| // Copyright (c) 2015-2016 The Khronos Group Inc. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #ifndef LIBSPIRV_UTIL_HEX_FLOAT_H_ |
| #define LIBSPIRV_UTIL_HEX_FLOAT_H_ |
| |
| #include <cassert> |
| #include <cctype> |
| #include <cmath> |
| #include <cstdint> |
| #include <iomanip> |
| #include <limits> |
| #include <sstream> |
| |
| #include "bitutils.h" |
| |
| namespace spvutils { |
| |
| class Float16 { |
| public: |
| Float16(uint16_t v) : val(v) {} |
| Float16() = default; |
| static bool isNan(const Float16& val) { |
| return ((val.val & 0x7C00) == 0x7C00) && ((val.val & 0x3FF) != 0); |
| } |
| // Returns true if the given value is any kind of infinity. |
| static bool isInfinity(const Float16& val) { |
| return ((val.val & 0x7C00) == 0x7C00) && ((val.val & 0x3FF) == 0); |
| } |
| Float16(const Float16& other) { val = other.val; } |
| uint16_t get_value() const { return val; } |
| |
| // Returns the maximum normal value. |
| static Float16 max() { return Float16(0x7bff); } |
| // Returns the lowest normal value. |
| static Float16 lowest() { return Float16(0xfbff); } |
| |
| private: |
| uint16_t val; |
| }; |
| |
| // To specialize this type, you must override uint_type to define |
| // an unsigned integer that can fit your floating point type. |
| // You must also add a isNan function that returns true if |
| // a value is Nan. |
| template <typename T> |
| struct FloatProxyTraits { |
| using uint_type = void; |
| }; |
| |
| template <> |
| struct FloatProxyTraits<float> { |
| using uint_type = uint32_t; |
| static bool isNan(float f) { return std::isnan(f); } |
| // Returns true if the given value is any kind of infinity. |
| static bool isInfinity(float f) { return std::isinf(f); } |
| // Returns the maximum normal value. |
| static float max() { return std::numeric_limits<float>::max(); } |
| // Returns the lowest normal value. |
| static float lowest() { return std::numeric_limits<float>::lowest(); } |
| }; |
| |
| template <> |
| struct FloatProxyTraits<double> { |
| using uint_type = uint64_t; |
| static bool isNan(double f) { return std::isnan(f); } |
| // Returns true if the given value is any kind of infinity. |
| static bool isInfinity(double f) { return std::isinf(f); } |
| // Returns the maximum normal value. |
| static double max() { return std::numeric_limits<double>::max(); } |
| // Returns the lowest normal value. |
| static double lowest() { return std::numeric_limits<double>::lowest(); } |
| }; |
| |
| template <> |
| struct FloatProxyTraits<Float16> { |
| using uint_type = uint16_t; |
| static bool isNan(Float16 f) { return Float16::isNan(f); } |
| // Returns true if the given value is any kind of infinity. |
| static bool isInfinity(Float16 f) { return Float16::isInfinity(f); } |
| // Returns the maximum normal value. |
| static Float16 max() { return Float16::max(); } |
| // Returns the lowest normal value. |
| static Float16 lowest() { return Float16::lowest(); } |
| }; |
| |
| // Since copying a floating point number (especially if it is NaN) |
| // does not guarantee that bits are preserved, this class lets us |
| // store the type and use it as a float when necessary. |
| template <typename T> |
| class FloatProxy { |
| public: |
| using uint_type = typename FloatProxyTraits<T>::uint_type; |
| |
| // Since this is to act similar to the normal floats, |
| // do not initialize the data by default. |
| FloatProxy() = default; |
| |
| // Intentionally non-explicit. This is a proxy type so |
| // implicit conversions allow us to use it more transparently. |
| FloatProxy(T val) { data_ = BitwiseCast<uint_type>(val); } |
| |
| // Intentionally non-explicit. This is a proxy type so |
| // implicit conversions allow us to use it more transparently. |
| FloatProxy(uint_type val) { data_ = val; } |
| |
| // This is helpful to have and is guaranteed not to stomp bits. |
| FloatProxy<T> operator-() const { |
| return static_cast<uint_type>(data_ ^ |
| (uint_type(0x1) << (sizeof(T) * 8 - 1))); |
| } |
| |
| // Returns the data as a floating point value. |
| T getAsFloat() const { return BitwiseCast<T>(data_); } |
| |
| // Returns the raw data. |
| uint_type data() const { return data_; } |
| |
| // Returns true if the value represents any type of NaN. |
| bool isNan() { return FloatProxyTraits<T>::isNan(getAsFloat()); } |
| // Returns true if the value represents any type of infinity. |
| bool isInfinity() { return FloatProxyTraits<T>::isInfinity(getAsFloat()); } |
| |
| // Returns the maximum normal value. |
| static FloatProxy<T> max() { |
| return FloatProxy<T>(FloatProxyTraits<T>::max()); |
| } |
| // Returns the lowest normal value. |
| static FloatProxy<T> lowest() { |
| return FloatProxy<T>(FloatProxyTraits<T>::lowest()); |
| } |
| |
| private: |
| uint_type data_; |
| }; |
| |
| template <typename T> |
| bool operator==(const FloatProxy<T>& first, const FloatProxy<T>& second) { |
| return first.data() == second.data(); |
| } |
| |
