blob: 2fdda09e2de4e66c4c5ac60e8bd924de72bbd9af [file] [log] [blame]
// Copyright 2017 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
use std;
use std::cmp::min;
use std::error;
use std::ffi::CStr;
use std::fmt;
use std::fs::{File, OpenOptions};
use std::io::{self, stdin, Read};
use std::mem;
use std::os::unix::io::{FromRawFd, RawFd};
use std::os::unix::net::UnixStream;
use std::path::{Path, PathBuf};
use std::str;
use std::sync::{Arc, Barrier};
use std::thread;
use std::thread::JoinHandle;
use std::time::{Duration, SystemTime, UNIX_EPOCH};
use libc::{self, c_int};
use audio_streams::DummyStreamSource;
use byteorder::{ByteOrder, LittleEndian};
use devices::{self, PciDevice, VirtioPciDevice};
use io_jail::{self, Minijail};
use kvm::*;
use libcras::CrasClient;
use msg_socket::{MsgError, MsgReceiver, MsgSender, MsgSocket};
use net_util::{Error as NetError, Tap};
use qcow::{self, ImageType, QcowFile};
use rand_ish::SimpleRng;
use sync::{Condvar, Mutex};
use sys_util::net::{UnixSeqpacket, UnixSeqpacketListener, UnlinkUnixSeqpacketListener};
use sys_util::{
self, block_signal, clear_signal, flock, get_blocked_signals, get_group_id, get_user_id,
getegid, geteuid, register_signal_handler, validate_raw_fd, EventFd, FlockOperation,
GuestMemory, Killable, PollContext, PollToken, SignalFd, Terminal, TimerFd, SIGRTMIN,
};
use vhost;
use vm_control::{VmRequest, VmResponse, VmRunMode};
use Config;
use arch::{self, LinuxArch, RunnableLinuxVm, VirtioDeviceStub, VmComponents};
#[cfg(any(target_arch = "arm", target_arch = "aarch64"))]
use aarch64::AArch64 as Arch;
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
use x86_64::X8664arch as Arch;
#[derive(Debug)]
pub enum Error {
BalloonDeviceNew(devices::virtio::BalloonError),
BlockDeviceNew(sys_util::Error),
BlockSignal(sys_util::signal::Error),
BuildingVm(Box<error::Error>),
CloneEventFd(sys_util::Error),
CreateEventFd(sys_util::Error),
CreatePollContext(sys_util::Error),
CreateSignalFd(sys_util::SignalFdError),
CreateSocket(io::Error),
CreateTapDevice(NetError),
CreateTimerFd(sys_util::Error),
DetectImageType(qcow::Error),
DeviceJail(io_jail::Error),
DevicePivotRoot(io_jail::Error),
Disk(io::Error),
DiskImageLock(sys_util::Error),
InvalidFdPath,
InvalidWaylandPath,
NetDeviceNew(devices::virtio::NetError),
PivotRootDoesntExist(&'static str),
OpenAndroidFstab(PathBuf, io::Error),
OpenInitrd(PathBuf, io::Error),
OpenKernel(PathBuf, io::Error),
P9DeviceNew(devices::virtio::P9Error),
PollContextAdd(sys_util::Error),
PollContextDelete(sys_util::Error),
QcowDeviceCreate(qcow::Error),
ReadLowmemAvailable(io::Error),
ReadLowmemMargin(io::Error),
RegisterBalloon(arch::DeviceRegistrationError),
RegisterBlock(arch::DeviceRegistrationError),
RegisterGpu(arch::DeviceRegistrationError),
RegisterNet(arch::DeviceRegistrationError),
RegisterP9(arch::DeviceRegistrationError),
RegisterRng(arch::DeviceRegistrationError),
RegisterSignalHandler(sys_util::Error),
RegisterWayland(arch::DeviceRegistrationError),
ResetTimerFd(sys_util::Error),
RngDeviceNew(devices::virtio::RngError),
InputDeviceNew(devices::virtio::InputError),
InputEventsOpen(std::io::Error),
SettingGidMap(io_jail::Error),
SettingUidMap(io_jail::Error),
SignalFd(sys_util::SignalFdError),
SpawnVcpu(io::Error),
TimerFd(sys_util::Error),
ValidateRawFd(sys_util::Error),
VhostNetDeviceNew(devices::virtio::vhost::Error),
VhostVsockDeviceNew(devices::virtio::vhost::Error),
VirtioPciDev(sys_util::Error),
WaylandDeviceNew(sys_util::Error),
LoadKernel(Box<error::Error>),
}
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
Error::BalloonDeviceNew(e) => write!(f, "failed to create balloon: {}", e),
Error::BlockDeviceNew(e) => write!(f, "failed to create block device: {}", e),
Error::BlockSignal(e) => write!(f, "failed to block signal: {}", e),
Error::BuildingVm(e) => write!(f, "The architecture failed to build the vm: {}", e),
Error::CloneEventFd(e) => write!(f, "failed to clone eventfd: {}", e),
Error::CreateEventFd(e) => write!(f, "failed to create eventfd: {}", e),
Error::CreatePollContext(e) => write!(f, "failed to create poll context: {}", e),
Error::CreateSignalFd(e) => write!(f, "failed to create signalfd: {}", e),
Error::CreateSocket(e) => write!(f, "failed to create socket: {}", e),
Error::CreateTapDevice(e) => write!(f, "failed to create tap device: {}", e),
Error::CreateTimerFd(e) => write!(f, "failed to create timerfd: {}", e),
Error::DetectImageType(e) => write!(f, "failed to detect disk image type: {}", e),
Error::DeviceJail(e) => write!(f, "failed to jail device: {}", e),
Error::DevicePivotRoot(e) => write!(f, "failed to pivot root device: {}", e),
Error::Disk(e) => write!(f, "failed to load disk image: {}", e),
Error::DiskImageLock(e) => write!(f, "failed to lock disk image: {}", e),
Error::InvalidFdPath => write!(f, "failed parsing a /proc/self/fd/*"),
Error::InvalidWaylandPath => {
write!(f, "wayland socket path has no parent or file name")
}
Error::NetDeviceNew(e) => write!(f, "failed to set up virtio networking: {}", e),
Error::PivotRootDoesntExist(p) => write!(f, "{} doesn't exist, can't jail devices.", p),
Error::OpenInitrd(p, e) => write!(f, "failed to open initrd {}: {}", p.display(), e),
Error::OpenKernel(p, e) => {
