| // |
| //Copyright (C) 2016 Google, Inc. |
| //Copyright (C) 2016 LunarG, Inc. |
| // |
| //All rights reserved. |
| // |
| //Redistribution and use in source and binary forms, with or without |
| //modification, are permitted provided that the following conditions |
| //are met: |
| // |
| // Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // |
| // Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // |
| // Neither the name of 3Dlabs Inc. Ltd. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| //THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| //"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| //LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
| //FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
| //COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
| //INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
| //BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| //LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
| //CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| //LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
| //ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| //POSSIBILITY OF SUCH DAMAGE. |
| // |
| |
| #include "hlslParseHelper.h" |
| #include "hlslScanContext.h" |
| #include "hlslGrammar.h" |
| #include "hlslAttributes.h" |
| |
| #include "../glslang/MachineIndependent/Scan.h" |
| #include "../glslang/MachineIndependent/preprocessor/PpContext.h" |
| |
| #include "../glslang/OSDependent/osinclude.h" |
| |
| #include <algorithm> |
| #include <functional> |
| #include <cctype> |
| |
| namespace glslang { |
| |
| HlslParseContext::HlslParseContext(TSymbolTable& symbolTable, TIntermediate& interm, bool parsingBuiltins, |
| int version, EProfile profile, const SpvVersion& spvVersion, EShLanguage language, TInfoSink& infoSink, |
| const TString sourceEntryPointName, |
| bool forwardCompatible, EShMessages messages) : |
| TParseContextBase(symbolTable, interm, parsingBuiltins, version, profile, spvVersion, language, infoSink, forwardCompatible, messages), |
| contextPragma(true, false), |
| loopNestingLevel(0), annotationNestingLevel(0), structNestingLevel(0), controlFlowNestingLevel(0), |
| postEntryPointReturn(false), |
| limits(resources.limits), |
| entryPointOutput(nullptr), |
| nextInLocation(0), nextOutLocation(0), |
| sourceEntryPointName(sourceEntryPointName) |
| { |
| globalUniformDefaults.clear(); |
| globalUniformDefaults.layoutMatrix = ElmRowMajor; |
| globalUniformDefaults.layoutPacking = ElpStd140; |
| |
| globalBufferDefaults.clear(); |
| globalBufferDefaults.layoutMatrix = ElmRowMajor; |
| globalBufferDefaults.layoutPacking = ElpStd430; |
| |
| globalInputDefaults.clear(); |
| globalOutputDefaults.clear(); |
| |
| // "Shaders in the transform |
| // feedback capturing mode have an initial global default of |
| // layout(xfb_buffer = 0) out;" |
| if (language == EShLangVertex || |
| language == EShLangTessControl || |
| language == EShLangTessEvaluation || |
| language == EShLangGeometry) |
| globalOutputDefaults.layoutXfbBuffer = 0; |
| |
| if (language == EShLangGeometry) |
| globalOutputDefaults.layoutStream = 0; |
| |
| if (spvVersion.spv == 0 || spvVersion.vulkan == 0) |
| infoSink.info << "ERROR: HLSL currently only supported when requesting SPIR-V for Vulkan.\n"; |
| } |
| |
| HlslParseContext::~HlslParseContext() |
| { |
| } |
| |
| void HlslParseContext::initializeExtensionBehavior() |
| { |
| TParseContextBase::initializeExtensionBehavior(); |
| |
| // HLSL allows #line by default. |
| extensionBehavior[E_GL_GOOGLE_cpp_style_line_directive] = EBhEnable; |
| } |
| |
| void HlslParseContext::setLimits(const TBuiltInResource& r) |
| { |
| resources = r; |
| intermediate.setLimits(resources); |
| } |
| |
| // |
| // Parse an array of strings using the parser in HlslRules. |
| // |
| // Returns true for successful acceptance of the shader, false if any errors. |
| // |
| bool HlslParseContext::parseShaderStrings(TPpContext& ppContext, TInputScanner& input, bool versionWillBeError) |
| { |
| currentScanner = &input; |
| ppContext.setInput(input, versionWillBeError); |
| |
| HlslScanContext scanContext(*this, ppContext); |
| HlslGrammar grammar(scanContext, *this); |
| if (!grammar.parse()) { |
| // Print a message formated such that if you click on the message it will take you right to |
| // the line through most UIs. |
| const glslang::TSourceLoc& sourceLoc = input.getSourceLoc(); |
| infoSink.info << sourceLoc.name << "(" << sourceLoc.line << "): error at column " << sourceLoc.column << ", HLSL parsing failed.\n"; |
| ++numErrors; |
| return false; |
| } |
| |
| finish(); |
| |
| return numErrors == 0; |
| } |
| |
| // |
| // Return true if this l-value node should be converted in some manner. |
| // For instance: turning a load aggregate into a store in an l-value. |
| // |
| bool HlslParseContext::shouldConvertLValue(const TIntermNode* node) const |
| { |
| if (node == nullptr) |
| return false; |
| |
| const TIntermAggregate* lhsAsAggregate = node->getAsAggregate(); |
| |
| if (lhsAsAggregate != nullptr && lhsAsAggregate->getOp() == EOpImageLoad) |
| return true; |
| |
| return false; |
| } |
| |
| // |
| // Return a TLayoutFormat corresponding to the given texture type. |
| // |
| TLayoutFormat HlslParseContext::getLayoutFromTxType(const TSourceLoc& loc, const TType& txType) |
| { |
| const int components = txType.getVectorSize(); |
| |
| const auto selectFormat = [this,&components](TLayoutFormat v1, TLayoutFormat v2, TLayoutFormat v4) -> TLayoutFormat { |
| if (intermediate.getNoStorageFormat()) |
| return ElfNone; |
| |
| return components == 1 ? v1 : |
| components == 2 ? v2 : v4; |
| }; |
| |
| switch (txType.getBasicType()) { |
| case EbtFloat: return selectFormat(ElfR32f, ElfRg32f, ElfRgba32f); |
| case EbtInt: return selectFormat(ElfR32i, ElfRg32i, ElfRgba32i); |
| case EbtUint: return selectFormat(ElfR32ui, ElfRg32ui, ElfRgba32ui); |
| default: |
| error(loc, "unknown basic type in image format", "", ""); |
| return ElfNone; |
| } |
| } |
| |
| // |
| // Both test and if necessary, spit out an error, to see if the node is really |
| // an l-value that can be operated on this way. |
| // |
| // Returns true if there was an error. |
| // |
| bool HlslParseContext::lValueErrorCheck(const TSourceLoc& loc, const char* op, TIntermTyped* node) |
| { |
| if (shouldConvertLValue(node)) { |
| // if we're writing to a texture, it must be an RW form. |
| |
| TIntermAggregate* lhsAsAggregate = node->getAsAggregate(); |
| TIntermTyped* object = lhsAsAggregate->getSequence()[0]->getAsTyped(); |
| |
| if (!object->getType().getSampler().isImage()) { |
| error(loc, "operator[] on a non-RW texture must be an r-value", "", ""); |
| return true; |
| } |
| } |
| |
| // Let the base class check errors |
| return TParseContextBase::lValueErrorCheck(loc, op, node); |
| } |
| |
| // |
| // This function handles l-value conversions and verifications. It uses, but is not synonymous |
| // with lValueErrorCheck. That function accepts an l-value directly, while this one must be |
| // given the surrounding tree - e.g, with an assignment, so we can convert the assign into a |
| // series of other image operations. |
| // |
| // Most things are passed through unmodified, except for error checking. |
| // |
| TIntermTyped* HlslParseContext::handleLvalue(const TSourceLoc& loc, const char* op, TIntermTyped* node) |
| { |
| if (node == nullptr) |
| return nullptr; |
| |
| TIntermBinary* nodeAsBinary = node->getAsBinaryNode(); |
| TIntermUnary* nodeAsUnary = node->getAsUnaryNode(); |
| TIntermAggregate* sequence = nullptr; |
| |
| TIntermTyped* lhs = nodeAsUnary ? nodeAsUnary->getOperand() : |
| nodeAsBinary ? nodeAsBinary->getLeft() : |
| nullptr; |
| |
| // Early bail out if there is no conversion to apply |
| if (!shouldConvertLValue(lhs)) { |
| if (lhs != nullptr) |
| if (lValueErrorCheck(loc, op, lhs)) |
| return nullptr; |
| return node; |
| } |
| |
| // *** If we get here, we're going to apply some conversion to an l-value. |
| |
| // Helper to create a load. |
| const auto makeLoad = [&](TIntermSymbol* rhsTmp, TIntermTyped* object, TIntermTyped* coord, const TType& derefType) { |
| TIntermAggregate* loadOp = new TIntermAggregate(EOpImageLoad); |
| loadOp->setLoc(loc); |
| loadOp->getSequence().push_back(object); |
| loadOp->getSequence().push_back(intermediate.addSymbol(*coord->getAsSymbolNode())); |
| loadOp->setType(derefType); |
| |
| sequence = intermediate.growAggregate(sequence, |
| intermediate.addAssign(EOpAssign, rhsTmp, loadOp, loc), |
| loc); |
| }; |
| |
| // Helper to create a store. |
| const auto makeStore = [&](TIntermTyped* object, TIntermTyped* coord, TIntermSymbol* rhsTmp) { |
| TIntermAggregate* storeOp = new TIntermAggregate(EOpImageStore); |
| storeOp->getSequence().push_back(object); |
| storeOp->getSequence().push_back(coord); |
| storeOp->getSequence().push_back(intermediate.addSymbol(*rhsTmp)); |
| storeOp->setLoc(loc); |
| storeOp->setType(TType(EbtVoid)); |
| |
| sequence = intermediate.growAggregate(sequence, storeOp); |
| }; |
| |
| // Helper to create an assign. |
| const auto makeBinary = [&](TOperator op, TIntermTyped* lhs, TIntermTyped* rhs) { |
| sequence = intermediate.growAggregate(sequence, |
| intermediate.addBinaryNode(op, lhs, rhs, loc, lhs->getType()), |
| loc); |
| }; |
| |
| // Helper to complete sequence by adding trailing variable, so we evaluate to the right value. |
| const auto finishSequence = [&](TIntermSymbol* rhsTmp, const TType& derefType) -> TIntermAggregate* { |
| // Add a trailing use of the temp, so the sequence returns the proper value. |
| sequence = intermediate.growAggregate(sequence, intermediate.addSymbol(*rhsTmp)); |
| sequence->setOperator(EOpSequence); |
| sequence->setLoc(loc); |
| sequence->setType(derefType); |
| |
| return sequence; |
| }; |
| |
| // Helper to add unary op |
| const auto makeUnary = [&](TOperator op, TIntermSymbol* rhsTmp) { |
| sequence = intermediate.growAggregate(sequence, |
| intermediate.addUnaryNode(op, intermediate.addSymbol(*rhsTmp), loc, |
| rhsTmp->getType()), |
| loc); |
| }; |
| |
| // helper to create a temporary variable |
| const auto addTmpVar = [&](const char* name, const TType& derefType) -> TIntermSymbol* { |
| TVariable* tmpVar = makeInternalVariable(name, derefType); |
| tmpVar->getWritableType().getQualifier().makeTemporary(); |
| return intermediate.addSymbol(*tmpVar, loc); |
| }; |
| |
| TIntermAggregate* lhsAsAggregate = lhs->getAsAggregate(); |
| TIntermTyped* object = lhsAsAggregate->getSequence()[0]->getAsTyped(); |
| TIntermTyped* coord = lhsAsAggregate->getSequence()[1]->getAsTyped(); |
| |
| const TSampler& texSampler = object->getType().getSampler(); |
| |
| const TType objDerefType(texSampler.type, EvqTemporary, texSampler.vectorSize); |
| |
| if (nodeAsBinary) { |
| TIntermTyped* rhs = nodeAsBinary->getRight(); |
| const TOperator assignOp = nodeAsBinary->getOp(); |
| |
| bool isModifyOp = false; |
| |
| switch (assignOp) { |
| case EOpAddAssign: |
| case EOpSubAssign: |
| case EOpMulAssign: |
| case EOpVectorTimesMatrixAssign: |
| case EOpVectorTimesScalarAssign: |
| case EOpMatrixTimesScalarAssign: |
| case EOpMatrixTimesMatrixAssign: |
| case EOpDivAssign: |
| case EOpModAssign: |
| case EOpAndAssign: |
| case EOpInclusiveOrAssign: |
| case EOpExclusiveOrAssign: |
| case EOpLeftShiftAssign: |
| case EOpRightShiftAssign: |
| isModifyOp = true; |
| // fall through... |
| case EOpAssign: |
| { |
| // Since this is an lvalue, we'll convert an image load to a sequence like this (to still provide the value): |
| // OpSequence |
| // OpImageStore(object, lhs, rhs) |
| // rhs |
| // But if it's not a simple symbol RHS (say, a fn call), we don't want to duplicate the RHS, so we'll convert |
| // instead to this: |
| // OpSequence |
| // rhsTmp = rhs |
| // OpImageStore(object, coord, rhsTmp) |
| // rhsTmp |
| // If this is a read-modify-write op, like +=, we issue: |
| // OpSequence |
| // coordtmp = load's param1 |
| // rhsTmp = OpImageLoad(object, coordTmp) |
| // rhsTmp op= rhs |
| // OpImageStore(object, coordTmp, rhsTmp) |
| // rhsTmp |
| |
| TIntermSymbol* rhsTmp = rhs->getAsSymbolNode(); |
| TIntermTyped* coordTmp = coord; |
| |
| if (rhsTmp == nullptr || isModifyOp) { |
| rhsTmp = addTmpVar("storeTemp", objDerefType); |
| |
| // Assign storeTemp = rhs |
| if (isModifyOp) { |
| // We have to make a temp var for the coordinate, to avoid evaluating it twice. |
| coordTmp = addTmpVar("coordTemp", coord->getType()); |
| makeBinary(EOpAssign, coordTmp, coord); // coordtmp = load[param1] |
| makeLoad(rhsTmp, object, coordTmp, objDerefType); // rhsTmp = OpImageLoad(object, coordTmp) |
| } |
| |
| // rhsTmp op= rhs. |
| makeBinary(assignOp, intermediate.addSymbol(*rhsTmp), rhs); |
| } |
| |
| makeStore(object, coordTmp, rhsTmp); // add a store |
| return finishSequence(rhsTmp, objDerefType); // return rhsTmp from sequence |
| } |
| |
| default: |
| break; |
| } |
| } |
| |
| if (nodeAsUnary) { |
| const TOperator assignOp = nodeAsUnary->getOp(); |
| |
| switch (assignOp) { |
| case EOpPreIncrement: |
| case EOpPreDecrement: |
| { |
| // We turn this into: |
| // OpSequence |
| // coordtmp = load's param1 |
| // rhsTmp = OpImageLoad(object, coordTmp) |
| // rhsTmp op |
| // OpImageStore(object, coordTmp, rhsTmp) |
| // rhsTmp |
| |
| TIntermSymbol* rhsTmp = addTmpVar("storeTemp", objDerefType); |
| TIntermTyped* coordTmp = addTmpVar("coordTemp", coord->getType()); |
| |
| makeBinary(EOpAssign, coordTmp, coord); // coordtmp = load[param1] |
| makeLoad(rhsTmp, object, coordTmp, objDerefType); // rhsTmp = OpImageLoad(object, coordTmp) |
| makeUnary(assignOp, rhsTmp); // op rhsTmp |
| makeStore(object, coordTmp, rhsTmp); // OpImageStore(object, coordTmp, rhsTmp) |
| return finishSequence(rhsTmp, objDerefType); // return rhsTmp from sequence |
| } |
| |
| case EOpPostIncrement: |
| case EOpPostDecrement: |
| { |
| // We turn this into: |
| // OpSequence |
| // coordtmp = load's param1 |
| // rhsTmp1 = OpImageLoad(object, coordTmp) |
| // rhsTmp2 = rhsTmp1 |
| // rhsTmp2 op |
| // OpImageStore(object, coordTmp, rhsTmp2) |
| // rhsTmp1 (pre-op value) |
| TIntermSymbol* rhsTmp1 = addTmpVar("storeTempPre", objDerefType); |
| TIntermSymbol* rhsTmp2 = addTmpVar("storeTempPost", objDerefType); |
| TIntermTyped* coordTmp = addTmpVar("coordTemp", coord->getType()); |
| |
| makeBinary(EOpAssign, coordTmp, coord); // coordtmp = load[param1] |
| makeLoad(rhsTmp1, object, coordTmp, objDerefType); // rhsTmp1 = OpImageLoad(object, coordTmp) |
| makeBinary(EOpAssign, rhsTmp2, rhsTmp1); // rhsTmp2 = rhsTmp1 |
| makeUnary(assignOp, rhsTmp2); // rhsTmp op |
| makeStore(object, coordTmp, rhsTmp2); // OpImageStore(object, coordTmp, rhsTmp2) |
| return finishSequence(rhsTmp1, objDerefType); // return rhsTmp from sequence |
| } |
| |
| default: |
| break; |
| } |
| } |
| |
| if (lhs) |
| if (lValueErrorCheck(loc, op, lhs)) |
| return nullptr; |
| |
| return node; |
| } |
| |
| void HlslParseContext::handlePragma(const TSourceLoc& loc, const TVector<TString>& tokens) |
| { |
| if (pragmaCallback) |
| pragmaCallback(loc.line, tokens); |
| |
| if (tokens.size() == 0) |
| return; |
| } |
| |
| // |
| // Look at a '.' field selector string and change it into offsets |
| // for a vector or scalar |
| // |
| // Returns true if there is no error. |
| // |
| bool HlslParseContext::parseVectorFields(const TSourceLoc& loc, const TString& compString, int vecSize, TVectorFields& fields) |
| { |
| fields.num = (int)compString.size(); |
| if (fields.num > 4) { |
| error(loc, "illegal vector field selection", compString.c_str(), ""); |
| return false; |
| } |
| |
| enum { |
| exyzw, |
| ergba, |
| estpq, |
| } fieldSet[4]; |
| |
| for (int i = 0; i < fields.num; ++i) { |
| switch (compString[i]) { |
| case 'x': |
| fields.offsets[i] = 0; |
| fieldSet[i] = exyzw; |
| break; |
| case 'r': |
| fields.offsets[i] = 0; |
| fieldSet[i] = ergba; |
| break; |
| case 's': |
| fields.offsets[i] = 0; |
| fieldSet[i] = estpq; |
| break; |
| case 'y': |
| fields.offsets[i] = 1; |
| fieldSet[i] = exyzw; |
| break; |
| case 'g': |
| fields.offsets[i] = 1; |
| fieldSet[i] = ergba; |
| break; |
| case 't': |
| fields.offsets[i] = 1; |
| fieldSet[i] = estpq; |
| break; |
| case 'z': |
| fields.offsets[i] = 2; |
| fieldSet[i] = exyzw; |
| break; |
| case 'b': |
| fields.offsets[i] = 2; |
| fieldSet[i] = ergba; |
| break; |
| case 'p': |
| fields.offsets[i] = 2; |
| fieldSet[i] = estpq; |
| break; |
| |
| case 'w': |
| fields.offsets[i] = 3; |
| fieldSet[i] = exyzw; |
| break; |
| case 'a': |
| fields.offsets[i] = 3; |
| fieldSet[i] = ergba; |
| break; |
| case 'q': |
| fields.offsets[i] = 3; |
| fieldSet[i] = estpq; |
| break; |
| default: |
| error(loc, "illegal vector field selection", compString.c_str(), ""); |
| return false; |
| } |
| } |
| |
| for (int i = 0; i < fields.num; ++i) { |
| if (fields.offsets[i] >= vecSize) { |
| error(loc, "vector field selection out of range", compString.c_str(), ""); |
| return false; |
| } |
| |
| if (i > 0) { |
| if (fieldSet[i] != fieldSet[i - 1]) { |
| error(loc, "illegal - vector component fields not from the same set", compString.c_str(), ""); |
| return false; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| // |
| // Handle seeing a variable identifier in the grammar. |
| // |
| TIntermTyped* HlslParseContext::handleVariable(const TSourceLoc& loc, TSymbol* symbol, const TString* string) |
| { |
| if (symbol == nullptr) |
| symbol = symbolTable.find(*string); |
| if (symbol && symbol->getAsVariable() && symbol->getAsVariable()->isUserType()) { |
| error(loc, "expected symbol, not user-defined type", string->c_str(), ""); |
| return nullptr; |
| } |
| |
| // Error check for requiring specific extensions present. |
| if (symbol && symbol->getNumExtensions()) |
| requireExtensions(loc, symbol->getNumExtensions(), symbol->getExtensions(), symbol->getName().c_str()); |
| |
| const TVariable* variable; |
| const TAnonMember* anon = symbol ? symbol->getAsAnonMember() : nullptr; |
| TIntermTyped* node = nullptr; |
| if (anon) { |
| // It was a member of an anonymous container. |
| |
| // Create a subtree for its dereference. |
| variable = anon->getAnonContainer().getAsVariable(); |
| TIntermTyped* container = intermediate.addSymbol(*variable, loc); |
| TIntermTyped* constNode = intermediate.addConstantUnion(anon->getMemberNumber(), loc); |
| node = intermediate.addIndex(EOpIndexDirectStruct, container, constNode, loc); |
| |
| node->setType(*(*variable->getType().getStruct())[anon->getMemberNumber()].type); |
| if (node->getType().hiddenMember()) |
| error(loc, "member of nameless block was not redeclared", string->c_str(), ""); |
| } else { |
| // Not a member of an anonymous container. |
| |
| // The symbol table search was done in the lexical phase. |
| // See if it was a variable. |
| variable = symbol ? symbol->getAsVariable() : nullptr; |
| if (variable) { |
| if ((variable->getType().getBasicType() == EbtBlock || |
| variable->getType().getBasicType() == EbtStruct) && variable->getType().getStruct() == nullptr) { |
| error(loc, "cannot be used (maybe an instance name is needed)", string->c_str(), ""); |
| variable = nullptr; |
| } |
| } else { |
| if (symbol) |
| error(loc, "variable name expected", string->c_str(), ""); |
| } |
| |
| // Recovery, if it wasn't found or was not a variable. |
| if (! variable) |
| variable = new TVariable(string, TType(EbtVoid)); |
| |
| if (variable->getType().getQualifier().isFrontEndConstant()) |
| node = intermediate.addConstantUnion(variable->getConstArray(), variable->getType(), loc); |
| else |
| node = intermediate.addSymbol(*variable, loc); |
| } |
| |
| if (variable->getType().getQualifier().isIo()) |