| // Reads a FloatProxy value as a normal float from a stream. |
| template <typename T> |
| std::istream& operator>>(std::istream& is, FloatProxy<T>& value) { |
| T float_val; |
| is >> float_val; |
| value = FloatProxy<T>(float_val); |
| return is; |
| } |
| |
| // This is an example traits. It is not meant to be used in practice, but will |
| // be the default for any non-specialized type. |
| template <typename T> |
| struct HexFloatTraits { |
| // Integer type that can store this hex-float. |
| using uint_type = void; |
| // Signed integer type that can store this hex-float. |
| using int_type = void; |
| // The numerical type that this HexFloat represents. |
| using underlying_type = void; |
| // The type needed to construct the underlying type. |
| using native_type = void; |
| // The number of bits that are actually relevant in the uint_type. |
| // This allows us to deal with, for example, 24-bit values in a 32-bit |
| // integer. |
| static const uint32_t num_used_bits = 0; |
| // Number of bits that represent the exponent. |
| static const uint32_t num_exponent_bits = 0; |
| // Number of bits that represent the fractional part. |
| static const uint32_t num_fraction_bits = 0; |
| // The bias of the exponent. (How much we need to subtract from the stored |
| // value to get the correct value.) |
| static const uint32_t exponent_bias = 0; |
| }; |
| |
| // Traits for IEEE float. |
| // 1 sign bit, 8 exponent bits, 23 fractional bits. |
| template <> |
| struct HexFloatTraits<FloatProxy<float>> { |
| using uint_type = uint32_t; |
| using int_type = int32_t; |
| using underlying_type = FloatProxy<float>; |
| using native_type = float; |
| static const uint_type num_used_bits = 32; |
| static const uint_type num_exponent_bits = 8; |
| static const uint_type num_fraction_bits = 23; |
| static const uint_type exponent_bias = 127; |
| }; |
| |
| // Traits for IEEE double. |
| // 1 sign bit, 11 exponent bits, 52 fractional bits. |
| template <> |
| struct HexFloatTraits<FloatProxy<double>> { |
| using uint_type = uint64_t; |
| using int_type = int64_t; |
| using underlying_type = FloatProxy<double>; |
| using native_type = double; |
| static const uint_type num_used_bits = 64; |
| static const uint_type num_exponent_bits = 11; |
| static const uint_type num_fraction_bits = 52; |
| static const uint_type exponent_bias = 1023; |
| }; |
| |
| // Traits for IEEE half. |
| // 1 sign bit, 5 exponent bits, 10 fractional bits. |
| template <> |
| struct HexFloatTraits<FloatProxy<Float16>> { |
| using uint_type = uint16_t; |
| using int_type = int16_t; |
| using underlying_type = uint16_t; |
| using native_type = uint16_t; |
| static const uint_type num_used_bits = 16; |
| static const uint_type num_exponent_bits = 5; |
| static const uint_type num_fraction_bits = 10; |
| static const uint_type exponent_bias = 15; |
| }; |
| |
| enum class round_direction { |
| kToZero, |
| kToNearestEven, |
| kToPositiveInfinity, |
| kToNegativeInfinity, |
| max = kToNegativeInfinity |
| }; |
| |
| // Template class that houses a floating pointer number. |
| // It exposes a number of constants based on the provided traits to |
| // assist in interpreting the bits of the value. |
| template <typename T, typename Traits = HexFloatTraits<T>> |
| class HexFloat { |
| public: |
| using uint_type = typename Traits::uint_type; |
| using int_type = typename Traits::int_type; |
| using underlying_type = typename Traits::underlying_type; |
| using native_type = typename Traits::native_type; |
| |
| explicit HexFloat(T f) : value_(f) {} |
| |
| T value() const { return value_; } |
| void set_value(T f) { value_ = f; } |
| |
| // These are all written like this because it is convenient to have |
| // compile-time constants for all of these values. |
| |
| // Pass-through values to save typing. |
| static const uint32_t num_used_bits = Traits::num_used_bits; |
| static const uint32_t exponent_bias = Traits::exponent_bias; |
| static const uint32_t num_exponent_bits = Traits::num_exponent_bits; |
| static const uint32_t num_fraction_bits = Traits::num_fraction_bits; |
| |
| // Number of bits to shift left to set the highest relevant bit. |
| static const uint32_t top_bit_left_shift = num_used_bits - 1; |
| // How many nibbles (hex characters) the fractional part takes up. |
| static const uint32_t fraction_nibbles = (num_fraction_bits + 3) / 4; |
| // If the fractional part does not fit evenly into a hex character (4-bits) |
| // then we have to left-shift to get rid of leading 0s. This is the amount |
| // we have to shift (might be 0). |
| static const uint32_t num_overflow_bits = |
| fraction_nibbles * 4 - num_fraction_bits; |
| |
| // The representation of the fraction, not the actual bits. This |
| // includes the leading bit that is usually implicit. |
| static const uint_type fraction_represent_mask = |
| spvutils::SetBits<uint_type, 0, |
| num_fraction_bits + num_overflow_bits>::get; |
| |
| // The topmost bit in the nibble-aligned fraction. |
