blob: b6638276629cd83a6aae2d6ba7aaca1f695faa17 [file] [log] [blame]
Kostya Serebryany7ac41482012-05-10 13:48:04 +00001//===-- tsan_rtl.cc ---------------------------------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file is a part of ThreadSanitizer (TSan), a race detector.
11//
12// Main file (entry points) for the TSan run-time.
13//===----------------------------------------------------------------------===//
14
15#include "tsan_defs.h"
16#include "tsan_platform.h"
17#include "tsan_rtl.h"
18#include "tsan_interface.h"
19#include "tsan_atomic.h"
20#include "tsan_mman.h"
21#include "tsan_placement_new.h"
22#include "tsan_suppressions.h"
23
24volatile int __tsan_stop = 0;
25
26extern "C" void __tsan_resume() {
27 __tsan_stop = 0;
28}
29
30namespace __tsan {
31
32THREADLOCAL char cur_thread_placeholder[sizeof(ThreadState)] ALIGN(64);
33static char ctx_placeholder[sizeof(Context)] ALIGN(64);
34
35static Context *ctx;
36Context *CTX() {
37 return ctx;
38}
39
40Context::Context()
41 : initialized()
42 , report_mtx(MutexTypeReport, StatMtxReport)
43 , nreported()
44 , nmissed_expected()
45 , thread_mtx(MutexTypeThreads, StatMtxThreads)
46 , racy_stacks(MBlockRacyStacks)
47 , racy_addresses(MBlockRacyAddresses) {
48}
49
50// The objects are allocated in TLS, so one may rely on zero-initialization.
51ThreadState::ThreadState(Context *ctx, int tid, u64 epoch,
52 uptr stk_addr, uptr stk_size,
53 uptr tls_addr, uptr tls_size)
54 : fast_state(tid, epoch)
55 // Do not touch these, rely on zero initialization,
56 // they may be accessed before the ctor.
57 // , fast_ignore_reads()
58 // , fast_ignore_writes()
59 // , in_rtl()
60 , shadow_stack_pos(&shadow_stack[0])
61 , tid(tid)
62 , func_call_count()
63 , stk_addr(stk_addr)
64 , stk_size(stk_size)
65 , tls_addr(tls_addr)
66 , tls_size(tls_size) {
67}
68
69ThreadContext::ThreadContext(int tid)
70 : tid(tid)
71 , unique_id()
72 , user_id()
73 , thr()
74 , status(ThreadStatusInvalid)
75 , detached()
76 , reuse_count()
77 , epoch0()
78 , epoch1()
79 , dead_next() {
80}
81
82void Initialize(ThreadState *thr) {
83 // Thread safe because done before all threads exist.
84 static bool is_initialized = false;
85 if (is_initialized)
86 return;
87 is_initialized = true;
88 ScopedInRtl in_rtl;
89 InitializeInterceptors();
90 const char *env = InitializePlatform();
91 InitializeMutex();
92 InitializeDynamicAnnotations();
93 ctx = new(ctx_placeholder) Context;
94 InitializeShadowMemory();
95 ctx->dead_list_size = 0;
96 ctx->dead_list_head = 0;
97 ctx->dead_list_tail = 0;
98 InitializeFlags(&ctx->flags, env);
99 InitializeSuppressions();
100
101 if (ctx->flags.verbosity)
102 Printf("***** Running under ThreadSanitizer v2 (pid=%d) *****\n", GetPid());
103
104 // Initialize thread 0.
105 ctx->thread_seq = 0;
106 int tid = ThreadCreate(thr, 0, 0, true);
107 CHECK_EQ(tid, 0);
108 ThreadStart(thr, tid);
109 CHECK_EQ(thr->in_rtl, 1);
110 ctx->initialized = true;
111
112 if (__tsan_stop) {
113 Printf("ThreadSanitizer is suspended at startup.\n");
114 while (__tsan_stop);
115 }
116}
117
118int Finalize(ThreadState *thr) {
119 ScopedInRtl in_rtl;
120 Context *ctx = __tsan::ctx;
121 bool failed = false;
122
123 // Be very careful beyond that point.
124 // All bets are off. Everything is destroyed.