| intermediate.addIoAccessed(*string); |
| |
| return node; |
| } |
| |
| // |
| // Handle operator[] on any objects it applies to. Currently: |
| // Textures |
| // Buffers |
| // |
| TIntermTyped* HlslParseContext::handleBracketOperator(const TSourceLoc& loc, TIntermTyped* base, TIntermTyped* index) |
| { |
| // handle r-value operator[] on textures and images. l-values will be processed later. |
| if (base->getType().getBasicType() == EbtSampler && !base->isArray()) { |
| const TSampler& sampler = base->getType().getSampler(); |
| if (sampler.isImage() || sampler.isTexture()) { |
| TIntermAggregate* load = new TIntermAggregate(sampler.isImage() ? EOpImageLoad : EOpTextureFetch); |
| |
| load->setType(TType(sampler.type, EvqTemporary, sampler.vectorSize)); |
| load->setLoc(loc); |
| load->getSequence().push_back(base); |
| load->getSequence().push_back(index); |
| |
| // Textures need a MIP. First indirection is always to mip 0. If there's another, we'll add it |
| // later. |
| if (sampler.isTexture()) |
| load->getSequence().push_back(intermediate.addConstantUnion(0, loc, true)); |
| |
| return load; |
| } |
| } |
| |
| return nullptr; |
| } |
| |
| // |
| // Handle seeing a base[index] dereference in the grammar. |
| // |
| TIntermTyped* HlslParseContext::handleBracketDereference(const TSourceLoc& loc, TIntermTyped* base, TIntermTyped* index) |
| { |
| TIntermTyped* result = handleBracketOperator(loc, base, index); |
| |
| if (result != nullptr) |
| return result; // it was handled as an operator[] |
| |
| bool flattened = false; |
| int indexValue = 0; |
| if (index->getQualifier().storage == EvqConst) { |
| indexValue = index->getAsConstantUnion()->getConstArray()[0].getIConst(); |
| checkIndex(loc, base->getType(), indexValue); |
| } |
| |
| variableCheck(base); |
| if (! base->isArray() && ! base->isMatrix() && ! base->isVector()) { |
| if (base->getAsSymbolNode()) |
| error(loc, " left of '[' is not of type array, matrix, or vector ", base->getAsSymbolNode()->getName().c_str(), ""); |
| else |
| error(loc, " left of '[' is not of type array, matrix, or vector ", "expression", ""); |
| } else if (base->getType().getQualifier().storage == EvqConst && index->getQualifier().storage == EvqConst) |
| return intermediate.foldDereference(base, indexValue, loc); |
| else { |
| // at least one of base and index is variable... |
| |
| if (base->getAsSymbolNode() && (wasFlattened(base) || shouldFlatten(base->getType()))) { |
| if (index->getQualifier().storage != EvqConst) |
| error(loc, "Invalid variable index to flattened uniform array", base->getAsSymbolNode()->getName().c_str(), ""); |
| |
| result = flattenAccess(loc, base, indexValue); |
| flattened = (result != base); |
| } else { |
| if (index->getQualifier().storage == EvqConst) { |
| if (base->getType().isImplicitlySizedArray()) |
| updateImplicitArraySize(loc, base, indexValue); |
| result = intermediate.addIndex(EOpIndexDirect, base, index, loc); |
| } else { |
| result = intermediate.addIndex(EOpIndexIndirect, base, index, loc); |
| } |
| } |
| } |
| |
| if (result == nullptr) { |
| // Insert dummy error-recovery result |
| result = intermediate.addConstantUnion(0.0, EbtFloat, loc); |
| } else { |
| // If the array reference was flattened, it has the correct type. E.g, if it was |
| // a uniform array, it was flattened INTO a set of scalar uniforms, not scalar temps. |
| // In that case, we preserve the qualifiers. |
| if (!flattened) { |
| // Insert valid dereferenced result |
| TType newType(base->getType(), 0); // dereferenced type |
| if (base->getType().getQualifier().storage == EvqConst && index->getQualifier().storage == EvqConst) |
| newType.getQualifier().storage = EvqConst; |
| else |
| newType.getQualifier().storage = EvqTemporary; |
| result->setType(newType); |
| } |
| } |
| |
| return result; |
| } |
| |
| void HlslParseContext::checkIndex(const TSourceLoc& /*loc*/, const TType& /*type*/, int& /*index*/) |
| { |
| // HLSL todo: any rules for index fixups? |
| } |
| |
| // Handle seeing a binary node with a math operation. |
| TIntermTyped* HlslParseContext::handleBinaryMath(const TSourceLoc& loc, const char* str, TOperator op, TIntermTyped* left, TIntermTyped* right) |
| { |
| TIntermTyped* result = intermediate.addBinaryMath(op, left, right, loc); |
| if (! result) |
| binaryOpError(loc, str, left->getCompleteString(), right->getCompleteString()); |
| |
| return result; |
| } |
| |
| // Handle seeing a unary node with a math operation. |
| TIntermTyped* HlslParseContext::handleUnaryMath(const TSourceLoc& loc, const char* str, TOperator op, TIntermTyped* childNode) |
| { |
| TIntermTyped* result = intermediate.addUnaryMath(op, childNode, loc); |
| |
| if (result) |
| return result; |
| else |
| unaryOpError(loc, str, childNode->getCompleteString()); |
| |
| return childNode; |
| } |
| |
| // |
| // Handle seeing a base.field dereference in the grammar. |
| // |
| TIntermTyped* HlslParseContext::handleDotDereference(const TSourceLoc& loc, TIntermTyped* base, const TString& field) |
| { |
| variableCheck(base); |
| |
| // |
| // methods can't be resolved until we later see the function-calling syntax. |
| // Save away the name in the AST for now. Processing is completed in |
| // handleLengthMethod(), etc. |
| // |
| if (field == "length") { |
| return intermediate.addMethod(base, TType(EbtInt), &field, loc); |
| } else if (field == "CalculateLevelOfDetail" || |
| field == "CalculateLevelOfDetailUnclamped" || |
| field == "Gather" || |
| field == "GatherRed" || |
| field == "GatherGreen" || |
| field == "GatherBlue" || |
| field == "GatherAlpha" || |
| field == "GatherCmp" || |
| field == "GatherCmpRed" || |
| field == "GatherCmpGreen" || |
| field == "GatherCmpBlue" || |
| field == "GatherCmpAlpha" || |
| field == "GetDimensions" || |
| field == "GetSamplePosition" || |
| field == "Load" || |
| field == "Sample" || |
| field == "SampleBias" || |
| field == "SampleCmp" || |
| field == "SampleCmpLevelZero" || |
| field == "SampleGrad" || |
| field == "SampleLevel") { |
| // If it's not a method on a sampler object, we fall through in case it is a struct member. |
| if (base->getType().getBasicType() == EbtSampler) { |
| const TSampler& sampler = base->getType().getSampler(); |
| if (! sampler.isPureSampler()) { |
| const int vecSize = sampler.isShadow() ? 1 : 4; // TODO: handle arbitrary sample return sizes |
| return intermediate.addMethod(base, TType(sampler.type, EvqTemporary, vecSize), &field, loc); |
| } |
| } |
| } else if (field == "Append" || |
| field == "RestartStrip") { |
| // These methods only valid on stage in variables |
| // TODO: ... which are stream out types, if there's any way to test that here. |
| if (base->getType().getQualifier().storage == EvqVaryingOut) { |
| return intermediate.addMethod(base, TType(EbtVoid), &field, loc); |
| } |
| } |
| |
| // It's not .length() if we get to here. |
| |
| if (base->isArray()) { |
| error(loc, "cannot apply to an array:", ".", field.c_str()); |
| |
| return base; |
| } |
| |
| // It's neither an array nor .length() if we get here, |
| // leaving swizzles and struct/block dereferences. |
| |
| TIntermTyped* result = base; |
| if (base->isVector() || base->isScalar()) { |
| TVectorFields fields; |
| if (! parseVectorFields(loc, field, base->getVectorSize(), fields)) { |
| fields.num = 1; |
| fields.offsets[0] = 0; |
| } |
| |
| if (base->isScalar()) { |
| if (fields.num == 1) |
| return result; |
| else { |
| TType type(base->getBasicType(), EvqTemporary, fields.num); |
| return addConstructor(loc, base, type); |
| } |
| } |
| if (base->getVectorSize() == 1) { |
| TType scalarType(base->getBasicType(), EvqTemporary, 1); |
| if (fields.num == 1) |
| return addConstructor(loc, base, scalarType); |
| else { |
| TType vectorType(base->getBasicType(), EvqTemporary, fields.num); |
| return addConstructor(loc, addConstructor(loc, base, scalarType), vectorType); |
| } |
| } |
| |
| if (base->getType().getQualifier().isFrontEndConstant()) |
| result = intermediate.foldSwizzle(base, fields, loc); |
| else { |
| if (fields.num == 1) { |
| TIntermTyped* index = intermediate.addConstantUnion(fields.offsets[0], loc); |
| result = intermediate.addIndex(EOpIndexDirect, base, index, loc); |
| result->setType(TType(base->getBasicType(), EvqTemporary)); |
| } else { |
| TString vectorString = field; |
| TIntermTyped* index = intermediate.addSwizzle(fields, loc); |
| result = intermediate.addIndex(EOpVectorSwizzle, base, index, loc); |
| result->setType(TType(base->getBasicType(), EvqTemporary, base->getType().getQualifier().precision, (int)vectorString.size())); |
| } |
| } |
| } else if (base->getBasicType() == EbtStruct || base->getBasicType() == EbtBlock) { |
| const TTypeList* fields = base->getType().getStruct(); |
| bool fieldFound = false; |
| int member; |
| for (member = 0; member < (int)fields->size(); ++member) { |
| if ((*fields)[member].type->getFieldName() == field) { |
| fieldFound = true; |
| break; |
| } |
| } |
| if (fieldFound) { |
| if (base->getAsSymbolNode() && (wasFlattened(base) || shouldFlatten(base->getType()))) |
| result = flattenAccess(loc, base, member); |
| else { |
| if (base->getType().getQualifier().storage == EvqConst) |
| result = intermediate.foldDereference(base, member, loc); |
| else { |
| TIntermTyped* index = intermediate.addConstantUnion(member, loc); |
| result = intermediate.addIndex(EOpIndexDirectStruct, base, index, loc); |
| result->setType(*(*fields)[member].type); |
| } |
| } |
| } else |
| error(loc, "no such field in structure", field.c_str(), ""); |
| } else |
| error(loc, "does not apply to this type:", field.c_str(), base->getType().getCompleteString().c_str()); |
| |
| return result; |
| } |
| |
| // Determine whether we should flatten an arbitrary type. |
| bool HlslParseContext::shouldFlatten(const TType& type) const |
| { |
| return shouldFlattenIO(type) || shouldFlattenUniform(type); |
| } |
| |
| // Is this an IO variable that can't be passed down the stack? |
| // E.g., pipeline inputs to the vertex stage and outputs from the fragment stage. |
| bool HlslParseContext::shouldFlattenIO(const TType& type) const |
| { |
| if (! inEntryPoint) |
| return false; |
| |
| const TStorageQualifier qualifier = type.getQualifier().storage; |
| |
| return type.isStruct() && |
| (qualifier == EvqVaryingIn || |
| qualifier == EvqVaryingOut); |
| } |
| |
| // Is this a uniform array which should be flattened? |
| bool HlslParseContext::shouldFlattenUniform(const TType& type) const |
| { |
| const TStorageQualifier qualifier = type.getQualifier().storage; |
| |
| return ((type.isArray() && intermediate.getFlattenUniformArrays()) || type.isStruct()) && |
| qualifier == EvqUniform && |
| type.containsOpaque(); |
| } |
| |
| // Top level variable flattening: construct data |
| void HlslParseContext::flatten(const TSourceLoc& loc, const TVariable& variable) |
| { |
| const TType& type = variable.getType(); |
| |
| // emplace gives back a pair whose .first is an iterator to the item... |
| auto entry = flattenMap.emplace(variable.getUniqueId(), |
| TFlattenData(type.getQualifier().layoutBinding)); |
| |
| // ... and the item is a map pair, so first->second is the TFlattenData itself. |
| flatten(loc, variable, type, entry.first->second, ""); |
| } |
| |
| // Recursively flatten the given variable at the provided type, building the flattenData as we go. |
| // |
| // This is mutually recursive with flattenStruct and flattenArray. |
| // We are going to flatten an arbitrarily nested composite structure into a linear sequence of |
| // members, and later on, we want to turn a path through the tree structure into a final |
| // location in this linear sequence. |
| // |
| // If the tree was N-ary, that can be directly calculated. However, we are dealing with |
| // arbitrary numbers - peraps a struct of 7 members containing an array of 3. Thus, we must |
| // build a data structure to allow the sequence of bracket and dot operators on arrays and |
| // structs to arrive at the proper member. |
| // |
| // To avoid storing a tree with pointers, we are going to flatten the tree into a vector of integers. |
| // The leaves are the indexes into the flattened member array. |
| // Each level will have the next location for the Nth item stored sequentially, so for instance: |
| // |
| // struct { float2 a[2]; int b; float4 c[3] }; |
| // |
| // This will produce the following flattened tree: |
| // Pos: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 |
| // (3, 7, 8, 5, 6, 0, 1, 2, 11, 12, 13, 3, 4, 5} |
| // |
| // Given a reference to mystruct.c[1], the access chain is (2,1), so we traverse: |
| // (0+2) = 8 --> (8+1) = 12 --> 12 = 4 |
| // |
| // so the 4th flattened member in traversal order is ours. |
| // |
| int HlslParseContext::flatten(const TSourceLoc& loc, const TVariable& variable, const TType& type, |
| TFlattenData& flattenData, TString name) |
| { |
| // TODO: when struct splitting is in place we can remove this restriction. |
| if (language == EShLangGeometry) { |
| const TType derefType(type, 0); |
| if (!isFinalFlattening(derefType) && type.getQualifier().storage == EvqVaryingIn) |
| error(loc, "recursive type not yet supported in GS input", variable.getName().c_str(), ""); |
| } |
| |
| // If something is an arrayed struct, the array flattener will recursively call flatten() |
| // to then flatten the struct, so this is an "if else": we don't do both. |
| if (type.isArray()) |
| return flattenArray(loc, variable, type, flattenData, name); |
| else if (type.isStruct()) |
| return flattenStruct(loc, variable, type, flattenData, name); |
| else { |
| assert(0); // should never happen |
| return -1; |
| } |
| } |
| |
| // Add a single flattened member to the flattened data being tracked for the composite |
| // Returns true for the final flattening level. |
| int HlslParseContext::addFlattenedMember(const TSourceLoc& loc, |
| const TVariable& variable, const TType& type, TFlattenData& flattenData, |
| const TString& memberName, bool track) |
| { |
| if (isFinalFlattening(type)) { |
| // This is as far as we flatten. Insert the variable. |
| TVariable* memberVariable = makeInternalVariable(memberName.c_str(), type); |
| mergeQualifiers(memberVariable->getWritableType().getQualifier(), variable.getType().getQualifier()); |
| |
| if (flattenData.nextBinding != TQualifier::layoutBindingEnd) |
| memberVariable->getWritableType().getQualifier().layoutBinding = flattenData.nextBinding++; |
| |
| flattenData.offsets.push_back(static_cast<int>(flattenData.members.size())); |
| flattenData.members.push_back(memberVariable); |
| |
| if (track) |
| trackLinkageDeferred(*memberVariable); |
| |
| return static_cast<int>(flattenData.offsets.size())-1; // location of the member reference |
| } else { |
| // Further recursion required |
| return flatten(loc, variable, type, flattenData, memberName); |
| } |
| } |
| |
| // Figure out the mapping between an aggregate's top members and an |
| // equivalent set of individual variables. |
| // |
| // N.B. Erases memory of I/O-related annotations in the original type's member, |
| // effecting a transfer of this information to the flattened variable form. |
| // |
| // Assumes shouldFlatten() or equivalent was called first. |
| int HlslParseContext::flattenStruct(const TSourceLoc& loc, const TVariable& variable, const TType& type, |
| TFlattenData& flattenData, TString name) |
| { |
| assert(type.isStruct()); |
| |
| auto members = *type.getStruct(); |
| |
| // Reserve space for this tree level. |
| int start = static_cast<int>(flattenData.offsets.size()); |
| int pos = start; |
| flattenData.offsets.resize(int(pos + members.size()), -1); |
| |
| for (int member = 0; member < (int)members.size(); ++member) { |
| TType& dereferencedType = *members[member].type; |
| const TString memberName = name + (name.empty() ? "" : ".") + dereferencedType.getFieldName(); |
| |
| const int mpos = addFlattenedMember(loc, variable, dereferencedType, flattenData, memberName, false); |
| flattenData.offsets[pos++] = mpos; |
| |
| // N.B. Erase I/O-related annotations from the source-type member. |
| dereferencedType.getQualifier().makeTemporary(); |
| } |
| |
| return start; |
| } |
| |
| // Figure out mapping between an array's members and an |
| // equivalent set of individual variables. |
| // |
| // Assumes shouldFlatten() or equivalent was called first. |
| int HlslParseContext::flattenArray(const TSourceLoc& loc, const TVariable& variable, const TType& type, |
| TFlattenData& flattenData, TString name) |
| { |
| assert(type.isArray()); |
| |
| if (type.isImplicitlySizedArray()) |
| error(loc, "cannot flatten implicitly sized array", variable.getName().c_str(), ""); |
| |
| const int size = type.getOuterArraySize(); |
| const TType dereferencedType(type, 0); |
| |
| if (name.empty()) |
| name = variable.getName(); |
| |
| // Reserve space for this tree level. |
| int start = static_cast<int>(flattenData.offsets.size()); |
| int pos = start; |
| flattenData.offsets.resize(int(pos + size), -1); |
| |
| for (int element=0; element < size; ++element) { |
| char elementNumBuf[20]; // sufficient for MAXINT |
| snprintf(elementNumBuf, sizeof(elementNumBuf)-1, "[%d]", element); |
| const int mpos = addFlattenedMember(loc, variable, dereferencedType, flattenData, |
| name + elementNumBuf, true); |
| |
| flattenData.offsets[pos++] = mpos; |
| } |
| |
| return start; |
| } |
| |
| // Return true if we have flattened this node. |
| bool HlslParseContext::wasFlattened(const TIntermTyped* node) const |
| { |
| return node != nullptr && |
| node->getAsSymbolNode() != nullptr && |
| wasFlattened(node->getAsSymbolNode()->getId()); |
| } |
| |
| |
| // Turn an access into an aggregate that was flattened to instead be |
| // an access to the individual variable the member was flattened to. |
| // Assumes shouldFlatten() or equivalent was called first. |
| TIntermTyped* HlslParseContext::flattenAccess(const TSourceLoc&, TIntermTyped* base, int member) |
| { |
| const TType dereferencedType(base->getType(), member); // dereferenced type |
| |
| const TIntermSymbol& symbolNode = *base->getAsSymbolNode(); |
| |
| const auto flattenData = flattenMap.find(symbolNode.getId()); |
| |
| if (flattenData == flattenMap.end()) |
| return base; |
| |
| // Calculate new cumulative offset from the packed tree |
| flattenOffset.back() = flattenData->second.offsets[flattenOffset.back() + member]; |
| |
| if (isFinalFlattening(dereferencedType)) { |
| // Finished flattening: create symbol for variable |
| member = flattenData->second.offsets[flattenOffset.back()]; |
| const TVariable* memberVariable = flattenData->second.members[member]; |
| return intermediate.addSymbol(*memberVariable); |
| } else { |
| // If this is not the final flattening, accumulate the position and return |
| // an object of the partially dereferenced type. |
| return new TIntermSymbol(symbolNode.getId(), "flattenShadow", dereferencedType); |
| } |
| } |
| |
| // Variables that correspond to the user-interface in and out of a stage |
| // (not the built-in interface) are assigned locations and |
| // registered as a linkage node (part of the stage's external interface). |
| // |
| // Assumes it is called in the order in which locations should be assigned. |
| void HlslParseContext::assignLocations(TVariable& variable) |
| { |
| const auto assignLocation = [&](TVariable& variable) { |
| const TQualifier& qualifier = variable.getType().getQualifier(); |
| if (qualifier.storage == EvqVaryingIn || qualifier.storage == EvqVaryingOut) { |
| if (qualifier.builtIn == EbvNone) { |
| if (qualifier.storage == EvqVaryingIn) { |
| variable.getWritableType().getQualifier().layoutLocation = nextInLocation; |
