| // |
| //Copyright (C) 2014 LunarG, Inc. |
| // |
| //All rights reserved. |
| // |
| //Redistribution and use in source and binary forms, with or without |
| //modification, are permitted provided that the following conditions |
| //are met: |
| // |
| // Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // |
| // Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // |
| // Neither the name of 3Dlabs Inc. Ltd. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| //THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| //"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| //LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
| //FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
| //COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
| //INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
| //BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| //LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
| //CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| //LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
| //ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| //POSSIBILITY OF SUCH DAMAGE. |
| |
| // |
| // Author: John Kessenich, LunarG |
| // |
| |
| // |
| // "Builder" is an interface to fully build SPIR-V IR. Allocate one of |
| // these to build (a thread safe) internal SPIR-V representation (IR), |
| // and then dump it as a binary stream according to the SPIR-V specification. |
| // |
| // A Builder has a 1:1 relationship with a SPIR-V module. |
| // |
| |
| #pragma once |
| #ifndef SpvBuilder_H |
| #define SpvBuilder_H |
| |
| #include "spirv.hpp" |
| #include "spvIR.h" |
| |
| #include <algorithm> |
| #include <stack> |
| #include <map> |
| |
| namespace spv { |
| |
| class Builder { |
| public: |
| Builder(unsigned int userNumber); |
| virtual ~Builder(); |
| |
| static const int maxMatrixSize = 4; |
| |
| void setSource(spv::SourceLanguage lang, int version) |
| { |
| source = lang; |
| sourceVersion = version; |
| } |
| void addSourceExtension(const char* ext) { extensions.push_back(ext); } |
| Id import(const char*); |
| void setMemoryModel(spv::AddressingModel addr, spv::MemoryModel mem) |
| { |
| addressModel = addr; |
| memoryModel = mem; |
| } |
| |
| void addCapability(spv::Capability cap) { capabilities.push_back(cap); } |
| |
| // To get a new <id> for anything needing a new one. |
| Id getUniqueId() { return ++uniqueId; } |
| |
| // To get a set of new <id>s, e.g., for a set of function parameters |
| Id getUniqueIds(int numIds) |
| { |
| Id id = uniqueId + 1; |
| uniqueId += numIds; |
| return id; |
| } |
| |
| // For creating new types (will return old type if the requested one was already made). |
| Id makeVoidType(); |
| Id makeBoolType(); |
| Id makePointer(StorageClass, Id type); |
| Id makeIntegerType(int width, bool hasSign); // generic |
| Id makeIntType(int width) { return makeIntegerType(width, true); } |
| Id makeUintType(int width) { return makeIntegerType(width, false); } |
| Id makeFloatType(int width); |
| Id makeStructType(std::vector<Id>& members, const char*); |
| Id makeStructResultType(Id type0, Id type1); |
| Id makeVectorType(Id component, int size); |
| Id makeMatrixType(Id component, int cols, int rows); |
| Id makeArrayType(Id element, unsigned size); |
| Id makeRuntimeArray(Id element); |
| Id makeFunctionType(Id returnType, std::vector<Id>& paramTypes); |
| Id makeImageType(Id sampledType, Dim, bool depth, bool arrayed, bool ms, unsigned sampled, ImageFormat format); |
| Id makeSamplerType(); |
| Id makeSampledImageType(Id imageType); |
| |
| // For querying about types. |
| Id getTypeId(Id resultId) const { return module.getTypeId(resultId); } |
| Id getDerefTypeId(Id resultId) const; |
| Op getOpCode(Id id) const { return module.getInstruction(id)->getOpCode(); } |
| Op getTypeClass(Id typeId) const { return getOpCode(typeId); } |
| Op getMostBasicTypeClass(Id typeId) const; |
| int getNumComponents(Id resultId) const { return getNumTypeComponents(getTypeId(resultId)); } |
| int getNumTypeConstituents(Id typeId) const; |
| int getNumTypeComponents(Id typeId) const { return getNumTypeConstituents(typeId); } |
| Id getScalarTypeId(Id typeId) const; |
| Id getContainedTypeId(Id typeId) const; |
| Id getContainedTypeId(Id typeId, int) const; |
