blob: 35d83521c34f3bd14ffce51754478aff0bd7601a [file] [log] [blame]
Kostya Serebryany1e172b42011-11-30 01:07:02 +00001//===-- asan_allocator.cc ---------------------------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file is a part of AddressSanitizer, an address sanity checker.
11//
12// Implementation of ASan's memory allocator.
13// Evey piece of memory (AsanChunk) allocated by the allocator
14// has a left redzone of REDZONE bytes and
15// a right redzone such that the end of the chunk is aligned by REDZONE
16// (i.e. the right redzone is between 0 and REDZONE-1).
17// The left redzone is always poisoned.
18// The right redzone is poisoned on malloc, the body is poisoned on free.
19// Once freed, a chunk is moved to a quarantine (fifo list).
20// After quarantine, a chunk is returned to freelists.
21//
22// The left redzone contains ASan's internal data and the stack trace of
23// the malloc call.
24// Once freed, the body of the chunk contains the stack trace of the free call.
25//
26//===----------------------------------------------------------------------===//
27
28#include "asan_allocator.h"
29#include "asan_interceptors.h"
30#include "asan_interface.h"
31#include "asan_internal.h"
32#include "asan_lock.h"
33#include "asan_mapping.h"
34#include "asan_stats.h"
35#include "asan_thread.h"
36#include "asan_thread_registry.h"
37
Kostya Serebryany1e172b42011-11-30 01:07:02 +000038namespace __asan {
39
40#define REDZONE FLAG_redzone
41static const size_t kMinAllocSize = REDZONE * 2;
42static const size_t kMinMmapSize = 4UL << 20; // 4M
43static const uint64_t kMaxAvailableRam = 128ULL << 30; // 128G
44static const size_t kMaxThreadLocalQuarantine = 1 << 20; // 1M
45static const size_t kMaxSizeForThreadLocalFreeList = 1 << 17;
46
47// Size classes less than kMallocSizeClassStep are powers of two.
48// All other size classes are multiples of kMallocSizeClassStep.
49static const size_t kMallocSizeClassStepLog = 26;
50static const size_t kMallocSizeClassStep = 1UL << kMallocSizeClassStepLog;
51
52#if __WORDSIZE == 32
53static const size_t kMaxAllowedMallocSize = 3UL << 30; // 3G
54#else
55static const size_t kMaxAllowedMallocSize = 8UL << 30; // 8G
56#endif
57
Kostya Serebryany1e172b42011-11-30 01:07:02 +000058static inline bool IsAligned(uintptr_t a, uintptr_t alignment) {
59 return (a & (alignment - 1)) == 0;
60}
61
Alexander Potapenko6f045292012-01-27 15:15:04 +000062#ifdef _WIN32
63#include <intrin.h>
64#endif
65
Kostya Serebryany1e172b42011-11-30 01:07:02 +000066static inline size_t Log2(size_t x) {
67 CHECK(IsPowerOfTwo(x));
Alexander Potapenko6f045292012-01-27 15:15:04 +000068#if defined(_WIN64)
69 unsigned long ret; // NOLINT
70 _BitScanForward64(&ret, x);
71 return ret;
72#elif defined(_WIN32)
73 unsigned long ret; // NOLINT
74 _BitScanForward(&ret, x);
75 return ret;
76#else
Kostya Serebryany1e172b42011-11-30 01:07:02 +000077 return __builtin_ctzl(x);
Alexander Potapenko6f045292012-01-27 15:15:04 +000078#endif
79}
80
81static inline size_t clz(size_t x) {
82#if defined(_WIN64)
83 unsigned long ret; // NOLINT
84 _BitScanReverse64(&ret, x);
85 return ret;
86#elif defined(_WIN32)
87 unsigned long ret; // NOLINT
88 _BitScanReverse(&ret, x);
89 return ret;
90#else
91 return __builtin_clzl(x);
92#endif
Kostya Serebryany1e172b42011-11-30 01:07:02 +000093}
94
Kostya Serebryany1e172b42011-11-30 01:07:02 +000095static inline size_t RoundUpToPowerOfTwo(size_t size) {
96 CHECK(size);
97 if (IsPowerOfTwo(size)) return size;
Alexander Potapenko6f045292012-01-27 15:15:04 +000098
99 size_t up = __WORDSIZE - clz(size);
Kostya Serebryany1e172b42011-11-30 01:07:02 +0000100 CHECK(size < (1ULL << up));
101 CHECK(size > (1ULL << (up - 1)));
102 return 1UL << up;
103}
104
105static inline size_t SizeClassToSize(uint8_t size_class) {
106 CHECK(size_class < kNumberOfSizeClasses);
107 if (size_class <= kMallocSizeClassStepLog) {
108 return 1UL << size_class;
109 } else {
110 return (size_class - kMallocSizeClassStepLog) * kMallocSizeClassStep;
111 }
112}
113
114static inline uint8_t SizeToSizeClass(size_t size) {
115 uint8_t res = 0;
116 if (size <= kMallocSizeClassStep) {
117 size_t rounded = RoundUpToPowerOfTwo(size);
118 res = Log2(rounded);
119 } else {
120 res = ((size + kMallocSizeClassStep - 1) / kMallocSizeClassStep)
121 + kMallocSizeClassStepLog;
122 }
123 CHECK(res < kNumberOfSizeClasses);
124 CHECK(size <= SizeClassToSize(res));
125 return res;
126}
127
Kostya Serebryany1e172b42011-11-30 01:07:02 +0000128// Given REDZONE bytes, we need to mark first size bytes
129// as addressable and the rest REDZONE-size bytes as unaddressable.
