Stephen Canon | 12a7d09 | 2010-07-04 16:53:39 +0000 | [diff] [blame^] | 1 | //===-- lib/divdf3.c - Double-precision division ------------------*- C -*-===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file implements double-precision soft-float division |
| 11 | // with the IEEE-754 default rounding (to nearest, ties to even). |
| 12 | // |
| 13 | // For simplicity, this implementation currently flushes denormals to zero. |
| 14 | // It should be a fairly straightforward exercise to implement gradual |
| 15 | // underflow with correct rounding. |
| 16 | // |
| 17 | //===----------------------------------------------------------------------===// |
| 18 | |
| 19 | #define DOUBLE_PRECISION |
| 20 | #include "fp_lib.h" |
| 21 | |
| 22 | fp_t __divdf3(fp_t a, fp_t b) { |
| 23 | |
| 24 | const unsigned int aExponent = toRep(a) >> significandBits & maxExponent; |
| 25 | const unsigned int bExponent = toRep(b) >> significandBits & maxExponent; |
| 26 | const rep_t quotientSign = (toRep(a) ^ toRep(b)) & signBit; |
| 27 | |
| 28 | rep_t aSignificand = toRep(a) & significandMask; |
| 29 | rep_t bSignificand = toRep(b) & significandMask; |
| 30 | int scale = 0; |
| 31 | |
| 32 | // Detect if a or b is zero, denormal, infinity, or NaN. |
| 33 | if (aExponent-1U >= maxExponent-1U || bExponent-1U >= maxExponent-1U) { |
| 34 | |
| 35 | const rep_t aAbs = toRep(a) & absMask; |
| 36 | const rep_t bAbs = toRep(b) & absMask; |
| 37 | |
| 38 | // NaN / anything = qNaN |
| 39 | if (aAbs > infRep) return fromRep(toRep(a) | quietBit); |
| 40 | // anything / NaN = qNaN |
| 41 | if (bAbs > infRep) return fromRep(toRep(b) | quietBit); |
| 42 | |
| 43 | if (aAbs == infRep) { |
| 44 | // infinity / infinity = NaN |
| 45 | if (bAbs == infRep) return fromRep(qnanRep); |
| 46 | // infinity / anything else = +/- infinity |
| 47 | else return fromRep(aAbs | quotientSign); |
| 48 | } |
| 49 | |
| 50 | // anything else / infinity = +/- 0 |
| 51 | if (bAbs == infRep) return fromRep(quotientSign); |
| 52 | |
| 53 | if (!aAbs) { |
| 54 | // zero / zero = NaN |
| 55 | if (!bAbs) return fromRep(qnanRep); |
| 56 | // zero / anything else = +/- zero |
| 57 | else return fromRep(quotientSign); |
| 58 | } |
| 59 | // anything else / zero = +/- infinity |
| 60 | if (!bAbs) return fromRep(infRep | quotientSign); |
| 61 | |
| 62 | // one or both of a or b is denormal, the other (if applicable) is a |
| 63 | // normal number. Renormalize one or both of a and b, and set scale to |
| 64 | // include the necessary exponent adjustment. |
| 65 | if (aAbs < implicitBit) scale += normalize(&aSignificand); |
| 66 | if (bAbs < implicitBit) scale -= normalize(&bSignificand); |
| 67 | } |
| 68 | |
| 69 | // Or in the implicit significand bit. (If we fell through from the |
| 70 | // denormal path it was already set by normalize( ), but setting it twice |
| 71 | // won't hurt anything.) |
| 72 | aSignificand |= implicitBit; |
| 73 | bSignificand |= implicitBit; |
| 74 | int quotientExponent = aExponent - bExponent + scale; |
| 75 | |
| 76 | // Align the significand of b as a Q31 fixed-point number in the range |
| 77 | // [1, 2.0) and get a Q32 approximate reciprocal using a small minimax |
| 78 | // polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2. This |
| 79 | // is accurate to about 3.5 binary digits. |
| 80 | const uint32_t q31b = bSignificand >> 21; |
| 81 | uint32_t recip32 = UINT32_C(0x7504f333) - q31b; |
| 82 | |
| 83 | // Now refine the reciprocal estimate using a Newton-Raphson iteration: |
| 84 | // |
| 85 | // x1 = x0 * (2 - x0 * b) |
| 86 | // |
| 87 | // This doubles the number of correct binary digits in the approximation |
| 88 | // with each iteration, so after three iterations, we have about 28 binary |
| 89 | // digits of accuracy. |
| 90 | uint32_t correction32; |
| 91 | correction32 = -((uint64_t)recip32 * q31b >> 32); |
| 92 | recip32 = (uint64_t)recip32 * correction32 >> 31; |
| 93 | correction32 = -((uint64_t)recip32 * q31b >> 32); |
| 94 | recip32 = (uint64_t)recip32 * correction32 >> 31; |