| StorageClass getTypeStorageClass(Id typeId) const { return module.getStorageClass(typeId); } |
| |
| bool isPointer(Id resultId) const { return isPointerType(getTypeId(resultId)); } |
| bool isScalar(Id resultId) const { return isScalarType(getTypeId(resultId)); } |
| bool isVector(Id resultId) const { return isVectorType(getTypeId(resultId)); } |
| bool isMatrix(Id resultId) const { return isMatrixType(getTypeId(resultId)); } |
| bool isAggregate(Id resultId) const { return isAggregateType(getTypeId(resultId)); } |
| bool isSampledImage(Id resultId) const { return isSampledImageType(getTypeId(resultId)); } |
| |
| bool isBoolType(Id typeId) const { return groupedTypes[OpTypeBool].size() > 0 && typeId == groupedTypes[OpTypeBool].back()->getResultId(); } |
| bool isPointerType(Id typeId) const { return getTypeClass(typeId) == OpTypePointer; } |
| bool isScalarType(Id typeId) const { return getTypeClass(typeId) == OpTypeFloat || getTypeClass(typeId) == OpTypeInt || getTypeClass(typeId) == OpTypeBool; } |
| bool isVectorType(Id typeId) const { return getTypeClass(typeId) == OpTypeVector; } |
| bool isMatrixType(Id typeId) const { return getTypeClass(typeId) == OpTypeMatrix; } |
| bool isStructType(Id typeId) const { return getTypeClass(typeId) == OpTypeStruct; } |
| bool isArrayType(Id typeId) const { return getTypeClass(typeId) == OpTypeArray; } |
| bool isAggregateType(Id typeId) const { return isArrayType(typeId) || isStructType(typeId); } |
| bool isImageType(Id typeId) const { return getTypeClass(typeId) == OpTypeImage; } |
| bool isSamplerType(Id typeId) const { return getTypeClass(typeId) == OpTypeSampler; } |
| bool isSampledImageType(Id typeId) const { return getTypeClass(typeId) == OpTypeSampledImage; } |
| |
| bool isConstantOpCode(Op opcode) const; |
| bool isConstant(Id resultId) const { return isConstantOpCode(getOpCode(resultId)); } |
| bool isConstantScalar(Id resultId) const { return getOpCode(resultId) == OpConstant; } |
| unsigned int getConstantScalar(Id resultId) const { return module.getInstruction(resultId)->getImmediateOperand(0); } |
| StorageClass getStorageClass(Id resultId) const { return getTypeStorageClass(getTypeId(resultId)); } |
| |
| int getTypeNumColumns(Id typeId) const |
| { |
| assert(isMatrixType(typeId)); |
| return getNumTypeConstituents(typeId); |
| } |
| int getNumColumns(Id resultId) const { return getTypeNumColumns(getTypeId(resultId)); } |
| int getTypeNumRows(Id typeId) const |
| { |
| assert(isMatrixType(typeId)); |
| return getNumTypeComponents(getContainedTypeId(typeId)); |
| } |
| int getNumRows(Id resultId) const { return getTypeNumRows(getTypeId(resultId)); } |
| |
| Dim getTypeDimensionality(Id typeId) const |
| { |
| assert(isImageType(typeId)); |
| return (Dim)module.getInstruction(typeId)->getImmediateOperand(1); |
| } |
| Id getImageType(Id resultId) const |
| { |
| Id typeId = getTypeId(resultId); |
| assert(isImageType(typeId) || isSampledImageType(typeId)); |
| return isSampledImageType(typeId) ? module.getInstruction(typeId)->getIdOperand(0) : typeId; |
| } |
| bool isArrayedImageType(Id typeId) const |
| { |
| assert(isImageType(typeId)); |
| return module.getInstruction(typeId)->getImmediateOperand(3) != 0; |
| } |
| |
| // For making new constants (will return old constant if the requested one was already made). |
| Id makeBoolConstant(bool b, bool specConstant = false); |
| Id makeIntConstant(int i, bool specConstant = false) { return makeIntConstant(makeIntType(32), (unsigned)i, specConstant); } |
| Id makeUintConstant(unsigned u, bool specConstant = false) { return makeIntConstant(makeUintType(32), u, specConstant); } |
| Id makeFloatConstant(float f, bool specConstant = false); |
| Id makeDoubleConstant(double d, bool specConstant = false); |
| |
| // Turn the array of constants into a proper spv constant of the requested type. |
| Id makeCompositeConstant(Id type, std::vector<Id>& comps); |
| |
| // Methods for adding information outside the CFG. |
| Instruction* addEntryPoint(ExecutionModel, Function*, const char* name); |
| void addExecutionMode(Function*, ExecutionMode mode, int value1 = -1, int value2 = -1, int value3 = -1); |
| void addName(Id, const char* name); |
| void addMemberName(Id, int member, const char* name); |
| void addLine(Id target, Id fileName, int line, int column); |