125 ThreadFinish(thr);
126 ThreadFinalize(thr);
127 FinalizeFlags(&ctx->flags);
128
129 if (ctx->nreported) {
130 failed = true;
131 Printf("ThreadSanitizer: reported %d warnings\n", ctx->nreported);
132 }
133
134 if (ctx->nmissed_expected) {
135 failed = true;
136 Printf("ThreadSanitizer: missed %d expected races\n",
137 ctx->nmissed_expected);
138 }
139
140 StatOutput(ctx->stat);
141 FinalizeSuppressions();
142 FinalizePlatform();
143
144 const int exitcode = failed ? flags()->exitcode : 0;
145 const int log_fileno = flags()->log_fileno;
146 __tsan::ctx->~Context();
147 __tsan::ctx = 0;
148
149 InternalAllocStatAggregate(ctx, thr);
150
151 for (int i = 0; i < (int)MBlockTypeCount; i++) {
152 if (ctx->int_alloc_cnt[i] == 0 && ctx->int_alloc_siz[i] == 0)
153 continue;
154 InternalScopedBuf<char> tmp(1024);
155 Snprintf(tmp, tmp.Size(), "ThreadSanitizer: Internal memory leak: "
156 "type=%d count=%lld size=%lld\n",
157 (int)i, ctx->int_alloc_cnt[i], ctx->int_alloc_siz[i]);
158 internal_write(log_fileno, tmp, internal_strlen(tmp));
159 }
160
161 return exitcode;
162}
163
164static void TraceSwitch(ThreadState *thr) {
165 ScopedInRtl in_rtl;
166 Lock l(&thr->trace.mtx);
167 unsigned trace = (thr->fast_state.epoch() / kTracePartSize) % kTraceParts;
168 TraceHeader *hdr = &thr->trace.headers[trace];
169 hdr->epoch0 = thr->fast_state.epoch();
170 hdr->stack0.ObtainCurrent(thr, 0);
171}
172
173extern "C" void __tsan_trace_switch() {
174 TraceSwitch(cur_thread());
175}
176
177extern "C" void __tsan_report_race() {
178 ReportRace(cur_thread());
179}
180
181ALWAYS_INLINE
182static Shadow LoadShadow(u64 *p) {
183 u64 raw = atomic_load((atomic_uint64_t*)p, memory_order_relaxed);
184 return Shadow(raw);
185}
186
187ALWAYS_INLINE
188static void StoreShadow(u64 *sp, u64 s) {
189 atomic_store((atomic_uint64_t*)sp, s, memory_order_relaxed);
190}
191
192ALWAYS_INLINE
193static void StoreIfNotYetStored(u64 *sp, u64 *s) {
194 StoreShadow(sp, *s);
195 *s = 0;
196}
197
198static inline void HandleRace(ThreadState *thr, u64 *shadow_mem,
199 Shadow cur, Shadow old) {
200 thr->racy_state[0] = cur.raw();
201 thr->racy_state[1] = old.raw();
202 thr->racy_shadow_addr = shadow_mem;
203 HACKY_CALL(__tsan_report_race);
204}
205
206static inline bool BothReads(Shadow s, int kAccessIsWrite) {
207 return !kAccessIsWrite && !s.is_write();
208}
209
210static inline bool OldIsRWStronger(Shadow old, int kAccessIsWrite) {
211 return old.is_write() || !kAccessIsWrite;
212}
213
214static inline bool OldIsRWWeaker(Shadow old, int kAccessIsWrite) {
215 return !old.is_write() || kAccessIsWrite;
216}
217
218static inline bool OldIsInSameSynchEpoch(Shadow old, ThreadState *thr) {
219 return old.epoch() >= thr->fast_synch_epoch;
220}
221
222static inline bool HappensBefore(Shadow old, ThreadState *thr) {
223 return thr->clock.get(old.tid()) >= old.epoch();
224}
225
226ALWAYS_INLINE
227void MemoryAccessImpl(ThreadState *thr, uptr addr,
228 int kAccessSizeLog, bool kAccessIsWrite, FastState fast_state,
229 u64 *shadow_mem, Shadow cur) {
230 StatInc(thr, StatMop);
231 StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
232 StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
233
234 // This potentially can live in an MMX/SSE scratch register.
235 // The required intrinsics are:
236 // __m128i _mm_move_epi64(__m128i*);
237 // _mm_storel_epi64(u64*, __m128i);
238 u64 store_word = cur.raw();
239
240 // scan all the shadow values and dispatch to 4 categories:
241 // same, replace, candidate and race (see comments below).
242 // we consider only 3 cases regarding access sizes:
243 // equal, intersect and not intersect. initially I considered
244 // larger and smaller as well, it allowed to replace some
245 // 'candidates' with 'same' or 'replace', but I think
246 // it's just not worth it (performance- and complexity-wise).