write!(f, "failed to open kernel image {}: {}", p.display(), e)
}
Error::OpenAndroidFstab(ref p, ref e) => write!(
f,
"failed to open android fstab file {}: {}",
p.display(),
e
),
Error::P9DeviceNew(e) => write!(f, "failed to create 9p device: {}", e),
Error::PollContextAdd(e) => write!(f, "failed to add fd to poll context: {}", e),
Error::PollContextDelete(e) => {
write!(f, "failed to remove fd from poll context: {}", e)
}
Error::QcowDeviceCreate(e) => write!(f, "failed to read qcow formatted file {}", e),
Error::ReadLowmemAvailable(e) => write!(
f,
"failed to read /sys/kernel/mm/chromeos-low_mem/available: {}",
e
),
Error::ReadLowmemMargin(e) => write!(
f,
"failed to read /sys/kernel/mm/chromeos-low_mem/margin: {}",
e
),
Error::RegisterBalloon(e) => write!(f, "error registering balloon device: {}", e),
Error::RegisterBlock(e) => write!(f, "error registering block device: {}", e),
Error::RegisterGpu(e) => write!(f, "error registering gpu device: {}", e),
Error::RegisterNet(e) => write!(f, "error registering net device: {}", e),
Error::RegisterP9(e) => write!(f, "error registering 9p device: {}", e),
Error::RegisterRng(e) => write!(f, "error registering rng device: {}", e),
Error::RegisterSignalHandler(e) => write!(f, "error registering signal handler: {}", e),
Error::RegisterWayland(e) => write!(f, "error registering wayland device: {}", e),
Error::ResetTimerFd(e) => write!(f, "failed to reset timerfd: {}", e),
Error::RngDeviceNew(e) => write!(f, "failed to set up rng: {}", e),
Error::InputDeviceNew(ref e) => write!(f, "failed to set up input device: {}", e),
Error::InputEventsOpen(ref e) => write!(f, "failed to open event device: {}", e),
Error::SettingGidMap(e) => write!(f, "error setting GID map: {}", e),
Error::SettingUidMap(e) => write!(f, "error setting UID map: {}", e),
Error::SignalFd(e) => write!(f, "failed to read signal fd: {}", e),
Error::SpawnVcpu(e) => write!(f, "failed to spawn VCPU thread: {}", e),
Error::TimerFd(e) => write!(f, "failed to read timer fd: {}", e),
Error::ValidateRawFd(e) => write!(f, "failed to validate raw fd: {}", e),
Error::VhostNetDeviceNew(e) => write!(f, "failed to set up vhost networking: {}", e),
Error::VhostVsockDeviceNew(e) => {
write!(f, "failed to set up virtual socket device: {}", e)
}
Error::VirtioPciDev(e) => write!(f, "failed to create virtio pci dev: {}", e),
Error::WaylandDeviceNew(e) => write!(f, "failed to create wayland device: {}", e),
Error::LoadKernel(e) => write!(f, "failed to load kernel: {}", e),
}
}
}
impl std::error::Error for Error {
fn description(&self) -> &str {
"Some device failure"
}
}
type Result<T> = std::result::Result<T, Error>;
fn create_base_minijail(root: &Path, seccomp_policy: &Path) -> Result<Minijail> {
// All child jails run in a new user namespace without any users mapped,
// they run as nobody unless otherwise configured.
let mut j = Minijail::new().map_err(Error::DeviceJail)?;
j.namespace_pids();
j.namespace_user();
j.namespace_user_disable_setgroups();
// Don't need any capabilities.
j.use_caps(0);
// Create a new mount namespace with an empty root FS.
j.namespace_vfs();
j.enter_pivot_root(root).map_err(Error::DevicePivotRoot)?;
// Run in an empty network namespace.
j.namespace_net();
// Apply the block device seccomp policy.
j.no_new_privs();
// Use TSYNC only for the side effect of it using SECCOMP_RET_TRAP, which will correctly kill
// the entire device process if a worker thread commits a seccomp violation.
j.set_seccomp_filter_tsync();
#[cfg(debug_assertions)]
j.log_seccomp_filter_failures();
j.parse_seccomp_filters(seccomp_policy)
.map_err(Error::DeviceJail)?;
j.use_seccomp_filter();
// Don't do init setup.
j.run_as_init();
Ok(j)
}
fn create_virtio_devs(
cfg: Config,
mem: &GuestMemory,
_exit_evt: &EventFd,
wayland_device_socket: UnixSeqpacket,
balloon_device_socket: UnixSeqpacket,
disk_device_sockets: &mut Vec<UnixSeqpacket>,
) -> std::result::Result<Vec<(Box<PciDevice + 'static>, Option<Minijail>)>, Box<error::Error>> {
let default_pivot_root: &str = option_env!("DEFAULT_PIVOT_ROOT").unwrap_or("/var/empty");
let mut devs = Vec::new();
// An empty directory for jailed device's pivot root.
let empty_root_path = Path::new(default_pivot_root);
if cfg.multiprocess && !empty_root_path.exists() {
return Err(Box::new(Error::PivotRootDoesntExist(default_pivot_root)));
}
for disk in &cfg.disks {
let disk_device_socket = disk_device_sockets.remove(0);
// Special case '/proc/self/fd/*' paths. The FD is already open, just use it.
let mut raw_image: File = if disk.path.parent() == Some(Path::new("/proc/self/fd")) {
// Safe because we will validate |raw_fd|.
unsafe { File::from_raw_fd(raw_fd_from_path(&disk.path)?) }
} else {
OpenOptions::new()
.read(true)
.write(!disk.read_only)
.open(&disk.path)
.map_err(Error::Disk)?
};
// Lock the disk image to prevent other crosvm instances from using it.
let lock_op = if disk.read_only {
FlockOperation::LockShared
} else {
FlockOperation::LockExclusive
};
flock(&raw_image, lock_op, true).map_err(Error::DiskImageLock)?;
let image_type = qcow::detect_image_type(&raw_image).map_err(Error::DetectImageType)?;
let block_box: Box<devices::virtio::VirtioDevice> = match image_type {
ImageType::Raw => {
// Access as a raw block device.