| void addDecoration(Id, Decoration, int num = -1); |
| void addMemberDecoration(Id, unsigned int member, Decoration, int num = -1); |
| |
| // At the end of what block do the next create*() instructions go? |
| void setBuildPoint(Block* bp) { buildPoint = bp; } |
| Block* getBuildPoint() const { return buildPoint; } |
| |
| // Make the main function. |
| Function* makeMain(); |
| |
| // Make a shader-style function, and create its entry block if entry is non-zero. |
| // Return the function, pass back the entry. |
| Function* makeFunctionEntry(Id returnType, const char* name, std::vector<Id>& paramTypes, Block **entry = 0); |
| |
| // Create a return. An 'implicit' return is one not appearing in the source |
| // code. In the case of an implicit return, no post-return block is inserted. |
| void makeReturn(bool implicit, Id retVal = 0); |
| |
| // Generate all the code needed to finish up a function. |
| void leaveFunction(); |
| |
| // Create a discard. |
| void makeDiscard(); |
| |
| // Create a global or function local or IO variable. |
| Id createVariable(StorageClass, Id type, const char* name = 0); |
| |
| // Create an imtermediate with an undefined value. |
| Id createUndefined(Id type); |
| |
| // Store into an Id and return the l-value |
| void createStore(Id rValue, Id lValue); |
| |
| // Load from an Id and return it |
| Id createLoad(Id lValue); |
| |
| // Create an OpAccessChain instruction |
| Id createAccessChain(StorageClass, Id base, std::vector<Id>& offsets); |
| |
| // Create an OpArrayLength instruction |
| Id createArrayLength(Id base, unsigned int member); |
| |
| // Create an OpCompositeExtract instruction |
| Id createCompositeExtract(Id composite, Id typeId, unsigned index); |
| Id createCompositeExtract(Id composite, Id typeId, std::vector<unsigned>& indexes); |
| Id createCompositeInsert(Id object, Id composite, Id typeId, unsigned index); |
| Id createCompositeInsert(Id object, Id composite, Id typeId, std::vector<unsigned>& indexes); |
| |
| Id createVectorExtractDynamic(Id vector, Id typeId, Id componentIndex); |
| Id createVectorInsertDynamic(Id vector, Id typeId, Id component, Id componentIndex); |
| |
| void createNoResultOp(Op); |
| void createNoResultOp(Op, Id operand); |
| void createNoResultOp(Op, const std::vector<Id>& operands); |
| void createControlBarrier(Scope execution, Scope memory, MemorySemanticsMask); |
| void createMemoryBarrier(unsigned executionScope, unsigned memorySemantics); |
| Id createUnaryOp(Op, Id typeId, Id operand); |
| Id createBinOp(Op, Id typeId, Id operand1, Id operand2); |
| Id createTriOp(Op, Id typeId, Id operand1, Id operand2, Id operand3); |
| Id createOp(Op, Id typeId, const std::vector<Id>& operands); |
| Id createFunctionCall(spv::Function*, std::vector<spv::Id>&); |
| |
| // Take an rvalue (source) and a set of channels to extract from it to |
| // make a new rvalue, which is returned. |
| Id createRvalueSwizzle(Id typeId, Id source, std::vector<unsigned>& channels); |
| |
| // Take a copy of an lvalue (target) and a source of components, and set the |
| // source components into the lvalue where the 'channels' say to put them. |
| // An updated version of the target is returned. |
| // (No true lvalue or stores are used.) |
| Id createLvalueSwizzle(Id typeId, Id target, Id source, std::vector<unsigned>& channels); |
| |
| // If the value passed in is an instruction and the precision is not NoPrecision, |
| // it gets tagged with the requested precision. |
| void setPrecision(Id /* value */, Decoration precision) |
| { |
| if (precision != NoPrecision) { |
| ;// TODO |
| } |
| } |
| |
| // Can smear a scalar to a vector for the following forms: |
| // - promoteScalar(scalar, vector) // smear scalar to width of vector |
| // - promoteScalar(vector, scalar) // smear scalar to width of vector |
| // - promoteScalar(pointer, scalar) // smear scalar to width of what pointer points to |
| // - promoteScalar(scalar, scalar) // do nothing |
| // Other forms are not allowed. |
| // |
| // Generally, the type of 'scalar' does not need to be the same type as the components in 'vector'. |
| // The type of the created vector is a vector of components of the same type as the scalar. |
| // |
| // Note: One of the arguments will change, with the result coming back that way rather than |
| // through the return value. |
