blob: b47be1b648e61cf1665f70ab18126a0a57b30881 [file] [log] [blame]
Joerg Sonnenbergera9769982014-05-28 15:06:25 +00001//===----- lib/fp_add_impl.inc - floaing point addition -----------*- C -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is dual licensed under the MIT and the University of Illinois Open
6// Source Licenses. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements soft-float addition with the IEEE-754 default rounding
11// (to nearest, ties to even).
12//
13//===----------------------------------------------------------------------===//
14
15#include "fp_lib.h"
16
Pirama Arumuga Nainar799172d2016-03-03 15:50:30 -080017static __inline fp_t __addXf3__(fp_t a, fp_t b) {
Joerg Sonnenbergera9769982014-05-28 15:06:25 +000018 rep_t aRep = toRep(a);
19 rep_t bRep = toRep(b);
20 const rep_t aAbs = aRep & absMask;
21 const rep_t bAbs = bRep & absMask;
22
23 // Detect if a or b is zero, infinity, or NaN.
24 if (aAbs - REP_C(1) >= infRep - REP_C(1) ||
25 bAbs - REP_C(1) >= infRep - REP_C(1)) {
26 // NaN + anything = qNaN
27 if (aAbs > infRep) return fromRep(toRep(a) | quietBit);
28 // anything + NaN = qNaN
29 if (bAbs > infRep) return fromRep(toRep(b) | quietBit);
30
31 if (aAbs == infRep) {
32 // +/-infinity + -/+infinity = qNaN
33 if ((toRep(a) ^ toRep(b)) == signBit) return fromRep(qnanRep);
34 // +/-infinity + anything remaining = +/- infinity
35 else return a;
36 }
37
38 // anything remaining + +/-infinity = +/-infinity
39 if (bAbs == infRep) return b;
40
41 // zero + anything = anything
42 if (!aAbs) {
43 // but we need to get the sign right for zero + zero
44 if (!bAbs) return fromRep(toRep(a) & toRep(b));
45 else return b;
46 }
47
48 // anything + zero = anything
49 if (!bAbs) return a;
50 }
51
52 // Swap a and b if necessary so that a has the larger absolute value.
53 if (bAbs > aAbs) {
54 const rep_t temp = aRep;
55 aRep = bRep;
56 bRep = temp;
57 }
58
59 // Extract the exponent and significand from the (possibly swapped) a and b.
60 int aExponent = aRep >> significandBits & maxExponent;
61 int bExponent = bRep >> significandBits & maxExponent;
62 rep_t aSignificand = aRep & significandMask;
63 rep_t bSignificand = bRep & significandMask;
64
65 // Normalize any denormals, and adjust the exponent accordingly.
66 if (aExponent == 0) aExponent = normalize(&aSignificand);
67 if (bExponent == 0) bExponent = normalize(&bSignificand);
68
69 // The sign of the result is the sign of the larger operand, a. If they
70 // have opposite signs, we are performing a subtraction; otherwise addition.
71 const rep_t resultSign = aRep & signBit;
72 const bool subtraction = (aRep ^ bRep) & signBit;
73
74 // Shift the significands to give us round, guard and sticky, and or in the
75 // implicit significand bit. (If we fell through from the denormal path it
76 // was already set by normalize( ), but setting it twice won't hurt
77 // anything.)
78 aSignificand = (aSignificand | implicitBit) << 3;
79 bSignificand = (bSignificand | implicitBit) << 3;
80
81 // Shift the significand of b by the difference in exponents, with a sticky
82 // bottom bit to get rounding correct.
83 const unsigned int align = aExponent - bExponent;
84 if (align) {
85 if (align < typeWidth) {
86 const bool sticky = bSignificand << (typeWidth - align);
87 bSignificand = bSignificand >> align | sticky;
88 } else {
89 bSignificand = 1; // sticky; b is known to be non-zero.
90 }
91 }
92 if (subtraction) {
93 aSignificand -= bSignificand;
94 // If a == -b, return +zero.
95 if (aSignificand == 0) return fromRep(0);
96
97 // If partial cancellation occured, we need to left-shift the result
98 // and adjust the exponent:
99 if (aSignificand < implicitBit << 3) {
100 const int shift = rep_clz(aSignificand) - rep_clz(implicitBit << 3);
101 aSignificand <<= shift;
102 aExponent -= shift;
103 }
104 }
105 else /* addition */ {
106 aSignificand += bSignificand;
107
108 // If the addition carried up, we need to right-shift the result and
109 // adjust the exponent:
110 if (aSignificand & implicitBit << 4) {
111 const bool sticky = aSignificand & 1;
112 aSignificand = aSignificand >> 1 | sticky;
113 aExponent += 1;
114 }
115 }
116
117 // If we have overflowed the type, return +/- infinity:
118 if (aExponent >= maxExponent) return fromRep(infRep | resultSign);
119
120 if (aExponent <= 0) {
121 // Result is denormal before rounding; the exponent is zero and we
122 // need to shift the significand.
123 const int shift = 1 - aExponent;
124 const bool sticky = aSignificand << (typeWidth - shift);
125 aSignificand = aSignificand >> shift | sticky;
126 aExponent = 0;
127 }
128
129 // Low three bits are round, guard, and sticky.
130 const int roundGuardSticky = aSignificand & 0x7;
131
132 // Shift the significand into place, and mask off the implicit bit.
133 rep_t result = aSignificand >> 3 & significandMask;
134
135 // Insert the exponent and sign.
136 result |= (rep_t)aExponent << significandBits;
137 result |= resultSign;
138
139 // Final rounding. The result may overflow to infinity, but that is the
140 // correct result in that case.
141 if (roundGuardSticky > 0x4) result++;
142 if (roundGuardSticky == 0x4) result += result & 1;
143 return fromRep(result);
144}