Kostya Serebryany218a9b72011-11-30 18:50:23 +0000130static void PoisonHeapPartialRightRedzone(uintptr_t mem, size_t size) {
Kostya Serebryany1e172b42011-11-30 01:07:02 +0000131 CHECK(size <= REDZONE);
132 CHECK(IsAligned(mem, REDZONE));
133 CHECK(IsPowerOfTwo(SHADOW_GRANULARITY));
134 CHECK(IsPowerOfTwo(REDZONE));
135 CHECK(REDZONE >= SHADOW_GRANULARITY);
Kostya Serebryany218a9b72011-11-30 18:50:23 +0000136 PoisonShadowPartialRightRedzone(mem, size, REDZONE,
Kostya Serebryany1e172b42011-11-30 01:07:02 +0000137 kAsanHeapRightRedzoneMagic);
138}
139
140static uint8_t *MmapNewPagesAndPoisonShadow(size_t size) {
141 CHECK(IsAligned(size, kPageSize));
Kostya Serebryanyde496f42011-12-28 22:58:01 +0000142 uint8_t *res = (uint8_t*)AsanMmapSomewhereOrDie(size, __FUNCTION__);
Kostya Serebryany1e172b42011-11-30 01:07:02 +0000143 PoisonShadow((uintptr_t)res, size, kAsanHeapLeftRedzoneMagic);
144 if (FLAG_debug) {
145 Printf("ASAN_MMAP: [%p, %p)\n", res, res + size);
146 }
147 return res;
148}
149
150// Every chunk of memory allocated by this allocator can be in one of 3 states:
151// CHUNK_AVAILABLE: the chunk is in the free list and ready to be allocated.
152// CHUNK_ALLOCATED: the chunk is allocated and not yet freed.
153// CHUNK_QUARANTINE: the chunk was freed and put into quarantine zone.
154//
155// The pseudo state CHUNK_MEMALIGN is used to mark that the address is not
156// the beginning of a AsanChunk (in which case 'next' contains the address
157// of the AsanChunk).
158//
159// The magic numbers for the enum values are taken randomly.
160enum {
161 CHUNK_AVAILABLE = 0x573B,
162 CHUNK_ALLOCATED = 0x3204,
163 CHUNK_QUARANTINE = 0x1978,
164 CHUNK_MEMALIGN = 0xDC68,
165};
166
167struct ChunkBase {
168 uint16_t chunk_state;
169 uint8_t size_class;
170 uint32_t offset; // User-visible memory starts at this+offset (beg()).
171 int32_t alloc_tid;
172 int32_t free_tid;
173 size_t used_size; // Size requested by the user.
174 AsanChunk *next;
175
176 uintptr_t beg() { return (uintptr_t)this + offset; }
177 size_t Size() { return SizeClassToSize(size_class); }
178 uint8_t SizeClass() { return size_class; }
179};
180
181struct AsanChunk: public ChunkBase {
182 uint32_t *compressed_alloc_stack() {
183 CHECK(REDZONE >= sizeof(ChunkBase));
184 return (uint32_t*)((uintptr_t)this + sizeof(ChunkBase));
185 }
186 uint32_t *compressed_free_stack() {
187 CHECK(REDZONE >= sizeof(ChunkBase));
188 return (uint32_t*)((uintptr_t)this + REDZONE);
189 }
190
191 // The left redzone after the ChunkBase is given to the alloc stack trace.
192 size_t compressed_alloc_stack_size() {
193 return (REDZONE - sizeof(ChunkBase)) / sizeof(uint32_t);
194 }
195 size_t compressed_free_stack_size() {
196 return (REDZONE) / sizeof(uint32_t);
197 }
198
199 bool AddrIsInside(uintptr_t addr, size_t access_size, size_t *offset) {
200 if (addr >= beg() && (addr + access_size) <= (beg() + used_size)) {
201 *offset = addr - beg();
202 return true;
203 }
204 return false;
205 }
206
207 bool AddrIsAtLeft(uintptr_t addr, size_t access_size, size_t *offset) {
208 if (addr < beg()) {
209 *offset = beg() - addr;
210 return true;
211 }
212 return false;
213 }
214
215 bool AddrIsAtRight(uintptr_t addr, size_t access_size, size_t *offset) {
216 if (addr + access_size >= beg() + used_size) {
217 if (addr <= beg() + used_size)
218 *offset = 0;
219 else
220 *offset = addr - (beg() + used_size);
221 return true;
222 }
223 return false;
224 }
225
226 void DescribeAddress(uintptr_t addr, size_t access_size) {
227 size_t offset;
228 Printf("%p is located ", addr);
229 if (AddrIsInside(addr, access_size, &offset)) {
230 Printf("%ld bytes inside of", offset);
231 } else if (AddrIsAtLeft(addr, access_size, &offset)) {
232 Printf("%ld bytes to the left of", offset);
233 } else if (AddrIsAtRight(addr, access_size, &offset)) {
234 Printf("%ld bytes to the right of", offset);
235 } else {
236 Printf(" somewhere around (this is AddressSanitizer bug!)");
237 }
238 Printf(" %lu-byte region [%p,%p)\n",
239 used_size, beg(), beg() + used_size);
240 }
241};
242
243static AsanChunk *PtrToChunk(uintptr_t ptr) {
244 AsanChunk *m = (AsanChunk*)(ptr - REDZONE);
245 if (m->chunk_state == CHUNK_MEMALIGN) {
246 m = m->next;
247 }
248 return m;
249}
250
251
252void AsanChunkFifoList::PushList(AsanChunkFifoList *q) {
253 if (last_) {
254 CHECK(first_);
255 CHECK(!last_->next);
256 last_->next = q->first_;
257 last_ = q->last_;
258 } else {
259 CHECK(!first_);
260 last_ = q->last_;
261 first_ = q->first_;
262 }
263 size_ += q->size();
264 q->clear();
265}
266
267void AsanChunkFifoList::Push(AsanChunk *n) {
268 CHECK(n->next == NULL);
269 if (last_) {
270 CHECK(first_);
271 CHECK(!last_->next);
272 last_->next = n;
273 last_ = n;
274 } else {
275 CHECK(!first_);
276 last_ = first_ = n;
277 }
278 size_ += n->Size();
279}
280
281// Interesting performance observation: this function takes up to 15% of overal
282// allocator time. That's because *first_ has been evicted from cache long time
283// ago. Not sure if we can or want to do anything with this.