| void promoteScalar(Decoration precision, Id& left, Id& right); |
| |
| // Make a value by smearing the scalar to fill the type. |
| // vectorType should be the correct type for making a vector of scalarVal. |
| // (No conversions are done.) |
| Id smearScalar(Decoration precision, Id scalarVal, Id vectorType); |
| |
| // Create a call to a built-in function. |
| Id createBuiltinCall(Decoration precision, Id resultType, Id builtins, int entryPoint, std::vector<Id>& args); |
| |
| // List of parameters used to create a texture operation |
| struct TextureParameters { |
| Id sampler; |
| Id coords; |
| Id bias; |
| Id lod; |
| Id Dref; |
| Id offset; |
| Id offsets; |
| Id gradX; |
| Id gradY; |
| Id sample; |
| Id comp; |
| }; |
| |
| // Select the correct texture operation based on all inputs, and emit the correct instruction |
| Id createTextureCall(Decoration precision, Id resultType, bool fetch, bool proj, bool gather, const TextureParameters&); |
| |
| // Emit the OpTextureQuery* instruction that was passed in. |
| // Figure out the right return value and type, and return it. |
| Id createTextureQueryCall(Op, const TextureParameters&); |
| |
| Id createSamplePositionCall(Decoration precision, Id, Id); |
| |
| Id createBitFieldExtractCall(Decoration precision, Id, Id, Id, bool isSigned); |
| Id createBitFieldInsertCall(Decoration precision, Id, Id, Id, Id); |
| |
| // Reduction comparision for composites: For equal and not-equal resulting in a scalar. |
| Id createCompositeCompare(Decoration precision, Id, Id, bool /* true if for equal, false if for not-equal */); |
| |
| // OpCompositeConstruct |
| Id createCompositeConstruct(Id typeId, std::vector<Id>& constituents); |
| |
| // vector or scalar constructor |
| Id createConstructor(Decoration precision, const std::vector<Id>& sources, Id resultTypeId); |
| |
| // matrix constructor |
| Id createMatrixConstructor(Decoration precision, const std::vector<Id>& sources, Id constructee); |
| |
| // Helper to use for building nested control flow with if-then-else. |
| class If { |
| public: |
| If(Id condition, Builder& builder); |
| ~If() {} |
| |
| void makeBeginElse(); |
| void makeEndIf(); |
| |
| private: |
| If(const If&); |
| If& operator=(If&); |
| |
| Builder& builder; |
| Id condition; |
| Function* function; |
| Block* headerBlock; |
| Block* thenBlock; |
| Block* elseBlock; |
| Block* mergeBlock; |
| }; |
| |
| // Make a switch statement. A switch has 'numSegments' of pieces of code, not containing |
| // any case/default labels, all separated by one or more case/default labels. Each possible |
| // case value v is a jump to the caseValues[v] segment. The defaultSegment is also in this |
| // number space. How to compute the value is given by 'condition', as in switch(condition). |
| // |
| // The SPIR-V Builder will maintain the stack of post-switch merge blocks for nested switches. |
| // |
| // Use a defaultSegment < 0 if there is no default segment (to branch to post switch). |
| // |
| // Returns the right set of basic blocks to start each code segment with, so that the caller's |
| // recursion stack can hold the memory for it. |
| // |
| void makeSwitch(Id condition, int numSegments, std::vector<int>& caseValues, std::vector<int>& valueToSegment, int defaultSegment, |
| std::vector<Block*>& segmentBB); // return argument |
| |
| // Add a branch to the innermost switch's merge block. |
| void addSwitchBreak(); |
| |
| // Move to the next code segment, passing in the return argument in makeSwitch() |
| void nextSwitchSegment(std::vector<Block*>& segmentBB, int segment); |
| |
| // Finish off the innermost switch. |
| void endSwitch(std::vector<Block*>& segmentBB); |
| |
| // Start the beginning of a new loop, and prepare the builder to |
| // generate code for the loop test. |
| // The loopTestFirst parameter is true when the loop test executes before |
| // the body. (It is false for do-while loops.) |
| void makeNewLoop(bool loopTestFirst); |
| |
| // Add the branch for the loop test, based on the given condition. |
| // The true branch goes to the first block in the loop body, and |
| // the false branch goes to the loop's merge block. The builder insertion |
| // point will be placed at the start of the body. |
| void createLoopTestBranch(Id condition); |
| |
