blob: f019d693ba5622bfdfc68eae0e490545da2063f3 [file] [log] [blame]
Daniel Dunbarb3a69012009-06-26 16:47:03 +00001//===-- floatundidf.c - Implement __floatundidf ---------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements __floatundidf for the compiler_rt library.
11//
12//===----------------------------------------------------------------------===//
13
14#include "int_lib.h"
15#include <float.h>
16
17// Returns: convert a to a double, rounding toward even.
18
19// Assumption: double is a IEEE 64 bit floating point type
20// du_int is a 64 bit integral type
21
22// seee eeee eeee mmmm mmmm mmmm mmmm mmmm | mmmm mmmm mmmm mmmm mmmm mmmm mmmm mmmm
23
24#ifndef __SOFT_FP__
25// Support for systems that have hardware floating-point; we'll set the inexact flag
26// as a side-effect of this computation.
27#include <stdint.h>
28
29double
30__floatundidf(du_int a)
31{
32 static const double twop52 = 0x1.0p52;
33 static const double twop84 = 0x1.0p84;
34 static const double twop84_plus_twop52 = 0x1.00000001p84;
35
36 union { uint64_t x; double d; } high = { .d = twop84 };
37 union { uint64_t x; double d; } low = { .d = twop52 };
38
39 high.x |= a >> 32;
40 low.x |= a & UINT64_C(0x00000000ffffffff);
41
42 const double result = (high.d - twop84_plus_twop52) + low.d;
43 return result;
44}
45
46#else
47// Support for systems that don't have hardware floating-point; there are no flags to
48// set, and we don't want to code-gen to an unknown soft-float implementation.
49
50double
51__floatundidf(du_int a)
52{
53 if (a == 0)
54 return 0.0;
55 const unsigned N = sizeof(du_int) * CHAR_BIT;
56 int sd = N - __builtin_clzll(a); // number of significant digits
57 int e = sd - 1; // exponent
58 if (sd > DBL_MANT_DIG)
59 {
60 // start: 0000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQxxxxxxxxxxxxxxxxxx
61 // finish: 000000000000000000000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQR
62 // 12345678901234567890123456
63 // 1 = msb 1 bit
64 // P = bit DBL_MANT_DIG-1 bits to the right of 1
65 // Q = bit DBL_MANT_DIG bits to the right of 1
66 // R = "or" of all bits to the right of Q
67 switch (sd)
68 {
69 case DBL_MANT_DIG + 1:
70 a <<= 1;
71 break;
72 case DBL_MANT_DIG + 2:
73 break;
74 default:
75 a = (a >> (sd - (DBL_MANT_DIG+2))) |
76 ((a & ((du_int)(-1) >> ((N + DBL_MANT_DIG+2) - sd))) != 0);
77 };
78 // finish:
79 a |= (a & 4) != 0; // Or P into R
80 ++a; // round - this step may add a significant bit
81 a >>= 2; // dump Q and R
82 // a is now rounded to DBL_MANT_DIG or DBL_MANT_DIG+1 bits
83 if (a & ((du_int)1 << DBL_MANT_DIG))
84 {
85 a >>= 1;
86 ++e;
87 }
88 // a is now rounded to DBL_MANT_DIG bits
89 }
90 else
91 {
92 a <<= (DBL_MANT_DIG - sd);
93 // a is now rounded to DBL_MANT_DIG bits
94 }
95 double_bits fb;
96 fb.u.high = ((e + 1023) << 20) | // exponent
97 ((su_int)(a >> 32) & 0x000FFFFF); // mantissa-high
98 fb.u.low = (su_int)a; // mantissa-low
99 return fb.f;
100}
101#endif