Box::new(
devices::virtio::Block::new(
raw_image,
disk.read_only,
Some(disk_device_socket),
)
.map_err(Error::BlockDeviceNew)?,
)
}
ImageType::Qcow2 => {
// Valid qcow header present
let qcow_image = QcowFile::from(raw_image).map_err(Error::QcowDeviceCreate)?;
Box::new(
devices::virtio::Block::new(
qcow_image,
disk.read_only,
Some(disk_device_socket),
)
.map_err(Error::BlockDeviceNew)?,
)
}
};
let jail = if cfg.multiprocess {
let policy_path: PathBuf = cfg.seccomp_policy_dir.join("block_device.policy");
Some(create_base_minijail(empty_root_path, &policy_path)?)
} else {
None
};
devs.push(VirtioDeviceStub {
dev: block_box,
jail,
});
}
let rng_box = Box::new(devices::virtio::Rng::new().map_err(Error::RngDeviceNew)?);
let rng_jail = if cfg.multiprocess {
let policy_path: PathBuf = cfg.seccomp_policy_dir.join("rng_device.policy");
Some(create_base_minijail(empty_root_path, &policy_path)?)
} else {
None
};
devs.push(VirtioDeviceStub {
dev: rng_box,
jail: rng_jail,
});
#[cfg(feature = "tpm")]
{
if cfg.software_tpm {
let tpm_box = Box::new(devices::virtio::Tpm::new());
let tpm_jail = if cfg.multiprocess {
let policy_path = cfg.seccomp_policy_dir.join("tpm_device.policy");
Some(create_base_minijail(empty_root_path, &policy_path)?)
} else {
None
};
devs.push(VirtioDeviceStub {
dev: tpm_box,
jail: tpm_jail,
});
}
}
if let Some(trackpad_spec) = cfg.virtio_trackpad {
match create_input_socket(&trackpad_spec.path) {
Ok(socket) => {
let trackpad_box = Box::new(
devices::virtio::new_trackpad(
socket,
trackpad_spec.width,
trackpad_spec.height,
)
.map_err(Error::InputDeviceNew)?,
);
let trackpad_jail = if cfg.multiprocess {
let policy_path: PathBuf = cfg.seccomp_policy_dir.join("input_device.policy");
Some(create_base_minijail(empty_root_path, &policy_path)?)
} else {
None
};
devs.push(VirtioDeviceStub {
dev: trackpad_box,
jail: trackpad_jail,
});
}
Err(e) => {
error!("failed configuring virtio trackpad: {}", e);
return Err(e);
}
}
}
if let Some(mouse_socket) = cfg.virtio_mouse {
match create_input_socket(&mouse_socket) {
Ok(socket) => {
let mouse_box =
Box::new(devices::virtio::new_mouse(socket).map_err(Error::InputDeviceNew)?);
let mouse_jail = if cfg.multiprocess {
let policy_path: PathBuf = cfg.seccomp_policy_dir.join("input_device.policy");
Some(create_base_minijail(empty_root_path, &policy_path)?)
} else {
None
};
devs.push(VirtioDeviceStub {
dev: mouse_box,
jail: mouse_jail,
});
}
Err(e) => {
error!("failed configuring virtio mouse: {}", e);
return Err(e);
}
}
}
if let Some(keyboard_socket) = cfg.virtio_keyboard {
match create_input_socket(&keyboard_socket) {
Ok(socket) => {
let keyboard_box =
Box::new(devices::virtio::new_keyboard(socket).map_err(Error::InputDeviceNew)?);
let keyboard_jail = if cfg.multiprocess {
let policy_path: PathBuf = cfg.seccomp_policy_dir.join("input_device.policy");
Some(create_base_minijail(empty_root_path, &policy_path)?)
} else {
None
};
devs.push(VirtioDeviceStub {
dev: keyboard_box,
jail: keyboard_jail,
});
}
Err(e) => {
error!("failed configuring virtio keyboard: {}", e);
return Err(e);
}
}
}
for dev_path in cfg.virtio_input_evdevs {
let dev_file = OpenOptions::new()
.read(true)
.write(true)
.open(dev_path)
.map_err(|e| Box::new(e))?;
let vinput_box =
Box::new(devices::virtio::new_evdev(dev_file).map_err(Error::InputDeviceNew)?);
let vinput_jail = if cfg.multiprocess {
let policy_path: PathBuf = cfg.seccomp_policy_dir.join("input_device.policy");
Some(create_base_minijail(empty_root_path, &policy_path)?)
} else {
None
};
devs.push(VirtioDeviceStub {
dev: vinput_box,
jail: vinput_jail,
});
}
let balloon_box = Box::new(
devices::virtio::Balloon::new(balloon_device_socket).map_err(Error::BalloonDeviceNew)?,
);
let balloon_jail = if cfg.multiprocess {
let policy_path: PathBuf = cfg.seccomp_policy_dir.join("balloon_device.policy");
Some(create_base_minijail(empty_root_path, &policy_path)?)
} else {
None
};
devs.push(VirtioDeviceStub {
dev: balloon_box,
jail: balloon_jail,
});
// We checked above that if the IP is defined, then the netmask is, too.
for tap_fd in cfg.tap_fd {
// Safe because we ensure that we get a unique handle to the fd.
let tap = unsafe {
Tap::from_raw_fd(validate_raw_fd(tap_fd).map_err(Error::ValidateRawFd)?)
.map_err(Error::CreateTapDevice)?
};
let net_box = Box::new(devices::virtio::Net::from(tap).map_err(Error::NetDeviceNew)?);
let jail = if cfg.multiprocess {
let policy_path: PathBuf = cfg.seccomp_policy_dir.join("net_device.policy");
Some(create_base_minijail(empty_root_path, &policy_path)?)
} else {
None
};
devs.push(VirtioDeviceStub { dev: net_box, jail });
}
if let Some(host_ip) = cfg.host_ip {
if let Some(netmask) = cfg.netmask {
if let Some(mac_address) = cfg.mac_address {
let net_box: Box<devices::virtio::VirtioDevice> = if cfg.vhost_net {
Box::new(
devices::virtio::vhost::Net::<Tap, vhost::Net<Tap>>::new(
host_ip,
netmask,
mac_address,
&mem,
)
.map_err(Error::VhostNetDeviceNew)?,
)
} else {
Box::new(
devices::virtio::Net::<Tap>::new(host_ip, netmask, mac_address)
.map_err(Error::NetDeviceNew)?,
)
};
let jail = if cfg.multiprocess {
let policy_path: PathBuf = if cfg.vhost_net {
cfg.seccomp_policy_dir.join("vhost_net_device.policy")
} else {
cfg.seccomp_policy_dir.join("net_device.policy")
};
Some(create_base_minijail(empty_root_path, &policy_path)?)