| // Generate an unconditional branch to the loop body. The builder insertion |
| // point will be placed at the start of the body. Use this when there is |
| // no loop test. |
| void createBranchToBody(); |
| |
| // Add a branch to the test of the current (innermost) loop. |
| // The way we generate code, that's also the loop header. |
| void createLoopContinue(); |
| |
| // Add an exit (e.g. "break") for the innermost loop that you're in |
| void createLoopExit(); |
| |
| // Close the innermost loop that you're in |
| void closeLoop(); |
| |
| // |
| // Access chain design for an R-Value vs. L-Value: |
| // |
| // There is a single access chain the builder is building at |
| // any particular time. Such a chain can be used to either to a load or |
| // a store, when desired. |
| // |
| // Expressions can be r-values, l-values, or both, or only r-values: |
| // a[b.c].d = .... // l-value |
| // ... = a[b.c].d; // r-value, that also looks like an l-value |
| // ++a[b.c].d; // r-value and l-value |
| // (x + y)[2]; // r-value only, can't possibly be l-value |
| // |
| // Computing an r-value means generating code. Hence, |
| // r-values should only be computed when they are needed, not speculatively. |
| // |
| // Computing an l-value means saving away information for later use in the compiler, |
| // no code is generated until the l-value is later dereferenced. It is okay |
| // to speculatively generate an l-value, just not okay to speculatively dereference it. |
| // |
| // The base of the access chain (the left-most variable or expression |
| // from which everything is based) can be set either as an l-value |
| // or as an r-value. Most efficient would be to set an l-value if one |
| // is available. If an expression was evaluated, the resulting r-value |
| // can be set as the chain base. |
| // |
| // The users of this single access chain can save and restore if they |
| // want to nest or manage multiple chains. |
| // |
| |
| struct AccessChain { |
| Id base; // for l-values, pointer to the base object, for r-values, the base object |
| std::vector<Id> indexChain; |
| Id instr; // cache the instruction that generates this access chain |
| std::vector<unsigned> swizzle; // each std::vector element selects the next GLSL component number |
| Id component; // a dynamic component index, can coexist with a swizzle, done after the swizzle, NoResult if not present |
| Id preSwizzleBaseType; // dereferenced type, before swizzle or component is applied; NoType unless a swizzle or component is present |
| bool isRValue; // true if 'base' is an r-value, otherwise, base is an l-value |
| }; |
| |
| // |
| // the SPIR-V builder maintains a single active chain that |
| // the following methods operated on |
| // |
| |
| // for external save and restore |
| AccessChain getAccessChain() { return accessChain; } |
| void setAccessChain(AccessChain newChain) { accessChain = newChain; } |
| |
| // clear accessChain |
| void clearAccessChain(); |
| |
| // set new base as an l-value base |
| void setAccessChainLValue(Id lValue) |
| { |
| assert(isPointer(lValue)); |
| accessChain.base = lValue; |
| } |
| |
| // set new base value as an r-value |
| void setAccessChainRValue(Id rValue) |
| { |
| accessChain.isRValue = true; |
| accessChain.base = rValue; |
| } |
| |
| // push offset onto the end of the chain |
| void accessChainPush(Id offset) |
| { |
| accessChain.indexChain.push_back(offset); |
| } |
| |
| // push new swizzle onto the end of any existing swizzle, merging into a single swizzle |
| void accessChainPushSwizzle(std::vector<unsigned>& swizzle, Id preSwizzleBaseType); |
| |
| // push a variable component selection onto the access chain; supporting only one, so unsided |
| void accessChainPushComponent(Id component, Id preSwizzleBaseType) |
| { |
| accessChain.component = component; |
| if (accessChain.preSwizzleBaseType == NoType) |
| accessChain.preSwizzleBaseType = preSwizzleBaseType; |
| } |
| |
| // use accessChain and swizzle to store value |
| void accessChainStore(Id rvalue); |
| |
| // use accessChain and swizzle to load an r-value |
| Id accessChainLoad(Id ResultType); |
| |
| // get the direct pointer for an l-value |
| Id accessChainGetLValue(); |
| |
| void dump(std::vector<unsigned int>&) const; |
| |
| protected: |
| Id makeIntConstant(Id typeId, unsigned value, bool specConstant); |