284AsanChunk *AsanChunkFifoList::Pop() {
285 CHECK(first_);
286 AsanChunk *res = first_;
287 first_ = first_->next;
288 if (first_ == NULL)
289 last_ = NULL;
290 CHECK(size_ >= res->Size());
291 size_ -= res->Size();
292 if (last_) {
293 CHECK(!last_->next);
294 }
295 return res;
296}
297
298// All pages we ever allocated.
299struct PageGroup {
300 uintptr_t beg;
301 uintptr_t end;
302 size_t size_of_chunk;
303 uintptr_t last_chunk;
304 bool InRange(uintptr_t addr) {
305 return addr >= beg && addr < end;
306 }
307};
308
309class MallocInfo {
310 public:
311
312 explicit MallocInfo(LinkerInitialized x) : mu_(x) { }
313
314 AsanChunk *AllocateChunks(uint8_t size_class, size_t n_chunks) {
315 AsanChunk *m = NULL;
316 AsanChunk **fl = &free_lists_[size_class];
317 {
318 ScopedLock lock(&mu_);
319 for (size_t i = 0; i < n_chunks; i++) {
320 if (!(*fl)) {
321 *fl = GetNewChunks(size_class);
322 }
323 AsanChunk *t = *fl;
324 *fl = t->next;
325 t->next = m;
326 CHECK(t->chunk_state == CHUNK_AVAILABLE);
327 m = t;
328 }
329 }
330 return m;
331 }
332
333 void SwallowThreadLocalMallocStorage(AsanThreadLocalMallocStorage *x,
334 bool eat_free_lists) {
335 CHECK(FLAG_quarantine_size > 0);
336 ScopedLock lock(&mu_);
337 AsanChunkFifoList *q = &x->quarantine_;
338 if (q->size() > 0) {
339 quarantine_.PushList(q);
340 while (quarantine_.size() > FLAG_quarantine_size) {
341 QuarantinePop();
342 }
343 }
344 if (eat_free_lists) {
345 for (size_t size_class = 0; size_class < kNumberOfSizeClasses;
346 size_class++) {
347 AsanChunk *m = x->free_lists_[size_class];
348 while (m) {
349 AsanChunk *t = m->next;
350 m->next = free_lists_[size_class];
351 free_lists_[size_class] = m;
352 m = t;
353 }
354 x->free_lists_[size_class] = 0;
355 }
356 }
357 }
358
359 void BypassThreadLocalQuarantine(AsanChunk *chunk) {
360 ScopedLock lock(&mu_);
361 quarantine_.Push(chunk);
362 }
363
364 AsanChunk *FindMallocedOrFreed(uintptr_t addr, size_t access_size) {
365 ScopedLock lock(&mu_);
366 return FindChunkByAddr(addr);
367 }
368
369 // TODO(glider): AllocationSize() may become very slow if the size of
370 // page_groups_ grows. This can be fixed by increasing kMinMmapSize,
371 // but a better solution is to speed up the search somehow.
372 size_t AllocationSize(uintptr_t ptr) {
Alexey Samsonovca2278d2012-01-18 15:26:55 +0000373 if (!ptr) return 0;
Kostya Serebryany1e172b42011-11-30 01:07:02 +0000374 ScopedLock lock(&mu_);
375
376 // first, check if this is our memory
377 PageGroup *g = FindPageGroupUnlocked(ptr);
378 if (!g) return 0;
379 AsanChunk *m = PtrToChunk(ptr);
380 if (m->chunk_state == CHUNK_ALLOCATED) {
381 return m->used_size;
382 } else {
383 return 0;
384 }
385 }
386
387 void ForceLock() {
388 mu_.Lock();
389 }
390
391 void ForceUnlock() {
392 mu_.Unlock();
393 }
394
395 void PrintStatus() {
396 ScopedLock lock(&mu_);
397 size_t malloced = 0;
398
399 Printf(" MallocInfo: in quarantine: %ld malloced: %ld; ",
400 quarantine_.size() >> 20, malloced >> 20);
401 for (size_t j = 1; j < kNumberOfSizeClasses; j++) {
402 AsanChunk *i = free_lists_[j];
403 if (!i) continue;
404 size_t t = 0;
405 for (; i; i = i->next) {
406 t += i->Size();
407 }
408 Printf("%ld:%ld ", j, t >> 20);
409 }
410 Printf("\n");
411 }
412
413 PageGroup *FindPageGroup(uintptr_t addr) {
414 ScopedLock lock(&mu_);
415 return FindPageGroupUnlocked(addr);
416 }
417
418 private:
419 PageGroup *FindPageGroupUnlocked(uintptr_t addr) {
420 for (int i = 0; i < n_page_groups_; i++) {
421 PageGroup *g = page_groups_[i];
422 if (g->InRange(addr)) {
423 return g;
424 }
425 }
426 return NULL;
427 }
428
429 // We have an address between two chunks, and we want to report just one.
430 AsanChunk *ChooseChunk(uintptr_t addr,
431 AsanChunk *left_chunk, AsanChunk *right_chunk) {
432 // Prefer an allocated chunk or a chunk from quarantine.
433 if (left_chunk->chunk_state == CHUNK_AVAILABLE &&
434 right_chunk->chunk_state != CHUNK_AVAILABLE)
435 return right_chunk;
436 if (right_chunk->chunk_state == CHUNK_AVAILABLE &&
437 left_chunk->chunk_state != CHUNK_AVAILABLE)
438 return left_chunk;
439 // Choose based on offset.