} else {
None
};
devs.push(VirtioDeviceStub { dev: net_box, jail });
}
}
}
#[cfg_attr(not(feature = "gpu"), allow(unused_mut))]
let mut resource_bridge_wl_socket =
None::<devices::virtio::resource_bridge::ResourceRequestSocket>;
#[cfg(feature = "gpu")]
{
if cfg.gpu {
if let Some(wayland_socket_path) = cfg.wayland_socket_path.as_ref() {
let (wl_socket, gpu_socket) =
devices::virtio::resource_bridge::pair().map_err(Error::CreateSocket)?;
resource_bridge_wl_socket = Some(wl_socket);
let jailed_wayland_path = Path::new("/wayland-0");
let gpu_box = Box::new(devices::virtio::Gpu::new(
_exit_evt.try_clone().map_err(Error::CloneEventFd)?,
Some(gpu_socket),
if cfg.multiprocess {
&jailed_wayland_path
} else {
wayland_socket_path.as_path()
},
));
let jail = if cfg.multiprocess {
let policy_path: PathBuf = cfg.seccomp_policy_dir.join("gpu_device.policy");
let mut jail = create_base_minijail(empty_root_path, &policy_path)?;
// Create a tmpfs in the device's root directory so that we can bind mount the
// dri directory into it. The size=67108864 is size=64*1024*1024 or size=64MB.
jail.mount_with_data(
Path::new("none"),
Path::new("/"),
"tmpfs",
(libc::MS_NOSUID | libc::MS_NODEV | libc::MS_NOEXEC) as usize,
"size=67108864",
)
.unwrap();
// Device nodes required for DRM.
let sys_dev_char_path = Path::new("/sys/dev/char");
jail.mount_bind(sys_dev_char_path, sys_dev_char_path, false)
.unwrap();
let sys_devices_path = Path::new("/sys/devices");
jail.mount_bind(sys_devices_path, sys_devices_path, false)
.unwrap();
let drm_dri_path = Path::new("/dev/dri");
jail.mount_bind(drm_dri_path, drm_dri_path, false).unwrap();
// Libraries that are required when mesa drivers are dynamically loaded.
let lib_path = Path::new("/lib64");
jail.mount_bind(lib_path, lib_path, false).unwrap();
let usr_lib_path = Path::new("/usr/lib64");
jail.mount_bind(usr_lib_path, usr_lib_path, false).unwrap();
// Bind mount the wayland socket into jail's root. This is necessary since each
// new wayland context must open() the socket.
jail.mount_bind(wayland_socket_path.as_path(), jailed_wayland_path, true)
.unwrap();
// Set the uid/gid for the jailed process, and give a basic id map. This
// is required for the above bind mount to work.
let crosvm_user_group = CStr::from_bytes_with_nul(b"crosvm\0").unwrap();
let crosvm_uid = match get_user_id(&crosvm_user_group) {
Ok(u) => u,
Err(e) => {
warn!("falling back to current user id for gpu: {}", e);
geteuid()
}
};
let crosvm_gid = match get_group_id(&crosvm_user_group) {
Ok(u) => u,
Err(e) => {
warn!("falling back to current group id for gpu: {}", e);
getegid()
}
};
jail.change_uid(crosvm_uid);
jail.change_gid(crosvm_gid);
jail.uidmap(&format!("{0} {0} 1", crosvm_uid))
.map_err(Error::SettingUidMap)?;
jail.gidmap(&format!("{0} {0} 1", crosvm_gid))
.map_err(Error::SettingGidMap)?;
Some(jail)
} else {
None
};
devs.push(VirtioDeviceStub { dev: gpu_box, jail });
}
}
}
if let Some(wayland_socket_path) = cfg.wayland_socket_path.as_ref() {
let wayland_socket_dir = wayland_socket_path
.parent()
.ok_or(Error::InvalidWaylandPath)?;
let wayland_socket_name = wayland_socket_path
.file_name()
.ok_or(Error::InvalidWaylandPath)?;
let jailed_wayland_dir = Path::new("/wayland");
let jailed_wayland_path = jailed_wayland_dir.join(wayland_socket_name);
let wl_box = Box::new(
devices::virtio::Wl::new(
if cfg.multiprocess {
&jailed_wayland_path
} else {
wayland_socket_path.as_path()
},
wayland_device_socket,
resource_bridge_wl_socket,
)
.map_err(Error::WaylandDeviceNew)?,
);
let jail = if cfg.multiprocess {
let policy_path: PathBuf = cfg.seccomp_policy_dir.join("wl_device.policy");
let mut jail = create_base_minijail(empty_root_path, &policy_path)?;
// Create a tmpfs in the device's root directory so that we can bind mount the wayland
// socket directory into it. The size=67108864 is size=64*1024*1024 or size=64MB.
jail.mount_with_data(
Path::new("none"),
Path::new("/"),
"tmpfs",
(libc::MS_NOSUID | libc::MS_NODEV | libc::MS_NOEXEC) as usize,
"size=67108864",
)
.unwrap();
// Bind mount the wayland socket's directory into jail's root. This is necessary since
// each new wayland context must open() the socket. If the wayland socket is ever
// destroyed and remade in the same host directory, new connections will be possible
// without restarting the wayland device.
jail.mount_bind(wayland_socket_dir, jailed_wayland_dir, true)
.unwrap();
// Set the uid/gid for the jailed process, and give a basic id map. This
// is required for the above bind mount to work.
let crosvm_user_group = CStr::from_bytes_with_nul(b"crosvm\0").unwrap();
let crosvm_uid = match get_user_id(&crosvm_user_group) {
Ok(u) => u,
Err(e) => {
warn!("falling back to current user id for Wayland: {}", e);
geteuid()
}
};
let crosvm_gid = match get_group_id(&crosvm_user_group) {
Ok(u) => u,
Err(e) => {
warn!("falling back to current group id for Wayland: {}", e);
getegid()
}
};
jail.change_uid(crosvm_uid);
jail.change_gid(crosvm_gid);
jail.uidmap(&format!("{0} {0} 1", crosvm_uid))
.map_err(Error::SettingUidMap)?;
jail.gidmap(&format!("{0} {0} 1", crosvm_gid))
.map_err(Error::SettingGidMap)?;
Some(jail)
} else {
None
};
devs.push(VirtioDeviceStub { dev: wl_box, jail });
}
if let Some(cid) = cfg.cid {
let vsock_box = Box::new(
devices::virtio::vhost::Vsock::new(cid, &mem).map_err(Error::VhostVsockDeviceNew)?,
);
let jail = if cfg.multiprocess {
let policy_path: PathBuf = cfg.seccomp_policy_dir.join("vhost_vsock_device.policy");
Some(create_base_minijail(empty_root_path, &policy_path)?)