247
248 Shadow old(0);
249 if (kShadowCnt == 1) {
250 int idx = 0;
251#include "tsan_update_shadow_word_inl.h"
252 } else if (kShadowCnt == 2) {
253 int idx = 0;
254#include "tsan_update_shadow_word_inl.h"
255 idx = 1;
256#include "tsan_update_shadow_word_inl.h"
257 } else if (kShadowCnt == 4) {
258 int idx = 0;
259#include "tsan_update_shadow_word_inl.h"
260 idx = 1;
261#include "tsan_update_shadow_word_inl.h"
262 idx = 2;
263#include "tsan_update_shadow_word_inl.h"
264 idx = 3;
265#include "tsan_update_shadow_word_inl.h"
266 } else if (kShadowCnt == 8) {
267 int idx = 0;
268#include "tsan_update_shadow_word_inl.h"
269 idx = 1;
270#include "tsan_update_shadow_word_inl.h"
271 idx = 2;
272#include "tsan_update_shadow_word_inl.h"
273 idx = 3;
274#include "tsan_update_shadow_word_inl.h"
275 idx = 4;
276#include "tsan_update_shadow_word_inl.h"
277 idx = 5;
278#include "tsan_update_shadow_word_inl.h"
279 idx = 6;
280#include "tsan_update_shadow_word_inl.h"
281 idx = 7;
282#include "tsan_update_shadow_word_inl.h"
283 } else {
284 CHECK(false);
285 }
286
287 // we did not find any races and had already stored
288 // the current access info, so we are done
289 if (LIKELY(store_word == 0))
290 return;
291 // choose a random candidate slot and replace it
292 StoreShadow(shadow_mem + (cur.epoch() % kShadowCnt), store_word);
293 StatInc(thr, StatShadowReplace);
294 return;
295 RACE:
296 HandleRace(thr, shadow_mem, cur, old);
297 return;
298}
299
300ALWAYS_INLINE
301void MemoryAccess(ThreadState *thr, uptr pc, uptr addr,
302 int kAccessSizeLog, bool kAccessIsWrite) {
303 u64 *shadow_mem = (u64*)MemToShadow(addr);
304 DPrintf2("#%d: tsan::OnMemoryAccess: @%p %p size=%d"
305 " is_write=%d shadow_mem=%p {%llx, %llx, %llx, %llx}\n",
306 (int)thr->fast_state.tid(), (void*)pc, (void*)addr,
307 (int)(1 << kAccessSizeLog), kAccessIsWrite, shadow_mem,
308 shadow_mem[0], shadow_mem[1], shadow_mem[2], shadow_mem[3]);
309#if TSAN_DEBUG
310 if (!IsAppMem(addr)) {
311 Printf("Access to non app mem %lx\n", addr);
312 DCHECK(IsAppMem(addr));
313 }
314 if (!IsShadowMem((uptr)shadow_mem)) {
315 Printf("Bad shadow addr %p (%lx)\n", shadow_mem, addr);
316 DCHECK(IsShadowMem((uptr)shadow_mem));
317 }
318#endif
319
320 FastState fast_state = thr->fast_state;
321 if (fast_state.GetIgnoreBit())
322 return;
323 fast_state.IncrementEpoch();
324 thr->fast_state = fast_state;
325 Shadow cur(fast_state);
326 cur.SetAddr0AndSizeLog(addr & 7, kAccessSizeLog);
327 cur.SetWrite(kAccessIsWrite);
328
329 // We must not store to the trace if we do not store to the shadow.
330 // That is, this call must be moved somewhere below.
331 TraceAddEvent(thr, fast_state.epoch(), EventTypeMop, pc);
332
333 MemoryAccessImpl(thr, addr, kAccessSizeLog, kAccessIsWrite, fast_state,
334 shadow_mem, cur);
335}
336
337static void MemoryRangeSet(ThreadState *thr, uptr pc, uptr addr, uptr size,
338 u64 val) {
339 if (size == 0)
340 return;
341 // FIXME: fix me.
342 uptr offset = addr % kShadowCell;
343 if (offset) {
344 offset = kShadowCell - offset;
345 if (size <= offset)
346 return;
347 addr += offset;
348 size -= offset;
349 }
350 CHECK_EQ(addr % 8, 0);
351 CHECK(IsAppMem(addr));
352 CHECK(IsAppMem(addr + size - 1));
353 (void)thr;
354 (void)pc;
355 // Some programs mmap like hundreds of GBs but actually used a small part.
356 // So, it's better to report a false positive on the memory
357 // then to hang here senselessly.
