blob: d0435a04eb9da31a4365a85eb34295fd83807fd2 [file] [log] [blame]
// Copyright 2018 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
use std::os::unix::io::RawFd;
use std::sync::Arc;
use byteorder::{ByteOrder, LittleEndian};
use sync::Mutex;
use crate::pci::pci_configuration::{
PciBridgeSubclass, PciClassCode, PciConfiguration, PciHeaderType,
};
use crate::pci::pci_device::PciDevice;
use crate::BusDevice;
// A PciDevice that holds the root hub's configuration.
struct PciRootConfiguration {
config: PciConfiguration,
}
impl PciDevice for PciRootConfiguration {
fn debug_label(&self) -> String {
"pci root device".to_owned()
}
fn keep_fds(&self) -> Vec<RawFd> {
Vec::new()
}
fn config_registers(&self) -> &PciConfiguration {
&self.config
}
fn config_registers_mut(&mut self) -> &mut PciConfiguration {
&mut self.config
}
fn read_bar(&mut self, _addr: u64, _data: &mut [u8]) {}
fn write_bar(&mut self, _addr: u64, _data: &[u8]) {}
}
/// Emulates the PCI Root bridge.
pub struct PciRoot {
/// Bus configuration for the root device.
root_configuration: PciRootConfiguration,
/// Devices attached to this bridge.
devices: Vec<Arc<Mutex<dyn BusDevice>>>,
}
impl PciRoot {
/// Create an empty PCI root bus.
pub fn new() -> Self {
PciRoot {
root_configuration: PciRootConfiguration {
config: PciConfiguration::new(
0,
0,
PciClassCode::BridgeDevice,
&PciBridgeSubclass::HostBridge,
None,
PciHeaderType::Bridge,
0,
0,
),
},
devices: Vec::new(),
}
}
/// Add a `device` to this root PCI bus.
pub fn add_device(&mut self, device: Arc<Mutex<dyn BusDevice>>) {
self.devices.push(device);
}
pub fn config_space_read(
&self,
bus: usize,
device: usize,
_function: usize,
register: usize,
) -> u32 {
// Only support one bus.
if bus != 0 {
return 0xffff_ffff;
}
match device {
0 => {
// If bus and device are both zero, then read from the root config.
self.root_configuration.config_register_read(register)
}
dev_num => self
.devices
.get(dev_num - 1)
.map_or(0xffff_ffff, |d| d.lock().config_register_read(register)),
}
}
pub fn config_space_write(
&mut self,
bus: usize,
device: usize,
_function: usize,
register: usize,
offset: u64,
data: &[u8],
) {
if offset as usize + data.len() > 4 {
return;
}
// Only support one bus.
if bus != 0 {
return;
}
match device {
0 => {
// If bus and device are both zero, then read from the root config.
self.root_configuration
.config_register_write(register, offset, data);
}
dev_num => {
// dev_num is 1-indexed here.
if let Some(d) = self.devices.get(dev_num - 1) {
d.lock().config_register_write(register, offset, data);
}
}
}
}
}
/// Emulates PCI configuration access mechanism #1 (I/O ports 0xcf8 and 0xcfc).
pub struct PciConfigIo {
/// PCI root bridge.
pci_root: PciRoot,
/// Current address to read/write from (0xcf8 register, litte endian).