} else {
None
};
devs.push(VirtioDeviceStub {
dev: vsock_box,
jail,
});
}
let chronos_user_group = CStr::from_bytes_with_nul(b"chronos\0").unwrap();
let chronos_uid = match get_user_id(&chronos_user_group) {
Ok(u) => u,
Err(e) => {
warn!("falling back to current user id for 9p: {}", e);
geteuid()
}
};
let chronos_gid = match get_group_id(&chronos_user_group) {
Ok(u) => u,
Err(e) => {
warn!("falling back to current group id for 9p: {}", e);
getegid()
}
};
for &(ref src, ref tag) in &cfg.shared_dirs {
let (jail, root) = if cfg.multiprocess {
let policy_path: PathBuf = cfg.seccomp_policy_dir.join("9p_device.policy");
let mut jail = create_base_minijail(empty_root_path, &policy_path)?;
// The shared directory becomes the root of the device's file system.
let root = Path::new("/");
jail.mount_bind(&src, root, true).unwrap();
// Set the uid/gid for the jailed process, and give a basic id map. This
// is required for the above bind mount to work.
jail.change_uid(chronos_uid);
jail.change_gid(chronos_gid);
jail.uidmap(&format!("{0} {0} 1", chronos_uid))
.map_err(Error::SettingUidMap)?;
jail.gidmap(&format!("{0} {0} 1", chronos_gid))
.map_err(Error::SettingGidMap)?;
(Some(jail), root)
} else {
// There's no bind mount so we tell the server to treat the source directory as the
// root. The double deref here converts |src| from a &PathBuf into a &Path.
(None, &**src)
};
let p9_box = Box::new(devices::virtio::P9::new(root, tag).map_err(Error::P9DeviceNew)?);
devs.push(VirtioDeviceStub { dev: p9_box, jail });
}
let mut pci_devices: Vec<(Box<PciDevice + 'static>, Option<Minijail>)> = Vec::new();
for stub in devs {
let pci_dev =
Box::new(VirtioPciDevice::new((*mem).clone(), stub.dev).map_err(Error::VirtioPciDev)?);
pci_devices.push((pci_dev, stub.jail));
}
if cfg.cras_audio {
let cras_audio_box = Box::new(devices::Ac97Dev::new(
(*mem).clone(),
Box::new(CrasClient::new()?),
));
let cras_audio_jail = if cfg.multiprocess {
let policy_path: PathBuf = cfg.seccomp_policy_dir.join("cras_audio_device.policy");
Some(create_base_minijail(empty_root_path, &policy_path)?)
} else {
None
};
pci_devices.push((cras_audio_box, cras_audio_jail));
}
if cfg.null_audio {
let null_audio_box = Box::new(devices::Ac97Dev::new(
(*mem).clone(),
Box::new(DummyStreamSource::new()),
));
let null_audio_jail = if cfg.multiprocess {
let policy_path: PathBuf = cfg.seccomp_policy_dir.join("null_audio_device.policy");
Some(create_base_minijail(empty_root_path, &policy_path)?)
} else {
None
};
pci_devices.push((null_audio_box, null_audio_jail));
}
Ok(pci_devices)
}
fn raw_fd_from_path(path: &PathBuf) -> std::result::Result<RawFd, Box<Error>> {
if !path.is_file() {
return Err(Box::new(Error::InvalidFdPath));
}
let raw_fd = path
.file_name()
.and_then(|fd_osstr| fd_osstr.to_str())
.and_then(|fd_str| fd_str.parse::<c_int>().ok())
.ok_or(Error::InvalidFdPath)?;
validate_raw_fd(raw_fd).map_err(|e| Box::new(Error::ValidateRawFd(e)))
}
fn create_input_socket(path: &PathBuf) -> std::result::Result<UnixStream, Box<Error>> {
if path.parent() == Some(Path::new("/proc/self/fd")) {
// Safe because we will validate |raw_fd|.
unsafe { Ok(UnixStream::from_raw_fd(raw_fd_from_path(path)?)) }
} else {
match UnixStream::connect(path) {
Ok(us) => return Ok(us),
Err(e) => {
return Err(Box::new(Error::InputEventsOpen(e)));
}
}
}
}
fn setup_vcpu_signal_handler() -> Result<()> {
unsafe {
extern "C" fn handle_signal() {}
// Our signal handler does nothing and is trivially async signal safe.
register_signal_handler(SIGRTMIN() + 0, handle_signal)
.map_err(Error::RegisterSignalHandler)?;
}
block_signal(SIGRTMIN() + 0).map_err(Error::BlockSignal)?;
Ok(())
}
#[derive(Default)]
struct VcpuRunMode {
mtx: Mutex<VmRunMode>,
cvar: Condvar,
}
impl VcpuRunMode {
fn set_and_notify(&self, new_mode: VmRunMode) {
*self.mtx.lock() = new_mode;
self.cvar.notify_all();
}
}
fn run_vcpu(
vcpu: Vcpu,
cpu_id: u32,
start_barrier: Arc<Barrier>,
io_bus: devices::Bus,
mmio_bus: devices::Bus,
exit_evt: EventFd,
requires_kvmclock_ctrl: bool,
run_mode_arc: Arc<VcpuRunMode>,
) -> Result<JoinHandle<()>> {
thread::Builder::new()
.name(format!("crosvm_vcpu{}", cpu_id))
.spawn(move || {
let mut sig_ok = true;
match get_blocked_signals() {
Ok(mut v) => {
v.retain(|&x| x != SIGRTMIN() + 0);
if let Err(e) = vcpu.set_signal_mask(&v) {
error!(
"Failed to set the KVM_SIGNAL_MASK for vcpu {} : {}",
cpu_id, e
);
sig_ok = false;
}
}
Err(e) => {
error!(
"Failed to retrieve signal mask for vcpu {} : {}",
cpu_id, e
);
sig_ok = false;
}
};
start_barrier.wait();
if sig_ok {
'vcpu_loop: loop {
let mut interrupted_by_signal = false;
match vcpu.run() {
Ok(VcpuExit::IoIn { port, mut size }) => {
let mut data = [0; 8];
if size > data.len() {
error!("unsupported IoIn size of {} bytes", size);
size = data.len();
}
io_bus.read(port as u64, &mut data[..size]);
if let Err(e) = vcpu.set_data(&data[..size]) {
error!("failed to set return data for IoIn: {}", e);
}
}
Ok(VcpuExit::IoOut {
port,
mut size,
data,
}) => {
if size > data.len() {
error!("unsupported IoOut size of {} bytes", size);
size = data.len();
}
io_bus.write(port as u64, &data[..size]);
}
Ok(VcpuExit::MmioRead { address, size }) => {
let mut data = [0; 8];
mmio_bus.read(address, &mut data[..size]);
// Setting data for mmio can not fail.