| nextInLocation += intermediate.computeTypeLocationSize(variable.getType()); |
| } else { |
| variable.getWritableType().getQualifier().layoutLocation = nextOutLocation; |
| nextOutLocation += intermediate.computeTypeLocationSize(variable.getType()); |
| } |
| } |
| trackLinkage(variable); |
| } |
| }; |
| |
| if (wasFlattened(variable.getUniqueId())) { |
| auto& memberList = flattenMap[variable.getUniqueId()].members; |
| for (auto member = memberList.begin(); member != memberList.end(); ++member) |
| assignLocation(**member); |
| } else |
| assignLocation(variable); |
| } |
| |
| // |
| // Handle seeing a function declarator in the grammar. This is the precursor |
| // to recognizing a function prototype or function definition. |
| // |
| TFunction& HlslParseContext::handleFunctionDeclarator(const TSourceLoc& loc, TFunction& function, bool prototype) |
| { |
| // |
| // Multiple declarations of the same function name are allowed. |
| // |
| // If this is a definition, the definition production code will check for redefinitions |
| // (we don't know at this point if it's a definition or not). |
| // |
| bool builtIn; |
| TSymbol* symbol = symbolTable.find(function.getMangledName(), &builtIn); |
| const TFunction* prevDec = symbol ? symbol->getAsFunction() : 0; |
| |
| if (prototype) { |
| // All built-in functions are defined, even though they don't have a body. |
| // Count their prototype as a definition instead. |
| if (symbolTable.atBuiltInLevel()) |
| function.setDefined(); |
| else { |
| if (prevDec && ! builtIn) |
| symbol->getAsFunction()->setPrototyped(); // need a writable one, but like having prevDec as a const |
| function.setPrototyped(); |
| } |
| } |
| |
| // This insert won't actually insert it if it's a duplicate signature, but it will still check for |
| // other forms of name collisions. |
| if (! symbolTable.insert(function)) |
| error(loc, "function name is redeclaration of existing name", function.getName().c_str(), ""); |
| |
| // |
| // If this is a redeclaration, it could also be a definition, |
| // in which case, we need to use the parameter names from this one, and not the one that's |
| // being redeclared. So, pass back this declaration, not the one in the symbol table. |
| // |
| return function; |
| } |
| |
| // |
| // Handle seeing the function prototype in front of a function definition in the grammar. |
| // The body is handled after this function returns. |
| // |
| TIntermAggregate* HlslParseContext::handleFunctionDefinition(const TSourceLoc& loc, TFunction& function, |
| const TAttributeMap& attributes) |
| { |
| currentCaller = function.getMangledName(); |
| TSymbol* symbol = symbolTable.find(function.getMangledName()); |
| TFunction* prevDec = symbol ? symbol->getAsFunction() : nullptr; |
| |
| if (! prevDec) |
| error(loc, "can't find function", function.getName().c_str(), ""); |
| // Note: 'prevDec' could be 'function' if this is the first time we've seen function |
| // as it would have just been put in the symbol table. Otherwise, we're looking up |
| // an earlier occurrence. |
| |
| if (prevDec && prevDec->isDefined()) { |
| // Then this function already has a body. |
| error(loc, "function already has a body", function.getName().c_str(), ""); |
| } |
| if (prevDec && ! prevDec->isDefined()) { |
| prevDec->setDefined(); |
| |
| // Remember the return type for later checking for RETURN statements. |
| currentFunctionType = &(prevDec->getType()); |
| } else |
| currentFunctionType = new TType(EbtVoid); |
| functionReturnsValue = false; |
| |
| inEntryPoint = function.getName().compare(intermediate.getEntryPointName().c_str()) == 0; |
| if (inEntryPoint) { |
| intermediate.setEntryPointMangledName(function.getMangledName().c_str()); |
| intermediate.incrementEntryPointCount(); |
| remapEntryPointIO(function); |
| if (entryPointOutput) { |
| if (shouldFlatten(entryPointOutput->getType())) |
| flatten(loc, *entryPointOutput); |
| assignLocations(*entryPointOutput); |
| } |
| } else |
| remapNonEntryPointIO(function); |
| |
| // Insert the $Global constant buffer. |
| // TODO: this design fails if new members are declared between function definitions. |
| if (! insertGlobalUniformBlock()) |
| error(loc, "failed to insert the global constant buffer", "uniform", ""); |
| |
| // |
| // New symbol table scope for body of function plus its arguments |
| // |
| pushScope(); |
| |
| // |
| // Insert parameters into the symbol table. |
| // If the parameter has no name, it's not an error, just don't insert it |
| // (could be used for unused args). |
| // |
| // Also, accumulate the list of parameters into the AST, so lower level code |
| // knows where to find parameters. |
| // |
| TIntermAggregate* paramNodes = new TIntermAggregate; |
| for (int i = 0; i < function.getParamCount(); i++) { |
| TParameter& param = function[i]; |
| if (param.name != nullptr) { |
| TVariable *variable = new TVariable(param.name, *param.type); |
| |
| // Insert the parameters with name in the symbol table. |
| if (! symbolTable.insert(*variable)) |
| error(loc, "redefinition", variable->getName().c_str(), ""); |
| else { |
| // get IO straightened out |
| if (inEntryPoint) { |
| if (shouldFlatten(*param.type)) |
| flatten(loc, *variable); |
| assignLocations(*variable); |
| } |
| |
| // Transfer ownership of name pointer to symbol table. |
| param.name = nullptr; |
| |
| // Add the parameter to the AST |
| paramNodes = intermediate.growAggregate(paramNodes, |
| intermediate.addSymbol(*variable, loc), |
| loc); |
| } |
| } else |
| paramNodes = intermediate.growAggregate(paramNodes, intermediate.addSymbol(*param.type, loc), loc); |
| } |
| intermediate.setAggregateOperator(paramNodes, EOpParameters, TType(EbtVoid), loc); |
| loopNestingLevel = 0; |
| controlFlowNestingLevel = 0; |
| postEntryPointReturn = false; |
| |
| // Handle function attributes |
| if (inEntryPoint) { |
| const TIntermAggregate* numThreads = attributes[EatNumThreads]; |
| if (numThreads != nullptr) { |
| const TIntermSequence& sequence = numThreads->getSequence(); |
| |
| for (int lid = 0; lid < int(sequence.size()); ++lid) |
| intermediate.setLocalSize(lid, sequence[lid]->getAsConstantUnion()->getConstArray()[0].getIConst()); |
| } |
| |
| const TIntermAggregate* maxVertexCount = attributes[EatMaxVertexCount]; |
| if (maxVertexCount != nullptr) { |
| intermediate.setVertices(maxVertexCount->getSequence()[0]->getAsConstantUnion()->getConstArray()[0].getIConst()); |
| } |
| } |
| |
| return paramNodes; |
| } |
| |
| void HlslParseContext::handleFunctionBody(const TSourceLoc& loc, TFunction& function, TIntermNode* functionBody, TIntermNode*& node) |
| { |
| node = intermediate.growAggregate(node, functionBody); |
| intermediate.setAggregateOperator(node, EOpFunction, function.getType(), loc); |
| node->getAsAggregate()->setName(function.getMangledName().c_str()); |
| |
| popScope(); |
| |
| if (function.getType().getBasicType() != EbtVoid && ! functionReturnsValue) |
| error(loc, "function does not return a value:", "", function.getName().c_str()); |
| } |
| |
| // AST I/O is done through shader globals declared in the 'in' or 'out' |
| // storage class. An HLSL entry point has a return value, input parameters |
| // and output parameters. These need to get remapped to the AST I/O. |
| void HlslParseContext::remapEntryPointIO(TFunction& function) |
| { |
| // Will auto-assign locations here to the inputs/outputs defined by the entry point |
| |
| const auto remapType = [&](TType& type) { |
| const auto remapBuiltInType = [&](TType& type) { |
| switch (type.getQualifier().builtIn) { |
| case EbvFragDepthGreater: |
| intermediate.setDepth(EldGreater); |
| type.getQualifier().builtIn = EbvFragDepth; |
| break; |
| case EbvFragDepthLesser: |
| intermediate.setDepth(EldLess); |
| type.getQualifier().builtIn = EbvFragDepth; |
| break; |
| default: |
| break; |
| } |
| }; |
| remapBuiltInType(type); |
| if (type.isStruct()) { |
| auto members = *type.getStruct(); |
| for (auto member = members.begin(); member != members.end(); ++member) |
| remapBuiltInType(*member->type); |
| } |
| }; |
| |
| // return value is actually a shader-scoped output (out) |
| if (function.getType().getBasicType() != EbtVoid) { |
| entryPointOutput = makeInternalVariable("@entryPointOutput", function.getType()); |
| entryPointOutput->getWritableType().getQualifier().storage = EvqVaryingOut; |
| remapType(function.getWritableType()); |
| } |
| |
| // parameters are actually shader-scoped inputs and outputs (in or out) |
| for (int i = 0; i < function.getParamCount(); i++) { |
| TType& paramType = *function[i].type; |
| paramType.getQualifier().storage = paramType.getQualifier().isParamInput() ? EvqVaryingIn : EvqVaryingOut; |
| remapType(paramType); |
| } |
| } |
| |
| // An HLSL function that looks like an entry point, but is not, |
| // declares entry point IO built-ins, but these have to be undone. |
| void HlslParseContext::remapNonEntryPointIO(TFunction& function) |
| { |
| const auto remapBuiltInType = [&](TType& type) { type.getQualifier().builtIn = EbvNone; }; |
| |
| // return value |
| if (function.getType().getBasicType() != EbtVoid) |
| remapBuiltInType(function.getWritableType()); |
| |
| // parameters |
| for (int i = 0; i < function.getParamCount(); i++) |
| remapBuiltInType(*function[i].type); |
| } |
| |
| // Handle function returns, including type conversions to the function return type |
| // if necessary. |
| TIntermNode* HlslParseContext::handleReturnValue(const TSourceLoc& loc, TIntermTyped* value) |
| { |
| functionReturnsValue = true; |
| |
| if (currentFunctionType->getBasicType() == EbtVoid) { |
| error(loc, "void function cannot return a value", "return", ""); |
| return intermediate.addBranch(EOpReturn, loc); |
| } else if (*currentFunctionType != value->getType()) { |
| value = intermediate.addConversion(EOpReturn, *currentFunctionType, value); |
| if (value && *currentFunctionType != value->getType()) |
| value = intermediate.addShapeConversion(EOpReturn, *currentFunctionType, value); |
| if (value == nullptr) { |
| error(loc, "type does not match, or is not convertible to, the function's return type", "return", ""); |
| return value; |
| } |
| } |
| |
| // The entry point needs to send any return value to the entry-point output instead. |
| // So, a subtree is built up, as a two-part sequence, with the first part being an |
| // assignment subtree, and the second part being a return with no value. |
| // |
| // Otherwise, for a non entry point, just return a return statement. |
| if (inEntryPoint) { |
| assert(entryPointOutput != nullptr); // should have been error tested at the beginning |
| TIntermSymbol* left = new TIntermSymbol(entryPointOutput->getUniqueId(), entryPointOutput->getName(), |
| entryPointOutput->getType()); |
| TIntermNode* returnSequence = handleAssign(loc, EOpAssign, left, value); |
| returnSequence = intermediate.makeAggregate(returnSequence); |
| returnSequence = intermediate.growAggregate(returnSequence, intermediate.addBranch(EOpReturn, loc), loc); |
| returnSequence->getAsAggregate()->setOperator(EOpSequence); |
| |
| return returnSequence; |
| } else |
| return intermediate.addBranch(EOpReturn, value, loc); |
| } |
| |
| void HlslParseContext::handleFunctionArgument(TFunction* function, TIntermTyped*& arguments, TIntermTyped* newArg) |
| { |
| TParameter param = { 0, new TType }; |
| param.type->shallowCopy(newArg->getType()); |
| function->addParameter(param); |
| if (arguments) |
| arguments = intermediate.growAggregate(arguments, newArg); |
| else |
| arguments = newArg; |
| } |
| |
| // Some simple source assignments need to be flattened to a sequence |
| // of AST assignments. Catch these and flatten, otherwise, pass through |
| // to intermediate.addAssign(). |
| TIntermTyped* HlslParseContext::handleAssign(const TSourceLoc& loc, TOperator op, TIntermTyped* left, TIntermTyped* right) const |
| { |
| if (left == nullptr || right == nullptr) |
| return nullptr; |
| |
| const auto mustFlatten = [&](const TIntermTyped& node) { |
| return wasFlattened(&node) && node.getAsSymbolNode() && |
| flattenMap.find(node.getAsSymbolNode()->getId()) != flattenMap.end(); |
| }; |
| |
| const bool flattenLeft = mustFlatten(*left); |
| const bool flattenRight = mustFlatten(*right); |
| if (! flattenLeft && ! flattenRight) |
| return intermediate.addAssign(op, left, right, loc); |
| |
| TIntermAggregate* assignList = nullptr; |
| const TVector<TVariable*>* leftVariables = nullptr; |
| const TVector<TVariable*>* rightVariables = nullptr; |
| |
| // A temporary to store the right node's value, so we don't keep indirecting into it |
| // if it's not a simple symbol. |
| TVariable* rhsTempVar = nullptr; |
| |
| // If the RHS is a simple symbol node, we'll copy it for each member. |
| TIntermSymbol* cloneSymNode = nullptr; |
| |
| // Array structs are not yet handled in flattening. (Compilation error upstream, so |
| // this should never fire). |
| assert(!(left->getType().isStruct() && left->getType().isArray())); |
| |
| int memberCount = 0; |
| |
| // Track how many items there are to copy. |
| if (left->getType().isStruct()) |
| memberCount = (int)left->getType().getStruct()->size(); |
| if (left->getType().isArray()) |
| memberCount = left->getType().getCumulativeArraySize(); |
| |
| if (flattenLeft) |
| leftVariables = &flattenMap.find(left->getAsSymbolNode()->getId())->second.members; |
| |
| if (flattenRight) { |
| rightVariables = &flattenMap.find(right->getAsSymbolNode()->getId())->second.members; |
| } else { |
| // The RHS is not flattened. There are several cases: |
| // 1. 1 item to copy: Use the RHS directly. |
| // 2. >1 item, simple symbol RHS: we'll create a new TIntermSymbol node for each, but no assign to temp. |
| // 3. >1 item, complex RHS: assign it to a new temp variable, and create a TIntermSymbol for each member. |
| |
| if (memberCount <= 1) { |
| // case 1: we'll use the symbol directly below. Nothing to do. |
| } else { |
| if (right->getAsSymbolNode() != nullptr) { |
| // case 2: we'll copy the symbol per iteration below. |
| cloneSymNode = right->getAsSymbolNode(); |
| } else { |
| // case 3: assign to a temp, and indirect into that. |
| rhsTempVar = makeInternalVariable("flattenTemp", right->getType()); |
| rhsTempVar->getWritableType().getQualifier().makeTemporary(); |
| TIntermTyped* noFlattenRHS = intermediate.addSymbol(*rhsTempVar, loc); |
| |
| // Add this to the aggregate being built. |
| assignList = intermediate.growAggregate(assignList, intermediate.addAssign(op, noFlattenRHS, right, loc), loc); |
| } |
| } |
| } |
| |
| int memberIdx = 0; |
| |
| const auto getMember = [&](bool flatten, TIntermTyped* node, |
| const TVector<TVariable*>& memberVariables, int member, |
| TOperator op, const TType& memberType) -> TIntermTyped * { |
| TIntermTyped* subTree; |
| if (flatten && isFinalFlattening(memberType)) { |
| subTree = intermediate.addSymbol(*memberVariables[memberIdx++]); |
| } else { |
| subTree = intermediate.addIndex(op, node, intermediate.addConstantUnion(member, loc), loc); |
| subTree->setType(memberType); |
| } |
| |
| return subTree; |
| }; |
| |
| // Cannot use auto here, because this is recursive, and auto can't work out the type without seeing the |
| // whole thing. So, we'll resort to an explicit type via std::function. |
| const std::function<void(TIntermTyped* left, TIntermTyped* right)> |
| traverse = [&](TIntermTyped* left, TIntermTyped* right) -> void { |
| // If we get here, we are assigning to or from a whole array or struct that must be |
| // flattened, so have to do member-by-member assignment: |
| |
| if (left->getType().isArray()) { |
| // array case |
| const TType dereferencedType(left->getType(), 0); |
| |
| for (int element=0; element < left->getType().getOuterArraySize(); ++element) { |
| // Add a new AST symbol node if we have a temp variable holding a complex RHS. |
| TIntermTyped* subRight = getMember(flattenRight, right, *rightVariables, element, |
| EOpIndexDirect, dereferencedType); |
| TIntermTyped* subLeft = getMember(flattenLeft, left, *leftVariables, element, |
| EOpIndexDirect, dereferencedType); |
| |
| if (isFinalFlattening(dereferencedType)) |
| assignList = intermediate.growAggregate(assignList, intermediate.addAssign(op, subLeft, subRight, loc), loc); |
| else |
| traverse(subLeft, subRight); |
| } |
| } else if (left->getType().isStruct()) { |
| // struct case |
| const auto& members = *left->getType().getStruct(); |
| |
| for (int member = 0; member < (int)members.size(); ++member) { |
| TIntermTyped* subRight = getMember(flattenRight, right, *rightVariables, member, |
| EOpIndexDirectStruct, *members[member].type); |
| TIntermTyped* subLeft = getMember(flattenLeft, left, *leftVariables, member, |
| EOpIndexDirectStruct, *members[member].type); |
| |
| if (isFinalFlattening(*members[member].type)) |
| assignList = intermediate.growAggregate(assignList, intermediate.addAssign(op, subLeft, subRight, loc), loc); |
| else |
| traverse(subLeft, subRight); |
| } |
| } else { |
| assert(0); // we should never be called on a non-flattenable thing, because |
| // that case bails out above to a simple copy. |
| } |
| |
| }; |
| |
| // Use the proper RHS node: a new symbol from a TVariable, copy |
| // of an TIntermSymbol node, or sometimes the right node directly. |
| right = rhsTempVar ? intermediate.addSymbol(*rhsTempVar, loc) : |
| cloneSymNode ? intermediate.addSymbol(*cloneSymNode) : |
| right; |
| |
| // This makes the whole assignment, recursing through subtypes as needed. |
| traverse(left, right); |
| |
| assert(assignList != nullptr); |
| assignList->setOperator(EOpSequence); |
| |
| return assignList; |
| } |
| |
| // |
| // HLSL atomic operations have slightly different arguments than |
| // GLSL/AST/SPIRV. The semantics are converted below in decomposeIntrinsic. |
| // This provides the post-decomposition equivalent opcode. |
| // |
| TOperator HlslParseContext::mapAtomicOp(const TSourceLoc& loc, TOperator op, bool isImage) |
| { |
| switch (op) { |
| case EOpInterlockedAdd: return isImage ? EOpImageAtomicAdd : EOpAtomicAdd; |
| case EOpInterlockedAnd: return isImage ? EOpImageAtomicAnd : EOpAtomicAnd; |
| case EOpInterlockedCompareExchange: return isImage ? EOpImageAtomicCompSwap : EOpAtomicCompSwap; |
| case EOpInterlockedMax: return isImage ? EOpImageAtomicMax : EOpAtomicMax; |
| case EOpInterlockedMin: return isImage ? EOpImageAtomicMin : EOpAtomicMin; |
| case EOpInterlockedOr: return isImage ? EOpImageAtomicOr : EOpAtomicOr; |
| case EOpInterlockedXor: return isImage ? EOpImageAtomicXor : EOpAtomicXor; |
| case EOpInterlockedExchange: return isImage ? EOpImageAtomicExchange : EOpAtomicExchange; |
| case EOpInterlockedCompareStore: // TODO: ... |
| default: |
| error(loc, "unknown atomic operation", "unknown op", ""); |
| return EOpNull; |
| } |
| } |
| |
| // |
| // Create a combined sampler/texture from separate sampler and texture. |
| // |
| TIntermAggregate* HlslParseContext::handleSamplerTextureCombine(const TSourceLoc& loc, TIntermTyped* argTex, TIntermTyped* argSampler) |
| { |
| TIntermAggregate* txcombine = new TIntermAggregate(EOpConstructTextureSampler); |
| |
| txcombine->getSequence().push_back(argTex); |
| txcombine->getSequence().push_back(argSampler); |
| |
| TSampler samplerType = argTex->getType().getSampler(); |
| samplerType.combined = true; |
| samplerType.shadow = argSampler->getType().getSampler().shadow; |
| |
| txcombine->setType(TType(samplerType, EvqTemporary)); |
| txcombine->setLoc(loc); |
| |
| return txcombine; |
| } |
| |
| // |
| // Decompose DX9 and DX10 sample intrinsics & object methods into AST |
| // |
| void HlslParseContext::decomposeSampleMethods(const TSourceLoc& loc, TIntermTyped*& node, TIntermNode* arguments) |