Daniel Dunbar514cebb2011-12-02 01:36:38 +0000440 size_t l_offset = 0, r_offset = 0;
Kostya Serebryany1e172b42011-11-30 01:07:02 +0000441 CHECK(left_chunk->AddrIsAtRight(addr, 1, &l_offset));
442 CHECK(right_chunk->AddrIsAtLeft(addr, 1, &r_offset));
443 if (l_offset < r_offset)
444 return left_chunk;
445 return right_chunk;
446 }
447
448 AsanChunk *FindChunkByAddr(uintptr_t addr) {
449 PageGroup *g = FindPageGroupUnlocked(addr);
450 if (!g) return 0;
451 CHECK(g->size_of_chunk);
452 uintptr_t offset_from_beg = addr - g->beg;
453 uintptr_t this_chunk_addr = g->beg +
454 (offset_from_beg / g->size_of_chunk) * g->size_of_chunk;
455 CHECK(g->InRange(this_chunk_addr));
456 AsanChunk *m = (AsanChunk*)this_chunk_addr;
457 CHECK(m->chunk_state == CHUNK_ALLOCATED ||
458 m->chunk_state == CHUNK_AVAILABLE ||
459 m->chunk_state == CHUNK_QUARANTINE);
Daniel Dunbar514cebb2011-12-02 01:36:38 +0000460 size_t offset = 0;
Kostya Serebryany1e172b42011-11-30 01:07:02 +0000461 if (m->AddrIsInside(addr, 1, &offset))
462 return m;
463
464 if (m->AddrIsAtRight(addr, 1, &offset)) {
465 if (this_chunk_addr == g->last_chunk) // rightmost chunk
466 return m;
467 uintptr_t right_chunk_addr = this_chunk_addr + g->size_of_chunk;
468 CHECK(g->InRange(right_chunk_addr));
469 return ChooseChunk(addr, m, (AsanChunk*)right_chunk_addr);
470 } else {
471 CHECK(m->AddrIsAtLeft(addr, 1, &offset));
472 if (this_chunk_addr == g->beg) // leftmost chunk
473 return m;
474 uintptr_t left_chunk_addr = this_chunk_addr - g->size_of_chunk;
475 CHECK(g->InRange(left_chunk_addr));
476 return ChooseChunk(addr, (AsanChunk*)left_chunk_addr, m);
477 }
478 }
479
480 void QuarantinePop() {
481 CHECK(quarantine_.size() > 0);
482 AsanChunk *m = quarantine_.Pop();
483 CHECK(m);
484 // if (F_v >= 2) Printf("MallocInfo::pop %p\n", m);
485
486 CHECK(m->chunk_state == CHUNK_QUARANTINE);
487 m->chunk_state = CHUNK_AVAILABLE;
488 CHECK(m->alloc_tid >= 0);
489 CHECK(m->free_tid >= 0);
490
491 size_t size_class = m->SizeClass();
492 m->next = free_lists_[size_class];
493 free_lists_[size_class] = m;
494
Kostya Serebryany30743142011-12-05 19:17:53 +0000495 // Statistics.
496 AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
497 thread_stats.real_frees++;
498 thread_stats.really_freed += m->used_size;
499 thread_stats.really_freed_redzones += m->Size() - m->used_size;
500 thread_stats.really_freed_by_size[m->SizeClass()]++;
Kostya Serebryany1e172b42011-11-30 01:07:02 +0000501 }
502
503 // Get a list of newly allocated chunks.
504 AsanChunk *GetNewChunks(uint8_t size_class) {
505 size_t size = SizeClassToSize(size_class);
506 CHECK(IsPowerOfTwo(kMinMmapSize));
507 CHECK(size < kMinMmapSize || (size % kMinMmapSize) == 0);
Kostya Serebryany2d8b3bd2011-12-02 18:42:04 +0000508 size_t mmap_size = Max(size, kMinMmapSize);
Kostya Serebryany1e172b42011-11-30 01:07:02 +0000509 size_t n_chunks = mmap_size / size;
510 CHECK(n_chunks * size == mmap_size);
511 if (size < kPageSize) {
512 // Size is small, just poison the last chunk.
513 n_chunks--;
514 } else {
515 // Size is large, allocate an extra page at right and poison it.
516 mmap_size += kPageSize;
517 }
518 CHECK(n_chunks > 0);
519 uint8_t *mem = MmapNewPagesAndPoisonShadow(mmap_size);
Kostya Serebryany30743142011-12-05 19:17:53 +0000520
521 // Statistics.
522 AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
523 thread_stats.mmaps++;
524 thread_stats.mmaped += mmap_size;
525 thread_stats.mmaped_by_size[size_class] += n_chunks;
526
Kostya Serebryany1e172b42011-11-30 01:07:02 +0000527 AsanChunk *res = NULL;
528 for (size_t i = 0; i < n_chunks; i++) {
529 AsanChunk *m = (AsanChunk*)(mem + i * size);
530 m->chunk_state = CHUNK_AVAILABLE;
531 m->size_class = size_class;
532 m->next = res;
533 res = m;
534 }
535 PageGroup *pg = (PageGroup*)(mem + n_chunks * size);
536 // This memory is already poisoned, no need to poison it again.