| static const uint_type fraction_top_bit = |
| uint_type(1) << (num_fraction_bits + num_overflow_bits - 1); |
| |
| // The least significant bit in the exponent, which is also the bit |
| // immediately to the left of the significand. |
| static const uint_type first_exponent_bit = uint_type(1) |
| << (num_fraction_bits); |
| |
| // The mask for the encoded fraction. It does not include the |
| // implicit bit. |
| static const uint_type fraction_encode_mask = |
| spvutils::SetBits<uint_type, 0, num_fraction_bits>::get; |
| |
| // The bit that is used as a sign. |
| static const uint_type sign_mask = uint_type(1) << top_bit_left_shift; |
| |
| // The bits that represent the exponent. |
| static const uint_type exponent_mask = |
| spvutils::SetBits<uint_type, num_fraction_bits, num_exponent_bits>::get; |
| |
| // How far left the exponent is shifted. |
| static const uint32_t exponent_left_shift = num_fraction_bits; |
| |
| // How far from the right edge the fraction is shifted. |
| static const uint32_t fraction_right_shift = |
| static_cast<uint32_t>(sizeof(uint_type) * 8) - num_fraction_bits; |
| |
| // The maximum representable unbiased exponent. |
| static const int_type max_exponent = |
| (exponent_mask >> num_fraction_bits) - exponent_bias; |
| // The minimum representable exponent for normalized numbers. |
| static const int_type min_exponent = -static_cast<int_type>(exponent_bias); |
| |
| // Returns the bits associated with the value. |
| uint_type getBits() const { return spvutils::BitwiseCast<uint_type>(value_); } |
| |
| // Returns the bits associated with the value, without the leading sign bit. |
| uint_type getUnsignedBits() const { |
| return static_cast<uint_type>(spvutils::BitwiseCast<uint_type>(value_) & |
| ~sign_mask); |
| } |
| |
| // Returns the bits associated with the exponent, shifted to start at the |
| // lsb of the type. |
| const uint_type getExponentBits() const { |
| return static_cast<uint_type>((getBits() & exponent_mask) >> |
| num_fraction_bits); |
| } |
| |
| // Returns the exponent in unbiased form. This is the exponent in the |
| // human-friendly form. |
| const int_type getUnbiasedExponent() const { |
| return static_cast<int_type>(getExponentBits() - exponent_bias); |
| } |
| |
| // Returns just the significand bits from the value. |
| const uint_type getSignificandBits() const { |
| return getBits() & fraction_encode_mask; |
| } |
| |
| // If the number was normalized, returns the unbiased exponent. |
| // If the number was denormal, normalize the exponent first. |
| const int_type getUnbiasedNormalizedExponent() const { |
| if ((getBits() & ~sign_mask) == 0) { // special case if everything is 0 |
| return 0; |
| } |
| int_type exp = getUnbiasedExponent(); |
| if (exp == min_exponent) { // We are in denorm land. |
| uint_type significand_bits = getSignificandBits(); |
| while ((significand_bits & (first_exponent_bit >> 1)) == 0) { |
| significand_bits = static_cast<uint_type>(significand_bits << 1); |
| exp = static_cast<int_type>(exp - 1); |
| } |
| significand_bits &= fraction_encode_mask; |
| } |
| return exp; |
| } |
| |
| // Returns the signficand after it has been normalized. |
| const uint_type getNormalizedSignificand() const { |
| int_type unbiased_exponent = getUnbiasedNormalizedExponent(); |
| uint_type significand = getSignificandBits(); |
| for (int_type i = unbiased_exponent; i <= min_exponent; ++i) { |
| significand = static_cast<uint_type>(significand << 1); |
| } |
| significand &= fraction_encode_mask; |
| return significand; |
| } |
| |
| // Returns true if this number represents a negative value. |
| bool isNegative() const { return (getBits() & sign_mask) != 0; } |
| |
| // Sets this HexFloat from the individual components. |
| // Note this assumes EVERY significand is normalized, and has an implicit |
| // leading one. This means that the only way that this method will set 0, |
| // is if you set a number so denormalized that it underflows. |
| // Do not use this method with raw bits extracted from a subnormal number, |
| // since subnormals do not have an implicit leading 1 in the significand. |
| // The significand is also expected to be in the |
| // lowest-most num_fraction_bits of the uint_type. |
| // The exponent is expected to be unbiased, meaning an exponent of |
| // 0 actually means 0. |
| // If underflow_round_up is set, then on underflow, if a number is non-0 |
| // and would underflow, we round up to the smallest denorm. |
| void setFromSignUnbiasedExponentAndNormalizedSignificand( |
| bool negative, int_type exponent, uint_type significand, |
| bool round_denorm_up) { |
| bool significand_is_zero = significand == 0; |
| |
| if (exponent <= min_exponent) { |
| // If this was denormalized, then we have to shift the bit on, meaning |
| // the significand is not zero. |
| significand_is_zero = false; |
| significand |= first_exponent_bit; |
| significand = static_cast<uint_type>(significand >> 1); |
| } |
| |