| { |
| if (!node || !node->getAsOperator()) |
| return; |
| |
| const auto clampReturn = [&loc, &node, this](TIntermTyped* result, const TSampler& sampler) -> TIntermTyped* { |
| // Sampler return must always be a vec4, but we can construct a shorter vector |
| result->setType(TType(node->getType().getBasicType(), EvqTemporary, node->getVectorSize())); |
| |
| if (sampler.vectorSize < (unsigned)node->getVectorSize()) { |
| // Too many components. Construct shorter vector from it. |
| const TType clampedType(result->getType().getBasicType(), EvqTemporary, sampler.vectorSize); |
| |
| const TOperator op = intermediate.mapTypeToConstructorOp(clampedType); |
| |
| result = constructBuiltIn(clampedType, op, result, loc, false); |
| } |
| |
| result->setLoc(loc); |
| return result; |
| }; |
| |
| const TOperator op = node->getAsOperator()->getOp(); |
| const TIntermAggregate* argAggregate = arguments ? arguments->getAsAggregate() : nullptr; |
| |
| switch (op) { |
| // **** DX9 intrinsics: **** |
| case EOpTexture: |
| { |
| // Texture with ddx & ddy is really gradient form in HLSL |
| if (argAggregate->getSequence().size() == 4) |
| node->getAsAggregate()->setOperator(EOpTextureGrad); |
| |
| break; |
| } |
| |
| case EOpTextureBias: |
| { |
| TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped(); // sampler |
| TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped(); // coord |
| |
| // HLSL puts bias in W component of coordinate. We extract it and add it to |
| // the argument list, instead |
| TIntermTyped* w = intermediate.addConstantUnion(3, loc, true); |
| TIntermTyped* bias = intermediate.addIndex(EOpIndexDirect, arg1, w, loc); |
| |
| TOperator constructOp = EOpNull; |
| const TSampler& sampler = arg0->getType().getSampler(); |
| |
| switch (sampler.dim) { |
| case Esd1D: constructOp = EOpConstructFloat; break; // 1D |
| case Esd2D: constructOp = EOpConstructVec2; break; // 2D |
| case Esd3D: constructOp = EOpConstructVec3; break; // 3D |
| case EsdCube: constructOp = EOpConstructVec3; break; // also 3D |
| default: break; |
| } |
| |
| TIntermAggregate* constructCoord = new TIntermAggregate(constructOp); |
| constructCoord->getSequence().push_back(arg1); |
| constructCoord->setLoc(loc); |
| |
| // The input vector should never be less than 2, since there's always a bias. |
| // The max is for safety, and should be a no-op. |
| constructCoord->setType(TType(arg1->getBasicType(), EvqTemporary, std::max(arg1->getVectorSize() - 1, 0))); |
| |
| TIntermAggregate* tex = new TIntermAggregate(EOpTexture); |
| tex->getSequence().push_back(arg0); // sampler |
| tex->getSequence().push_back(constructCoord); // coordinate |
| tex->getSequence().push_back(bias); // bias |
| |
| node = clampReturn(tex, sampler); |
| |
| break; |
| } |
| |
| // **** DX10 methods: **** |
| case EOpMethodSample: // fall through |
| case EOpMethodSampleBias: // ... |
| { |
| TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped(); |
| TIntermTyped* argSamp = argAggregate->getSequence()[1]->getAsTyped(); |
| TIntermTyped* argCoord = argAggregate->getSequence()[2]->getAsTyped(); |
| TIntermTyped* argBias = nullptr; |
| TIntermTyped* argOffset = nullptr; |
| const TSampler& sampler = argTex->getType().getSampler(); |
| |
| int nextArg = 3; |
| |
| if (op == EOpMethodSampleBias) // SampleBias has a bias arg |
| argBias = argAggregate->getSequence()[nextArg++]->getAsTyped(); |
| |
| TOperator textureOp = EOpTexture; |
| |
| if ((int)argAggregate->getSequence().size() == (nextArg+1)) { // last parameter is offset form |
| textureOp = EOpTextureOffset; |
| argOffset = argAggregate->getSequence()[nextArg++]->getAsTyped(); |
| } |
| |
| TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp); |
| |
| TIntermAggregate* txsample = new TIntermAggregate(textureOp); |
| txsample->getSequence().push_back(txcombine); |
| txsample->getSequence().push_back(argCoord); |
| |
| if (argBias != nullptr) |
| txsample->getSequence().push_back(argBias); |
| |
| if (argOffset != nullptr) |
| txsample->getSequence().push_back(argOffset); |
| |
| node = clampReturn(txsample, sampler); |
| |
| break; |
| } |
| |
| case EOpMethodSampleGrad: // ... |
| { |
| TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped(); |
| TIntermTyped* argSamp = argAggregate->getSequence()[1]->getAsTyped(); |
| TIntermTyped* argCoord = argAggregate->getSequence()[2]->getAsTyped(); |
| TIntermTyped* argDDX = argAggregate->getSequence()[3]->getAsTyped(); |
| TIntermTyped* argDDY = argAggregate->getSequence()[4]->getAsTyped(); |
| TIntermTyped* argOffset = nullptr; |
| const TSampler& sampler = argTex->getType().getSampler(); |
| |
| TOperator textureOp = EOpTextureGrad; |
| |
| if (argAggregate->getSequence().size() == 6) { // last parameter is offset form |
| textureOp = EOpTextureGradOffset; |
| argOffset = argAggregate->getSequence()[5]->getAsTyped(); |
| } |
| |
| TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp); |
| |
| TIntermAggregate* txsample = new TIntermAggregate(textureOp); |
| txsample->getSequence().push_back(txcombine); |
| txsample->getSequence().push_back(argCoord); |
| txsample->getSequence().push_back(argDDX); |
| txsample->getSequence().push_back(argDDY); |
| |
| if (argOffset != nullptr) |
| txsample->getSequence().push_back(argOffset); |
| |
| node = clampReturn(txsample, sampler); |
| |
| break; |
| } |
| |
| case EOpMethodGetDimensions: |
| { |
| // AST returns a vector of results, which we break apart component-wise into |
| // separate values to assign to the HLSL method's outputs, ala: |
| // tx . GetDimensions(width, height); |
| // float2 sizeQueryTemp = EOpTextureQuerySize |
| // width = sizeQueryTemp.X; |
| // height = sizeQueryTemp.Y; |
| |
| TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped(); |
| const TType& texType = argTex->getType(); |
| |
| assert(texType.getBasicType() == EbtSampler); |
| |
| const TSampler& sampler = texType.getSampler(); |
| const TSamplerDim dim = sampler.dim; |
| const bool isImage = sampler.isImage(); |
| const int numArgs = (int)argAggregate->getSequence().size(); |
| |
| int numDims = 0; |
| |
| switch (dim) { |
| case Esd1D: numDims = 1; break; // W |
| case Esd2D: numDims = 2; break; // W, H |
| case Esd3D: numDims = 3; break; // W, H, D |
| case EsdCube: numDims = 2; break; // W, H (cube) |
| case EsdBuffer: numDims = 1; break; // W (buffers) |
| default: |
| assert(0 && "unhandled texture dimension"); |
| } |
| |
| // Arrayed adds another dimension for the number of array elements |
| if (sampler.isArrayed()) |
| ++numDims; |
| |
| // Establish whether we're querying mip levels |
| const bool mipQuery = (numArgs > (numDims + 1)) && (!sampler.isMultiSample()); |
| |
| // AST assumes integer return. Will be converted to float if required. |
| TIntermAggregate* sizeQuery = new TIntermAggregate(isImage ? EOpImageQuerySize : EOpTextureQuerySize); |
| sizeQuery->getSequence().push_back(argTex); |
| // If we're querying an explicit LOD, add the LOD, which is always arg #1 |
| if (mipQuery) { |
| TIntermTyped* queryLod = argAggregate->getSequence()[1]->getAsTyped(); |
| sizeQuery->getSequence().push_back(queryLod); |
| } |
| sizeQuery->setType(TType(EbtUint, EvqTemporary, numDims)); |
| sizeQuery->setLoc(loc); |
| |
| // Return value from size query |
| TVariable* tempArg = makeInternalVariable("sizeQueryTemp", sizeQuery->getType()); |
| tempArg->getWritableType().getQualifier().makeTemporary(); |
| TIntermTyped* sizeQueryAssign = intermediate.addAssign(EOpAssign, |
| intermediate.addSymbol(*tempArg, loc), |
| sizeQuery, loc); |
| |
| // Compound statement for assigning outputs |
| TIntermAggregate* compoundStatement = intermediate.makeAggregate(sizeQueryAssign, loc); |
| // Index of first output parameter |
| const int outParamBase = mipQuery ? 2 : 1; |
| |
| for (int compNum = 0; compNum < numDims; ++compNum) { |
| TIntermTyped* indexedOut = nullptr; |
| TIntermSymbol* sizeQueryReturn = intermediate.addSymbol(*tempArg, loc); |
| |
| if (numDims > 1) { |
| TIntermTyped* component = intermediate.addConstantUnion(compNum, loc, true); |
| indexedOut = intermediate.addIndex(EOpIndexDirect, sizeQueryReturn, component, loc); |
| indexedOut->setType(TType(EbtUint, EvqTemporary, 1)); |
| indexedOut->setLoc(loc); |
| } else { |
| indexedOut = sizeQueryReturn; |
| } |
| |
| TIntermTyped* outParam = argAggregate->getSequence()[outParamBase + compNum]->getAsTyped(); |
| TIntermTyped* compAssign = intermediate.addAssign(EOpAssign, outParam, indexedOut, loc); |
| |
| compoundStatement = intermediate.growAggregate(compoundStatement, compAssign); |
| } |
| |
| // handle mip level parameter |
| if (mipQuery) { |
| TIntermTyped* outParam = argAggregate->getSequence()[outParamBase + numDims]->getAsTyped(); |
| |
| TIntermAggregate* levelsQuery = new TIntermAggregate(EOpTextureQueryLevels); |
| levelsQuery->getSequence().push_back(argTex); |
| levelsQuery->setType(TType(EbtUint, EvqTemporary, 1)); |
| levelsQuery->setLoc(loc); |
| |
| TIntermTyped* compAssign = intermediate.addAssign(EOpAssign, outParam, levelsQuery, loc); |
| compoundStatement = intermediate.growAggregate(compoundStatement, compAssign); |
| } |
| |
| // 2DMS formats query # samples, which needs a different query op |
| if (sampler.isMultiSample()) { |
| TIntermTyped* outParam = argAggregate->getSequence()[outParamBase + numDims]->getAsTyped(); |
| |
| TIntermAggregate* samplesQuery = new TIntermAggregate(EOpImageQuerySamples); |
| samplesQuery->getSequence().push_back(argTex); |
| samplesQuery->setType(TType(EbtUint, EvqTemporary, 1)); |
| samplesQuery->setLoc(loc); |
| |
| TIntermTyped* compAssign = intermediate.addAssign(EOpAssign, outParam, samplesQuery, loc); |
| compoundStatement = intermediate.growAggregate(compoundStatement, compAssign); |
| } |
| |
| compoundStatement->setOperator(EOpSequence); |
| compoundStatement->setLoc(loc); |
| compoundStatement->setType(TType(EbtVoid)); |
| |
| node = compoundStatement; |
| |
| break; |
| } |
| |
| case EOpMethodSampleCmp: // fall through... |
| case EOpMethodSampleCmpLevelZero: |
| { |
| TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped(); |
| TIntermTyped* argSamp = argAggregate->getSequence()[1]->getAsTyped(); |
| TIntermTyped* argCoord = argAggregate->getSequence()[2]->getAsTyped(); |
| TIntermTyped* argCmpVal = argAggregate->getSequence()[3]->getAsTyped(); |
| TIntermTyped* argOffset = nullptr; |
| |
| // optional offset value |
| if (argAggregate->getSequence().size() > 4) |
| argOffset = argAggregate->getSequence()[4]->getAsTyped(); |
| |
| const int coordDimWithCmpVal = argCoord->getType().getVectorSize() + 1; // +1 for cmp |
| |
| // AST wants comparison value as one of the texture coordinates |
| TOperator constructOp = EOpNull; |
| switch (coordDimWithCmpVal) { |
| // 1D can't happen: there's always at least 1 coordinate dimension + 1 cmp val |
| case 2: constructOp = EOpConstructVec2; break; |
| case 3: constructOp = EOpConstructVec3; break; |
| case 4: constructOp = EOpConstructVec4; break; |
| case 5: constructOp = EOpConstructVec4; break; // cubeArrayShadow, cmp value is separate arg. |
| default: assert(0); break; |
| } |
| |
| TIntermAggregate* coordWithCmp = new TIntermAggregate(constructOp); |
| coordWithCmp->getSequence().push_back(argCoord); |
| if (coordDimWithCmpVal != 5) // cube array shadow is special. |
| coordWithCmp->getSequence().push_back(argCmpVal); |
| coordWithCmp->setLoc(loc); |
| coordWithCmp->setType(TType(argCoord->getBasicType(), EvqTemporary, std::min(coordDimWithCmpVal, 4))); |
| |
| TOperator textureOp = (op == EOpMethodSampleCmpLevelZero ? EOpTextureLod : EOpTexture); |
| if (argOffset != nullptr) |
| textureOp = (op == EOpMethodSampleCmpLevelZero ? EOpTextureLodOffset : EOpTextureOffset); |
| |
| // Create combined sampler & texture op |
| TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp); |
| TIntermAggregate* txsample = new TIntermAggregate(textureOp); |
| txsample->getSequence().push_back(txcombine); |
| txsample->getSequence().push_back(coordWithCmp); |
| |
| if (coordDimWithCmpVal == 5) // cube array shadow is special: cmp val follows coord. |
| txsample->getSequence().push_back(argCmpVal); |
| |
| // the LevelZero form uses 0 as an explicit LOD |
| if (op == EOpMethodSampleCmpLevelZero) |
| txsample->getSequence().push_back(intermediate.addConstantUnion(0.0, EbtFloat, loc, true)); |
| |
| // Add offset if present |
| if (argOffset != nullptr) |
| txsample->getSequence().push_back(argOffset); |
| |
| txsample->setType(node->getType()); |
| txsample->setLoc(loc); |
| node = txsample; |
| |
| break; |
| } |
| |
| case EOpMethodLoad: |
| { |
| TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped(); |
| TIntermTyped* argCoord = argAggregate->getSequence()[1]->getAsTyped(); |
| TIntermTyped* argOffset = nullptr; |
| TIntermTyped* lodComponent = nullptr; |
| TIntermTyped* coordSwizzle = nullptr; |
| |
| const TSampler& sampler = argTex->getType().getSampler(); |
| const bool isMS = sampler.isMultiSample(); |
| const bool isBuffer = sampler.dim == EsdBuffer; |
| const bool isImage = sampler.isImage(); |
| const TBasicType coordBaseType = argCoord->getType().getBasicType(); |
| |
| // Last component of coordinate is the mip level, for non-MS. we separate them here: |
| if (isMS || isBuffer || isImage) { |
| // MS, Buffer, and Image have no LOD |
| coordSwizzle = argCoord; |
| } else { |
| // Extract coordinate |
| TVectorFields coordFields(0,1,2,3); |
| coordFields.num = argCoord->getType().getVectorSize() - (isMS ? 0 : 1); |
| TIntermTyped* coordIdx = intermediate.addSwizzle(coordFields, loc); |
| coordSwizzle = intermediate.addIndex(EOpVectorSwizzle, argCoord, coordIdx, loc); |
| coordSwizzle->setType(TType(coordBaseType, EvqTemporary, coordFields.num)); |
| |
| // Extract LOD |
| TIntermTyped* lodIdx = intermediate.addConstantUnion(coordFields.num, loc, true); |
| lodComponent = intermediate.addIndex(EOpIndexDirect, argCoord, lodIdx, loc); |
| lodComponent->setType(TType(coordBaseType, EvqTemporary, 1)); |
| } |
| |
| const int numArgs = (int)argAggregate->getSequence().size(); |
| const bool hasOffset = ((!isMS && numArgs == 3) || (isMS && numArgs == 4)); |
| |
| // Create texel fetch |
| const TOperator fetchOp = (isImage ? EOpImageLoad : |
| hasOffset ? EOpTextureFetchOffset : |
| EOpTextureFetch); |
| TIntermAggregate* txfetch = new TIntermAggregate(fetchOp); |
| |
| // Build up the fetch |
| txfetch->getSequence().push_back(argTex); |
| txfetch->getSequence().push_back(coordSwizzle); |
| |
| if (isMS) { |
| // add 2DMS sample index |
| TIntermTyped* argSampleIdx = argAggregate->getSequence()[2]->getAsTyped(); |
| txfetch->getSequence().push_back(argSampleIdx); |
| } else if (isBuffer) { |
| // Nothing else to do for buffers. |
| } else if (isImage) { |
| // Nothing else to do for images. |
| } else { |
| // 2DMS and buffer have no LOD, but everything else does. |
| txfetch->getSequence().push_back(lodComponent); |
| } |
| |
| // Obtain offset arg, if there is one. |
| if (hasOffset) { |
| const int offsetPos = (isMS ? 3 : 2); |
| argOffset = argAggregate->getSequence()[offsetPos]->getAsTyped(); |
| txfetch->getSequence().push_back(argOffset); |
| } |
| |
| node = clampReturn(txfetch, sampler); |
| |
| break; |
| } |
| |
| case EOpMethodSampleLevel: |
| { |
| TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped(); |
| TIntermTyped* argSamp = argAggregate->getSequence()[1]->getAsTyped(); |
| TIntermTyped* argCoord = argAggregate->getSequence()[2]->getAsTyped(); |
| TIntermTyped* argLod = argAggregate->getSequence()[3]->getAsTyped(); |
| TIntermTyped* argOffset = nullptr; |
| const TSampler& sampler = argTex->getType().getSampler(); |
| |
| const int numArgs = (int)argAggregate->getSequence().size(); |
| |
| if (numArgs == 5) // offset, if present |
| argOffset = argAggregate->getSequence()[4]->getAsTyped(); |
| |
| const TOperator textureOp = (argOffset == nullptr ? EOpTextureLod : EOpTextureLodOffset); |
| TIntermAggregate* txsample = new TIntermAggregate(textureOp); |
| |
| TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp); |
| |
| txsample->getSequence().push_back(txcombine); |
| txsample->getSequence().push_back(argCoord); |
| txsample->getSequence().push_back(argLod); |
| |
| if (argOffset != nullptr) |
| txsample->getSequence().push_back(argOffset); |
| |
| node = clampReturn(txsample, sampler); |
| |
| break; |
| } |
| |
| case EOpMethodGather: |
| { |
| TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped(); |
| TIntermTyped* argSamp = argAggregate->getSequence()[1]->getAsTyped(); |
| TIntermTyped* argCoord = argAggregate->getSequence()[2]->getAsTyped(); |
| TIntermTyped* argOffset = nullptr; |
| |
| // Offset is optional |
| if (argAggregate->getSequence().size() > 3) |
| argOffset = argAggregate->getSequence()[3]->getAsTyped(); |
| |
| const TOperator textureOp = (argOffset == nullptr ? EOpTextureGather : EOpTextureGatherOffset); |
| TIntermAggregate* txgather = new TIntermAggregate(textureOp); |
| |
| TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp); |
| |
| txgather->getSequence().push_back(txcombine); |
| txgather->getSequence().push_back(argCoord); |
| // Offset if not given is implicitly channel 0 (red) |
| |
| if (argOffset != nullptr) |
| txgather->getSequence().push_back(argOffset); |
| |
| txgather->setType(node->getType()); |
| txgather->setLoc(loc); |
| node = txgather; |
| |
| break; |
| } |
| |
| case EOpMethodGatherRed: // fall through... |
| case EOpMethodGatherGreen: // ... |
| case EOpMethodGatherBlue: // ... |
| case EOpMethodGatherAlpha: // ... |
| case EOpMethodGatherCmpRed: // ... |
| case EOpMethodGatherCmpGreen: // ... |
| case EOpMethodGatherCmpBlue: // ... |
| case EOpMethodGatherCmpAlpha: // ... |
| { |
| int channel = 0; // the channel we are gathering |
| int cmpValues = 0; // 1 if there is a compare value (handier than a bool below) |
| |
| switch (op) { |
| case EOpMethodGatherCmpRed: cmpValues = 1; // fall through |
| case EOpMethodGatherRed: channel = 0; break; |
| case EOpMethodGatherCmpGreen: cmpValues = 1; // fall through |
| case EOpMethodGatherGreen: channel = 1; break; |
| case EOpMethodGatherCmpBlue: cmpValues = 1; // fall through |
| case EOpMethodGatherBlue: channel = 2; break; |
| case EOpMethodGatherCmpAlpha: cmpValues = 1; // fall through |
| case EOpMethodGatherAlpha: channel = 3; break; |
| default: assert(0); break; |
| } |
| |
| // For now, we have nothing to map the component-wise comparison forms |
| // to, because neither GLSL nor SPIR-V has such an opcode. Issue an |
| // unimplemented error instead. Most of the machinery is here if that |
| // should ever become available. |
| if (cmpValues) { |
| error(loc, "unimplemented: component-level gather compare", "", ""); |
| return; |
| } |
| |
| int arg = 0; |
| |
| TIntermTyped* argTex = argAggregate->getSequence()[arg++]->getAsTyped(); |
| TIntermTyped* argSamp = argAggregate->getSequence()[arg++]->getAsTyped(); |
| TIntermTyped* argCoord = argAggregate->getSequence()[arg++]->getAsTyped(); |
| TIntermTyped* argOffset = nullptr; |
| TIntermTyped* argOffsets[4] = { nullptr, nullptr, nullptr, nullptr }; |
| // TIntermTyped* argStatus = nullptr; // TODO: residency |
| TIntermTyped* argCmp = nullptr; |
| |
| const TSamplerDim dim = argTex->getType().getSampler().dim; |
| |
| const int argSize = (int)argAggregate->getSequence().size(); |
| bool hasStatus = (argSize == (5+cmpValues) || argSize == (8+cmpValues)); |
| bool hasOffset1 = false; |
| bool hasOffset4 = false; |
| |
| // Only 2D forms can have offsets. Discover if we have 0, 1 or 4 offsets. |
| if (dim == Esd2D) { |
| hasOffset1 = (argSize == (4+cmpValues) || argSize == (5+cmpValues)); |
| hasOffset4 = (argSize == (7+cmpValues) || argSize == (8+cmpValues)); |
