blob: bf7c395e435bc06597c4ead37bc97b78ecf8ac6e [file] [log] [blame]
#include <gtest/gtest.h>
#include <cpuinfo.h>
#include <cpuinfo-mock.h>
TEST(PROCESSORS, count) {
ASSERT_EQ(4, cpuinfo_processors_count);
}
TEST(PROCESSORS, non_null) {
ASSERT_TRUE(cpuinfo_processors);
}
TEST(PROCESSORS, vendor) {
for (uint32_t i = 0; i < cpuinfo_processors_count; i++) {
ASSERT_EQ(cpuinfo_vendor_arm, cpuinfo_processors[i].vendor);
}
}
TEST(PROCESSORS, uarch) {
for (uint32_t i = 0; i < cpuinfo_processors_count; i++) {
ASSERT_EQ(cpuinfo_uarch_cortex_a57, cpuinfo_processors[i].uarch);
}
}
TEST(PROCESSORS, linux_id) {
for (uint32_t i = 0; i < cpuinfo_processors_count; i++) {
ASSERT_EQ(i, cpuinfo_processors[i].topology.linux_id);
}
}
TEST(PACKAGES, count) {
ASSERT_EQ(1, cpuinfo_packages_count);
}
TEST(PACKAGES, name) {
for (uint32_t i = 0; i < cpuinfo_packages_count; i++) {
ASSERT_EQ("nVidia Tegra T210",
std::string(cpuinfo_packages[i].name,
strnlen(cpuinfo_packages[i].name, CPUINFO_PACKAGE_NAME_MAX)));
}
}
TEST(PACKAGES, processor_start) {
for (uint32_t i = 0; i < cpuinfo_packages_count; i++) {
ASSERT_EQ(0, cpuinfo_packages[i].processor_start);
}
}
TEST(PACKAGES, processor_count) {
for (uint32_t i = 0; i < cpuinfo_packages_count; i++) {
ASSERT_EQ(4, cpuinfo_packages[i].processor_count);
}
}
TEST(PACKAGES, core_start) {
for (uint32_t i = 0; i < cpuinfo_packages_count; i++) {
ASSERT_EQ(0, cpuinfo_packages[i].core_start);
}
}
TEST(PACKAGES, core_count) {
for (uint32_t i = 0; i < cpuinfo_packages_count; i++) {
ASSERT_EQ(4, cpuinfo_packages[i].core_count);
}
}
TEST(ISA, thumb) {
ASSERT_TRUE(cpuinfo_isa.thumb);
}
TEST(ISA, thumb2) {
ASSERT_TRUE(cpuinfo_isa.thumb2);
}
TEST(ISA, thumbee) {
ASSERT_FALSE(cpuinfo_isa.thumbee);
}
TEST(ISA, jazelle) {
ASSERT_FALSE(cpuinfo_isa.jazelle);
}
TEST(ISA, armv5e) {
ASSERT_TRUE(cpuinfo_isa.armv5e);
}
TEST(ISA, armv6) {
ASSERT_TRUE(cpuinfo_isa.armv6);
}
TEST(ISA, armv6k) {
ASSERT_TRUE(cpuinfo_isa.armv6k);
}
TEST(ISA, armv7) {
ASSERT_TRUE(cpuinfo_isa.armv7);
}
TEST(ISA, armv7mp) {
ASSERT_TRUE(cpuinfo_isa.armv7mp);
}
TEST(ISA, idiv) {
ASSERT_TRUE(cpuinfo_isa.idiv);
}
TEST(ISA, vfpv2) {
ASSERT_FALSE(cpuinfo_isa.vfpv2);
}
TEST(ISA, vfpv3) {
ASSERT_TRUE(cpuinfo_isa.vfpv3);
}
TEST(ISA, d32) {
ASSERT_TRUE(cpuinfo_isa.d32);
}
TEST(ISA, fp16) {
ASSERT_TRUE(cpuinfo_isa.fp16);
}
TEST(ISA, fma) {
ASSERT_TRUE(cpuinfo_isa.fma);
}
TEST(ISA, wmmx) {
ASSERT_FALSE(cpuinfo_isa.wmmx);
}
TEST(ISA, wmmx2) {
ASSERT_FALSE(cpuinfo_isa.wmmx2);
}
TEST(ISA, neon) {
ASSERT_TRUE(cpuinfo_isa.neon);
}
TEST(ISA, aes) {