| 95 | correction32 = -((uint64_t)recip32 * q31b >> 32); |
| 96 | recip32 = (uint64_t)recip32 * correction32 >> 31; |
| 97 | |
| 98 | // recip32 might have overflowed to exactly zero in the preceeding |
| 99 | // computation if the high word of b is exactly 1.0. This would sabotage |
| 100 | // the full-width final stage of the computation that follows, so we adjust |
| 101 | // recip32 downward by one bit. |
| 102 | recip32--; |
| 103 | |
| 104 | // We need to perform one more iteration to get us to 56 binary digits; |
| 105 | // The last iteration needs to happen with extra precision. |
| 106 | const uint32_t q63blo = bSignificand << 11; |
| 107 | uint64_t correction, reciprocal; |
| 108 | correction = -((uint64_t)recip32*q31b + ((uint64_t)recip32*q63blo >> 32)); |
| 109 | uint32_t cHi = correction >> 32; |
| 110 | uint32_t cLo = correction; |
| 111 | reciprocal = (uint64_t)recip32*cHi + ((uint64_t)recip32*cLo >> 32); |
| 112 | |
| 113 | // We already adjusted the 32-bit estimate, now we need to adjust the final |
| 114 | // 64-bit reciprocal estimate downward to ensure that it is strictly smaller |
| 115 | // than the infinitely precise exact reciprocal. Because the computation |
| 116 | // of the Newton-Raphson step is truncating at every step, this adjustment |
| 117 | // is small; most of the work is already done. |
| 118 | reciprocal -= 2; |
| 119 | |
| 120 | // The numerical reciprocal is accurate to within 2^-56, lies in the |
| 121 | // interval [0.5, 1.0), and is strictly smaller than the true reciprocal |
| 122 | // of b. Multiplying a by this reciprocal thus gives a numerical q = a/b |
| 123 | // in Q53 with the following properties: |
| 124 | // |
| 125 | // 1. q < a/b |
| 126 | // 2. q is in the interval [0.5, 2.0) |
| 127 | // 3. the error in q is bounded away from 2^-53 (actually, we have a |
| 128 | // couple of bits to spare, but this is all we need). |
| 129 | |
| 130 | // We need a 64 x 64 multiply high to compute q, which isn't a basic |
| 131 | // operation in C, so we need to be a little bit fussy. |
| 132 | rep_t quotient, quotientLo; |
| 133 | wideMultiply(aSignificand << 2, reciprocal, "ient, "ientLo); |
| 134 | |
| 135 | // Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0). |
| 136 | // In either case, we are going to compute a residual of the form |
| 137 | // |
| 138 | // r = a - q*b |
| 139 | // |
| 140 | // We know from the construction of q that r satisfies: |
| 141 | // |
| 142 | // 0 <= r < ulp(q)*b |
| 143 | // |
| 144 | // if r is greater than 1/2 ulp(q)*b, then q rounds up. Otherwise, we |
| 145 | // already have the correct result. The exact halfway case cannot occur. |
| 146 | // We also take this time to right shift quotient if it falls in the [1,2) |
| 147 | // range and adjust the exponent accordingly. |
| 148 | rep_t residual; |
| 149 | if (quotient < (implicitBit << 1)) { |
| 150 | residual = (aSignificand << 53) - quotient * bSignificand; |
| 151 | quotientExponent--; |
| 152 | } else { |
| 153 | quotient >>= 1; |
| 154 | residual = (aSignificand << 52) - quotient * bSignificand; |
| 155 | } |
| 156 | |
| 157 | const int writtenExponent = quotientExponent + exponentBias; |
| 158 | |
| 159 | if (writtenExponent >= maxExponent) { |
| 160 | // If we have overflowed the exponent, return infinity. |
| 161 | return fromRep(infRep | quotientSign); |
| 162 | } |
| 163 | |
| 164 | else if (writtenExponent < 1) { |
| 165 | // Flush denormals to zero. In the future, it would be nice to add |
| 166 | // code to round them correctly. |
| 167 | return fromRep(quotientSign); |
| 168 | } |
| 169 | |
| 170 | else { |
| 171 | const bool round = (residual << 1) > bSignificand; |
| 172 | // Clear the implicit bit |
| 173 | rep_t absResult = quotient & significandMask; |
| 174 | // Insert the exponent |
| 175 | absResult |= (rep_t)writtenExponent << significandBits; |
| 176 | // Round |
| 177 | absResult += round; |
| 178 | // Insert the sign and return |
| 179 | const double result = fromRep(absResult | quotientSign); |
| 180 | return result; |
| 181 | } |
| 182 | } |