358 const uptr kMaxResetSize = 1024*1024*1024;
359 if (size > kMaxResetSize)
360 size = kMaxResetSize;
361 size = (size + 7) & ~7;
362 u64 *p = (u64*)MemToShadow(addr);
363 CHECK(IsShadowMem((uptr)p));
364 CHECK(IsShadowMem((uptr)(p + size * kShadowCnt / kShadowCell - 1)));
365 // FIXME: may overwrite a part outside the region
366 for (uptr i = 0; i < size * kShadowCnt / kShadowCell; i++)
367 p[i] = val;
368}
369
370void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size) {
371 MemoryRangeSet(thr, pc, addr, size, 0);
372}
373
374void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size) {
375 MemoryAccessRange(thr, pc, addr, size, true);
Dmitry Vyukov069ce822012-05-17 14:17:51 +0000376 Shadow s(thr->fast_state);
377 s.MarkAsFreed();
378 s.SetWrite(true);
379 s.SetAddr0AndSizeLog(0, 3);
380 MemoryRangeSet(thr, pc, addr, size, s.raw());
Kostya Serebryany7ac41482012-05-10 13:48:04 +0000381}
382
383void FuncEntry(ThreadState *thr, uptr pc) {
384 DCHECK_EQ(thr->in_rtl, 0);
385 StatInc(thr, StatFuncEnter);
386 DPrintf2("#%d: tsan::FuncEntry %p\n", (int)thr->fast_state.tid(), (void*)pc);
387 thr->fast_state.IncrementEpoch();
388 TraceAddEvent(thr, thr->fast_state.epoch(), EventTypeFuncEnter, pc);
389
390 // Shadow stack maintenance can be replaced with
391 // stack unwinding during trace switch (which presumably must be faster).
392 DCHECK(thr->shadow_stack_pos >= &thr->shadow_stack[0]);
393 DCHECK(thr->shadow_stack_pos < &thr->shadow_stack[kShadowStackSize]);
394 thr->shadow_stack_pos[0] = pc;
395 thr->shadow_stack_pos++;
Kostya Serebryany7ac41482012-05-10 13:48:04 +0000396}
397
398void FuncExit(ThreadState *thr) {
399 DCHECK_EQ(thr->in_rtl, 0);
400 StatInc(thr, StatFuncExit);
401 DPrintf2("#%d: tsan::FuncExit\n", (int)thr->fast_state.tid());
402 thr->fast_state.IncrementEpoch();
403 TraceAddEvent(thr, thr->fast_state.epoch(), EventTypeFuncExit, 0);
404
405 DCHECK(thr->shadow_stack_pos > &thr->shadow_stack[0]);
406 DCHECK(thr->shadow_stack_pos < &thr->shadow_stack[kShadowStackSize]);
407 thr->shadow_stack_pos--;
408}
409
410void IgnoreCtl(ThreadState *thr, bool write, bool begin) {
411 DPrintf("#%d: IgnoreCtl(%d, %d)\n", thr->tid, write, begin);
412 thr->ignore_reads_and_writes += begin ? 1 : -1;
413 CHECK_GE(thr->ignore_reads_and_writes, 0);
414 if (thr->ignore_reads_and_writes)
415 thr->fast_state.SetIgnoreBit();
416 else
417 thr->fast_state.ClearIgnoreBit();
418}
419
420void InternalAllocStatAggregate(Context *ctx, ThreadState *thr) {
421 for (int i = 0; i < (int)MBlockTypeCount; i++) {
422 ctx->int_alloc_cnt[i] += thr->int_alloc_cnt[i];
423 ctx->int_alloc_siz[i] += thr->int_alloc_siz[i];
424 thr->int_alloc_cnt[i] = 0;
425 thr->int_alloc_siz[i] = 0;
426 }
427}
428
429#if TSAN_DEBUG
430void build_consistency_debug() {}
431#else
432void build_consistency_release() {}
433#endif
434
435#if TSAN_COLLECT_STATS
436void build_consistency_stats() {}
437#else
438void build_consistency_nostats() {}
439#endif
440
441#if TSAN_SHADOW_COUNT == 1
442void build_consistency_shadow1() {}
443#elif TSAN_SHADOW_COUNT == 2
444void build_consistency_shadow2() {}
445#elif TSAN_SHADOW_COUNT == 4
446void build_consistency_shadow4() {}
447#else
448void build_consistency_shadow8() {}
449#endif
450
451} // namespace __tsan
452
453// Must be included in this file to make sure everything is inlined.
454#include "tsan_interface_inl.h"