537 pg->beg = (uintptr_t)mem;
538 pg->end = pg->beg + mmap_size;
539 pg->size_of_chunk = size;
540 pg->last_chunk = (uintptr_t)(mem + size * (n_chunks - 1));
541 int page_group_idx = AtomicInc(&n_page_groups_) - 1;
542 CHECK(page_group_idx < (int)ASAN_ARRAY_SIZE(page_groups_));
543 page_groups_[page_group_idx] = pg;
544 return res;
545 }
546
547 AsanChunk *free_lists_[kNumberOfSizeClasses];
548 AsanChunkFifoList quarantine_;
549 AsanLock mu_;
550
551 PageGroup *page_groups_[kMaxAvailableRam / kMinMmapSize];
552 int n_page_groups_; // atomic
553};
554
555static MallocInfo malloc_info(LINKER_INITIALIZED);
556
557void AsanThreadLocalMallocStorage::CommitBack() {
558 malloc_info.SwallowThreadLocalMallocStorage(this, true);
559}
560
561static void Describe(uintptr_t addr, size_t access_size) {
562 AsanChunk *m = malloc_info.FindMallocedOrFreed(addr, access_size);
563 if (!m) return;
564 m->DescribeAddress(addr, access_size);
565 CHECK(m->alloc_tid >= 0);
566 AsanThreadSummary *alloc_thread =
567 asanThreadRegistry().FindByTid(m->alloc_tid);
568 AsanStackTrace alloc_stack;
569 AsanStackTrace::UncompressStack(&alloc_stack, m->compressed_alloc_stack(),
570 m->compressed_alloc_stack_size());
571 AsanThread *t = asanThreadRegistry().GetCurrent();
572 CHECK(t);
573 if (m->free_tid >= 0) {
574 AsanThreadSummary *free_thread =
575 asanThreadRegistry().FindByTid(m->free_tid);
576 Printf("freed by thread T%d here:\n", free_thread->tid());
577 AsanStackTrace free_stack;
578 AsanStackTrace::UncompressStack(&free_stack, m->compressed_free_stack(),
579 m->compressed_free_stack_size());
580 free_stack.PrintStack();
581 Printf("previously allocated by thread T%d here:\n",
582 alloc_thread->tid());
583
584 alloc_stack.PrintStack();
585 t->summary()->Announce();
586 free_thread->Announce();
587 alloc_thread->Announce();
588 } else {
589 Printf("allocated by thread T%d here:\n", alloc_thread->tid());
590 alloc_stack.PrintStack();
591 t->summary()->Announce();
592 alloc_thread->Announce();
593 }
594}
595
596static uint8_t *Allocate(size_t alignment, size_t size, AsanStackTrace *stack) {
597 __asan_init();
598 CHECK(stack);
599 if (size == 0) {
600 size = 1; // TODO(kcc): do something smarter
601 }
602 CHECK(IsPowerOfTwo(alignment));
603 size_t rounded_size = RoundUpTo(size, REDZONE);
604 size_t needed_size = rounded_size + REDZONE;
605 if (alignment > REDZONE) {
606 needed_size += alignment;
607 }
608 CHECK(IsAligned(needed_size, REDZONE));
609 if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize) {
610 Report("WARNING: AddressSanitizer failed to allocate %p bytes\n", size);
611 return 0;
612 }
613
614 uint8_t size_class = SizeToSizeClass(needed_size);
615 size_t size_to_allocate = SizeClassToSize(size_class);
616 CHECK(size_to_allocate >= kMinAllocSize);
617 CHECK(size_to_allocate >= needed_size);
618 CHECK(IsAligned(size_to_allocate, REDZONE));
619
620 if (FLAG_v >= 2) {
621 Printf("Allocate align: %ld size: %ld class: %d real: %ld\n",
622 alignment, size, size_class, size_to_allocate);
623 }
624
625 AsanThread *t = asanThreadRegistry().GetCurrent();
626 AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
Kostya Serebryany30743142011-12-05 19:17:53 +0000627 // Statistics
628 thread_stats.mallocs++;
629 thread_stats.malloced += size;
630 thread_stats.malloced_redzones += size_to_allocate - size;
631 thread_stats.malloced_by_size[size_class]++;
Kostya Serebryany1e172b42011-11-30 01:07:02 +0000632
633 AsanChunk *m = NULL;
634 if (!t || size_to_allocate >= kMaxSizeForThreadLocalFreeList) {
635 // get directly from global storage.
636 m = malloc_info.AllocateChunks(size_class, 1);
Kostya Serebryany30743142011-12-05 19:17:53 +0000637 thread_stats.malloc_large++;
Kostya Serebryany1e172b42011-11-30 01:07:02 +0000638 } else {
639 // get from the thread-local storage.
640 AsanChunk **fl = &t->malloc_storage().free_lists_[size_class];
641 if (!*fl) {
642 size_t n_new_chunks = kMaxSizeForThreadLocalFreeList / size_to_allocate;
Kostya Serebryany1e172b42011-11-30 01:07:02 +0000643 *fl = malloc_info.AllocateChunks(size_class, n_new_chunks);
Kostya Serebryany30743142011-12-05 19:17:53 +0000644 thread_stats.malloc_small_slow++;
Kostya Serebryany1e172b42011-11-30 01:07:02 +0000645 }
646 m = *fl;
647 *fl = (*fl)->next;
648 }
649 CHECK(m);
650 CHECK(m->chunk_state == CHUNK_AVAILABLE);
651 m->chunk_state = CHUNK_ALLOCATED;
652 m->next = NULL;
653 CHECK(m->Size() == size_to_allocate);
654 uintptr_t addr = (uintptr_t)m + REDZONE;
655 CHECK(addr == (uintptr_t)m->compressed_free_stack());
656
657 if (alignment > REDZONE && (addr & (alignment - 1))) {
658 addr = RoundUpTo(addr, alignment);
659 CHECK((addr & (alignment - 1)) == 0);
660 AsanChunk *p = (AsanChunk*)(addr - REDZONE);
661 p->chunk_state = CHUNK_MEMALIGN;
662 p->next = m;
663 }
664 CHECK(m == PtrToChunk(addr));
665 m->used_size = size;
666 m->offset = addr - (uintptr_t)m;
667 CHECK(m->beg() == addr);
668 m->alloc_tid = t ? t->tid() : 0;
669 m->free_tid = AsanThread::kInvalidTid;
670 AsanStackTrace::CompressStack(stack, m->compressed_alloc_stack(),
671 m->compressed_alloc_stack_size());
672 PoisonShadow(addr, rounded_size, 0);
673 if (size < rounded_size) {
Kostya Serebryany218a9b72011-11-30 18:50:23 +0000674 PoisonHeapPartialRightRedzone(addr + rounded_size - REDZONE,
675 size & (REDZONE - 1));
Kostya Serebryany1e172b42011-11-30 01:07:02 +0000676 }
677 if (size <= FLAG_max_malloc_fill_size) {
678 real_memset((void*)addr, 0, rounded_size);
679 }
680 return (uint8_t*)addr;
681}
682
683static void Deallocate(uint8_t *ptr, AsanStackTrace *stack) {
684 if (!ptr) return;
685 CHECK(stack);
686
687 if (FLAG_debug) {
688 CHECK(malloc_info.FindPageGroup((uintptr_t)ptr));
689 }
690
691 // Printf("Deallocate %p\n", ptr);
692 AsanChunk *m = PtrToChunk((uintptr_t)ptr);
693 if (m->chunk_state == CHUNK_QUARANTINE) {
Kostya Serebryanyc1620132011-12-13 19:16:36 +0000694 Report("ERROR: AddressSanitizer attempting double-free on %p:\n", ptr);
Kostya Serebryany1e172b42011-11-30 01:07:02 +0000695 stack->PrintStack();
696 m->DescribeAddress((uintptr_t)ptr, 1);
697 ShowStatsAndAbort();
698 } else if (m->chunk_state != CHUNK_ALLOCATED) {
Kostya Serebryanyc1620132011-12-13 19:16:36 +0000699 Report("ERROR: AddressSanitizer attempting free on address which was not"
700 " malloc()-ed: %p\n", ptr);
Kostya Serebryany1e172b42011-11-30 01:07:02 +0000701 stack->PrintStack();
702 ShowStatsAndAbort();
703 }
704 CHECK(m->chunk_state == CHUNK_ALLOCATED);
705 CHECK(m->free_tid == AsanThread::kInvalidTid);
706 CHECK(m->alloc_tid >= 0);
707 AsanThread *t = asanThreadRegistry().GetCurrent();
708 m->free_tid = t ? t->tid() : 0;
709 AsanStackTrace::CompressStack(stack, m->compressed_free_stack(),
710 m->compressed_free_stack_size());
711 size_t rounded_size = RoundUpTo(m->used_size, REDZONE);
712 PoisonShadow((uintptr_t)ptr, rounded_size, kAsanHeapFreeMagic);
713
Kostya Serebryany30743142011-12-05 19:17:53 +0000714 // Statistics.