| while (exponent < min_exponent) { |
| significand = static_cast<uint_type>(significand >> 1); |
| ++exponent; |
| } |
| |
| if (exponent == min_exponent) { |
| if (significand == 0 && !significand_is_zero && round_denorm_up) { |
| significand = static_cast<uint_type>(0x1); |
| } |
| } |
| |
| uint_type new_value = 0; |
| if (negative) { |
| new_value = static_cast<uint_type>(new_value | sign_mask); |
| } |
| exponent = static_cast<int_type>(exponent + exponent_bias); |
| assert(exponent >= 0); |
| |
| // put it all together |
| exponent = static_cast<uint_type>((exponent << exponent_left_shift) & |
| exponent_mask); |
| significand = static_cast<uint_type>(significand & fraction_encode_mask); |
| new_value = static_cast<uint_type>(new_value | (exponent | significand)); |
| value_ = BitwiseCast<T>(new_value); |
| } |
| |
| // Increments the significand of this number by the given amount. |
| // If this would spill the significand into the implicit bit, |
| // carry is set to true and the significand is shifted to fit into |
| // the correct location, otherwise carry is set to false. |
| // All significands and to_increment are assumed to be within the bounds |
| // for a valid significand. |
| static uint_type incrementSignificand(uint_type significand, |
| uint_type to_increment, bool* carry) { |
| significand = static_cast<uint_type>(significand + to_increment); |
| *carry = false; |
| if (significand & first_exponent_bit) { |
| *carry = true; |
| // The implicit 1-bit will have carried, so we should zero-out the |
| // top bit and shift back. |
| significand = static_cast<uint_type>(significand & ~first_exponent_bit); |
| significand = static_cast<uint_type>(significand >> 1); |
| } |
| return significand; |
| } |
| |
| // These exist because MSVC throws warnings on negative right-shifts |
| // even if they are not going to be executed. Eg: |
| // constant_number < 0? 0: constant_number |
| // These convert the negative left-shifts into right shifts. |
| |
| template <int_type N, typename enable = void> |
| struct negatable_left_shift { |
| static uint_type val(uint_type val) { |
| return static_cast<uint_type>(val >> -N); |
| } |
| }; |
| |
| template <int_type N> |
| struct negatable_left_shift<N, typename std::enable_if<N >= 0>::type> { |
| static uint_type val(uint_type val) { |
| return static_cast<uint_type>(val << N); |
| } |
| }; |
| |
| template <int_type N, typename enable = void> |
| struct negatable_right_shift { |
| static uint_type val(uint_type val) { |
| return static_cast<uint_type>(val << -N); |
| } |
| }; |
| |
| template <int_type N> |
| struct negatable_right_shift<N, typename std::enable_if<N >= 0>::type> { |
| static uint_type val(uint_type val) { |
| return static_cast<uint_type>(val >> N); |
| } |
| }; |
| |
| // Returns the significand, rounded to fit in a significand in |
| // other_T. This is shifted so that the most significant |
| // bit of the rounded number lines up with the most significant bit |
| // of the returned significand. |
| template <typename other_T> |
| typename other_T::uint_type getRoundedNormalizedSignificand( |
| round_direction dir, bool* carry_bit) { |
| using other_uint_type = typename other_T::uint_type; |
| static const int_type num_throwaway_bits = |
| static_cast<int_type>(num_fraction_bits) - |
| static_cast<int_type>(other_T::num_fraction_bits); |
| |
| static const uint_type last_significant_bit = |
| (num_throwaway_bits < 0) |
| ? 0 |
| : negatable_left_shift<num_throwaway_bits>::val(1u); |
| static const uint_type first_rounded_bit = |
| (num_throwaway_bits < 1) |
| ? 0 |
| : negatable_left_shift<num_throwaway_bits - 1>::val(1u); |
| |
| static const uint_type throwaway_mask_bits = |
| num_throwaway_bits > 0 ? num_throwaway_bits : 0; |
| static const uint_type throwaway_mask = |
| spvutils::SetBits<uint_type, 0, throwaway_mask_bits>::get; |
| |
| *carry_bit = false; |
| other_uint_type out_val = 0; |
| uint_type significand = getNormalizedSignificand(); |
| // If we are up-casting, then we just have to shift to the right location. |
| if (num_throwaway_bits <= 0) { |
| out_val = static_cast<other_uint_type>(significand); |
| uint_type shift_amount = static_cast<uint_type>(-num_throwaway_bits); |
| out_val = static_cast<other_uint_type>(out_val << shift_amount); |
| return out_val; |
| } |
| |
| // If every non-representable bit is 0, then we don't have any casting to |
| // do. |
| if ((significand & throwaway_mask) == 0) { |
| return static_cast<other_uint_type>( |
| negatable_right_shift<num_throwaway_bits>::val(significand)); |
| } |
| |
| bool round_away_from_zero = false; |
| // We actually have to narrow the significand here, so we have to follow the |
| // rounding rules. |
| switch (dir) { |
| case round_direction::kToZero: |
| break; |
| case round_direction::kToPositiveInfinity: |
| round_away_from_zero = !isNegative(); |
| break; |
| case round_direction::kToNegativeInfinity: |
| round_away_from_zero = isNegative(); |
