| //===-- lib/mulsf3.c - Single-precision multiplication ------------*- C -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is dual licensed under the MIT and the University of Illinois Open |
| // Source Licenses. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements single-precision soft-float multiplication |
| // with the IEEE-754 default rounding (to nearest, ties to even). |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define SINGLE_PRECISION |
| #include "fp_lib.h" |
| |
| ARM_EABI_FNALIAS(fmul, mulsf3) |
| |
| COMPILER_RT_ABI fp_t |
| __mulsf3(fp_t a, fp_t b) { |
| |
| const unsigned int aExponent = toRep(a) >> significandBits & maxExponent; |
| const unsigned int bExponent = toRep(b) >> significandBits & maxExponent; |
| const rep_t productSign = (toRep(a) ^ toRep(b)) & signBit; |
| |
| rep_t aSignificand = toRep(a) & significandMask; |
| rep_t bSignificand = toRep(b) & significandMask; |
| int scale = 0; |
| |
| // Detect if a or b is zero, denormal, infinity, or NaN. |
| if (aExponent-1U >= maxExponent-1U || bExponent-1U >= maxExponent-1U) { |
| |
| const rep_t aAbs = toRep(a) & absMask; |
| const rep_t bAbs = toRep(b) & absMask; |
| |
| // NaN * anything = qNaN |
| if (aAbs > infRep) return fromRep(toRep(a) | quietBit); |
| // anything * NaN = qNaN |
| if (bAbs > infRep) return fromRep(toRep(b) | quietBit); |
| |
| if (aAbs == infRep) { |
| // infinity * non-zero = +/- infinity |
| if (bAbs) return fromRep(aAbs | productSign); |
| // infinity * zero = NaN |
| else return fromRep(qnanRep); |
| } |
| |
| if (bAbs == infRep) { |
| // non-zero * infinity = +/- infinity |
| if (aAbs) return fromRep(bAbs | productSign); |
| // zero * infinity = NaN |
| else return fromRep(qnanRep); |
| } |
| |
| // zero * anything = +/- zero |
| if (!aAbs) return fromRep(productSign); |
| // anything * zero = +/- zero |
| if (!bAbs) return fromRep(productSign); |
| |
| // one or both of a or b is denormal, the other (if applicable) is a |
| // normal number. Renormalize one or both of a and b, and set scale to |
| // include the necessary exponent adjustment. |
| if (aAbs < implicitBit) scale += normalize(&aSignificand); |
| if (bAbs < implicitBit) scale += normalize(&bSignificand); |
| } |
| |
| // Or in the implicit significand bit. (If we fell through from the |
| // denormal path it was already set by normalize( ), but setting it twice |
| // won't hurt anything.) |
| aSignificand |= implicitBit; |
| bSignificand |= implicitBit; |
| |
| // Get the significand of a*b. Before multiplying the significands, shift |
| // one of them left to left-align it in the field. Thus, the product will |
| // have (exponentBits + 2) integral digits, all but two of which must be |
| // zero. Normalizing this result is just a conditional left-shift by one |
| // and bumping the exponent accordingly. |
| rep_t productHi, productLo; |
| wideMultiply(aSignificand, bSignificand << exponentBits, |
| &productHi, &productLo); |
| |
| int productExponent = aExponent + bExponent - exponentBias + scale; |
| |
| // Normalize the significand, adjust exponent if needed. |
| if (productHi & implicitBit) productExponent++; |
| else wideLeftShift(&productHi, &productLo, 1); |
| |
| // If we have overflowed the type, return +/- infinity. |
| if (productExponent >= maxExponent) return fromRep(infRep | productSign); |
| |
| if (productExponent <= 0) { |
| // Result is denormal before rounding, the exponent is zero and we |
| // need to shift the significand. |
| wideRightShiftWithSticky(&productHi, &productLo, 1U - (unsigned)productExponent); |
| } |
| |
| else { |
| // Result is normal before rounding; insert the exponent. |
| productHi &= significandMask; |
| productHi |= (rep_t)productExponent << significandBits; |
| } |
| |
| // Insert the sign of the result: |
| productHi |= productSign; |
| |
| // Final rounding. The final result may overflow to infinity, or underflow |
| // to zero, but those are the correct results in those cases. |
| if (productLo > signBit) productHi++; |
| if (productLo == signBit) productHi += productHi & 1; |
| return fromRep(productHi); |
| } |