715 AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
716 thread_stats.frees++;
717 thread_stats.freed += m->used_size;
718 thread_stats.freed_by_size[m->SizeClass()]++;
Kostya Serebryany1e172b42011-11-30 01:07:02 +0000719
720 m->chunk_state = CHUNK_QUARANTINE;
721 if (t) {
722 AsanThreadLocalMallocStorage *ms = &t->malloc_storage();
723 CHECK(!m->next);
724 ms->quarantine_.Push(m);
725
726 if (ms->quarantine_.size() > kMaxThreadLocalQuarantine) {
727 malloc_info.SwallowThreadLocalMallocStorage(ms, false);
728 }
729 } else {
730 CHECK(!m->next);
731 malloc_info.BypassThreadLocalQuarantine(m);
732 }
733}
734
735static uint8_t *Reallocate(uint8_t *old_ptr, size_t new_size,
736 AsanStackTrace *stack) {
737 CHECK(old_ptr && new_size);
Kostya Serebryany30743142011-12-05 19:17:53 +0000738
739 // Statistics.
740 AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
741 thread_stats.reallocs++;
742 thread_stats.realloced += new_size;
743
Kostya Serebryany1e172b42011-11-30 01:07:02 +0000744 AsanChunk *m = PtrToChunk((uintptr_t)old_ptr);
745 CHECK(m->chunk_state == CHUNK_ALLOCATED);
746 size_t old_size = m->used_size;
Kostya Serebryany2d8b3bd2011-12-02 18:42:04 +0000747 size_t memcpy_size = Min(new_size, old_size);
Kostya Serebryany1e172b42011-11-30 01:07:02 +0000748 uint8_t *new_ptr = Allocate(0, new_size, stack);
749 if (new_ptr) {
750 real_memcpy(new_ptr, old_ptr, memcpy_size);
751 Deallocate(old_ptr, stack);
752 }
753 return new_ptr;
754}
755
756} // namespace __asan
757
758// Malloc hooks declaration.
759// ASAN_NEW_HOOK(ptr, size) is called immediately after
760// allocation of "size" bytes, which returned "ptr".
761// ASAN_DELETE_HOOK(ptr) is called immediately before
762// deallocation of "ptr".
763// If ASAN_NEW_HOOK or ASAN_DELETE_HOOK is defined, user
764// program must provide implementation of this hook.
765// If macro is undefined, the hook is no-op.
766#ifdef ASAN_NEW_HOOK
767extern "C" void ASAN_NEW_HOOK(void *ptr, size_t size);
768#else
769static inline void ASAN_NEW_HOOK(void *ptr, size_t size) { }
770#endif
771
772#ifdef ASAN_DELETE_HOOK
773extern "C" void ASAN_DELETE_HOOK(void *ptr);
774#else
775static inline void ASAN_DELETE_HOOK(void *ptr) { }
776#endif
777
778namespace __asan {
779
780void *asan_memalign(size_t alignment, size_t size, AsanStackTrace *stack) {
781 void *ptr = (void*)Allocate(alignment, size, stack);
782 ASAN_NEW_HOOK(ptr, size);
783 return ptr;
784}
785
786void asan_free(void *ptr, AsanStackTrace *stack) {
787 ASAN_DELETE_HOOK(ptr);
788 Deallocate((uint8_t*)ptr, stack);
789}
790
791void *asan_malloc(size_t size, AsanStackTrace *stack) {
792 void *ptr = (void*)Allocate(0, size, stack);
793 ASAN_NEW_HOOK(ptr, size);
794 return ptr;
795}
796
797void *asan_calloc(size_t nmemb, size_t size, AsanStackTrace *stack) {
798 void *ptr = (void*)Allocate(0, nmemb * size, stack);
799 if (ptr)
800 real_memset(ptr, 0, nmemb * size);
801 ASAN_NEW_HOOK(ptr, nmemb * size);
802 return ptr;
803}
804
805void *asan_realloc(void *p, size_t size, AsanStackTrace *stack) {
806 if (p == NULL) {
807 void *ptr = (void*)Allocate(0, size, stack);
808 ASAN_NEW_HOOK(ptr, size);
809 return ptr;
810 } else if (size == 0) {
811 ASAN_DELETE_HOOK(p);
812 Deallocate((uint8_t*)p, stack);
813 return NULL;
814 }
815 return Reallocate((uint8_t*)p, size, stack);
816}
817
818void *asan_valloc(size_t size, AsanStackTrace *stack) {
819 void *ptr = (void*)Allocate(kPageSize, size, stack);
820 ASAN_NEW_HOOK(ptr, size);
821 return ptr;
822}
823
824void *asan_pvalloc(size_t size, AsanStackTrace *stack) {
825 size = RoundUpTo(size, kPageSize);
826 if (size == 0) {
827 // pvalloc(0) should allocate one page.