| break; |
| case round_direction::kToNearestEven: |
| // Have to round down, round bit is 0 |
| if ((first_rounded_bit & significand) == 0) { |
| break; |
| } |
| if (((significand & throwaway_mask) & ~first_rounded_bit) != 0) { |
| // If any subsequent bit of the rounded portion is non-0 then we round |
| // up. |
| round_away_from_zero = true; |
| break; |
| } |
| // We are exactly half-way between 2 numbers, pick even. |
| if ((significand & last_significant_bit) != 0) { |
| // 1 for our last bit, round up. |
| round_away_from_zero = true; |
| break; |
| } |
| break; |
| } |
| |
| if (round_away_from_zero) { |
| return static_cast<other_uint_type>( |
| negatable_right_shift<num_throwaway_bits>::val(incrementSignificand( |
| significand, last_significant_bit, carry_bit))); |
| } else { |
| return static_cast<other_uint_type>( |
| negatable_right_shift<num_throwaway_bits>::val(significand)); |
| } |
| } |
| |
| // Casts this value to another HexFloat. If the cast is widening, |
| // then round_dir is ignored. If the cast is narrowing, then |
| // the result is rounded in the direction specified. |
| // This number will retain Nan and Inf values. |
| // It will also saturate to Inf if the number overflows, and |
| // underflow to (0 or min depending on rounding) if the number underflows. |
| template <typename other_T> |
| void castTo(other_T& other, round_direction round_dir) { |
| other = other_T(static_cast<typename other_T::native_type>(0)); |
| bool negate = isNegative(); |
| if (getUnsignedBits() == 0) { |
| if (negate) { |
| other.set_value(-other.value()); |
| } |
| return; |
| } |
| uint_type significand = getSignificandBits(); |
| bool carried = false; |
| typename other_T::uint_type rounded_significand = |
| getRoundedNormalizedSignificand<other_T>(round_dir, &carried); |
| |
| int_type exponent = getUnbiasedExponent(); |
| if (exponent == min_exponent) { |
| // If we are denormal, normalize the exponent, so that we can encode |
| // easily. |
| exponent = static_cast<int_type>(exponent + 1); |
| for (uint_type check_bit = first_exponent_bit >> 1; check_bit != 0; |
| check_bit = static_cast<uint_type>(check_bit >> 1)) { |
| exponent = static_cast<int_type>(exponent - 1); |
| if (check_bit & significand) break; |
| } |
| } |
| |
| bool is_nan = |
| (getBits() & exponent_mask) == exponent_mask && significand != 0; |
| bool is_inf = |
| !is_nan && |
| ((exponent + carried) > static_cast<int_type>(other_T::exponent_bias) || |
| (significand == 0 && (getBits() & exponent_mask) == exponent_mask)); |
| |
| // If we are Nan or Inf we should pass that through. |
| if (is_inf) { |
| other.set_value(BitwiseCast<typename other_T::underlying_type>( |
| static_cast<typename other_T::uint_type>( |
| (negate ? other_T::sign_mask : 0) | other_T::exponent_mask))); |
| return; |
| } |
| if (is_nan) { |
| typename other_T::uint_type shifted_significand; |
| shifted_significand = static_cast<typename other_T::uint_type>( |
| negatable_left_shift< |
| static_cast<int_type>(other_T::num_fraction_bits) - |
| static_cast<int_type>(num_fraction_bits)>::val(significand)); |
| |
| // We are some sort of Nan. We try to keep the bit-pattern of the Nan |
| // as close as possible. If we had to shift off bits so we are 0, then we |
| // just set the last bit. |
| other.set_value(BitwiseCast<typename other_T::underlying_type>( |
| static_cast<typename other_T::uint_type>( |
| (negate ? other_T::sign_mask : 0) | other_T::exponent_mask | |
| (shifted_significand == 0 ? 0x1 : shifted_significand)))); |
| return; |
| } |
| |
| bool round_underflow_up = |
| isNegative() ? round_dir == round_direction::kToNegativeInfinity |
| : round_dir == round_direction::kToPositiveInfinity; |
| using other_int_type = typename other_T::int_type; |
| // setFromSignUnbiasedExponentAndNormalizedSignificand will |
| // zero out any underflowing value (but retain the sign). |
| other.setFromSignUnbiasedExponentAndNormalizedSignificand( |
| negate, static_cast<other_int_type>(exponent), rounded_significand, |
| round_underflow_up); |
| return; |
| } |
| |
| private: |
| T value_; |
| |
| static_assert(num_used_bits == |
| Traits::num_exponent_bits + Traits::num_fraction_bits + 1, |
| "The number of bits do not fit"); |
| static_assert(sizeof(T) == sizeof(uint_type), "The type sizes do not match"); |
| }; |
| |
| // Returns 4 bits represented by the hex character. |
| inline uint8_t get_nibble_from_character(int character) { |
| const char* dec = "0123456789"; |
| const char* lower = "abcdef"; |
| const char* upper = "ABCDEF"; |
| const char* p = nullptr; |
| if ((p = strchr(dec, character))) { |
| return static_cast<uint8_t>(p - dec); |
| } else if ((p = strchr(lower, character))) { |
| return static_cast<uint8_t>(p - lower + 0xa); |
| } else if ((p = strchr(upper, character))) { |
| return static_cast<uint8_t>(p - upper + 0xa); |
| } |
| |
| assert(false && "This was called with a non-hex character"); |
| return 0; |
| } |
| |