let _ = vcpu.set_data(&data[..size]);
}
Ok(VcpuExit::MmioWrite {
address,
size,
data,
}) => {
mmio_bus.write(address, &data[..size]);
}
Ok(VcpuExit::Hlt) => break,
Ok(VcpuExit::Shutdown) => break,
Ok(VcpuExit::SystemEvent(_, _)) => break,
Ok(r) => warn!("unexpected vcpu exit: {:?}", r),
Err(e) => match e.errno() {
libc::EINTR => interrupted_by_signal = true,
libc::EAGAIN => {}
_ => {
error!("vcpu hit unknown error: {}", e);
break;
}
},
}
if interrupted_by_signal {
// Try to clear the signal that we use to kick VCPU if it is pending before
// attempting to handle pause requests.
if let Err(e) = clear_signal(SIGRTMIN() + 0) {
error!("failed to clear pending signal: {}", e);
break;
}
let mut run_mode_lock = run_mode_arc.mtx.lock();
loop {
match *run_mode_lock {
VmRunMode::Running => break,
VmRunMode::Suspending => {
// On KVM implementations that use a paravirtualized clock (e.g.
// x86), a flag must be set to indicate to the guest kernel that
// a VCPU was suspended. The guest kernel will use this flag to
// prevent the soft lockup detection from triggering when this
// VCPU resumes, which could happen days later in realtime.
if requires_kvmclock_ctrl {
if let Err(e) = vcpu.kvmclock_ctrl() {
error!("failed to signal to kvm that vcpu {} is being suspended: {}", cpu_id, e);
}
}
}
VmRunMode::Exiting => break 'vcpu_loop,
}
// Give ownership of our exclusive lock to the condition variable that
// will block. When the condition variable is notified, `wait` will
// unblock and return a new exclusive lock.
run_mode_lock = run_mode_arc.cvar.wait(run_mode_lock);
}
}
}
}
exit_evt
.write(1)
.expect("failed to signal vcpu exit eventfd");
})
.map_err(Error::SpawnVcpu)
}
// Reads the contents of a file and converts them into a u64.
fn file_to_u64<P: AsRef<Path>>(path: P) -> io::Result<u64> {
let mut file = File::open(path)?;
let mut buf = [0u8; 32];
let count = file.read(&mut buf)?;
let content =
str::from_utf8(&buf[..count]).map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))?;
content
.trim()
.parse()
.map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))
}
pub fn run_config(cfg: Config) -> Result<()> {
if cfg.multiprocess {
// Printing something to the syslog before entering minijail so that libc's syslogger has a
// chance to open files necessary for its operation, like `/etc/localtime`. After jailing,
// access to those files will not be possible.
info!("crosvm entering multiprocess mode");
}
// Masking signals is inherently dangerous, since this can persist across clones/execs. Do this
// before any jailed devices have been spawned, so that we can catch any of them that fail very
// quickly.
let sigchld_fd = SignalFd::new(libc::SIGCHLD).map_err(Error::CreateSignalFd)?;
let initrd_image = if let Some(ref initrd_path) = cfg.initrd_path {
Some(
File::open(initrd_path.as_path())
.map_err(|e| Error::OpenInitrd(initrd_path.clone(), e))?,
)
} else {
None
};
let components = VmComponents {
memory_mb: (cfg.memory.unwrap_or(256) << 20) as u64,
vcpu_count: cfg.vcpu_count.unwrap_or(1),
kernel_image: File::open(cfg.kernel_path.as_path())
.map_err(|e| Error::OpenKernel(cfg.kernel_path.clone(), e))?,
android_fstab: cfg
.android_fstab
.as_ref()
.map(|x| {
File::open(x.as_path()).map_err(|e| Error::OpenAndroidFstab(x.to_path_buf(), e))
})
.map_or(Ok(None), |v| v.map(Some))?,
initrd_image,
extra_kernel_params: cfg.params.clone(),
wayland_dmabuf: cfg.wayland_dmabuf,
};
let control_server_socket = match &cfg.socket_path {
Some(path) => Some(UnlinkUnixSeqpacketListener(
UnixSeqpacketListener::bind(path).map_err(Error::CreateSocket)?,
)),
None => None,
};
let mut control_sockets = Vec::new();
let (wayland_host_socket, wayland_device_socket) =
UnixSeqpacket::pair().map_err(Error::CreateSocket)?;
control_sockets.push(MsgSocket::<VmResponse, VmRequest>::new(wayland_host_socket));
// Balloon gets a special socket so balloon requests can be forwarded from the main process.
let (balloon_host_socket, balloon_device_socket) =
UnixSeqpacket::pair().map_err(Error::CreateSocket)?;
// Create one control socket per disk.
