines in compiler-rt. |
| // |
| // Assumes that float and double correspond to the IEEE-754 binary32 and |
| // binary64 types, respectively, and that integer endianness matches floating |
| // point endianness on the target platform. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef FP_LIB_HEADER |
| #define FP_LIB_HEADER |
| |
| #include <stdint.h> |
| #include <stdbool.h> |
| #include <limits.h> |
| #include "int_lib.h" |
| |
| #if defined SINGLE_PRECISION |
| |
| typedef uint32_t rep_t; |
| typedef int32_t srep_t; |
| typedef float fp_t; |
| #define REP_C UINT32_C |
| #define significandBits 23 |
| |
| static inline int rep_clz(rep_t a) { |
| return __builtin_clz(a); |
| } |
| |
| // 32x32 --> 64 bit multiply |
| static inline void wideMultiply(rep_t a, rep_t b, rep_t *hi, rep_t *lo) { |
| const uint64_t product = (uint64_t)a*b; |
| *hi = product >> 32; |
| *lo = product; |
| } |
| |
| #elif defined DOUBLE_PRECISION |
| |
| typedef uint64_t rep_t; |
| typedef int64_t srep_t; |
| typedef double fp_t; |
| #define REP_C UINT64_C |
| #define significandBits 52 |
| |
| static inline int rep_clz(rep_t a) { |
| #if defined __LP64__ |
| return __builtin_clzl(a); |
| #else |
| if (a & REP_C(0xffffffff00000000)) |
| return __builtin_clz(a >> 32); |
| else |
| return 32 + __builtin_clz(a & REP_C(0xffffffff)); |
| #endif |
| } |
| |
| #define loWord(a) (a & 0xffffffffU) |
| #define hiWord(a) (a >> 32) |
| |
| // 64x64 -> 128 wide multiply for platforms that don't have such an operation; |
| // many 64-bit platforms have this operation, but they tend to have hardware |
| // floating-point, so we don't bother with a special case for them here. |
| static inline void wideMultiply(rep_t a, rep_t b, rep_t *hi, rep_t *lo) { |
| // Each of the component 32x32 -> 64 products |
| const uint64_t plolo = loWord(a) * loWord(b); |
| const uint64_t plohi = loWord(a) * hiWord(b); |
| const uint64_t philo = hiWord(a) * loWord(b); |
| const uint64_t phihi = hiWord(a) * hiWord(b); |
| // Sum terms that contribute to lo in a way that allows us to get the carry |
| const uint64_t r0 = loWord(plolo); |
| const uint64_t r1 = hiWord(plolo) + loWord(plohi) + loWord(philo); |
| *lo = r0 + (r1 << 32); |
| // Sum terms contributing to hi with the carry from lo |
| *hi = hiWord(plohi) + hiWord(philo) + hiWord(r1) + phihi; |
| } |
| |
| #else |
| #error Either SINGLE_PRECISION or DOUBLE_PRECISION must be defined. |
| #endif |
| |
| #define typeWidth (sizeof(rep_t)*CHAR_BIT) |
| #define exponentBits (typeWidth - significandBits - 1) |
| #define maxExponent ((1 << exponentBits) - 1) |
| #define exponentBias (maxExponent >> 1) |
| |
| #define implicitBit (REP_C(1) << significandBits) |
| #define significandMask (implicitBit - 1U) |
| #define signBit (REP_C(1) << (significandBits + exponentBits)) |
| #define absMask (signBit - 1U) |
| #define exponentMask (absMask ^ significandMask) |
| #define oneRep ((rep_t)exponentBias << significandBits) |
| #define infRep exponentMask |
| #define quietBit (implicitBit >> 1) |
| #define qnanRep (exponentMask | quietBit) |
| |
| static inline rep_t toRep(fp_t x) { |
| const union { fp_t f; rep_t i; } rep = {.f = x}; |
| return rep.i; |
| } |
| |
| static inline fp_t fromRep(rep_t x) { |
| const union { fp_t f; rep_t i; } rep = {.i = x}; |
| return rep.f; |
| } |
| |
| static inline int normalize(rep_t *significand) { |
| const int shift = rep_clz(*significand) - rep_clz(implicitBit); |
| *significand <<= shift; |
| return 1 - shift; |
| } |
| |
| static inline void wideLeftShift(rep_t *hi, rep_t *lo, int count) { |
| *hi = *hi << count | *lo >> (typeWidth - count); |
| *lo = *lo << count; |
| } |
| |
| static inline void wideRightShiftWithSticky(rep_t *hi, rep_t *lo, unsigned int count) { |
| if (count < typeWidth) { |
| const bool sticky = *lo << (typeWidth - count); |
| *lo = *hi << (typeWidth - count) | *lo >> count | sticky; |
| *hi = *hi >> count; |
| } |
| else if (count < 2*typeWidth) { |
| const bool sticky = *hi << (2*typeWidth - count) | *lo; |
| *lo = *hi >> (count - typeWidth) | sticky; |
| *hi = 0; |
| } else { |
| const bool sticky = *hi | *lo; |
| *lo = sticky; |
| *hi = 0; |
| } |
| } |
| |
| #endif // FP_LIB_HEADER |