| // Outputs the given HexFloat to the stream. |
| template <typename T, typename Traits> |
| std::ostream& operator<<(std::ostream& os, const HexFloat<T, Traits>& value) { |
| using HF = HexFloat<T, Traits>; |
| using uint_type = typename HF::uint_type; |
| using int_type = typename HF::int_type; |
| |
| static_assert(HF::num_used_bits != 0, |
| "num_used_bits must be non-zero for a valid float"); |
| static_assert(HF::num_exponent_bits != 0, |
| "num_exponent_bits must be non-zero for a valid float"); |
| static_assert(HF::num_fraction_bits != 0, |
| "num_fractin_bits must be non-zero for a valid float"); |
| |
| const uint_type bits = spvutils::BitwiseCast<uint_type>(value.value()); |
| const char* const sign = (bits & HF::sign_mask) ? "-" : ""; |
| const uint_type exponent = static_cast<uint_type>( |
| (bits & HF::exponent_mask) >> HF::num_fraction_bits); |
| |
| uint_type fraction = static_cast<uint_type>((bits & HF::fraction_encode_mask) |
| << HF::num_overflow_bits); |
| |
| const bool is_zero = exponent == 0 && fraction == 0; |
| const bool is_denorm = exponent == 0 && !is_zero; |
| |
| // exponent contains the biased exponent we have to convert it back into |
| // the normal range. |
| int_type int_exponent = static_cast<int_type>(exponent - HF::exponent_bias); |
| // If the number is all zeros, then we actually have to NOT shift the |
| // exponent. |
| int_exponent = is_zero ? 0 : int_exponent; |
| |
| // If we are denorm, then start shifting, and decreasing the exponent until |
| // our leading bit is 1. |
| |
| if (is_denorm) { |
| while ((fraction & HF::fraction_top_bit) == 0) { |
| fraction = static_cast<uint_type>(fraction << 1); |
| int_exponent = static_cast<int_type>(int_exponent - 1); |
| } |
| // Since this is denormalized, we have to consume the leading 1 since it |
| // will end up being implicit. |
| fraction = static_cast<uint_type>(fraction << 1); // eat the leading 1 |
| fraction &= HF::fraction_represent_mask; |
| } |
| |
| uint_type fraction_nibbles = HF::fraction_nibbles; |
| // We do not have to display any trailing 0s, since this represents the |
| // fractional part. |
| while (fraction_nibbles > 0 && (fraction & 0xF) == 0) { |
| // Shift off any trailing values; |
| fraction = static_cast<uint_type>(fraction >> 4); |
| --fraction_nibbles; |
| } |
| |
| const auto saved_flags = os.flags(); |
| const auto saved_fill = os.fill(); |
| |
| os << sign << "0x" << (is_zero ? '0' : '1'); |
| if (fraction_nibbles) { |
| // Make sure to keep the leading 0s in place, since this is the fractional |
| // part. |
| os << "." << std::setw(static_cast<int>(fraction_nibbles)) |
| << std::setfill('0') << std::hex << fraction; |
| } |
| os << "p" << std::dec << (int_exponent >= 0 ? "+" : "") << int_exponent; |
| |
| os.flags(saved_flags); |
| os.fill(saved_fill); |
| |
| return os; |
| } |
| |
| // Returns true if negate_value is true and the next character on the |
| // input stream is a plus or minus sign. In that case we also set the fail bit |
| // on the stream and set the value to the zero value for its type. |
| template <typename T, typename Traits> |
| inline bool RejectParseDueToLeadingSign(std::istream& is, bool negate_value, |
| HexFloat<T, Traits>& value) { |
| if (negate_value) { |
| auto next_char = is.peek(); |
| if (next_char == '-' || next_char == '+') { |
| // Fail the parse. Emulate standard behaviour by setting the value to |
| // the zero value, and set the fail bit on the stream. |
| value = HexFloat<T, Traits>(typename HexFloat<T, Traits>::uint_type{0}); |
| is.setstate(std::ios_base::failbit); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| // Parses a floating point number from the given stream and stores it into the |
| // value parameter. |
| // If negate_value is true then the number may not have a leading minus or |
| // plus, and if it successfully parses, then the number is negated before |
| // being stored into the value parameter. |
| // If the value cannot be correctly parsed or overflows the target floating |
| // point type, then set the fail bit on the stream. |
| // TODO(dneto): Promise C++11 standard behavior in how the value is set in |
| // the error case, but only after all target platforms implement it correctly. |
| // In particular, the Microsoft C++ runtime appears to be out of spec. |
| template <typename T, typename Traits> |
| inline std::istream& ParseNormalFloat(std::istream& is, bool negate_value, |
| HexFloat<T, Traits>& value) { |
| if (RejectParseDueToLeadingSign(is, negate_value, value)) { |
| return is; |
| } |
| T val; |
| is >> val; |
| if (negate_value) { |
| val = -val; |
| } |
| value.set_value(val); |
| // In the failure case, map -0.0 to 0.0. |
| if (is.fail() && value.getUnsignedBits() == 0u) { |
| value = HexFloat<T, Traits>(typename HexFloat<T, Traits>::uint_type{0}); |
| } |
| if (val.isInfinity()) { |
| // Fail the parse. Emulate standard behaviour by setting the value to |
| // the closest normal value, and set the fail bit on the stream. |