828 size = kPageSize;
829 }
830 void *ptr = (void*)Allocate(kPageSize, size, stack);
831 ASAN_NEW_HOOK(ptr, size);
832 return ptr;
833}
834
835int asan_posix_memalign(void **memptr, size_t alignment, size_t size,
836 AsanStackTrace *stack) {
837 void *ptr = Allocate(alignment, size, stack);
838 CHECK(IsAligned((uintptr_t)ptr, alignment));
839 ASAN_NEW_HOOK(ptr, size);
840 *memptr = ptr;
841 return 0;
842}
843
Alexey Samsonov4fd95f12012-01-17 06:39:10 +0000844size_t asan_malloc_usable_size(void *ptr, AsanStackTrace *stack) {
Alexey Samsonovca2278d2012-01-18 15:26:55 +0000845 CHECK(stack);
846 if (ptr == NULL) return 0;
847 size_t usable_size = malloc_info.AllocationSize((uintptr_t)ptr);
848 if (usable_size == 0) {
Alexey Samsonov4fd95f12012-01-17 06:39:10 +0000849 Report("ERROR: AddressSanitizer attempting to call malloc_usable_size() "
850 "for pointer which is not owned: %p\n", ptr);
851 stack->PrintStack();
852 Describe((uintptr_t)ptr, 1);
853 ShowStatsAndAbort();
854 }
855 return usable_size;
856}
857
858size_t asan_mz_size(const void *ptr) {
Alexey Samsonovca2278d2012-01-18 15:26:55 +0000859 return malloc_info.AllocationSize((uintptr_t)ptr);
Kostya Serebryany1e172b42011-11-30 01:07:02 +0000860}
861
862void DescribeHeapAddress(uintptr_t addr, uintptr_t access_size) {
863 Describe(addr, access_size);
864}
865
Alexey Samsonov4fd95f12012-01-17 06:39:10 +0000866void asan_mz_force_lock() {
Kostya Serebryany1e172b42011-11-30 01:07:02 +0000867 malloc_info.ForceLock();
868}
869
Alexey Samsonov4fd95f12012-01-17 06:39:10 +0000870void asan_mz_force_unlock() {
Kostya Serebryany1e172b42011-11-30 01:07:02 +0000871 malloc_info.ForceUnlock();
872}
873
874// ---------------------- Fake stack-------------------- {{{1
875FakeStack::FakeStack() {
876 CHECK(real_memset);
877 real_memset(this, 0, sizeof(*this));
878}
879
880bool FakeStack::AddrIsInSizeClass(uintptr_t addr, size_t size_class) {
881 uintptr_t mem = allocated_size_classes_[size_class];
882 uintptr_t size = ClassMmapSize(size_class);
883 bool res = mem && addr >= mem && addr < mem + size;
884 return res;
885}
886
887uintptr_t FakeStack::AddrIsInFakeStack(uintptr_t addr) {
Kostya Serebryany1e172b42011-11-30 01:07:02 +0000888 for (size_t i = 0; i < kNumberOfSizeClasses; i++) {
889 if (AddrIsInSizeClass(addr, i)) return allocated_size_classes_[i];
890 }
891 return 0;
892}
893
894// We may want to compute this during compilation.
895inline size_t FakeStack::ComputeSizeClass(size_t alloc_size) {
896 size_t rounded_size = RoundUpToPowerOfTwo(alloc_size);
897 size_t log = Log2(rounded_size);
898 CHECK(alloc_size <= (1UL << log));
899 if (!(alloc_size > (1UL << (log-1)))) {
900 Printf("alloc_size %ld log %ld\n", alloc_size, log);
901 }
902 CHECK(alloc_size > (1UL << (log-1)));
903 size_t res = log < kMinStackFrameSizeLog ? 0 : log - kMinStackFrameSizeLog;
904 CHECK(res < kNumberOfSizeClasses);
905 CHECK(ClassSize(res) >= rounded_size);
906 return res;
907}
908
909void FakeFrameFifo::FifoPush(FakeFrame *node) {
910 CHECK(node);
911 node->next = 0;
912 if (first_ == 0 && last_ == 0) {
913 first_ = last_ = node;
914 } else {
915 CHECK(first_);
916 CHECK(last_);
917 last_->next = node;
918 last_ = node;
919 }
920}
921
922FakeFrame *FakeFrameFifo::FifoPop() {
923 CHECK(first_ && last_ && "Exhausted fake stack");
924 FakeFrame *res = 0;
925 if (first_ == last_) {
926 res = first_;
927 first_ = last_ = 0;
928 } else {
929 res = first_;
930 first_ = first_->next;
931 }
932 return res;
933}
934
935void FakeStack::Init(size_t stack_size) {
936 stack_size_ = stack_size;
937 alive_ = true;
938}
939
940void FakeStack::Cleanup() {
941 alive_ = false;
942 for (size_t i = 0; i < kNumberOfSizeClasses; i++) {
943 uintptr_t mem = allocated_size_classes_[i];
944 if (mem) {
945 PoisonShadow(mem, ClassMmapSize(i), 0);
946 allocated_size_classes_[i] = 0;
Kostya Serebryanyde496f42011-12-28 22:58:01 +0000947 AsanUnmapOrDie((void*)mem, ClassMmapSize(i));
Kostya Serebryany1e172b42011-11-30 01:07:02 +0000948 }
949 }
950}
951
952size_t FakeStack::ClassMmapSize(size_t size_class) {
953 return RoundUpToPowerOfTwo(stack_size_);
954}
955
956void FakeStack::AllocateOneSizeClass(size_t size_class) {
957 CHECK(ClassMmapSize(size_class) >= kPageSize);
Kostya Serebryanyde496f42011-12-28 22:58:01 +0000958 uintptr_t new_mem = (uintptr_t)AsanMmapSomewhereOrDie(