config_address: u32,
}
impl PciConfigIo {
pub fn new(pci_root: PciRoot) -> Self {
PciConfigIo {
pci_root,
config_address: 0,
}
}
fn config_space_read(&self) -> u32 {
let enabled = (self.config_address & 0x8000_0000) != 0;
if !enabled {
return 0xffff_ffff;
}
let (bus, device, function, register) =
parse_config_address(self.config_address & !0x8000_0000);
self.pci_root
.config_space_read(bus, device, function, register)
}
fn config_space_write(&mut self, offset: u64, data: &[u8]) {
let enabled = (self.config_address & 0x8000_0000) != 0;
if !enabled {
return;
}
let (bus, device, function, register) =
parse_config_address(self.config_address & !0x8000_0000);
self.pci_root
.config_space_write(bus, device, function, register, offset, data)
}
fn set_config_address(&mut self, offset: u64, data: &[u8]) {
if offset as usize + data.len() > 4 {
return;
}
let (mask, value): (u32, u32) = match data.len() {
1 => (
0x0000_00ff << (offset * 8),
(data[0] as u32) << (offset * 8),
),
2 => (
0x0000_ffff << (offset * 16),
((data[1] as u32) << 8 | data[0] as u32) << (offset * 16),
),
4 => (0xffff_ffff, LittleEndian::read_u32(data)),
_ => return,
};
self.config_address = (self.config_address & !mask) | value;
}
}
impl BusDevice for PciConfigIo {
fn debug_label(&self) -> String {
format!("pci config io-port 0x{:03x}", self.config_address)
}
fn read(&mut self, offset: u64, data: &mut [u8]) {
// `offset` is relative to 0xcf8
let value = match offset {
0...3 => self.config_address,
4...7 => self.config_space_read(),
_ => 0xffff_ffff,
};
// Only allow reads to the register boundary.
let start = offset as usize % 4;
let end = start + data.len();
if end <= 4 {
for i in start..end {
data[i - start] = (value >> (i * 8)) as u8;
}
} else {
for d in data {
*d = 0xff;
}
}
}
fn write(&mut self, offset: u64, data: &[u8]) {
// `offset` is relative to 0xcf8
match offset {
o @ 0...3 => self.set_config_address(o, data),
o @ 4...7 => self.config_space_write(o - 4, data),
_ => (),
};
}
}
/// Emulates PCI memory-mapped configuration access mechanism.
pub struct PciConfigMmio {
/// PCI root bridge.
pci_root: PciRoot,
}
impl PciConfigMmio {
pub fn new(pci_root: PciRoot) -> Self {
PciConfigMmio { pci_root }
}
fn config_space_read(&self, config_address: u32) -> u32 {
let (bus, device, function, register) = parse_config_address(config_address);
self.pci_root
.config_space_read(bus, device, function, register)
}
fn config_space_write(&mut self, config_address: u32, offset: u64, data: &[u8]) {
let (bus, device, function, register) = parse_config_address(config_address);
self.pci_root
.config_space_write(bus, device, function, register, offset, data)
}
}
impl BusDevice for PciConfigMmio {
fn debug_label(&self) -> String {
format!("pci config mmio")
}
fn read(&mut self, offset: u64, data: &mut [u8]) {
// Only allow reads to the register boundary.
let start = offset as usize % 4;
let end = start + data.len();
if end > 4 || offset > u32::max_value() as u64 {
for d in data {
*d = 0xff;
}
return;
}
let value = self.config_space_read(offset as u32);
for i in start..end {
data[i - start] = (value >> (i * 8)) as u8;
}
}
fn write(&mut self, offset: u64, data: &[u8]) {
if offset > u32::max_value() as u64 {
return;
}
self.config_space_write(offset as u32, offset % 4, data)
}
}
// Parse the CONFIG_ADDRESS register to a (bus, device, function, register) tuple.
fn parse_config_address(config_address: u32) -> (usize, usize, usize, usize) {
const BUS_NUMBER_OFFSET: usize = 16;
const BUS_NUMBER_MASK: u32 = 0x00ff;
const DEVICE_NUMBER_OFFSET: usize = 11;
const DEVICE_NUMBER_MASK: u32 = 0x1f;
const FUNCTION_NUMBER_OFFSET: usize = 8;
const FUNCTION_NUMBER_MASK: u32 = 0x07;
const REGISTER_NUMBER_OFFSET: usize = 2;
const REGISTER_NUMBER_MASK: u32 = 0x3f;
let bus_number = ((config_address >> BUS_NUMBER_OFFSET) & BUS_NUMBER_MASK) as usize;
let device_number = ((config_address >> DEVICE_NUMBER_OFFSET) & DEVICE_NUMBER_MASK) as usize;
let function_number =
((config_address >> FUNCTION_NUMBER_OFFSET) & FUNCTION_NUMBER_MASK) as usize;
let register_number =
((config_address >> REGISTER_NUMBER_OFFSET) & REGISTER_NUMBER_MASK) as usize;
(bus_number, device_number, function_number, register_number)
}