| value.set_value((value.isNegative() | negate_value) ? T::lowest() |
| : T::max()); |
| is.setstate(std::ios_base::failbit); |
| } |
| return is; |
| } |
| |
| // Specialization of ParseNormalFloat for FloatProxy<Float16> values. |
| // This will parse the float as it were a 32-bit floating point number, |
| // and then round it down to fit into a Float16 value. |
| // The number is rounded towards zero. |
| // If negate_value is true then the number may not have a leading minus or |
| // plus, and if it successfully parses, then the number is negated before |
| // being stored into the value parameter. |
| // If the value cannot be correctly parsed or overflows the target floating |
| // point type, then set the fail bit on the stream. |
| // TODO(dneto): Promise C++11 standard behavior in how the value is set in |
| // the error case, but only after all target platforms implement it correctly. |
| // In particular, the Microsoft C++ runtime appears to be out of spec. |
| template <> |
| inline std::istream& |
| ParseNormalFloat<FloatProxy<Float16>, HexFloatTraits<FloatProxy<Float16>>>( |
| std::istream& is, bool negate_value, |
| HexFloat<FloatProxy<Float16>, HexFloatTraits<FloatProxy<Float16>>>& value) { |
| // First parse as a 32-bit float. |
| HexFloat<FloatProxy<float>> float_val(0.0f); |
| ParseNormalFloat(is, negate_value, float_val); |
| |
| // Then convert to 16-bit float, saturating at infinities, and |
| // rounding toward zero. |
| float_val.castTo(value, round_direction::kToZero); |
| |
| // Overflow on 16-bit behaves the same as for 32- and 64-bit: set the |
| // fail bit and set the lowest or highest value. |
| if (Float16::isInfinity(value.value().getAsFloat())) { |
| value.set_value(value.isNegative() ? Float16::lowest() : Float16::max()); |
| is.setstate(std::ios_base::failbit); |
| } |
| return is; |
| } |
| |
| // Reads a HexFloat from the given stream. |
| // If the float is not encoded as a hex-float then it will be parsed |
| // as a regular float. |
| // This may fail if your stream does not support at least one unget. |
| // Nan values can be encoded with "0x1.<not zero>p+exponent_bias". |
| // This would normally overflow a float and round to |
| // infinity but this special pattern is the exact representation for a NaN, |
| // and therefore is actually encoded as the correct NaN. To encode inf, |
| // either 0x0p+exponent_bias can be specified or any exponent greater than |
| // exponent_bias. |
| // Examples using IEEE 32-bit float encoding. |
| // 0x1.0p+128 (+inf) |
| // -0x1.0p-128 (-inf) |
| // |
| // 0x1.1p+128 (+Nan) |
| // -0x1.1p+128 (-Nan) |
| // |
| // 0x1p+129 (+inf) |
| // -0x1p+129 (-inf) |
| template <typename T, typename Traits> |
| std::istream& operator>>(std::istream& is, HexFloat<T, Traits>& value) { |
| using HF = HexFloat<T, Traits>; |
| using uint_type = typename HF::uint_type; |
| using int_type = typename HF::int_type; |
| |
| value.set_value(static_cast<typename HF::native_type>(0.f)); |
| |
| if (is.flags() & std::ios::skipws) { |
| // If the user wants to skip whitespace , then we should obey that. |
| while (std::isspace(is.peek())) { |
| is.get(); |
| } |
| } |
| |
| auto next_char = is.peek(); |
| bool negate_value = false; |
| |
| if (next_char != '-' && next_char != '0') { |
| return ParseNormalFloat(is, negate_value, value); |
| } |
| |
| if (next_char == '-') { |
| negate_value = true; |
| is.get(); |
| next_char = is.peek(); |
| } |
| |
| if (next_char == '0') { |
| is.get(); // We may have to unget this. |
| auto maybe_hex_start = is.peek(); |
| if (maybe_hex_start != 'x' && maybe_hex_start != 'X') { |
| is.unget(); |
| return ParseNormalFloat(is, negate_value, value); |
| } else { |
| is.get(); // Throw away the 'x'; |
| } |
| } else { |
| return ParseNormalFloat(is, negate_value, value); |
| } |
| |
| // This "looks" like a hex-float so treat it as one. |
| bool seen_p = false; |
| bool seen_dot = false; |
| uint_type fraction_index = 0; |
| |
| uint_type fraction = 0; |
| int_type exponent = HF::exponent_bias; |
| |
| // Strip off leading zeros so we don't have to special-case them later. |
| while ((next_char = is.peek()) == '0') { |
| is.get(); |
| } |
| |
| bool is_denorm = |
| true; // Assume denorm "representation" until we hear otherwise. |
| // NB: This does not mean the value is actually denorm, |
| // it just means that it was written 0. |
| bool bits_written = false; // Stays false until we write a bit. |
| while (!seen_p && !seen_dot) { |
| // Handle characters that are left of the fractional part. |
| if (next_char == '.') { |
| seen_dot = true; |
| } else if (next_char == 'p') { |
| seen_p = true; |
| } else if (::isxdigit(next_char)) { |
| // We know this is not denormalized since we have stripped all leading |
| // zeroes and we are not a ".". |
| is_denorm = false; |
| int number = get_nibble_from_character(next_char); |
| for (int i = 0; i < 4; ++i, number <<= 1) { |