| } |
| |
| assert(!(hasOffset1 && hasOffset4)); |
| |
| TOperator textureOp = EOpTextureGather; |
| |
| // Compare forms have compare value |
| if (cmpValues != 0) |
| argCmp = argOffset = argAggregate->getSequence()[arg++]->getAsTyped(); |
| |
| // Some forms have single offset |
| if (hasOffset1) { |
| textureOp = EOpTextureGatherOffset; // single offset form |
| argOffset = argAggregate->getSequence()[arg++]->getAsTyped(); |
| } |
| |
| // Some forms have 4 gather offsets |
| if (hasOffset4) { |
| textureOp = EOpTextureGatherOffsets; // note plural, for 4 offset form |
| for (int offsetNum = 0; offsetNum < 4; ++offsetNum) |
| argOffsets[offsetNum] = argAggregate->getSequence()[arg++]->getAsTyped(); |
| } |
| |
| // Residency status |
| if (hasStatus) { |
| // argStatus = argAggregate->getSequence()[arg++]->getAsTyped(); |
| error(loc, "unimplemented: residency status", "", ""); |
| return; |
| } |
| |
| TIntermAggregate* txgather = new TIntermAggregate(textureOp); |
| TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp); |
| |
| TIntermTyped* argChannel = intermediate.addConstantUnion(channel, loc, true); |
| |
| txgather->getSequence().push_back(txcombine); |
| txgather->getSequence().push_back(argCoord); |
| |
| // AST wants an array of 4 offsets, where HLSL has separate args. Here |
| // we construct an array from the separate args. |
| if (hasOffset4) { |
| TType arrayType(EbtInt, EvqTemporary, 2); |
| TArraySizes arraySizes; |
| arraySizes.addInnerSize(4); |
| arrayType.newArraySizes(arraySizes); |
| |
| TIntermAggregate* initList = new TIntermAggregate(EOpNull); |
| |
| for (int offsetNum = 0; offsetNum < 4; ++offsetNum) |
| initList->getSequence().push_back(argOffsets[offsetNum]); |
| |
| argOffset = addConstructor(loc, initList, arrayType); |
| } |
| |
| // Add comparison value if we have one |
| if (argTex->getType().getSampler().isShadow()) |
| txgather->getSequence().push_back(argCmp); |
| |
| // Add offset (either 1, or an array of 4) if we have one |
| if (argOffset != nullptr) |
| txgather->getSequence().push_back(argOffset); |
| |
| txgather->getSequence().push_back(argChannel); |
| |
| txgather->setType(node->getType()); |
| txgather->setLoc(loc); |
| node = txgather; |
| |
| break; |
| } |
| |
| case EOpMethodCalculateLevelOfDetail: |
| case EOpMethodCalculateLevelOfDetailUnclamped: |
| { |
| TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped(); |
| TIntermTyped* argSamp = argAggregate->getSequence()[1]->getAsTyped(); |
| TIntermTyped* argCoord = argAggregate->getSequence()[2]->getAsTyped(); |
| |
| TIntermAggregate* txquerylod = new TIntermAggregate(EOpTextureQueryLod); |
| |
| TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp); |
| txquerylod->getSequence().push_back(txcombine); |
| txquerylod->getSequence().push_back(argCoord); |
| |
| TIntermTyped* lodComponent = intermediate.addConstantUnion(0, loc, true); |
| TIntermTyped* lodComponentIdx = intermediate.addIndex(EOpIndexDirect, txquerylod, lodComponent, loc); |
| lodComponentIdx->setType(TType(EbtFloat, EvqTemporary, 1)); |
| |
| node = lodComponentIdx; |
| |
| // We cannot currently obtain the unclamped LOD |
| if (op == EOpMethodCalculateLevelOfDetailUnclamped) |
| error(loc, "unimplemented: CalculateLevelOfDetailUnclamped", "", ""); |
| |
| break; |
| } |
| |
| case EOpMethodGetSamplePosition: |
| { |
| error(loc, "unimplemented: GetSamplePosition", "", ""); |
| break; |
| } |
| |
| default: |
| break; // most pass through unchanged |
| } |
| } |
| |
| // |
| // Decompose geometry shader methods |
| // |
| void HlslParseContext::decomposeGeometryMethods(const TSourceLoc& loc, TIntermTyped*& node, TIntermNode* arguments) |
| { |
| if (!node || !node->getAsOperator()) |
| return; |
| |
| const TOperator op = node->getAsOperator()->getOp(); |
| const TIntermAggregate* argAggregate = arguments ? arguments->getAsAggregate() : nullptr; |
| |
| switch (op) { |
| case EOpMethodAppend: |
| if (argAggregate) { |
| TIntermAggregate* sequence = nullptr; |
| TIntermAggregate* emit = new TIntermAggregate(EOpEmitVertex); |
| |
| emit->setLoc(loc); |
| emit->setType(TType(EbtVoid)); |
| |
| sequence = intermediate.growAggregate(sequence, |
| intermediate.addAssign(EOpAssign, |
| argAggregate->getSequence()[0]->getAsTyped(), |
| argAggregate->getSequence()[1]->getAsTyped(), loc), |
| loc); |
| |
| sequence = intermediate.growAggregate(sequence, emit); |
| |
| sequence->setOperator(EOpSequence); |
| sequence->setLoc(loc); |
| sequence->setType(TType(EbtVoid)); |
| node = sequence; |
| } |
| break; |
| |
| case EOpMethodRestartStrip: |
| { |
| TIntermAggregate* cut = new TIntermAggregate(EOpEndPrimitive); |
| cut->setLoc(loc); |
| cut->setType(TType(EbtVoid)); |
| node = cut; |
| } |
| break; |
| |
| default: |
| break; // most pass through unchanged |
| } |
| } |
| |
| // |
| // Optionally decompose intrinsics to AST opcodes. |
| // |
| void HlslParseContext::decomposeIntrinsic(const TSourceLoc& loc, TIntermTyped*& node, TIntermNode* arguments) |
| { |
| // Helper to find image data for image atomics: |
| // OpImageLoad(image[idx]) |
| // We take the image load apart and add its params to the atomic op aggregate node |
| const auto imageAtomicParams = [this, &loc, &node](TIntermAggregate* atomic, TIntermTyped* load) { |
| TIntermAggregate* loadOp = load->getAsAggregate(); |
| if (loadOp == nullptr) { |
| error(loc, "unknown image type in atomic operation", "", ""); |
| node = nullptr; |
| return; |
| } |
| |
| atomic->getSequence().push_back(loadOp->getSequence()[0]); |
| atomic->getSequence().push_back(loadOp->getSequence()[1]); |
| }; |
| |
| // Return true if this is an imageLoad, which we will change to an image atomic. |
| const auto isImageParam = [](TIntermTyped* image) -> bool { |
| TIntermAggregate* imageAggregate = image->getAsAggregate(); |
| return imageAggregate != nullptr && imageAggregate->getOp() == EOpImageLoad; |
| }; |
| |
| // HLSL intrinsics can be pass through to native AST opcodes, or decomposed here to existing AST |
| // opcodes for compatibility with existing software stacks. |
| static const bool decomposeHlslIntrinsics = true; |
| |
| if (!decomposeHlslIntrinsics || !node || !node->getAsOperator()) |
| return; |
| |
| const TIntermAggregate* argAggregate = arguments ? arguments->getAsAggregate() : nullptr; |
| TIntermUnary* fnUnary = node->getAsUnaryNode(); |
| const TOperator op = node->getAsOperator()->getOp(); |
| |
| switch (op) { |
| case EOpGenMul: |
| { |
| // mul(a,b) -> MatrixTimesMatrix, MatrixTimesVector, MatrixTimesScalar, VectorTimesScalar, Dot, Mul |
| // Since we are treating HLSL rows like GLSL columns (the first matrix indirection), |
| // we must reverse the operand order here. Hence, arg0 gets sequence[1], etc. |
| TIntermTyped* arg0 = argAggregate->getSequence()[1]->getAsTyped(); |
| TIntermTyped* arg1 = argAggregate->getSequence()[0]->getAsTyped(); |
| |
| if (arg0->isVector() && arg1->isVector()) { // vec * vec |
| node->getAsAggregate()->setOperator(EOpDot); |
| } else { |
| node = handleBinaryMath(loc, "mul", EOpMul, arg0, arg1); |
| } |
| |
| break; |
| } |
| |
| case EOpRcp: |
| { |
| // rcp(a) -> 1 / a |
| TIntermTyped* arg0 = fnUnary->getOperand(); |
| TBasicType type0 = arg0->getBasicType(); |
| TIntermTyped* one = intermediate.addConstantUnion(1, type0, loc, true); |
| node = handleBinaryMath(loc, "rcp", EOpDiv, one, arg0); |
| |
| break; |
| } |
| |
| case EOpSaturate: |
| { |
| // saturate(a) -> clamp(a,0,1) |
| TIntermTyped* arg0 = fnUnary->getOperand(); |
| TBasicType type0 = arg0->getBasicType(); |
| TIntermAggregate* clamp = new TIntermAggregate(EOpClamp); |
| |
| clamp->getSequence().push_back(arg0); |
| clamp->getSequence().push_back(intermediate.addConstantUnion(0, type0, loc, true)); |
| clamp->getSequence().push_back(intermediate.addConstantUnion(1, type0, loc, true)); |
| clamp->setLoc(loc); |
| clamp->setType(node->getType()); |
| clamp->getWritableType().getQualifier().makeTemporary(); |
| node = clamp; |
| |
| break; |
| } |
| |
| case EOpSinCos: |
| { |
| // sincos(a,b,c) -> b = sin(a), c = cos(a) |
| TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped(); |
| TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped(); |
| TIntermTyped* arg2 = argAggregate->getSequence()[2]->getAsTyped(); |
| |
| TIntermTyped* sinStatement = handleUnaryMath(loc, "sin", EOpSin, arg0); |
| TIntermTyped* cosStatement = handleUnaryMath(loc, "cos", EOpCos, arg0); |
| TIntermTyped* sinAssign = intermediate.addAssign(EOpAssign, arg1, sinStatement, loc); |
| TIntermTyped* cosAssign = intermediate.addAssign(EOpAssign, arg2, cosStatement, loc); |
| |
| TIntermAggregate* compoundStatement = intermediate.makeAggregate(sinAssign, loc); |
| compoundStatement = intermediate.growAggregate(compoundStatement, cosAssign); |
| compoundStatement->setOperator(EOpSequence); |
| compoundStatement->setLoc(loc); |
| compoundStatement->setType(TType(EbtVoid)); |
| |
| node = compoundStatement; |
| |
| break; |
| } |
| |
| case EOpClip: |
| { |
| // clip(a) -> if (any(a<0)) discard; |
| TIntermTyped* arg0 = fnUnary->getOperand(); |
| TBasicType type0 = arg0->getBasicType(); |
| TIntermTyped* compareNode = nullptr; |
| |
| // For non-scalars: per experiment with FXC compiler, discard if any component < 0. |
| if (!arg0->isScalar()) { |
| // component-wise compare: a < 0 |
| TIntermAggregate* less = new TIntermAggregate(EOpLessThan); |
| less->getSequence().push_back(arg0); |
| less->setLoc(loc); |
| |
| // make vec or mat of bool matching dimensions of input |
| less->setType(TType(EbtBool, EvqTemporary, |
| arg0->getType().getVectorSize(), |
| arg0->getType().getMatrixCols(), |
| arg0->getType().getMatrixRows(), |
| arg0->getType().isVector())); |
| |
| // calculate # of components for comparison const |
| const int constComponentCount = |
| std::max(arg0->getType().getVectorSize(), 1) * |
| std::max(arg0->getType().getMatrixCols(), 1) * |
| std::max(arg0->getType().getMatrixRows(), 1); |
| |
| TConstUnion zero; |
| zero.setDConst(0.0); |
| TConstUnionArray zeros(constComponentCount, zero); |
| |
| less->getSequence().push_back(intermediate.addConstantUnion(zeros, arg0->getType(), loc, true)); |
| |
| compareNode = intermediate.addBuiltInFunctionCall(loc, EOpAny, true, less, TType(EbtBool)); |
| } else { |
| TIntermTyped* zero = intermediate.addConstantUnion(0, type0, loc, true); |
| compareNode = handleBinaryMath(loc, "clip", EOpLessThan, arg0, zero); |
| } |
| |
| TIntermBranch* killNode = intermediate.addBranch(EOpKill, loc); |
| |
| node = new TIntermSelection(compareNode, killNode, nullptr); |
| node->setLoc(loc); |
| |
| break; |
| } |
| |
| case EOpLog10: |
| { |
| // log10(a) -> log2(a) * 0.301029995663981 (== 1/log2(10)) |
| TIntermTyped* arg0 = fnUnary->getOperand(); |
| TIntermTyped* log2 = handleUnaryMath(loc, "log2", EOpLog2, arg0); |
| TIntermTyped* base = intermediate.addConstantUnion(0.301029995663981f, EbtFloat, loc, true); |
| |
| node = handleBinaryMath(loc, "mul", EOpMul, log2, base); |
| |
| break; |
| } |
| |
| case EOpDst: |
| { |
| // dest.x = 1; |
| // dest.y = src0.y * src1.y; |
| // dest.z = src0.z; |
| // dest.w = src1.w; |
| |
| TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped(); |
| TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped(); |
| |
| TIntermTyped* y = intermediate.addConstantUnion(1, loc, true); |
| TIntermTyped* z = intermediate.addConstantUnion(2, loc, true); |
| TIntermTyped* w = intermediate.addConstantUnion(3, loc, true); |
| |
| TIntermTyped* src0y = intermediate.addIndex(EOpIndexDirect, arg0, y, loc); |
| TIntermTyped* src1y = intermediate.addIndex(EOpIndexDirect, arg1, y, loc); |
| TIntermTyped* src0z = intermediate.addIndex(EOpIndexDirect, arg0, z, loc); |
| TIntermTyped* src1w = intermediate.addIndex(EOpIndexDirect, arg1, w, loc); |
| |
| TIntermAggregate* dst = new TIntermAggregate(EOpConstructVec4); |
| |
| dst->getSequence().push_back(intermediate.addConstantUnion(1.0, EbtFloat, loc, true)); |
| dst->getSequence().push_back(handleBinaryMath(loc, "mul", EOpMul, src0y, src1y)); |
| dst->getSequence().push_back(src0z); |
| dst->getSequence().push_back(src1w); |
| dst->setType(TType(EbtFloat, EvqTemporary, 4)); |
| dst->setLoc(loc); |
| node = dst; |
| |
| break; |
| } |
| |
| case EOpInterlockedAdd: // optional last argument (if present) is assigned from return value |
| case EOpInterlockedMin: // ... |
| case EOpInterlockedMax: // ... |
| case EOpInterlockedAnd: // ... |
| case EOpInterlockedOr: // ... |
| case EOpInterlockedXor: // ... |
| case EOpInterlockedExchange: // always has output arg |
| { |
| TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped(); // dest |
| TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped(); // value |
| TIntermTyped* arg2 = nullptr; |
| |
| if (argAggregate->getSequence().size() > 2) |
| arg2 = argAggregate->getSequence()[2]->getAsTyped(); |
| |
| const bool isImage = isImageParam(arg0); |
| const TOperator atomicOp = mapAtomicOp(loc, op, isImage); |
| TIntermAggregate* atomic = new TIntermAggregate(atomicOp); |
| atomic->setType(arg0->getType()); |
| atomic->getWritableType().getQualifier().makeTemporary(); |
| atomic->setLoc(loc); |
| |
| if (isImage) { |
| // orig_value = imageAtomicOp(image, loc, data) |
| imageAtomicParams(atomic, arg0); |
| atomic->getSequence().push_back(arg1); |
| |
| if (argAggregate->getSequence().size() > 2) { |
| node = intermediate.addAssign(EOpAssign, arg2, atomic, loc); |
| } else { |
| node = atomic; // no assignment needed, as there was no out var. |
| } |
| } else { |
| // Normal memory variable: |
| // arg0 = mem, arg1 = data, arg2(optional,out) = orig_value |
| if (argAggregate->getSequence().size() > 2) { |
| // optional output param is present. return value goes to arg2. |
| atomic->getSequence().push_back(arg0); |
| atomic->getSequence().push_back(arg1); |
| |
| node = intermediate.addAssign(EOpAssign, arg2, atomic, loc); |
| } else { |
| // Set the matching operator. Since output is absent, this is all we need to do. |
| node->getAsAggregate()->setOperator(atomicOp); |
| } |
| } |
| |
| break; |
| } |
| |
| case EOpInterlockedCompareExchange: |
| { |
| TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped(); // dest |
| TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped(); // cmp |
| TIntermTyped* arg2 = argAggregate->getSequence()[2]->getAsTyped(); // value |
| TIntermTyped* arg3 = argAggregate->getSequence()[3]->getAsTyped(); // orig |
| |
| const bool isImage = isImageParam(arg0); |
| TIntermAggregate* atomic = new TIntermAggregate(mapAtomicOp(loc, op, isImage)); |
| atomic->setLoc(loc); |
| atomic->setType(arg2->getType()); |
| atomic->getWritableType().getQualifier().makeTemporary(); |
| |
| if (isImage) { |
| imageAtomicParams(atomic, arg0); |
| } else { |
| atomic->getSequence().push_back(arg0); |
| } |
| |
| atomic->getSequence().push_back(arg1); |
| atomic->getSequence().push_back(arg2); |
| node = intermediate.addAssign(EOpAssign, arg3, atomic, loc); |
| |
| break; |
| } |
| |
| case EOpEvaluateAttributeSnapped: |
| { |
| // SPIR-V InterpolateAtOffset uses float vec2 offset in pixels |
| // HLSL uses int2 offset on a 16x16 grid in [-8..7] on x & y: |
| // iU = (iU<<28)>>28 |
| // fU = ((float)iU)/16 |
| // Targets might handle this natively, in which case they can disable |
| // decompositions. |
| |
| TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped(); // value |
| TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped(); // offset |
| |
| TIntermTyped* i28 = intermediate.addConstantUnion(28, loc, true); |
| TIntermTyped* iU = handleBinaryMath(loc, ">>", EOpRightShift, |
| handleBinaryMath(loc, "<<", EOpLeftShift, arg1, i28), |
| i28); |
| |
| TIntermTyped* recip16 = intermediate.addConstantUnion((1.0/16.0), EbtFloat, loc, true); |
| TIntermTyped* floatOffset = handleBinaryMath(loc, "mul", EOpMul, |
| intermediate.addConversion(EOpConstructFloat, |
| TType(EbtFloat, EvqTemporary, 2), iU), |
| recip16); |
| |
| TIntermAggregate* interp = new TIntermAggregate(EOpInterpolateAtOffset); |
| interp->getSequence().push_back(arg0); |
| interp->getSequence().push_back(floatOffset); |
| interp->setLoc(loc); |
| interp->setType(arg0->getType()); |
| interp->getWritableType().getQualifier().makeTemporary(); |
| |
| node = interp; |
| |
| break; |
| } |
| |
| case EOpLit: |
| { |
| TIntermTyped* n_dot_l = argAggregate->getSequence()[0]->getAsTyped(); |
| TIntermTyped* n_dot_h = argAggregate->getSequence()[1]->getAsTyped(); |
| TIntermTyped* m = argAggregate->getSequence()[2]->getAsTyped(); |
| |
| TIntermAggregate* dst = new TIntermAggregate(EOpConstructVec4); |
| |
| // Ambient |
| dst->getSequence().push_back(intermediate.addConstantUnion(1.0, EbtFloat, loc, true)); |
| |
| // Diffuse: |
| TIntermTyped* zero = intermediate.addConstantUnion(0.0, EbtFloat, loc, true); |
| TIntermAggregate* diffuse = new TIntermAggregate(EOpMax); |
| diffuse->getSequence().push_back(n_dot_l); |
| diffuse->getSequence().push_back(zero); |
| diffuse->setLoc(loc); |
| diffuse->setType(TType(EbtFloat)); |
| dst->getSequence().push_back(diffuse); |
| |
| // Specular: |
| TIntermAggregate* min_ndot = new TIntermAggregate(EOpMin); |
| min_ndot->getSequence().push_back(n_dot_l); |
| min_ndot->getSequence().push_back(n_dot_h); |
| min_ndot->setLoc(loc); |
| min_ndot->setType(TType(EbtFloat)); |
| |
| TIntermTyped* compare = handleBinaryMath(loc, "<", EOpLessThan, min_ndot, zero); |
| TIntermTyped* n_dot_h_m = handleBinaryMath(loc, "mul", EOpMul, n_dot_h, m); // n_dot_h * m |
| |
| dst->getSequence().push_back(intermediate.addSelection(compare, zero, n_dot_h_m, loc)); |
| |
| // One: |
| dst->getSequence().push_back(intermediate.addConstantUnion(1.0, EbtFloat, loc, true)); |
| |
| dst->setLoc(loc); |
| dst->setType(TType(EbtFloat, EvqTemporary, 4)); |
| node = dst; |
| break; |
| } |
| |
| case EOpAsDouble: |
| { |
| // asdouble accepts two 32 bit ints. we can use EOpUint64BitsToDouble, but must |
| // first construct a uint64. |
| TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped(); |
| TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped(); |
| |
| if (arg0->getType().isVector()) { // TODO: ... |
| error(loc, "double2 conversion not implemented", "asdouble", ""); |
| break; |
| } |
| |
| TIntermAggregate* uint64 = new TIntermAggregate(EOpConstructUVec2); |
| |
| uint64->getSequence().push_back(arg0); |
| uint64->getSequence().push_back(arg1); |
| uint64->setType(TType(EbtUint, EvqTemporary, 2)); // convert 2 uints to a uint2 |
| uint64->setLoc(loc); |
| |
| // bitcast uint2 to a double |
| TIntermTyped* convert = new TIntermUnary(EOpUint64BitsToDouble); |
| convert->getAsUnaryNode()->setOperand(uint64); |
| convert->setLoc(loc); |
| convert->setType(TType(EbtDouble, EvqTemporary)); |
| node = convert; |
| |
| break; |
| } |
| |
| case EOpF16tof32: |
| case EOpF32tof16: |
| { |
| // Temporary until decomposition is available. |
| error(loc, "unimplemented intrinsic: handle natively", "f32tof16", ""); |
| break; |
| } |
| |
| default: |
| break; // most pass through unchanged |
| } |
| } |
| |
| // |
| // Handle seeing function call syntax in the grammar, which could be any of |
| // - .length() method |
| // - constructor |
| // - a call to a built-in function mapped to an operator |
| // - a call to a built-in function that will remain a function call (e.g., texturing) |
| // - user function |
| // - subroutine call (not implemented yet) |
| // |
| TIntermTyped* HlslParseContext::handleFunctionCall(const TSourceLoc& loc, TFunction* function, TIntermNode* arguments) |
| { |
| TIntermTyped* result = nullptr; |
| |
| TOperator op = function->getBuiltInOp(); |
| if (op == EOpArrayLength) |
| result = handleLengthMethod(loc, function, arguments); |
