blob: c0ad8ed0aecdc9253010c9b6a26c211f514cbcf5 [file] [log] [blame]
Stephen Hines2d1fdb22014-05-28 23:58:16 -07001//===-- lib/comparetf2.c - Quad-precision comparisons -------------*- C -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is dual licensed under the MIT and the University of Illinois Open
6// Source Licenses. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// // This file implements the following soft-float comparison routines:
11//
12// __eqtf2 __getf2 __unordtf2
13// __letf2 __gttf2
14// __lttf2
15// __netf2
16//
17// The semantics of the routines grouped in each column are identical, so there
18// is a single implementation for each, and wrappers to provide the other names.
19//
20// The main routines behave as follows:
21//
22// __letf2(a,b) returns -1 if a < b
23// 0 if a == b
24// 1 if a > b
25// 1 if either a or b is NaN
26//
27// __getf2(a,b) returns -1 if a < b
28// 0 if a == b
29// 1 if a > b
30// -1 if either a or b is NaN
31//
32// __unordtf2(a,b) returns 0 if both a and b are numbers
33// 1 if either a or b is NaN
34//
35// Note that __letf2( ) and __getf2( ) are identical except in their handling of
36// NaN values.
37//
38//===----------------------------------------------------------------------===//
39
40#define QUAD_PRECISION
41#include "fp_lib.h"
42
43#if defined(CRT_HAS_128BIT) && defined(CRT_LDBL_128BIT)
44enum LE_RESULT {
45 LE_LESS = -1,
46 LE_EQUAL = 0,
47 LE_GREATER = 1,
48 LE_UNORDERED = 1
49};
50
51COMPILER_RT_ABI enum LE_RESULT __letf2(fp_t a, fp_t b) {
52
53 const srep_t aInt = toRep(a);
54 const srep_t bInt = toRep(b);
55 const rep_t aAbs = aInt & absMask;
56 const rep_t bAbs = bInt & absMask;
57
58 // If either a or b is NaN, they are unordered.
59 if (aAbs > infRep || bAbs > infRep) return LE_UNORDERED;
60
61 // If a and b are both zeros, they are equal.
62 if ((aAbs | bAbs) == 0) return LE_EQUAL;
63
64 // If at least one of a and b is positive, we get the same result comparing
65 // a and b as signed integers as we would with a floating-point compare.
66 if ((aInt & bInt) >= 0) {
67 if (aInt < bInt) return LE_LESS;
68 else if (aInt == bInt) return LE_EQUAL;
69 else return LE_GREATER;
70 }
71 else {
72 // Otherwise, both are negative, so we need to flip the sense of the
73 // comparison to get the correct result. (This assumes a twos- or ones-
74 // complement integer representation; if integers are represented in a
75 // sign-magnitude representation, then this flip is incorrect).
76 if (aInt > bInt) return LE_LESS;
77 else if (aInt == bInt) return LE_EQUAL;
78 else return LE_GREATER;
79 }
80}
81
Pirama Arumuga Nainar799172d2016-03-03 15:50:30 -080082#if defined(__ELF__)
83// Alias for libgcc compatibility
84FNALIAS(__cmptf2, __letf2);
85#endif
86
Stephen Hines2d1fdb22014-05-28 23:58:16 -070087enum GE_RESULT {
88 GE_LESS = -1,
89 GE_EQUAL = 0,
90 GE_GREATER = 1,
91 GE_UNORDERED = -1 // Note: different from LE_UNORDERED
92};
93
94COMPILER_RT_ABI enum GE_RESULT __getf2(fp_t a, fp_t b) {
95
96 const srep_t aInt = toRep(a);
97 const srep_t bInt = toRep(b);
98 const rep_t aAbs = aInt & absMask;
99 const rep_t bAbs = bInt & absMask;
100
101 if (aAbs > infRep || bAbs > infRep) return GE_UNORDERED;
102 if ((aAbs | bAbs) == 0) return GE_EQUAL;
103 if ((aInt & bInt) >= 0) {
104 if (aInt < bInt) return GE_LESS;
105 else if (aInt == bInt) return GE_EQUAL;
106 else return GE_GREATER;
107 } else {
108 if (aInt > bInt) return GE_LESS;
109 else if (aInt == bInt) return GE_EQUAL;
110 else return GE_GREATER;
111 }
112}
113
114COMPILER_RT_ABI int __unordtf2(fp_t a, fp_t b) {
115 const rep_t aAbs = toRep(a) & absMask;
116 const rep_t bAbs = toRep(b) & absMask;
117 return aAbs > infRep || bAbs > infRep;
118}
119
120// The following are alternative names for the preceding routines.
121
122COMPILER_RT_ABI enum LE_RESULT __eqtf2(fp_t a, fp_t b) {
123 return __letf2(a, b);
124}
125
126COMPILER_RT_ABI enum LE_RESULT __lttf2(fp_t a, fp_t b) {
127 return __letf2(a, b);
128}
129
130COMPILER_RT_ABI enum LE_RESULT __netf2(fp_t a, fp_t b) {
131 return __letf2(a, b);
132}
133
134COMPILER_RT_ABI enum GE_RESULT __gttf2(fp_t a, fp_t b) {
135 return __getf2(a, b);
136}
137
138#endif