let mut disk_device_sockets = Vec::new();
let mut disk_host_sockets = Vec::new();
let disk_count = cfg.disks.len();
for _ in 0..disk_count {
let (disk_host_socket, disk_device_socket) =
UnixSeqpacket::pair().map_err(Error::CreateSocket)?;
disk_device_sockets.push(disk_device_socket);
let disk_host_socket = MsgSocket::<VmRequest, VmResponse>::new(disk_host_socket);
disk_host_sockets.push(disk_host_socket);
}
let linux = Arch::build_vm(components, cfg.split_irqchip, |m, e| {
create_virtio_devs(
cfg,
m,
e,
wayland_device_socket,
balloon_device_socket,
&mut disk_device_sockets,
)
})
.map_err(Error::BuildingVm)?;
run_control(
linux,
control_server_socket,
control_sockets,
balloon_host_socket,
&disk_host_sockets,
sigchld_fd,
)
}
fn run_control(
mut linux: RunnableLinuxVm,
control_server_socket: Option<UnlinkUnixSeqpacketListener>,
mut control_sockets: Vec<MsgSocket<VmResponse, VmRequest>>,
balloon_host_socket: UnixSeqpacket,
disk_host_sockets: &[MsgSocket<VmRequest, VmResponse>],
sigchld_fd: SignalFd,
) -> Result<()> {
// Paths to get the currently available memory and the low memory threshold.
const LOWMEM_MARGIN: &str = "/sys/kernel/mm/chromeos-low_mem/margin";
const LOWMEM_AVAILABLE: &str = "/sys/kernel/mm/chromeos-low_mem/available";
// The amount of additional memory to claim back from the VM whenever the system is
// low on memory.
const ONE_GB: u64 = (1 << 30);
let max_balloon_memory = match linux.vm.get_memory().memory_size() {
// If the VM has at least 1.5 GB, the balloon driver can consume all but the last 1 GB.
n if n >= (ONE_GB / 2) * 3 => n - ONE_GB,
// Otherwise, if the VM has at least 500MB the balloon driver will consume at most
// half of it.
n if n >= (ONE_GB / 2) => n / 2,
// Otherwise, the VM is too small for us to take memory away from it.
_ => 0,
};
let mut current_balloon_memory: u64 = 0;
let balloon_memory_increment: u64 = max_balloon_memory / 16;
#[derive(PollToken)]
enum Token {
Exit,
Stdin,
ChildSignal,
CheckAvailableMemory,
LowMemory,
LowmemTimer,
VmControlServer,
VmControl { index: usize },
}
let stdin_handle = stdin();
let stdin_lock = stdin_handle.lock();
stdin_lock
.set_raw_mode()
.expect("failed to set terminal raw mode");
let poll_ctx = PollContext::new().map_err(Error::CreatePollContext)?;
poll_ctx
.add(&linux.exit_evt, Token::Exit)
.map_err(Error::PollContextAdd)?;
if let Err(e) = poll_ctx.add(&stdin_handle, Token::Stdin) {
warn!("failed to add stdin to poll context: {}", e);
}
poll_ctx
.add(&sigchld_fd, Token::ChildSignal)
.map_err(Error::PollContextAdd)?;
if let Some(socket_server) = &control_server_socket {
poll_ctx
.add(socket_server, Token::VmControlServer)
.map_err(Error::PollContextAdd)?;
}
for (index, socket) in control_sockets.iter().enumerate() {
poll_ctx
.add(socket.as_ref(), Token::VmControl { index })
.map_err(Error::PollContextAdd)?;
}
// Watch for low memory notifications and take memory back from the VM.
let low_mem = File::open("/dev/chromeos-low-mem").ok();
if let Some(ref low_mem) = low_mem {
poll_ctx
.add(low_mem, Token::LowMemory)
.map_err(Error::PollContextAdd)?;
} else {
warn!("Unable to open low mem indicator, maybe not a chrome os kernel");
}
// Used to rate limit balloon requests.
let mut lowmem_timer = TimerFd::new().map_err(Error::CreateTimerFd)?;
poll_ctx
.add(&lowmem_timer, Token::LowmemTimer)
.map_err(Error::PollContextAdd)?;
// Used to check whether it's ok to start giving memory back to the VM.
let mut freemem_timer = TimerFd::new().map_err(Error::CreateTimerFd)?;
poll_ctx
.add(&freemem_timer, Token::CheckAvailableMemory)
.map_err(Error::PollContextAdd)?;
// Used to add jitter to timer values so that we don't have a thundering herd problem when
// multiple VMs are running.
let mut simple_rng = SimpleRng::new(
SystemTime::now()
.duration_since(UNIX_EPOCH)
.expect("time went backwards")
.subsec_nanos() as u64,
);
let mut vcpu_handles = Vec::with_capacity(linux.vcpus.len());
let vcpu_thread_barrier = Arc::new(Barrier::new(linux.vcpus.len() + 1));
let run_mode_arc = Arc::new(VcpuRunMode::default());
setup_vcpu_signal_handler()?;
for (cpu_id, vcpu) in linux.vcpus.into_iter().enumerate() {
let handle = run_vcpu(
vcpu,
cpu_id as u32,
vcpu_thread_barrier.clone(),
linux.io_bus.clone(),
linux.mmio_bus.clone(),
linux.exit_evt.try_clone().map_err(Error::CloneEventFd)?,
linux.vm.check_extension(Cap::KvmclockCtrl),
run_mode_arc.clone(),
)?;
vcpu_handles.push(handle);
}
vcpu_thread_barrier.wait();
'poll: loop {
let events = {
match poll_ctx.wait() {
Ok(v) => v,
Err(e) => {
error!("failed to poll: {}", e);
break;
}
}
};
let mut vm_control_indices_to_remove = Vec::new();
for event in events.iter_readable() {
match event.token() {
Token::Exit => {
info!("vcpu requested shutdown");
break 'poll;
}
Token::Stdin => {
let mut out = [0u8; 64];
match stdin_lock.read_raw(&mut out[..]) {
Ok(0) => {
// Zero-length read indicates EOF. Remove from pollables.
let _ = poll_ctx.delete(&stdin_handle);
}
Err(e) => {
warn!("error while reading stdin: {}", e);
let _ = poll_ctx.delete(&stdin_handle);
}
Ok(count) => {
linux
.stdio_serial
.lock()
.queue_input_bytes(&out[..count])
.expect("failed to queue bytes into serial port");
}
}
}
Token::ChildSignal => {
// Print all available siginfo structs, then exit the loop.
while let Some(siginfo) = sigchld_fd.read().map_err(Error::SignalFd)? {
let pid = siginfo.ssi_pid;
let pid_label = match linux.pid_debug_label_map.get(&pid) {
Some(label) => format!("{} (pid {})", label, pid),
None => format!("pid {}", pid),
};
error!(
"child {} died: signo {}, status {}, code {}",
pid_label, siginfo.ssi_signo, siginfo.ssi_status, siginfo.ssi_code
);
}
break 'poll;
}
Token::CheckAvailableMemory => {
// Acknowledge the timer.