| else if (op != EOpNull) { |
| // |
| // Then this should be a constructor. |
| // Don't go through the symbol table for constructors. |
| // Their parameters will be verified algorithmically. |
| // |
| TType type(EbtVoid); // use this to get the type back |
| if (! constructorError(loc, arguments, *function, op, type)) { |
| // |
| // It's a constructor, of type 'type'. |
| // |
| result = addConstructor(loc, arguments, type); |
| if (result == nullptr) |
| error(loc, "cannot construct with these arguments", type.getCompleteString().c_str(), ""); |
| } |
| } else { |
| // |
| // Find it in the symbol table. |
| // |
| const TFunction* fnCandidate; |
| bool builtIn; |
| fnCandidate = findFunction(loc, *function, builtIn, arguments); |
| if (fnCandidate) { |
| // This is a declared function that might map to |
| // - a built-in operator, |
| // - a built-in function not mapped to an operator, or |
| // - a user function. |
| |
| // Error check for a function requiring specific extensions present. |
| if (builtIn && fnCandidate->getNumExtensions()) |
| requireExtensions(loc, fnCandidate->getNumExtensions(), fnCandidate->getExtensions(), fnCandidate->getName().c_str()); |
| |
| // Convert 'in' arguments |
| if (arguments) |
| addInputArgumentConversions(*fnCandidate, arguments); |
| |
| op = fnCandidate->getBuiltInOp(); |
| if (builtIn && op != EOpNull) { |
| // A function call mapped to a built-in operation. |
| result = intermediate.addBuiltInFunctionCall(loc, op, fnCandidate->getParamCount() == 1, arguments, fnCandidate->getType()); |
| if (result == nullptr) { |
| error(arguments->getLoc(), " wrong operand type", "Internal Error", |
| "built in unary operator function. Type: %s", |
| static_cast<TIntermTyped*>(arguments)->getCompleteString().c_str()); |
| } else if (result->getAsOperator()) { |
| builtInOpCheck(loc, *fnCandidate, *result->getAsOperator()); |
| } |
| } else { |
| // This is a function call not mapped to built-in operator. |
| // It could still be a built-in function, but only if PureOperatorBuiltins == false. |
| result = intermediate.setAggregateOperator(arguments, EOpFunctionCall, fnCandidate->getType(), loc); |
| TIntermAggregate* call = result->getAsAggregate(); |
| call->setName(fnCandidate->getMangledName()); |
| |
| // this is how we know whether the given function is a built-in function or a user-defined function |
| // if builtIn == false, it's a userDefined -> could be an overloaded built-in function also |
| // if builtIn == true, it's definitely a built-in function with EOpNull |
| if (! builtIn) { |
| call->setUserDefined(); |
| intermediate.addToCallGraph(infoSink, currentCaller, fnCandidate->getMangledName()); |
| } |
| } |
| |
| // for decompositions, since we want to operate on the function node, not the aggregate holding |
| // output conversions. |
| const TIntermTyped* fnNode = result; |
| |
| decomposeIntrinsic(loc, result, arguments); // HLSL->AST intrinsic decompositions |
| decomposeSampleMethods(loc, result, arguments); // HLSL->AST sample method decompositions |
| decomposeGeometryMethods(loc, result, arguments); // HLSL->AST geometry method decompositions |
| |
| // Convert 'out' arguments. If it was a constant folded built-in, it won't be an aggregate anymore. |
| // Built-ins with a single argument aren't called with an aggregate, but they also don't have an output. |
| // Also, build the qualifier list for user function calls, which are always called with an aggregate. |
| // We don't do this is if there has been a decomposition, which will have added its own conversions |
| // for output parameters. |
| if (result == fnNode && result->getAsAggregate()) { |
| TQualifierList& qualifierList = result->getAsAggregate()->getQualifierList(); |
| for (int i = 0; i < fnCandidate->getParamCount(); ++i) { |
| TStorageQualifier qual = (*fnCandidate)[i].type->getQualifier().storage; |
| qualifierList.push_back(qual); |
| } |
| result = addOutputArgumentConversions(*fnCandidate, *result->getAsOperator()); |
| } |
| } |
| } |
| |
| // generic error recovery |
| // TODO: simplification: localize all the error recoveries that look like this, and taking type into account to reduce cascades |
| if (result == nullptr) |
| result = intermediate.addConstantUnion(0.0, EbtFloat, loc); |
| |
| return result; |
| } |
| |
| // Finish processing object.length(). This started earlier in handleDotDereference(), where |
| // the ".length" part was recognized and semantically checked, and finished here where the |
| // function syntax "()" is recognized. |
| // |
| // Return resulting tree node. |
| TIntermTyped* HlslParseContext::handleLengthMethod(const TSourceLoc& loc, TFunction* function, TIntermNode* intermNode) |
| { |
| int length = 0; |
| |
| if (function->getParamCount() > 0) |
| error(loc, "method does not accept any arguments", function->getName().c_str(), ""); |
| else { |
| const TType& type = intermNode->getAsTyped()->getType(); |
| if (type.isArray()) { |
| if (type.isRuntimeSizedArray()) { |
| // Create a unary op and let the back end handle it |
| return intermediate.addBuiltInFunctionCall(loc, EOpArrayLength, true, intermNode, TType(EbtInt)); |
| } else |
| length = type.getOuterArraySize(); |
| } else if (type.isMatrix()) |
| length = type.getMatrixCols(); |
| else if (type.isVector()) |
| length = type.getVectorSize(); |
| else { |
| // we should not get here, because earlier semantic checking should have prevented this path |
| error(loc, ".length()", "unexpected use of .length()", ""); |
| } |
| } |
| |
| if (length == 0) |
| length = 1; |
| |
| return intermediate.addConstantUnion(length, loc); |
| } |
| |
| // |
| // Add any needed implicit conversions for function-call arguments to input parameters. |
| // |
| void HlslParseContext::addInputArgumentConversions(const TFunction& function, TIntermNode*& arguments) const |
| { |
| TIntermAggregate* aggregate = arguments->getAsAggregate(); |
| const auto setArg = [&](int argNum, TIntermNode* arg) { |
| if (function.getParamCount() == 1) |
| arguments = arg; |
| else { |
| if (aggregate) |
| aggregate->getSequence()[argNum] = arg; |
| else |
| arguments = arg; |
| } |
| }; |
| |
| // Process each argument's conversion |
| for (int i = 0; i < function.getParamCount(); ++i) { |
| if (! function[i].type->getQualifier().isParamInput()) |
| continue; |
| |
| // At this early point there is a slight ambiguity between whether an aggregate 'arguments' |
| // is the single argument itself or its children are the arguments. Only one argument |
| // means take 'arguments' itself as the one argument. |
| TIntermTyped* arg = function.getParamCount() == 1 |
| ? arguments->getAsTyped() |
| : (aggregate ? aggregate->getSequence()[i]->getAsTyped() : arguments->getAsTyped()); |
| if (*function[i].type != arg->getType()) { |
| // In-qualified arguments just need an extra node added above the argument to |
| // convert to the correct type. |
| arg = intermediate.addConversion(EOpFunctionCall, *function[i].type, arg); |
| arg = intermediate.addShapeConversion(EOpFunctionCall, *function[i].type, arg); |
| setArg(i, arg); |
| } else { |
| if (wasFlattened(arg)) { |
| // Will make a two-level subtree. |
| // The deepest will copy member-by-member to build the structure to pass. |
| // The level above that will be a two-operand EOpComma sequence that follows the copy by the |
| // object itself. |
| TVariable* internalAggregate = makeInternalVariable("aggShadow", *function[i].type); |
| internalAggregate->getWritableType().getQualifier().makeTemporary(); |
| TIntermSymbol* internalSymbolNode = new TIntermSymbol(internalAggregate->getUniqueId(), |
| internalAggregate->getName(), |
| internalAggregate->getType()); |
| internalSymbolNode->setLoc(arg->getLoc()); |
| // This makes the deepest level, the member-wise copy |
| TIntermAggregate* assignAgg = handleAssign(arg->getLoc(), EOpAssign, internalSymbolNode, arg)->getAsAggregate(); |
| |
| // Now, pair that with the resulting aggregate. |
| assignAgg = intermediate.growAggregate(assignAgg, internalSymbolNode, arg->getLoc()); |
| assignAgg->setOperator(EOpComma); |
| assignAgg->setType(internalAggregate->getType()); |
| setArg(i, assignAgg); |
| } |
| } |
| } |
| } |
| |
| // |
| // Add any needed implicit output conversions for function-call arguments. This |
| // can require a new tree topology, complicated further by whether the function |
| // has a return value. |
| // |
| // Returns a node of a subtree that evaluates to the return value of the function. |
| // |
| TIntermTyped* HlslParseContext::addOutputArgumentConversions(const TFunction& function, TIntermOperator& intermNode) |
| { |
| assert (intermNode.getAsAggregate() != nullptr || intermNode.getAsUnaryNode() != nullptr); |
| |
| const TSourceLoc& loc = intermNode.getLoc(); |
| |
| TIntermSequence argSequence; // temp sequence for unary node args |
| |
| if (intermNode.getAsUnaryNode()) |
| argSequence.push_back(intermNode.getAsUnaryNode()->getOperand()); |
| |
| TIntermSequence& arguments = argSequence.empty() ? intermNode.getAsAggregate()->getSequence() : argSequence; |
| |
| const auto needsConversion = [&](int argNum) { |
| return function[argNum].type->getQualifier().isParamOutput() && |
| (*function[argNum].type != arguments[argNum]->getAsTyped()->getType() || |
| shouldConvertLValue(arguments[argNum]) || |
| wasFlattened(arguments[argNum]->getAsTyped())); |
| }; |
| |
| // Will there be any output conversions? |
| bool outputConversions = false; |
| for (int i = 0; i < function.getParamCount(); ++i) { |
| if (needsConversion(i)) { |
| outputConversions = true; |
| break; |
| } |
| } |
| |
| if (! outputConversions) |
| return &intermNode; |
| |
| // Setup for the new tree, if needed: |
| // |
| // Output conversions need a different tree topology. |
| // Out-qualified arguments need a temporary of the correct type, with the call |
| // followed by an assignment of the temporary to the original argument: |
| // void: function(arg, ...) -> ( function(tempArg, ...), arg = tempArg, ...) |
| // ret = function(arg, ...) -> ret = (tempRet = function(tempArg, ...), arg = tempArg, ..., tempRet) |
| // Where the "tempArg" type needs no conversion as an argument, but will convert on assignment. |
| TIntermTyped* conversionTree = nullptr; |
| TVariable* tempRet = nullptr; |
| if (intermNode.getBasicType() != EbtVoid) { |
| // do the "tempRet = function(...), " bit from above |
| tempRet = makeInternalVariable("tempReturn", intermNode.getType()); |
| TIntermSymbol* tempRetNode = intermediate.addSymbol(*tempRet, loc); |
| conversionTree = intermediate.addAssign(EOpAssign, tempRetNode, &intermNode, loc); |
| } else |
| conversionTree = &intermNode; |
| |
| conversionTree = intermediate.makeAggregate(conversionTree); |
| |
| // Process each argument's conversion |
| for (int i = 0; i < function.getParamCount(); ++i) { |
| if (needsConversion(i)) { |
| // Out-qualified arguments needing conversion need to use the topology setup above. |
| // Do the " ...(tempArg, ...), arg = tempArg" bit from above. |
| |
| // Make a temporary for what the function expects the argument to look like. |
| TVariable* tempArg = makeInternalVariable("tempArg", *function[i].type); |
| tempArg->getWritableType().getQualifier().makeTemporary(); |
| TIntermSymbol* tempArgNode = intermediate.addSymbol(*tempArg, loc); |
| |
| // This makes the deepest level, the member-wise copy |
| TIntermTyped* tempAssign = handleAssign(arguments[i]->getLoc(), EOpAssign, arguments[i]->getAsTyped(), tempArgNode); |
| tempAssign = handleLvalue(arguments[i]->getLoc(), "assign", tempAssign); |
| conversionTree = intermediate.growAggregate(conversionTree, tempAssign, arguments[i]->getLoc()); |
| |
| // replace the argument with another node for the same tempArg variable |
| arguments[i] = intermediate.addSymbol(*tempArg, loc); |
| } |
| } |
| |
| // Finalize the tree topology (see bigger comment above). |
| if (tempRet) { |
| // do the "..., tempRet" bit from above |
| TIntermSymbol* tempRetNode = intermediate.addSymbol(*tempRet, loc); |
| conversionTree = intermediate.growAggregate(conversionTree, tempRetNode, loc); |
| } |
| |
| conversionTree = intermediate.setAggregateOperator(conversionTree, EOpComma, intermNode.getType(), loc); |
| |
| return conversionTree; |
| } |
| |
| // |
| // Do additional checking of built-in function calls that is not caught |
| // by normal semantic checks on argument type, extension tagging, etc. |
| // |
| // Assumes there has been a semantically correct match to a built-in function prototype. |
| // |
| void HlslParseContext::builtInOpCheck(const TSourceLoc& loc, const TFunction& fnCandidate, TIntermOperator& callNode) |
| { |
| // Set up convenience accessors to the argument(s). There is almost always |
| // multiple arguments for the cases below, but when there might be one, |
| // check the unaryArg first. |
| const TIntermSequence* argp = nullptr; // confusing to use [] syntax on a pointer, so this is to help get a reference |
| const TIntermTyped* unaryArg = nullptr; |
| const TIntermTyped* arg0 = nullptr; |
| if (callNode.getAsAggregate()) { |
| argp = &callNode.getAsAggregate()->getSequence(); |
| if (argp->size() > 0) |
| arg0 = (*argp)[0]->getAsTyped(); |
| } else { |
| assert(callNode.getAsUnaryNode()); |
| unaryArg = callNode.getAsUnaryNode()->getOperand(); |
| arg0 = unaryArg; |
| } |
| const TIntermSequence& aggArgs = *argp; // only valid when unaryArg is nullptr |
| |
| switch (callNode.getOp()) { |
| case EOpTextureGather: |
| case EOpTextureGatherOffset: |
| case EOpTextureGatherOffsets: |
| { |
| // Figure out which variants are allowed by what extensions, |
| // and what arguments must be constant for which situations. |
| |
| TString featureString = fnCandidate.getName() + "(...)"; |
| const char* feature = featureString.c_str(); |
| int compArg = -1; // track which argument, if any, is the constant component argument |
| switch (callNode.getOp()) { |
| case EOpTextureGather: |
| // More than two arguments needs gpu_shader5, and rectangular or shadow needs gpu_shader5, |
| // otherwise, need GL_ARB_texture_gather. |
| if (fnCandidate.getParamCount() > 2 || fnCandidate[0].type->getSampler().dim == EsdRect || fnCandidate[0].type->getSampler().shadow) { |
| if (! fnCandidate[0].type->getSampler().shadow) |
| compArg = 2; |
| } |
| break; |
| case EOpTextureGatherOffset: |
| // GL_ARB_texture_gather is good enough for 2D non-shadow textures with no component argument |
| if (! fnCandidate[0].type->getSampler().shadow) |
| compArg = 3; |
| break; |
| case EOpTextureGatherOffsets: |
| if (! fnCandidate[0].type->getSampler().shadow) |
| compArg = 3; |
| break; |
| default: |
| break; |
| } |
| |
| if (compArg > 0 && compArg < fnCandidate.getParamCount()) { |
| if (aggArgs[compArg]->getAsConstantUnion()) { |
| int value = aggArgs[compArg]->getAsConstantUnion()->getConstArray()[0].getIConst(); |
| if (value < 0 || value > 3) |
| error(loc, "must be 0, 1, 2, or 3:", feature, "component argument"); |
| } else |
| error(loc, "must be a compile-time constant:", feature, "component argument"); |
| } |
| |
| break; |
| } |
| |
| case EOpTextureOffset: |
| case EOpTextureFetchOffset: |
| case EOpTextureProjOffset: |
| case EOpTextureLodOffset: |
| case EOpTextureProjLodOffset: |
| case EOpTextureGradOffset: |
| case EOpTextureProjGradOffset: |
| { |
| // Handle texture-offset limits checking |
| // Pick which argument has to hold constant offsets |
| int arg = -1; |
| switch (callNode.getOp()) { |
| case EOpTextureOffset: arg = 2; break; |
| case EOpTextureFetchOffset: arg = (arg0->getType().getSampler().dim != EsdRect) ? 3 : 2; break; |
| case EOpTextureProjOffset: arg = 2; break; |
| case EOpTextureLodOffset: arg = 3; break; |
| case EOpTextureProjLodOffset: arg = 3; break; |
| case EOpTextureGradOffset: arg = 4; break; |
| case EOpTextureProjGradOffset: arg = 4; break; |
| default: |
| assert(0); |
| break; |
| } |
| |
| if (arg > 0) { |
| if (! aggArgs[arg]->getAsConstantUnion()) |
| error(loc, "argument must be compile-time constant", "texel offset", ""); |
| else { |
| const TType& type = aggArgs[arg]->getAsTyped()->getType(); |
| for (int c = 0; c < type.getVectorSize(); ++c) { |
| int offset = aggArgs[arg]->getAsConstantUnion()->getConstArray()[c].getIConst(); |
| if (offset > resources.maxProgramTexelOffset || offset < resources.minProgramTexelOffset) |
| error(loc, "value is out of range:", "texel offset", "[gl_MinProgramTexelOffset, gl_MaxProgramTexelOffset]"); |
| } |
| } |
| } |
| |
| break; |
| } |
| |
| case EOpTextureQuerySamples: |
| case EOpImageQuerySamples: |
| break; |
| |
| case EOpImageAtomicAdd: |
| case EOpImageAtomicMin: |
| case EOpImageAtomicMax: |
| case EOpImageAtomicAnd: |
| case EOpImageAtomicOr: |
| case EOpImageAtomicXor: |
| case EOpImageAtomicExchange: |
| case EOpImageAtomicCompSwap: |
| break; |
| |
| case EOpInterpolateAtCentroid: |
| case EOpInterpolateAtSample: |
| case EOpInterpolateAtOffset: |
| // Make sure the first argument is an interpolant, or an array element of an interpolant |
| if (arg0->getType().getQualifier().storage != EvqVaryingIn) { |
| // It might still be an array element. |
| // |
| // We could check more, but the semantics of the first argument are already met; the |
| // only way to turn an array into a float/vec* is array dereference and swizzle. |
| // |
| // ES and desktop 4.3 and earlier: swizzles may not be used |
| // desktop 4.4 and later: swizzles may be used |
| const TIntermTyped* base = TIntermediate::findLValueBase(arg0, true); |
| if (base == nullptr || base->getType().getQualifier().storage != EvqVaryingIn) |
| error(loc, "first argument must be an interpolant, or interpolant-array element", fnCandidate.getName().c_str(), ""); |
| } |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| // |
| // Handle seeing a built-in constructor in a grammar production. |
| // |
| TFunction* HlslParseContext::handleConstructorCall(const TSourceLoc& loc, const TType& type) |
| { |
| TOperator op = intermediate.mapTypeToConstructorOp(type); |
| |
| if (op == EOpNull) { |
| error(loc, "cannot construct this type", type.getBasicString(), ""); |
| return nullptr; |
| } |
| |
| TString empty(""); |
| |
| return new TFunction(&empty, type, op); |
| } |
| |
| // |
| // Handle seeing a "COLON semantic" at the end of a type declaration, |
| // by updating the type according to the semantic. |
| // |
| void HlslParseContext::handleSemantic(TSourceLoc loc, TQualifier& qualifier, const TString& semantic) |
| { |
| // TODO: need to know if it's an input or an output |
| // The following sketches what needs to be done, but can't be right |
| // without taking into account stage and input/output. |
| |
| TString semanticUpperCase = semantic; |
| std::transform(semanticUpperCase.begin(), semanticUpperCase.end(), semanticUpperCase.begin(), ::toupper); |
| // in DX9, all outputs had to have a semantic associated with them, that was either consumed |
| // by the system or was a specific register assignment |
| // in DX10+, only semantics with the SV_ prefix have any meaning beyond decoration |
| // Fxc will only accept DX9 style semantics in compat mode |
| // Also, in DX10 if a SV value is present as the input of a stage, but isn't appropriate for that |
| // stage, it would just be ignored as it is likely there as part of an output struct from one stage |
| // to the next |
| |
| |
| bool bParseDX9 = false; |
| if (bParseDX9) { |
| if (semanticUpperCase == "PSIZE") |
| qualifier.builtIn = EbvPointSize; |
| else if (semantic == "FOG") |
| qualifier.builtIn = EbvFogFragCoord; |
| else if (semanticUpperCase == "DEPTH") |
| qualifier.builtIn = EbvFragDepth; |
| else if (semanticUpperCase == "VFACE") |
