blob: 372e8d6014ddbca5af1e92748888aa8a4d0d93ab [file] [log] [blame]
Stephen Hines6a211c52014-07-21 00:49:56 -07001//= lib/fp_trunc_impl.inc - high precision -> low precision conversion *-*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is dual licensed under the MIT and the University of Illinois Open
6// Source Licenses. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a fairly generic conversion from a wider to a narrower
11// IEEE-754 floating-point type in the default (round to nearest, ties to even)
12// rounding mode. The constants and types defined following the includes below
13// parameterize the conversion.
14//
15// This routine can be trivially adapted to support conversions to
16// half-precision or from quad-precision. It does not support types that don't
17// use the usual IEEE-754 interchange formats; specifically, some work would be
18// needed to adapt it to (for example) the Intel 80-bit format or PowerPC
19// double-double format.
20//
21// Note please, however, that this implementation is only intended to support
22// *narrowing* operations; if you need to convert to a *wider* floating-point
23// type (e.g. float -> double), then this routine will not do what you want it
24// to.
25//
26// It also requires that integer types at least as large as both formats
27// are available on the target platform; this may pose a problem when trying
28// to add support for quad on some 32-bit systems, for example.
29//
30// Finally, the following assumptions are made:
31//
32// 1. floating-point types and integer types have the same endianness on the
33// target platform
34//
35// 2. quiet NaNs, if supported, are indicated by the leading bit of the
36// significand field being set
37//
38//===----------------------------------------------------------------------===//
39
40#include "fp_trunc.h"
41
42static inline dst_t __truncXfYf2__(src_t a) {
43 // Various constants whose values follow from the type parameters.
44 // Any reasonable optimizer will fold and propagate all of these.
45 const int srcBits = sizeof(src_t)*CHAR_BIT;
46 const int srcExpBits = srcBits - srcSigBits - 1;
47 const int srcInfExp = (1 << srcExpBits) - 1;
48 const int srcExpBias = srcInfExp >> 1;
49
50 const src_rep_t srcMinNormal = SRC_REP_C(1) << srcSigBits;
51 const src_rep_t srcSignificandMask = srcMinNormal - 1;
52 const src_rep_t srcInfinity = (src_rep_t)srcInfExp << srcSigBits;
53 const src_rep_t srcSignMask = SRC_REP_C(1) << (srcSigBits + srcExpBits);
54 const src_rep_t srcAbsMask = srcSignMask - 1;
55 const src_rep_t roundMask = (SRC_REP_C(1) << (srcSigBits - dstSigBits)) - 1;
56 const src_rep_t halfway = SRC_REP_C(1) << (srcSigBits - dstSigBits - 1);
57 const src_rep_t srcQNaN = SRC_REP_C(1) << (srcSigBits - 1);
58 const src_rep_t srcNaNCode = srcQNaN - 1;
59
60 const int dstBits = sizeof(dst_t)*CHAR_BIT;
61 const int dstExpBits = dstBits - dstSigBits - 1;
62 const int dstInfExp = (1 << dstExpBits) - 1;
63 const int dstExpBias = dstInfExp >> 1;
64
65 const int underflowExponent = srcExpBias + 1 - dstExpBias;
66 const int overflowExponent = srcExpBias + dstInfExp - dstExpBias;
67 const src_rep_t underflow = (src_rep_t)underflowExponent << srcSigBits;
68 const src_rep_t overflow = (src_rep_t)overflowExponent << srcSigBits;
69
70 const dst_rep_t dstQNaN = DST_REP_C(1) << (dstSigBits - 1);
71 const dst_rep_t dstNaNCode = dstQNaN - 1;
72
73 // Break a into a sign and representation of the absolute value
74 const src_rep_t aRep = srcToRep(a);
75 const src_rep_t aAbs = aRep & srcAbsMask;
76 const src_rep_t sign = aRep & srcSignMask;
77 dst_rep_t absResult;
78
79 if (aAbs - underflow < aAbs - overflow) {
80 // The exponent of a is within the range of normal numbers in the
81 // destination format. We can convert by simply right-shifting with
82 // rounding and adjusting the exponent.
83 absResult = aAbs >> (srcSigBits - dstSigBits);
84 absResult -= (dst_rep_t)(srcExpBias - dstExpBias) << dstSigBits;
85
86 const src_rep_t roundBits = aAbs & roundMask;
87 // Round to nearest
88 if (roundBits > halfway)
89 absResult++;
90 // Ties to even
91 else if (roundBits == halfway)
92 absResult += absResult & 1;
93 }
94 else if (aAbs > srcInfinity) {
95 // a is NaN.
96 // Conjure the result by beginning with infinity, setting the qNaN
97 // bit and inserting the (truncated) trailing NaN field.
98 absResult = (dst_rep_t)dstInfExp << dstSigBits;
99 absResult |= dstQNaN;
100 absResult |= ((aAbs & srcNaNCode) >> (srcSigBits - dstSigBits)) & dstNaNCode;
101 }
Pirama Arumuga Nainard5a4b892015-06-23 15:40:12 -0700102 else if (aAbs >= overflow) {
Stephen Hines6a211c52014-07-21 00:49:56 -0700103 // a overflows to infinity.
104 absResult = (dst_rep_t)dstInfExp << dstSigBits;
105 }
106 else {
107 // a underflows on conversion to the destination type or is an exact
108 // zero. The result may be a denormal or zero. Extract the exponent
109 // to get the shift amount for the denormalization.
110 const int aExp = aAbs >> srcSigBits;
111 const int shift = srcExpBias - dstExpBias - aExp + 1;
112
113 const src_rep_t significand = (aRep & srcSignificandMask) | srcMinNormal;
114
115 // Right shift by the denormalization amount with sticky.
116 if (shift > srcSigBits) {
117 absResult = 0;
118 } else {
119 const bool sticky = significand << (srcBits - shift);
120 src_rep_t denormalizedSignificand = significand >> shift | sticky;
121 absResult = denormalizedSignificand >> (srcSigBits - dstSigBits);
122 const src_rep_t roundBits = denormalizedSignificand & roundMask;
123 // Round to nearest
124 if (roundBits > halfway)
125 absResult++;
126 // Ties to even
127 else if (roundBits == halfway)
128 absResult += absResult & 1;
129 }
130 }
131
132 // Apply the signbit to (dst_t)abs(a).
133 const dst_rep_t result = absResult | sign >> (srcBits - dstBits);
134 return dstFromRep(result);
135}