| Id findScalarConstant(Op typeClass, Op opcode, Id typeId, unsigned value) const; |
| Id findScalarConstant(Op typeClass, Op opcode, Id typeId, unsigned v1, unsigned v2) const; |
| Id findCompositeConstant(Op typeClass, std::vector<Id>& comps) const; |
| Id collapseAccessChain(); |
| void transferAccessChainSwizzle(bool dynamic); |
| void simplifyAccessChainSwizzle(); |
| void createAndSetNoPredecessorBlock(const char*); |
| void createBranch(Block* block); |
| void createSelectionMerge(Block* mergeBlock, unsigned int control); |
| void createLoopMerge(Block* mergeBlock, Block* continueBlock, unsigned int control); |
| void createConditionalBranch(Id condition, Block* thenBlock, Block* elseBlock); |
| void dumpInstructions(std::vector<unsigned int>&, const std::vector<Instruction*>&) const; |
| |
| struct Loop; // Defined below. |
| void createBranchToLoopHeaderFromInside(const Loop& loop); |
| |
| SourceLanguage source; |
| int sourceVersion; |
| std::vector<const char*> extensions; |
| AddressingModel addressModel; |
| MemoryModel memoryModel; |
| std::vector<spv::Capability> capabilities; |
| int builderNumber; |
| Module module; |
| Block* buildPoint; |
| Id uniqueId; |
| Function* mainFunction; |
| AccessChain accessChain; |
| |
| // special blocks of instructions for output |
| std::vector<Instruction*> imports; |
| std::vector<Instruction*> entryPoints; |
| std::vector<Instruction*> executionModes; |
| std::vector<Instruction*> names; |
| std::vector<Instruction*> lines; |
| std::vector<Instruction*> decorations; |
| std::vector<Instruction*> constantsTypesGlobals; |
| std::vector<Instruction*> externals; |
| |
| // not output, internally used for quick & dirty canonical (unique) creation |
| std::vector<Instruction*> groupedConstants[OpConstant]; // all types appear before OpConstant |
| std::vector<Instruction*> groupedTypes[OpConstant]; |
| |
| // stack of switches |
| std::stack<Block*> switchMerges; |
| |
| // Data that needs to be kept in order to properly handle loops. |
| struct Loop { |
| // Constructs a default Loop structure containing new header, merge, and |
| // body blocks for the current function. |
| // The testFirst argument indicates whether the loop test executes at |
| // the top of the loop rather than at the bottom. In the latter case, |
| // also create a phi instruction whose value indicates whether we're on |
| // the first iteration of the loop. The phi instruction is initialized |
| // with no values or predecessor operands. |
| Loop(Builder& builder, bool testFirst); |
| |
| // The function containing the loop. |
| Function* const function; |
| // The header is the first block generated for the loop. |
| // It dominates all the blocks in the loop, i.e. it is always |
| // executed before any others. |
| // If the loop test is executed before the body (as in "while" and |
| // "for" loops), then the header begins with the test code. |
| // Otherwise, the loop is a "do-while" loop and the header contains the |
| // start of the body of the loop (if the body exists). |
| Block* const header; |
| // The merge block marks the end of the loop. Control is transferred |
| // to the merge block when either the loop test fails, or when a |
| // nested "break" is encountered. |
| Block* const merge; |
| // The body block is the first basic block in the body of the loop, i.e. |
| // the code that is to be repeatedly executed, aside from loop control. |
| // This member is null until we generate code that references the loop |
| // body block. |
| Block* const body; |
| // True when the loop test executes before the body. |
| const bool testFirst; |
| // When the test executes after the body, this is defined as the phi |
| // instruction that tells us whether we are on the first iteration of |
| // the loop. Otherwise this is null. This is non-const because |
| // it has to be initialized outside of the initializer-list. |
| Instruction* isFirstIteration; |
| }; |
| |
| // Our loop stack. |
| std::stack<Loop> loops; |
| }; // end Builder class |
| |
| // Use for non-fatal notes about what's not complete |
| void TbdFunctionality(const char*); |
| |
| // Use for fatal missing functionality |
| void MissingFunctionality(const char*); |
| |
| }; // end spv namespace |
| |
| #endif // SpvBuilder_H |