| qualifier.builtIn = EbvFace; |
| else if (semanticUpperCase == "VPOS") |
| qualifier.builtIn = EbvFragCoord; |
| } |
| |
| //SV Position has a different meaning in vertex vs fragment |
| if (semanticUpperCase == "SV_POSITION" && language != EShLangFragment) |
| qualifier.builtIn = EbvPosition; |
| else if (semanticUpperCase == "SV_POSITION" && language == EShLangFragment) |
| qualifier.builtIn = EbvFragCoord; |
| else if (semanticUpperCase == "SV_CLIPDISTANCE") |
| qualifier.builtIn = EbvClipDistance; |
| else if (semanticUpperCase == "SV_CULLDISTANCE") |
| qualifier.builtIn = EbvCullDistance; |
| else if (semanticUpperCase == "SV_VERTEXID") |
| qualifier.builtIn = EbvVertexIndex; |
| else if (semanticUpperCase == "SV_VIEWPORTARRAYINDEX") |
| qualifier.builtIn = EbvViewportIndex; |
| else if (semanticUpperCase == "SV_TESSFACTOR") |
| qualifier.builtIn = EbvTessLevelOuter; |
| |
| //Targets are defined 0-7 |
| else if (semanticUpperCase == "SV_TARGET") { |
| qualifier.builtIn = EbvNone; |
| //qualifier.layoutLocation = 0; |
| } else if (semanticUpperCase == "SV_TARGET0") { |
| qualifier.builtIn = EbvNone; |
| //qualifier.layoutLocation = 0; |
| } else if (semanticUpperCase == "SV_TARGET1") { |
| qualifier.builtIn = EbvNone; |
| //qualifier.layoutLocation = 1; |
| } else if (semanticUpperCase == "SV_TARGET2") { |
| qualifier.builtIn = EbvNone; |
| //qualifier.layoutLocation = 2; |
| } else if (semanticUpperCase == "SV_TARGET3") { |
| qualifier.builtIn = EbvNone; |
| //qualifier.layoutLocation = 3; |
| } else if (semanticUpperCase == "SV_TARGET4") { |
| qualifier.builtIn = EbvNone; |
| //qualifier.layoutLocation = 4; |
| } else if (semanticUpperCase == "SV_TARGET5") { |
| qualifier.builtIn = EbvNone; |
| //qualifier.layoutLocation = 5; |
| } else if (semanticUpperCase == "SV_TARGET6") { |
| qualifier.builtIn = EbvNone; |
| //qualifier.layoutLocation = 6; |
| } else if (semanticUpperCase == "SV_TARGET7") { |
| qualifier.builtIn = EbvNone; |
| //qualifier.layoutLocation = 7; |
| } else if (semanticUpperCase == "SV_SAMPLEINDEX") |
| qualifier.builtIn = EbvSampleId; |
| else if (semanticUpperCase == "SV_RENDERTARGETARRAYINDEX") |
| qualifier.builtIn = EbvLayer; |
| else if (semanticUpperCase == "SV_PRIMITIVEID") |
| qualifier.builtIn = EbvPrimitiveId; |
| else if (semanticUpperCase == "SV_OUTPUTCONTROLPOINTID") |
| qualifier.builtIn = EbvInvocationId; |
| else if (semanticUpperCase == "SV_ISFRONTFACE") |
| qualifier.builtIn = EbvFace; |
| else if (semanticUpperCase == "SV_INSTANCEID") |
| qualifier.builtIn = EbvInstanceIndex; |
| else if (semanticUpperCase == "SV_INSIDETESSFACTOR") |
| qualifier.builtIn = EbvTessLevelInner; |
| else if (semanticUpperCase == "SV_GSINSTANCEID") |
| qualifier.builtIn = EbvInvocationId; |
| else if (semanticUpperCase == "SV_DISPATCHTHREADID") |
| qualifier.builtIn = EbvLocalInvocationId; |
| else if (semanticUpperCase == "SV_GROUPTHREADID") |
| qualifier.builtIn = EbvLocalInvocationId; |
| else if (semanticUpperCase == "SV_GROUPID") |
| qualifier.builtIn = EbvWorkGroupId; |
| else if (semanticUpperCase == "SV_DOMAINLOCATION") |
| qualifier.builtIn = EbvTessCoord; |
| else if (semanticUpperCase == "SV_DEPTH") |
| qualifier.builtIn = EbvFragDepth; |
| else if( semanticUpperCase == "SV_COVERAGE") |
| qualifier.builtIn = EbvSampleMask; |
| |
| //TODO, these need to get refined to be more specific |
| else if( semanticUpperCase == "SV_DEPTHGREATEREQUAL") |
| qualifier.builtIn = EbvFragDepthGreater; |
| else if( semanticUpperCase == "SV_DEPTHLESSEQUAL") |
| qualifier.builtIn = EbvFragDepthLesser; |
| else if( semanticUpperCase == "SV_STENCILREF") |
| error(loc, "unimplemented; need ARB_shader_stencil_export", "SV_STENCILREF", ""); |
| else if( semanticUpperCase == "SV_GROUPINDEX") |
| error(loc, "unimplemented", "SV_GROUPINDEX", ""); |
| } |
| |
| // |
| // Handle seeing something like "PACKOFFSET LEFT_PAREN c[Subcomponent][.component] RIGHT_PAREN" |
| // |
| // 'location' has the "c[Subcomponent]" part. |
| // 'component' points to the "component" part, or nullptr if not present. |
| // |
| void HlslParseContext::handlePackOffset(const TSourceLoc& loc, TQualifier& qualifier, const glslang::TString& location, |
| const glslang::TString* component) |
| { |
| if (location.size() == 0 || location[0] != 'c') { |
| error(loc, "expected 'c'", "packoffset", ""); |
| return; |
| } |
| if (location.size() == 1) |
| return; |
| if (! isdigit(location[1])) { |
| error(loc, "expected number after 'c'", "packoffset", ""); |
| return; |
| } |
| |
| qualifier.layoutOffset = 16 * atoi(location.substr(1, location.size()).c_str()); |
| if (component != nullptr) { |
| int componentOffset = 0; |
| switch ((*component)[0]) { |
| case 'x': componentOffset = 0; break; |
| case 'y': componentOffset = 4; break; |
| case 'z': componentOffset = 8; break; |
| case 'w': componentOffset = 12; break; |
| default: |
| componentOffset = -1; |
| break; |
| } |
| if (componentOffset < 0 || component->size() > 1) { |
| error(loc, "expected {x, y, z, w} for component", "packoffset", ""); |
| return; |
| } |
| qualifier.layoutOffset += componentOffset; |
| } |
| } |
| |
| // |
| // Handle seeing something like "REGISTER LEFT_PAREN [shader_profile,] Type# RIGHT_PAREN" |
| // |
| // 'profile' points to the shader_profile part, or nullptr if not present. |
| // 'desc' is the type# part. |
| // |
| void HlslParseContext::handleRegister(const TSourceLoc& loc, TQualifier& qualifier, const glslang::TString* profile, |
| const glslang::TString& desc, int subComponent, const glslang::TString* spaceDesc) |
| { |
| if (profile != nullptr) |
| warn(loc, "ignoring shader_profile", "register", ""); |
| |
| if (desc.size() < 1) { |
| error(loc, "expected register type", "register", ""); |
| return; |
| } |
| |
| int regNumber = 0; |
| if (desc.size() > 1) { |
| if (isdigit(desc[1])) |
| regNumber = atoi(desc.substr(1, desc.size()).c_str()); |
| else { |
| error(loc, "expected register number after register type", "register", ""); |
| return; |
| } |
| } |
| |
| // TODO: learn what all these really mean and how they interact with regNumber and subComponent |
| switch (std::tolower(desc[0])) { |
| case 'b': |
| case 't': |
| case 'c': |
| case 's': |
| case 'u': |
| qualifier.layoutBinding = regNumber + subComponent; |
| break; |
| default: |
| warn(loc, "ignoring unrecognized register type", "register", "%c", desc[0]); |
| break; |
| } |
| |
| // space |
| unsigned int setNumber; |
| const auto crackSpace = [&]() -> bool { |
| const int spaceLen = 5; |
| if (spaceDesc->size() < spaceLen + 1) |
| return false; |
| if (spaceDesc->compare(0, spaceLen, "space") != 0) |
| return false; |
| if (! isdigit((*spaceDesc)[spaceLen])) |
| return false; |
| setNumber = atoi(spaceDesc->substr(spaceLen, spaceDesc->size()).c_str()); |
| return true; |
| }; |
| |
| if (spaceDesc) { |
| if (! crackSpace()) { |
| error(loc, "expected spaceN", "register", ""); |
| return; |
| } |
| qualifier.layoutSet = setNumber; |
| } |
| } |
| |
| // |
| // Same error message for all places assignments don't work. |
| // |
| void HlslParseContext::assignError(const TSourceLoc& loc, const char* op, TString left, TString right) |
| { |
| error(loc, "", op, "cannot convert from '%s' to '%s'", |
| right.c_str(), left.c_str()); |
| } |
| |
| // |
| // Same error message for all places unary operations don't work. |
| // |
| void HlslParseContext::unaryOpError(const TSourceLoc& loc, const char* op, TString operand) |
| { |
| error(loc, " wrong operand type", op, |
| "no operation '%s' exists that takes an operand of type %s (or there is no acceptable conversion)", |
| op, operand.c_str()); |
| } |
| |
| // |
| // Same error message for all binary operations don't work. |
| // |
| void HlslParseContext::binaryOpError(const TSourceLoc& loc, const char* op, TString left, TString right) |
| { |
| error(loc, " wrong operand types:", op, |
| "no operation '%s' exists that takes a left-hand operand of type '%s' and " |
| "a right operand of type '%s' (or there is no acceptable conversion)", |
| op, left.c_str(), right.c_str()); |
| } |
| |
| // |
| // A basic type of EbtVoid is a key that the name string was seen in the source, but |
| // it was not found as a variable in the symbol table. If so, give the error |
| // message and insert a dummy variable in the symbol table to prevent future errors. |
| // |
| void HlslParseContext::variableCheck(TIntermTyped*& nodePtr) |
| { |
| TIntermSymbol* symbol = nodePtr->getAsSymbolNode(); |
| if (! symbol) |
| return; |
| |
| if (symbol->getType().getBasicType() == EbtVoid) { |
| error(symbol->getLoc(), "undeclared identifier", symbol->getName().c_str(), ""); |
| |
| // Add to symbol table to prevent future error messages on the same name |
| if (symbol->getName().size() > 0) { |
| TVariable* fakeVariable = new TVariable(&symbol->getName(), TType(EbtFloat)); |
| symbolTable.insert(*fakeVariable); |
| |
| // substitute a symbol node for this new variable |
| nodePtr = intermediate.addSymbol(*fakeVariable, symbol->getLoc()); |
| } |
| } |
| } |
| |
| // |
| // Both test, and if necessary spit out an error, to see if the node is really |
| // a constant. |
| // |
| void HlslParseContext::constantValueCheck(TIntermTyped* node, const char* token) |
| { |
| if (node->getQualifier().storage != EvqConst) |
| error(node->getLoc(), "constant expression required", token, ""); |
| } |
| |
| // |
| // Both test, and if necessary spit out an error, to see if the node is really |
| // an integer. |
| // |
| void HlslParseContext::integerCheck(const TIntermTyped* node, const char* token) |
| { |
| if ((node->getBasicType() == EbtInt || node->getBasicType() == EbtUint) && node->isScalar()) |
| return; |
| |
| error(node->getLoc(), "scalar integer expression required", token, ""); |
| } |
| |
| // |
| // Both test, and if necessary spit out an error, to see if we are currently |
| // globally scoped. |
| // |
| void HlslParseContext::globalCheck(const TSourceLoc& loc, const char* token) |
| { |
| if (! symbolTable.atGlobalLevel()) |
| error(loc, "not allowed in nested scope", token, ""); |
| } |
| |
| |
| bool HlslParseContext::builtInName(const TString& /*identifier*/) |
| { |
| return false; |
| } |
| |
| // |
| // Make sure there is enough data and not too many arguments provided to the |
| // constructor to build something of the type of the constructor. Also returns |
| // the type of the constructor. |
| // |
| // Returns true if there was an error in construction. |
| // |
| bool HlslParseContext::constructorError(const TSourceLoc& loc, TIntermNode* node, TFunction& function, |
| TOperator op, TType& type) |
| { |
| type.shallowCopy(function.getType()); |
| |
| bool constructingMatrix = false; |
| switch (op) { |
| case EOpConstructTextureSampler: |
| return constructorTextureSamplerError(loc, function); |
| case EOpConstructMat2x2: |
| case EOpConstructMat2x3: |
| case EOpConstructMat2x4: |
| case EOpConstructMat3x2: |
| case EOpConstructMat3x3: |
| case EOpConstructMat3x4: |
| case EOpConstructMat4x2: |
| case EOpConstructMat4x3: |
| case EOpConstructMat4x4: |
| case EOpConstructDMat2x2: |
| case EOpConstructDMat2x3: |
| case EOpConstructDMat2x4: |
| case EOpConstructDMat3x2: |
| case EOpConstructDMat3x3: |
| case EOpConstructDMat3x4: |
| case EOpConstructDMat4x2: |
| case EOpConstructDMat4x3: |
| case EOpConstructDMat4x4: |
| constructingMatrix = true; |
| break; |
| default: |
| break; |
| } |
| |
| // |
| // Walk the arguments for first-pass checks and collection of information. |
| // |
| |
| int size = 0; |
| bool constType = true; |
| bool full = false; |
| bool overFull = false; |
| bool matrixInMatrix = false; |
| bool arrayArg = false; |
| for (int arg = 0; arg < function.getParamCount(); ++arg) { |
| if (function[arg].type->isArray()) { |
| if (! function[arg].type->isExplicitlySizedArray()) { |
| // Can't construct from an unsized array. |
| error(loc, "array argument must be sized", "constructor", ""); |
| return true; |
| } |
| arrayArg = true; |
| } |
| if (constructingMatrix && function[arg].type->isMatrix()) |
| matrixInMatrix = true; |
| |
| // 'full' will go to true when enough args have been seen. If we loop |
| // again, there is an extra argument. |
| if (full) { |
| // For vectors and matrices, it's okay to have too many components |
| // available, but not okay to have unused arguments. |
| overFull = true; |
| } |
| |
| size += function[arg].type->computeNumComponents(); |
| if (op != EOpConstructStruct && ! type.isArray() && size >= type.computeNumComponents()) |
| full = true; |
| |
| if (function[arg].type->getQualifier().storage != EvqConst) |
| constType = false; |
| } |
| |
| if (constType) |
| type.getQualifier().storage = EvqConst; |
| |
| if (type.isArray()) { |
| if (function.getParamCount() == 0) { |
| error(loc, "array constructor must have at least one argument", "constructor", ""); |
| return true; |
| } |
| |
| if (type.isImplicitlySizedArray()) { |
| // auto adapt the constructor type to the number of arguments |
| type.changeOuterArraySize(function.getParamCount()); |
| } else if (type.getOuterArraySize() != function.getParamCount()) { |
| error(loc, "array constructor needs one argument per array element", "constructor", ""); |
| return true; |
| } |
| |
| if (type.isArrayOfArrays()) { |
| // Types have to match, but we're still making the type. |
| // Finish making the type, and the comparison is done later |
| // when checking for conversion. |
| TArraySizes& arraySizes = type.getArraySizes(); |
| |
| // At least the dimensionalities have to match. |
| if (! function[0].type->isArray() || arraySizes.getNumDims() != function[0].type->getArraySizes().getNumDims() + 1) { |
| error(loc, "array constructor argument not correct type to construct array element", "constructor", ""); |
| return true; |
| } |
| |
| if (arraySizes.isInnerImplicit()) { |
| // "Arrays of arrays ..., and the size for any dimension is optional" |
| // That means we need to adopt (from the first argument) the other array sizes into the type. |
| for (int d = 1; d < arraySizes.getNumDims(); ++d) { |
| if (arraySizes.getDimSize(d) == UnsizedArraySize) { |
| arraySizes.setDimSize(d, function[0].type->getArraySizes().getDimSize(d - 1)); |
| } |
| } |
| } |
| } |
| } |
| |
| if (arrayArg && op != EOpConstructStruct && ! type.isArrayOfArrays()) { |
| error(loc, "constructing non-array constituent from array argument", "constructor", ""); |
| return true; |
| } |
| |
| if (matrixInMatrix && ! type.isArray()) { |
| return false; |
| } |
| |
| if (overFull) { |
| error(loc, "too many arguments", "constructor", ""); |
| return true; |
| } |
| |
| if (op == EOpConstructStruct && ! type.isArray() && isZeroConstructor(node)) |
| return false; |
| |
| if (op == EOpConstructStruct && ! type.isArray() && (int)type.getStruct()->size() != function.getParamCount()) { |
| error(loc, "Number of constructor parameters does not match the number of structure fields", "constructor", ""); |
| return true; |
| } |
| |
| if ((op != EOpConstructStruct && size != 1 && size < type.computeNumComponents()) || |
| (op == EOpConstructStruct && size < type.computeNumComponents())) { |
| error(loc, "not enough data provided for construction", "constructor", ""); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool HlslParseContext::isZeroConstructor(const TIntermNode* node) |
| { |
| return node->getAsTyped()->isScalar() && node->getAsConstantUnion() && |
| node->getAsConstantUnion()->getConstArray()[0].getIConst() == 0; |
| } |
| |
| // Verify all the correct semantics for constructing a combined texture/sampler. |
| // Return true if the semantics are incorrect. |
| bool HlslParseContext::constructorTextureSamplerError(const TSourceLoc& loc, const TFunction& function) |
| { |
| TString constructorName = function.getType().getBasicTypeString(); // TODO: performance: should not be making copy; interface needs to change |
| const char* token = constructorName.c_str(); |
| |
| // exactly two arguments needed |
| if (function.getParamCount() != 2) { |
| error(loc, "sampler-constructor requires two arguments", token, ""); |
| return true; |
| } |
| |
| // For now, not allowing arrayed constructors, the rest of this function |
| // is set up to allow them, if this test is removed: |
| if (function.getType().isArray()) { |
| error(loc, "sampler-constructor cannot make an array of samplers", token, ""); |
| return true; |
| } |
| |
| // first argument |
| // * the constructor's first argument must be a texture type |
| // * the dimensionality (1D, 2D, 3D, Cube, Rect, Buffer, MS, and Array) |
| // of the texture type must match that of the constructed sampler type |
| // (that is, the suffixes of the type of the first argument and the |
| // type of the constructor will be spelled the same way) |
| if (function[0].type->getBasicType() != EbtSampler || |
| ! function[0].type->getSampler().isTexture() || |
| function[0].type->isArray()) { |
| error(loc, "sampler-constructor first argument must be a scalar textureXXX type", token, ""); |
| return true; |
| } |
| // simulate the first argument's impact on the result type, so it can be compared with the encapsulated operator!=() |
| TSampler texture = function.getType().getSampler(); |
| texture.combined = false; |
| texture.shadow = false; |
| if (texture != function[0].type->getSampler()) { |
| error(loc, "sampler-constructor first argument must match type and dimensionality of constructor type", token, ""); |
| return true; |
| } |
| |
| // second argument |
| // * the constructor's second argument must be a scalar of type |
| // *sampler* or *samplerShadow* |
| // * the presence or absence of depth comparison (Shadow) must match |
| // between the constructed sampler type and the type of the second argument |
| if (function[1].type->getBasicType() != EbtSampler || |
| ! function[1].type->getSampler().isPureSampler() || |
| function[1].type->isArray()) { |
| error(loc, "sampler-constructor second argument must be a scalar type 'sampler'", token, ""); |
| return true; |
| } |
| if (function.getType().getSampler().shadow != function[1].type->getSampler().shadow) { |
| error(loc, "sampler-constructor second argument presence of shadow must match constructor presence of shadow", token, ""); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| // Checks to see if a void variable has been declared and raise an error message for such a case |
| // |
| // returns true in case of an error |
| // |
| bool HlslParseContext::voidErrorCheck(const TSourceLoc& loc, const TString& identifier, const TBasicType basicType) |
| { |
| if (basicType == EbtVoid) { |
| error(loc, "illegal use of type 'void'", identifier.c_str(), ""); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| // Checks to see if the node (for the expression) contains a scalar boolean expression or not |
| void HlslParseContext::boolCheck(const TSourceLoc& loc, const TIntermTyped* type) |
| { |
| if (type->getBasicType() != EbtBool || type->isArray() || type->isMatrix() || type->isVector()) |
| error(loc, "boolean expression expected", "", ""); |
| } |
| |
| // |
| // Fix just a full qualifier (no variables or types yet, but qualifier is complete) at global level. |
| // |
| void HlslParseContext::globalQualifierFix(const TSourceLoc&, TQualifier& qualifier) |
| { |
| // move from parameter/unknown qualifiers to pipeline in/out qualifiers |
| switch (qualifier.storage) { |
| case EvqIn: |
| qualifier.storage = EvqVaryingIn; |
| break; |
| case EvqOut: |
| qualifier.storage = EvqVaryingOut; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| // |
| // Merge characteristics of the 'src' qualifier into the 'dst'. |
| // If there is duplication, issue error messages, unless 'force' |