| uint_type write_bit = (number & 0x8) ? 0x1 : 0x0; |
| if (bits_written) { |
| // If we are here the bits represented belong in the fractional |
| // part of the float, and we have to adjust the exponent accordingly. |
| fraction = static_cast<uint_type>( |
| fraction | |
| static_cast<uint_type>( |
| write_bit << (HF::top_bit_left_shift - fraction_index++))); |
| exponent = static_cast<int_type>(exponent + 1); |
| } |
| bits_written |= write_bit != 0; |
| } |
| } else { |
| // We have not found our exponent yet, so we have to fail. |
| is.setstate(std::ios::failbit); |
| return is; |
| } |
| is.get(); |
| next_char = is.peek(); |
| } |
| bits_written = false; |
| while (seen_dot && !seen_p) { |
| // Handle only fractional parts now. |
| if (next_char == 'p') { |
| seen_p = true; |
| } else if (::isxdigit(next_char)) { |
| int number = get_nibble_from_character(next_char); |
| for (int i = 0; i < 4; ++i, number <<= 1) { |
| uint_type write_bit = (number & 0x8) ? 0x01 : 0x00; |
| bits_written |= write_bit != 0; |
| if (is_denorm && !bits_written) { |
| // Handle modifying the exponent here this way we can handle |
| // an arbitrary number of hex values without overflowing our |
| // integer. |
| exponent = static_cast<int_type>(exponent - 1); |
| } else { |
| fraction = static_cast<uint_type>( |
| fraction | |
| static_cast<uint_type>( |
| write_bit << (HF::top_bit_left_shift - fraction_index++))); |
| } |
| } |
| } else { |
| // We still have not found our 'p' exponent yet, so this is not a valid |
| // hex-float. |
| is.setstate(std::ios::failbit); |
| return is; |
| } |
| is.get(); |
| next_char = is.peek(); |
| } |
| |
| bool seen_sign = false; |
| int8_t exponent_sign = 1; |
| int_type written_exponent = 0; |
| while (true) { |
| if ((next_char == '-' || next_char == '+')) { |
| if (seen_sign) { |
| is.setstate(std::ios::failbit); |
| return is; |
| } |
| seen_sign = true; |
| exponent_sign = (next_char == '-') ? -1 : 1; |
| } else if (::isdigit(next_char)) { |
| // Hex-floats express their exponent as decimal. |
| written_exponent = static_cast<int_type>(written_exponent * 10); |
| written_exponent = |
| static_cast<int_type>(written_exponent + (next_char - '0')); |
| } else { |
| break; |
| } |
| is.get(); |
| next_char = is.peek(); |
| } |
| |
| written_exponent = static_cast<int_type>(written_exponent * exponent_sign); |
| exponent = static_cast<int_type>(exponent + written_exponent); |
| |
| bool is_zero = is_denorm && (fraction == 0); |
| if (is_denorm && !is_zero) { |
| fraction = static_cast<uint_type>(fraction << 1); |
| exponent = static_cast<int_type>(exponent - 1); |
| } else if (is_zero) { |
| exponent = 0; |
| } |
| |
| if (exponent <= 0 && !is_zero) { |
| fraction = static_cast<uint_type>(fraction >> 1); |
| fraction |= static_cast<uint_type>(1) << HF::top_bit_left_shift; |
| } |
| |
| fraction = (fraction >> HF::fraction_right_shift) & HF::fraction_encode_mask; |
| |
| const int_type max_exponent = |
| SetBits<uint_type, 0, HF::num_exponent_bits>::get; |
| |
| // Handle actual denorm numbers |
| while (exponent < 0 && !is_zero) { |
| fraction = static_cast<uint_type>(fraction >> 1); |
| exponent = static_cast<int_type>(exponent + 1); |
| |
| fraction &= HF::fraction_encode_mask; |
| if (fraction == 0) { |
| // We have underflowed our fraction. We should clamp to zero. |
| is_zero = true; |
| exponent = 0; |
| } |
| } |
| |
| // We have overflowed so we should be inf/-inf. |
| if (exponent > max_exponent) { |
| exponent = max_exponent; |
| fraction = 0; |
| } |
| |
| uint_type output_bits = static_cast<uint_type>( |
| static_cast<uint_type>(negate_value ? 1 : 0) << HF::top_bit_left_shift); |
| output_bits |= fraction; |
| |
| uint_type shifted_exponent = static_cast<uint_type>( |
| static_cast<uint_type>(exponent << HF::exponent_left_shift) & |
| HF::exponent_mask); |
| output_bits |= shifted_exponent; |
| |
| T output_float = spvutils::BitwiseCast<T>(output_bits); |
| value.set_value(output_float); |
| |
| return is; |
| } |
| |
| // Writes a FloatProxy value to a stream. |
| // Zero and normal numbers are printed in the usual notation, but with |
| // enough digits to fully reproduce the value. Other values (subnormal, |
| // NaN, and infinity) are printed as a hex float. |
| template <typename T> |
| std::ostream& operator<<(std::ostream& os, const FloatProxy<T>& value) { |
| auto float_val = value.getAsFloat(); |
| switch (std::fpclassify(float_val)) { |
| case FP_ZERO: |
| case FP_NORMAL: { |
| auto saved_precision = os.precision(); |
| os.precision(std::numeric_limits<T>::digits10); |
| os << float_val; |
| os.precision(saved_precision); |
| } break; |
| default: |
| os << HexFloat<FloatProxy<T>>(value); |
| break; |
| } |
| return os; |
| } |
| |
| template <> |
| inline std::ostream& operator<<<Float16>(std::ostream& os, |
| const FloatProxy<Float16>& value) { |
| os << HexFloat<FloatProxy<Float16>>(value); |
| return os; |
| } |
| } |
| |
| #endif // LIBSPIRV_UTIL_HEX_FLOAT_H_ |