ASSERT_TRUE(cpuinfo_isa.aes);
}
TEST(ISA, sha1) {
ASSERT_TRUE(cpuinfo_isa.sha1);
}
TEST(ISA, sha2) {
ASSERT_TRUE(cpuinfo_isa.sha2);
}
TEST(ISA, pmull) {
ASSERT_TRUE(cpuinfo_isa.pmull);
}
TEST(ISA, crc32) {
ASSERT_TRUE(cpuinfo_isa.crc32);
}
TEST(L1I, count) {
cpuinfo_caches l1i = cpuinfo_get_l1i_cache();
ASSERT_EQ(4, l1i.count);
}
TEST(L1I, non_null) {
cpuinfo_caches l1i = cpuinfo_get_l1i_cache();
ASSERT_TRUE(l1i.instances);
}
TEST(L1I, size) {
cpuinfo_caches l1i = cpuinfo_get_l1i_cache();
for (uint32_t k = 0; k < l1i.count; k++) {
ASSERT_EQ(48 * 1024, l1i.instances[k].size);
}
}
TEST(L1I, associativity) {
cpuinfo_caches l1i = cpuinfo_get_l1i_cache();
for (uint32_t k = 0; k < l1i.count; k++) {
ASSERT_EQ(3, l1i.instances[k].associativity);
}
}
TEST(L1I, sets) {
cpuinfo_caches l1i = cpuinfo_get_l1i_cache();
for (uint32_t k = 0; k < l1i.count; k++) {
ASSERT_EQ(l1i.instances[k].size,
l1i.instances[k].sets * l1i.instances[k].line_size * l1i.instances[k].partitions * l1i.instances[k].associativity);
}
}
TEST(L1I, partitions) {
cpuinfo_caches l1i = cpuinfo_get_l1i_cache();
for (uint32_t k = 0; k < l1i.count; k++) {
ASSERT_EQ(1, l1i.instances[k].partitions);
}
}
TEST(L1I, line_size) {
cpuinfo_caches l1i = cpuinfo_get_l1i_cache();
for (uint32_t k = 0; k < l1i.count; k++) {
ASSERT_EQ(64, l1i.instances[k].line_size);
}
}
TEST(L1I, flags) {
cpuinfo_caches l1i = cpuinfo_get_l1i_cache();
for (uint32_t k = 0; k < l1i.count; k++) {
ASSERT_EQ(0, l1i.instances[k].flags);
}
}
TEST(L1I, processors) {
cpuinfo_caches l1i = cpuinfo_get_l1i_cache();
for (uint32_t k = 0; k < l1i.count; k++) {
ASSERT_EQ(k, l1i.instances[k].processor_start);
ASSERT_EQ(1, l1i.instances[k].processor_count);
}
}
TEST(L1D, count) {
cpuinfo_caches l1d = cpuinfo_get_l1d_cache();
ASSERT_EQ(4, l1d.count);
}
TEST(L1D, non_null) {
cpuinfo_caches l1d = cpuinfo_get_l1d_cache();
ASSERT_TRUE(l1d.instances);
}
TEST(L1D, size) {
cpuinfo_caches l1d = cpuinfo_get_l1d_cache();
for (uint32_t k = 0; k < l1d.count; k++) {
ASSERT_EQ(32 * 1024, l1d.instances[k].size);
}
}
TEST(L1D, associativity) {
cpuinfo_caches l1d = cpuinfo_get_l1d_cache();
for (uint32_t k = 0; k < l1d.count; k++) {
ASSERT_EQ(2, l1d.instances[k].associativity);
}
}
TEST(L1D, sets) {
cpuinfo_caches l1d = cpuinfo_get_l1d_cache();
for (uint32_t k = 0; k < l1d.count; k++) {
ASSERT_EQ(l1d.instances[k].size,
l1d.instances[k].sets * l1d.instances[k].line_size * l1d.instances[k].partitions * l1d.instances[k].associativity);
}
}
TEST(L1D, partitions) {
cpuinfo_caches l1d = cpuinfo_get_l1d_cache();