959 ClassMmapSize(size_class), __FUNCTION__);
Kostya Serebryany1e172b42011-11-30 01:07:02 +0000960 // Printf("T%d new_mem[%ld]: %p-%p mmap %ld\n",
961 // asanThreadRegistry().GetCurrent()->tid(),
962 // size_class, new_mem, new_mem + ClassMmapSize(size_class),
963 // ClassMmapSize(size_class));
964 size_t i;
965 for (i = 0; i < ClassMmapSize(size_class);
966 i += ClassSize(size_class)) {
967 size_classes_[size_class].FifoPush((FakeFrame*)(new_mem + i));
968 }
969 CHECK(i == ClassMmapSize(size_class));
970 allocated_size_classes_[size_class] = new_mem;
971}
972
973uintptr_t FakeStack::AllocateStack(size_t size, size_t real_stack) {
Kostya Serebryanyc4b34d92011-12-09 01:49:31 +0000974 if (!alive_) return real_stack;
Kostya Serebryany1e172b42011-11-30 01:07:02 +0000975 CHECK(size <= kMaxStackMallocSize && size > 1);
976 size_t size_class = ComputeSizeClass(size);
977 if (!allocated_size_classes_[size_class]) {
978 AllocateOneSizeClass(size_class);
979 }
980 FakeFrame *fake_frame = size_classes_[size_class].FifoPop();
981 CHECK(fake_frame);
982 fake_frame->size_minus_one = size - 1;
983 fake_frame->real_stack = real_stack;
984 while (FakeFrame *top = call_stack_.top()) {
985 if (top->real_stack > real_stack) break;
986 call_stack_.LifoPop();
987 DeallocateFrame(top);
988 }
989 call_stack_.LifoPush(fake_frame);
990 uintptr_t ptr = (uintptr_t)fake_frame;
991 PoisonShadow(ptr, size, 0);
992 return ptr;
993}
994
995void FakeStack::DeallocateFrame(FakeFrame *fake_frame) {
996 CHECK(alive_);
997 size_t size = fake_frame->size_minus_one + 1;
998 size_t size_class = ComputeSizeClass(size);
999 CHECK(allocated_size_classes_[size_class]);
1000 uintptr_t ptr = (uintptr_t)fake_frame;
1001 CHECK(AddrIsInSizeClass(ptr, size_class));
1002 CHECK(AddrIsInSizeClass(ptr + size - 1, size_class));
1003 size_classes_[size_class].FifoPush(fake_frame);
1004}
1005
1006void FakeStack::OnFree(size_t ptr, size_t size, size_t real_stack) {
1007 FakeFrame *fake_frame = (FakeFrame*)ptr;
1008 CHECK(fake_frame->magic = kRetiredStackFrameMagic);
1009 CHECK(fake_frame->descr != 0);
1010 CHECK(fake_frame->size_minus_one == size - 1);
1011 PoisonShadow(ptr, size, kAsanStackAfterReturnMagic);
1012}
1013
1014} // namespace __asan
1015
1016// ---------------------- Interface ---------------- {{{1
1017using namespace __asan; // NOLINT
1018
1019size_t __asan_stack_malloc(size_t size, size_t real_stack) {
1020 if (!FLAG_use_fake_stack) return real_stack;
1021 AsanThread *t = asanThreadRegistry().GetCurrent();
1022 if (!t) {
1023 // TSD is gone, use the real stack.
1024 return real_stack;
1025 }
1026 size_t ptr = t->fake_stack().AllocateStack(size, real_stack);
1027 // Printf("__asan_stack_malloc %p %ld %p\n", ptr, size, real_stack);
1028 return ptr;
1029}
1030
1031void __asan_stack_free(size_t ptr, size_t size, size_t real_stack) {
1032 if (!FLAG_use_fake_stack) return;
1033 if (ptr != real_stack) {
1034 FakeStack::OnFree(ptr, size, real_stack);
1035 }
1036}
1037
1038// ASan allocator doesn't reserve extra bytes, so normally we would
1039// just return "size".
1040size_t __asan_get_estimated_allocated_size(size_t size) {
1041 if (size == 0) return 1;
Kostya Serebryany2d8b3bd2011-12-02 18:42:04 +00001042 return Min(size, kMaxAllowedMallocSize);
Kostya Serebryany1e172b42011-11-30 01:07:02 +00001043}
1044
1045bool __asan_get_ownership(const void *p) {
Alexey Samsonovca2278d2012-01-18 15:26:55 +00001046 return malloc_info.AllocationSize((uintptr_t)p) > 0;
Kostya Serebryany1e172b42011-11-30 01:07:02 +00001047}
1048
1049size_t __asan_get_allocated_size(const void *p) {
Alexey Samsonovca2278d2012-01-18 15:26:55 +00001050 if (p == NULL) return 0;
1051 size_t allocated_size = malloc_info.AllocationSize((uintptr_t)p);
Kostya Serebryany1e172b42011-11-30 01:07:02 +00001052 // Die if p is not malloced or if it is already freed.
Alexey Samsonovca2278d2012-01-18 15:26:55 +00001053 if (allocated_size == 0) {
Alexey Samsonov4fd95f12012-01-17 06:39:10 +00001054 Report("ERROR: AddressSanitizer attempting to call "
1055 "__asan_get_allocated_size() for pointer which is "
1056 "not owned: %p\n", p);
Kostya Serebryany1e172b42011-11-30 01:07:02 +00001057 PRINT_CURRENT_STACK();
Alexey Samsonov4fd95f12012-01-17 06:39:10 +00001058 Describe((uintptr_t)p, 1);
Kostya Serebryany1e172b42011-11-30 01:07:02 +00001059 ShowStatsAndAbort();
1060 }
1061 return allocated_size;
1062}