freemem_timer.wait().map_err(Error::TimerFd)?;
if current_balloon_memory == 0 {
// Nothing to see here.
if let Err(e) = freemem_timer.clear() {
warn!("unable to clear available memory check timer: {}", e);
}
continue;
}
// Otherwise see if we can free up some memory.
let margin = file_to_u64(LOWMEM_MARGIN).map_err(Error::ReadLowmemMargin)?;
let available =
file_to_u64(LOWMEM_AVAILABLE).map_err(Error::ReadLowmemAvailable)?;
// `available` and `margin` are specified in MB while `balloon_memory_increment` is in
// bytes. So to correctly compare them we need to turn the increment value into MB.
if available >= margin + 2 * (balloon_memory_increment >> 20) {
current_balloon_memory =
if current_balloon_memory >= balloon_memory_increment {
current_balloon_memory - balloon_memory_increment
} else {
0
};
let mut buf = [0u8; mem::size_of::<u64>()];
LittleEndian::write_u64(&mut buf, current_balloon_memory);
if let Err(e) = balloon_host_socket.send(&buf) {
warn!("failed to send memory value to balloon device: {}", e);
}
}
}
Token::LowMemory => {
if let Some(ref low_mem) = low_mem {
let old_balloon_memory = current_balloon_memory;
current_balloon_memory = min(
current_balloon_memory + balloon_memory_increment,
max_balloon_memory,
);
if current_balloon_memory != old_balloon_memory {
let mut buf = [0u8; mem::size_of::<u64>()];
LittleEndian::write_u64(&mut buf, current_balloon_memory);
if let Err(e) = balloon_host_socket.send(&buf) {
warn!("failed to send memory value to balloon device: {}", e);
}
}
// Stop polling the lowmem device until the timer fires.
poll_ctx.delete(low_mem).map_err(Error::PollContextDelete)?;
// Add some jitter to the timer so that if there are multiple VMs running
// they don't all start ballooning at exactly the same time.
let lowmem_dur = Duration::from_millis(1000 + simple_rng.rng() % 200);
lowmem_timer
.reset(lowmem_dur, None)
.map_err(Error::ResetTimerFd)?;
// Also start a timer to check when we can start giving memory back. Do the
// first check after a minute (with jitter) and subsequent checks after
// every 30 seconds (with jitter).
let freemem_dur = Duration::from_secs(60 + simple_rng.rng() % 12);
let freemem_int = Duration::from_secs(30 + simple_rng.rng() % 6);
freemem_timer
.reset(freemem_dur, Some(freemem_int))
.map_err(Error::ResetTimerFd)?;
}
}
Token::LowmemTimer => {
// Acknowledge the timer.
lowmem_timer.wait().map_err(Error::TimerFd)?;
if let Some(ref low_mem) = low_mem {
// Start polling the lowmem device again.
poll_ctx
.add(low_mem, Token::LowMemory)
.map_err(Error::PollContextAdd)?;
}
}
Token::VmControlServer => {
if let Some(socket_server) = &control_server_socket {
match socket_server.accept() {
Ok(socket) => {
poll_ctx
.add(
&socket,
Token::VmControl {
index: control_sockets.len(),
},
)
.map_err(Error::PollContextAdd)?;
control_sockets.push(MsgSocket::new(socket));
}
Err(e) => error!("failed to accept socket: {}", e),
}
}
}
Token::VmControl { index } => {
if let Some(socket) = control_sockets.get(index) {
match socket.recv() {
Ok(request) => {
let mut run_mode_opt = None;
let response = request.execute(
&mut linux.vm,
&mut linux.resources,
&mut run_mode_opt,
&balloon_host_socket,
disk_host_sockets,
);
if let Err(e) = socket.send(&response) {
error!("failed to send VmResponse: {}", e);
}
if let Some(run_mode) = run_mode_opt {
info!("control socket changed run mode to {}", run_mode);
match run_mode {
VmRunMode::Exiting => {
break 'poll;
}
other => {
run_mode_arc.set_and_notify(other);
for handle in &vcpu_handles {
let _ = handle.kill(SIGRTMIN() + 0);
}
}
}
}
}
Err(e) => {
if let MsgError::BadRecvSize { actual: 0, .. } = e {
vm_control_indices_to_remove.push(index);
} else {
error!("failed to recv VmRequest: {}", e);
}
}
}
}
}
}
}
for event in events.iter_hungup() {
match event.token() {
Token::Exit => {}
Token::Stdin => {
let _ = poll_ctx.delete(&stdin_handle);
}
Token::ChildSignal => {}
Token::CheckAvailableMemory => {}
Token::LowMemory => {}
Token::LowmemTimer => {}
Token::VmControlServer => {}
Token::VmControl { index } => {
// It's possible more data is readable and buffered while the socket is hungup,
// so don't delete the socket from the poll context until we're sure all the
// data is read.
match control_sockets.get(index).map(|s| s.get_readable_bytes()) {
Some(Ok(0)) | Some(Err(_)) => vm_control_indices_to_remove.push(index),
Some(Ok(x)) => info!("control index {} has {} bytes readable", index, x),
_ => {}
}
}
}
}
// Sort in reverse so the highest indexes are removed first. This removal algorithm
// preserved correct indexes as each element is removed.
vm_control_indices_to_remove.sort_unstable_by(|a, b| b.cmp(a));
vm_control_indices_to_remove.dedup();
for index in vm_control_indices_to_remove {
control_sockets.swap_remove(index);
if let Some(socket) = control_sockets.get(index) {
poll_ctx
.add(socket, Token::VmControl { index })
.map_err(Error::PollContextAdd)?;
}
}
}
// VCPU threads MUST see the VmRunMode flag, otherwise they may re-enter the VM.
run_mode_arc.set_and_notify(VmRunMode::Exiting);
for handle in vcpu_handles {
match handle.kill(SIGRTMIN() + 0) {
Ok(_) => {
if let Err(e) = handle.join() {
error!("failed to join vcpu thread: {:?}", e);
}
}
Err(e) => error!("failed to kill vcpu thread: {}", e),
}
}
stdin_lock
.set_canon_mode()
.expect("failed to restore canonical mode for terminal");
Ok(())
}