for (uint32_t k = 0; k < l1d.count; k++) {
ASSERT_EQ(1, l1d.instances[k].partitions);
}
}
TEST(L1D, line_size) {
cpuinfo_caches l1d = cpuinfo_get_l1d_cache();
for (uint32_t k = 0; k < l1d.count; k++) {
ASSERT_EQ(64, l1d.instances[k].line_size);
}
}
TEST(L1D, flags) {
cpuinfo_caches l1d = cpuinfo_get_l1d_cache();
for (uint32_t k = 0; k < l1d.count; k++) {
ASSERT_EQ(0, l1d.instances[k].flags);
}
}
TEST(L1D, processors) {
cpuinfo_caches l1d = cpuinfo_get_l1d_cache();
for (uint32_t k = 0; k < l1d.count; k++) {
ASSERT_EQ(k, l1d.instances[k].processor_start);
ASSERT_EQ(1, l1d.instances[k].processor_count);
}
}
TEST(L2, count) {
cpuinfo_caches l2 = cpuinfo_get_l2_cache();
ASSERT_EQ(1, l2.count);
}
TEST(L2, non_null) {
cpuinfo_caches l2 = cpuinfo_get_l2_cache();
ASSERT_TRUE(l2.instances);
}
TEST(L2, size) {
cpuinfo_caches l2 = cpuinfo_get_l2_cache();
for (uint32_t k = 0; k < l2.count; k++) {
ASSERT_EQ(2 * 1024 * 1024, l2.instances[k].size);
}
}
TEST(L2, associativity) {
cpuinfo_caches l2 = cpuinfo_get_l2_cache();
for (uint32_t k = 0; k < l2.count; k++) {
ASSERT_EQ(16, l2.instances[k].associativity);
}
}
TEST(L2, sets) {
cpuinfo_caches l2 = cpuinfo_get_l2_cache();
for (uint32_t k = 0; k < l2.count; k++) {
ASSERT_EQ(l2.instances[k].size,
l2.instances[k].sets * l2.instances[k].line_size * l2.instances[k].partitions * l2.instances[k].associativity);
}
}
TEST(L2, partitions) {
cpuinfo_caches l2 = cpuinfo_get_l2_cache();
for (uint32_t k = 0; k < l2.count; k++) {
ASSERT_EQ(1, l2.instances[k].partitions);
}
}
TEST(L2, line_size) {
cpuinfo_caches l2 = cpuinfo_get_l2_cache();
for (uint32_t k = 0; k < l2.count; k++) {
ASSERT_EQ(64, l2.instances[k].line_size);
}
}
TEST(L2, flags) {
cpuinfo_caches l2 = cpuinfo_get_l2_cache();
for (uint32_t k = 0; k < l2.count; k++) {
ASSERT_EQ(CPUINFO_CACHE_INCLUSIVE, l2.instances[k].flags);
}
}
TEST(L2, processors) {
cpuinfo_caches l2 = cpuinfo_get_l2_cache();
for (uint32_t k = 0; k < l2.count; k++) {
ASSERT_EQ(0, l2.instances[k].processor_start);
ASSERT_EQ(4, l2.instances[k].processor_count);
}
}
TEST(L3, none) {
cpuinfo_caches l3 = cpuinfo_get_l3_cache();
ASSERT_EQ(0, l3.count);
ASSERT_FALSE(l3.instances);
}
TEST(L4, none) {
cpuinfo_caches l4 = cpuinfo_get_l4_cache();
ASSERT_EQ(0, l4.count);
ASSERT_FALSE(l4.instances);
}
#include <pixel-c.h>
int main(int argc, char* argv[]) {
cpuinfo_mock_filesystem(filesystem);
#ifdef __ANDROID__
cpuinfo_mock_android_properties(properties);
#endif
cpuinfo_initialize();
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}