| // is specified, which means to just override default settings. |
| // |
| // Also, when force is false, it will be assumed that 'src' follows |
| // 'dst', for the purpose of error checking order for versions |
| // that require specific orderings of qualifiers. |
| // |
| void HlslParseContext::mergeQualifiers(TQualifier& dst, const TQualifier& src) |
| { |
| // Storage qualification |
| if (dst.storage == EvqTemporary || dst.storage == EvqGlobal) |
| dst.storage = src.storage; |
| else if ((dst.storage == EvqIn && src.storage == EvqOut) || |
| (dst.storage == EvqOut && src.storage == EvqIn)) |
| dst.storage = EvqInOut; |
| else if ((dst.storage == EvqIn && src.storage == EvqConst) || |
| (dst.storage == EvqConst && src.storage == EvqIn)) |
| dst.storage = EvqConstReadOnly; |
| |
| // Layout qualifiers |
| mergeObjectLayoutQualifiers(dst, src, false); |
| |
| // individual qualifiers |
| bool repeated = false; |
| #define MERGE_SINGLETON(field) repeated |= dst.field && src.field; dst.field |= src.field; |
| MERGE_SINGLETON(invariant); |
| MERGE_SINGLETON(noContraction); |
| MERGE_SINGLETON(centroid); |
| MERGE_SINGLETON(smooth); |
| MERGE_SINGLETON(flat); |
| MERGE_SINGLETON(nopersp); |
| MERGE_SINGLETON(patch); |
| MERGE_SINGLETON(sample); |
| MERGE_SINGLETON(coherent); |
| MERGE_SINGLETON(volatil); |
| MERGE_SINGLETON(restrict); |
| MERGE_SINGLETON(readonly); |
| MERGE_SINGLETON(writeonly); |
| MERGE_SINGLETON(specConstant); |
| } |
| |
| // used to flatten the sampler type space into a single dimension |
| // correlates with the declaration of defaultSamplerPrecision[] |
| int HlslParseContext::computeSamplerTypeIndex(TSampler& sampler) |
| { |
| int arrayIndex = sampler.arrayed ? 1 : 0; |
| int shadowIndex = sampler.shadow ? 1 : 0; |
| int externalIndex = sampler.external ? 1 : 0; |
| |
| return EsdNumDims * (EbtNumTypes * (2 * (2 * arrayIndex + shadowIndex) + externalIndex) + sampler.type) + sampler.dim; |
| } |
| |
| // |
| // Do size checking for an array type's size. |
| // |
| void HlslParseContext::arraySizeCheck(const TSourceLoc& loc, TIntermTyped* expr, TArraySize& sizePair) |
| { |
| bool isConst = false; |
| sizePair.size = 1; |
| sizePair.node = nullptr; |
| |
| TIntermConstantUnion* constant = expr->getAsConstantUnion(); |
| if (constant) { |
| // handle true (non-specialization) constant |
| sizePair.size = constant->getConstArray()[0].getIConst(); |
| isConst = true; |
| } else { |
| // see if it's a specialization constant instead |
| if (expr->getQualifier().isSpecConstant()) { |
| isConst = true; |
| sizePair.node = expr; |
| TIntermSymbol* symbol = expr->getAsSymbolNode(); |
| if (symbol && symbol->getConstArray().size() > 0) |
| sizePair.size = symbol->getConstArray()[0].getIConst(); |
| } |
| } |
| |
| if (! isConst || (expr->getBasicType() != EbtInt && expr->getBasicType() != EbtUint)) { |
| error(loc, "array size must be a constant integer expression", "", ""); |
| return; |
| } |
| |
| if (sizePair.size <= 0) { |
| error(loc, "array size must be a positive integer", "", ""); |
| return; |
| } |
| } |
| |
| // |
| // Require array to be completely sized |
| // |
| void HlslParseContext::arraySizeRequiredCheck(const TSourceLoc& loc, const TArraySizes& arraySizes) |
| { |
| if (arraySizes.isImplicit()) |
| error(loc, "array size required", "", ""); |
| } |
| |
| void HlslParseContext::structArrayCheck(const TSourceLoc& /*loc*/, const TType& type) |
| { |
| const TTypeList& structure = *type.getStruct(); |
| for (int m = 0; m < (int)structure.size(); ++m) { |
| const TType& member = *structure[m].type; |
| if (member.isArray()) |
| arraySizeRequiredCheck(structure[m].loc, *member.getArraySizes()); |
| } |
| } |
| |
| // Merge array dimensions listed in 'sizes' onto the type's array dimensions. |
| // |
| // From the spec: "vec4[2] a[3]; // size-3 array of size-2 array of vec4" |
| // |
| // That means, the 'sizes' go in front of the 'type' as outermost sizes. |
| // 'type' is the type part of the declaration (to the left) |
| // 'sizes' is the arrayness tagged on the identifier (to the right) |
| // |
| void HlslParseContext::arrayDimMerge(TType& type, const TArraySizes* sizes) |
| { |
| if (sizes) |
| type.addArrayOuterSizes(*sizes); |
| } |
| |
| // |
| // Do all the semantic checking for declaring or redeclaring an array, with and |
| // without a size, and make the right changes to the symbol table. |
| // |
| void HlslParseContext::declareArray(const TSourceLoc& loc, TString& identifier, const TType& type, TSymbol*& symbol, bool track) |
| { |
| if (! symbol) { |
| bool currentScope; |
| symbol = symbolTable.find(identifier, nullptr, ¤tScope); |
| |
| if (symbol && builtInName(identifier) && ! symbolTable.atBuiltInLevel()) { |
| // bad shader (errors already reported) trying to redeclare a built-in name as an array |
| return; |
| } |
| if (symbol == nullptr || ! currentScope) { |
| // |
| // Successfully process a new definition. |
| // (Redeclarations have to take place at the same scope; otherwise they are hiding declarations) |
| // |
| symbol = new TVariable(&identifier, type); |
| symbolTable.insert(*symbol); |
| if (track && symbolTable.atGlobalLevel()) |
| trackLinkageDeferred(*symbol); |
| |
| return; |
| } |
| if (symbol->getAsAnonMember()) { |
| error(loc, "cannot redeclare a user-block member array", identifier.c_str(), ""); |
| symbol = nullptr; |
| return; |
| } |
| } |
| |
| // |
| // Process a redeclaration. |
| // |
| |
| if (! symbol) { |
| error(loc, "array variable name expected", identifier.c_str(), ""); |
| return; |
| } |
| |
| // redeclareBuiltinVariable() should have already done the copyUp() |
| TType& existingType = symbol->getWritableType(); |
| |
| if (existingType.isExplicitlySizedArray()) { |
| // be more lenient for input arrays to geometry shaders and tessellation control outputs, where the redeclaration is the same size |
| return; |
| } |
| |
| existingType.updateArraySizes(type); |
| } |
| |
| void HlslParseContext::updateImplicitArraySize(const TSourceLoc& loc, TIntermNode *node, int index) |
| { |
| // maybe there is nothing to do... |
| TIntermTyped* typedNode = node->getAsTyped(); |
| if (typedNode->getType().getImplicitArraySize() > index) |
| return; |
| |
| // something to do... |
| |
| // Figure out what symbol to lookup, as we will use its type to edit for the size change, |
| // as that type will be shared through shallow copies for future references. |
| TSymbol* symbol = nullptr; |
| int blockIndex = -1; |
| const TString* lookupName = nullptr; |
| if (node->getAsSymbolNode()) |
| lookupName = &node->getAsSymbolNode()->getName(); |
| else if (node->getAsBinaryNode()) { |
| const TIntermBinary* deref = node->getAsBinaryNode(); |
| // This has to be the result of a block dereference, unless it's bad shader code |
| // If it's a uniform block, then an error will be issued elsewhere, but |
| // return early now to avoid crashing later in this function. |
| if (! deref->getLeft()->getAsSymbolNode() || deref->getLeft()->getBasicType() != EbtBlock || |
| deref->getLeft()->getType().getQualifier().storage == EvqUniform || |
| deref->getRight()->getAsConstantUnion() == nullptr) |
| return; |
| |
| blockIndex = deref->getRight()->getAsConstantUnion()->getConstArray()[0].getIConst(); |
| |
| lookupName = &deref->getLeft()->getAsSymbolNode()->getName(); |
| if (IsAnonymous(*lookupName)) |
| lookupName = &(*deref->getLeft()->getType().getStruct())[blockIndex].type->getFieldName(); |
| } |
| |
| // Lookup the symbol, should only fail if shader code is incorrect |
| symbol = symbolTable.find(*lookupName); |
| if (symbol == nullptr) |
| return; |
| |
| if (symbol->getAsFunction()) { |
| error(loc, "array variable name expected", symbol->getName().c_str(), ""); |
| return; |
| } |
| |
| symbol->getWritableType().setImplicitArraySize(index + 1); |
| } |
| |
| // |
| // See if the identifier is a built-in symbol that can be redeclared, and if so, |
| // copy the symbol table's read-only built-in variable to the current |
| // global level, where it can be modified based on the passed in type. |
| // |
| // Returns nullptr if no redeclaration took place; meaning a normal declaration still |
| // needs to occur for it, not necessarily an error. |
| // |
| // Returns a redeclared and type-modified variable if a redeclared occurred. |
| // |
| TSymbol* HlslParseContext::redeclareBuiltinVariable(const TSourceLoc& /*loc*/, const TString& identifier, |
| const TQualifier& /*qualifier*/, |
| const TShaderQualifiers& /*publicType*/) |
| { |
| if (! builtInName(identifier) || symbolTable.atBuiltInLevel() || ! symbolTable.atGlobalLevel()) |
| return nullptr; |
| |
| return nullptr; |
| } |
| |
| // |
| // Either redeclare the requested block, or give an error message why it can't be done. |
| // |
| // TODO: functionality: explicitly sizing members of redeclared blocks is not giving them an explicit size |
| void HlslParseContext::redeclareBuiltinBlock(const TSourceLoc& loc, TTypeList& newTypeList, const TString& blockName, const TString* instanceName, TArraySizes* arraySizes) |
| { |
| // Redeclaring a built-in block... |
| |
| // Blocks with instance names are easy to find, lookup the instance name, |
| // Anonymous blocks need to be found via a member. |
| bool builtIn; |
| TSymbol* block; |
| if (instanceName) |
| block = symbolTable.find(*instanceName, &builtIn); |
| else |
| block = symbolTable.find(newTypeList.front().type->getFieldName(), &builtIn); |
| |
| // If the block was not found, this must be a version/profile/stage |
| // that doesn't have it, or the instance name is wrong. |
| const char* errorName = instanceName ? instanceName->c_str() : newTypeList.front().type->getFieldName().c_str(); |
| if (! block) { |
| error(loc, "no declaration found for redeclaration", errorName, ""); |
| return; |
| } |
| // Built-in blocks cannot be redeclared more than once, which if happened, |
| // we'd be finding the already redeclared one here, rather than the built in. |
| if (! builtIn) { |
| error(loc, "can only redeclare a built-in block once, and before any use", blockName.c_str(), ""); |
| return; |
| } |
| |
| // Copy the block to make a writable version, to insert into the block table after editing. |
| block = symbolTable.copyUpDeferredInsert(block); |
| |
| if (block->getType().getBasicType() != EbtBlock) { |
| error(loc, "cannot redeclare a non block as a block", errorName, ""); |
| return; |
| } |
| |
| // Edit and error check the container against the redeclaration |
| // - remove unused members |
| // - ensure remaining qualifiers/types match |
| TType& type = block->getWritableType(); |
| TTypeList::iterator member = type.getWritableStruct()->begin(); |
| size_t numOriginalMembersFound = 0; |
| while (member != type.getStruct()->end()) { |
| // look for match |
| bool found = false; |
| TTypeList::const_iterator newMember; |
| TSourceLoc memberLoc; |
| memberLoc.init(); |
| for (newMember = newTypeList.begin(); newMember != newTypeList.end(); ++newMember) { |
| if (member->type->getFieldName() == newMember->type->getFieldName()) { |
| found = true; |
| memberLoc = newMember->loc; |
| break; |
| } |
| } |
| |
| if (found) { |
| ++numOriginalMembersFound; |
| // - ensure match between redeclared members' types |
| // - check for things that can't be changed |
| // - update things that can be changed |
| TType& oldType = *member->type; |
| const TType& newType = *newMember->type; |
| if (! newType.sameElementType(oldType)) |
| error(memberLoc, "cannot redeclare block member with a different type", member->type->getFieldName().c_str(), ""); |
| if (oldType.isArray() != newType.isArray()) |
| error(memberLoc, "cannot change arrayness of redeclared block member", member->type->getFieldName().c_str(), ""); |
| else if (! oldType.sameArrayness(newType) && oldType.isExplicitlySizedArray()) |
| error(memberLoc, "cannot change array size of redeclared block member", member->type->getFieldName().c_str(), ""); |
| if (newType.getQualifier().isMemory()) |
| error(memberLoc, "cannot add memory qualifier to redeclared block member", member->type->getFieldName().c_str(), ""); |
| if (newType.getQualifier().hasLayout()) |
| error(memberLoc, "cannot add layout to redeclared block member", member->type->getFieldName().c_str(), ""); |
| if (newType.getQualifier().patch) |
| error(memberLoc, "cannot add patch to redeclared block member", member->type->getFieldName().c_str(), ""); |
| oldType.getQualifier().centroid = newType.getQualifier().centroid; |
| oldType.getQualifier().sample = newType.getQualifier().sample; |
| oldType.getQualifier().invariant = newType.getQualifier().invariant; |
| oldType.getQualifier().noContraction = newType.getQualifier().noContraction; |
| oldType.getQualifier().smooth = newType.getQualifier().smooth; |
| oldType.getQualifier().flat = newType.getQualifier().flat; |
| oldType.getQualifier().nopersp = newType.getQualifier().nopersp; |
| |
| // go to next member |
| ++member; |
| } else { |
| // For missing members of anonymous blocks that have been redeclared, |
| // hide the original (shared) declaration. |
| // Instance-named blocks can just have the member removed. |
| if (instanceName) |
| member = type.getWritableStruct()->erase(member); |
| else { |
| member->type->hideMember(); |
| ++member; |
| } |
| } |
| } |
| |
| if (numOriginalMembersFound < newTypeList.size()) |
| error(loc, "block redeclaration has extra members", blockName.c_str(), ""); |
| if (type.isArray() != (arraySizes != nullptr)) |
| error(loc, "cannot change arrayness of redeclared block", blockName.c_str(), ""); |
| else if (type.isArray()) { |
| if (type.isExplicitlySizedArray() && arraySizes->getOuterSize() == UnsizedArraySize) |
| error(loc, "block already declared with size, can't redeclare as implicitly-sized", blockName.c_str(), ""); |
| else if (type.isExplicitlySizedArray() && type.getArraySizes() != *arraySizes) |
| error(loc, "cannot change array size of redeclared block", blockName.c_str(), ""); |
| else if (type.isImplicitlySizedArray() && arraySizes->getOuterSize() != UnsizedArraySize) |
| type.changeOuterArraySize(arraySizes->getOuterSize()); |
| } |
| |
| symbolTable.insert(*block); |
| |
| // Save it in the AST for linker use. |
| trackLinkageDeferred(*block); |
| } |
| |
| void HlslParseContext::paramFix(TType& type) |
| { |
| switch (type.getQualifier().storage) { |
| case EvqConst: |
| type.getQualifier().storage = EvqConstReadOnly; |
| break; |
| case EvqGlobal: |
| case EvqTemporary: |
| type.getQualifier().storage = EvqIn; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| void HlslParseContext::specializationCheck(const TSourceLoc& loc, const TType& type, const char* op) |
| { |
| if (type.containsSpecializationSize()) |
| error(loc, "can't use with types containing arrays sized with a specialization constant", op, ""); |
| } |
| |
| // |
| // Layout qualifier stuff. |
| // |
| |
| // Put the id's layout qualification into the public type, for qualifiers not having a number set. |
| // This is before we know any type information for error checking. |
| void HlslParseContext::setLayoutQualifier(const TSourceLoc& loc, TQualifier& qualifier, TString& id) |
| { |
| std::transform(id.begin(), id.end(), id.begin(), ::tolower); |
| |
| if (id == TQualifier::getLayoutMatrixString(ElmColumnMajor)) { |
| qualifier.layoutMatrix = ElmRowMajor; |
| return; |
| } |
| if (id == TQualifier::getLayoutMatrixString(ElmRowMajor)) { |
| qualifier.layoutMatrix = ElmColumnMajor; |
| return; |
| } |
| if (id == "push_constant") { |
| requireVulkan(loc, "push_constant"); |
| qualifier.layoutPushConstant = true; |
| return; |
| } |
| if (language == EShLangGeometry || language == EShLangTessEvaluation) { |
| if (id == TQualifier::getGeometryString(ElgTriangles)) { |
| //publicType.shaderQualifiers.geometry = ElgTriangles; |
| warn(loc, "ignored", id.c_str(), ""); |
| return; |
| } |
| if (language == EShLangGeometry) { |
| if (id == TQualifier::getGeometryString(ElgPoints)) { |
| //publicType.shaderQualifiers.geometry = ElgPoints; |
| warn(loc, "ignored", id.c_str(), ""); |
| return; |
| } |
| if (id == TQualifier::getGeometryString(ElgLineStrip)) { |
| //publicType.shaderQualifiers.geometry = ElgLineStrip; |
| warn(loc, "ignored", id.c_str(), ""); |
| return; |
| } |
| if (id == TQualifier::getGeometryString(ElgLines)) { |
| //publicType.shaderQualifiers.geometry = ElgLines; |
| warn(loc, "ignored", id.c_str(), ""); |
| return; |
| } |
| if (id == TQualifier::getGeometryString(ElgLinesAdjacency)) { |
| //publicType.shaderQualifiers.geometry = ElgLinesAdjacency; |
| warn(loc, "ignored", id.c_str(), ""); |
| return; |
| } |
| if (id == TQualifier::getGeometryString(ElgTrianglesAdjacency)) { |
| //publicType.shaderQualifiers.geometry = ElgTrianglesAdjacency; |
| warn(loc, "ignored", id.c_str(), ""); |
| return; |
| } |
| if (id == TQualifier::getGeometryString(ElgTriangleStrip)) { |
| //publicType.shaderQualifiers.geometry = ElgTriangleStrip; |
| warn(loc, "ignored", id.c_str(), ""); |
| return; |
| } |
| } else { |
| assert(language == EShLangTessEvaluation); |
| |
| // input primitive |
| if (id == TQualifier::getGeometryString(ElgTriangles)) { |
| //publicType.shaderQualifiers.geometry = ElgTriangles; |
| warn(loc, "ignored", id.c_str(), ""); |
| return; |
| } |
| if (id == TQualifier::getGeometryString(ElgQuads)) { |
| //publicType.shaderQualifiers.geometry = ElgQuads; |
| warn(loc, "ignored", id.c_str(), ""); |
| return; |
| } |
| if (id == TQualifier::getGeometryString(ElgIsolines)) { |
| //publicType.shaderQualifiers.geometry = ElgIsolines; |
| warn(loc, "ignored", id.c_str(), ""); |
| return; |
| } |
| |
| // vertex spacing |
| if (id == TQualifier::getVertexSpacingString(EvsEqual)) { |
| //publicType.shaderQualifiers.spacing = EvsEqual; |
| warn(loc, "ignored", id.c_str(), ""); |
| return; |
| } |
| if (id == TQualifier::getVertexSpacingString(EvsFractionalEven)) { |
| //publicType.shaderQualifiers.spacing = EvsFractionalEven; |
| warn(loc, "ignored", id.c_str(), ""); |
| return; |
| } |
| if (id == TQualifier::getVertexSpacingString(EvsFractionalOdd)) { |
| //publicType.shaderQualifiers.spacing = EvsFractionalOdd; |
| warn(loc, "ignored", id.c_str(), ""); |
| return; |
| } |
| |
| // triangle order |
| if (id == TQualifier::getVertexOrderString(EvoCw)) { |
| //publicType.shaderQualifiers.order = EvoCw; |
| warn(loc, "ignored", id.c_str(), ""); |
| return; |
| } |
| if (id == TQualifier::getVertexOrderString(EvoCcw)) { |
| //publicType.shaderQualifiers.order = EvoCcw; |
| warn(loc, "ignored", id.c_str(), ""); |
| return; |
| } |
| |
| // point mode |
| if (id == "point_mode") { |
| //publicType.shaderQualifiers.pointMode = true; |
| warn(loc, "ignored", id.c_str(), ""); |
| return; |
| } |
| } |
| } |
| if (language == EShLangFragment) { |
| if (id == "origin_upper_left") { |
| //publicType.shaderQualifiers.originUpperLeft = true; |
| warn(loc, "ignored", id.c_str(), ""); |
| return; |
| } |
| if (id == "pixel_center_integer") { |
| //publicType.shaderQualifiers.pixelCenterInteger = true; |
| warn(loc, "ignored", id.c_str(), ""); |
| return; |
| } |
| if (id == "early_fragment_tests") { |
| //publicType.shaderQualifiers.earlyFragmentTests = true; |
| warn(loc, "ignored", id.c_str(), ""); |
| return; |
| } |
| for (TLayoutDepth depth = (TLayoutDepth)(EldNone + 1); depth < EldCount; depth = (TLayoutDepth)(depth + 1)) { |
| if (id == TQualifier::getLayoutDepthString(depth)) { |
| //publicType.shaderQualifiers.layoutDepth = depth; |
| warn(loc, "ignored", id.c_str(), ""); |
| return; |
| } |
| } |
| if (id.compare(0, 13, "blend_support") == 0) { |
| bool found = false; |
| for (TBlendEquationShift be = (TBlendEquationShift)0; be < EBlendCount; be = (TBlendEquationShift)(be + 1)) { |
| if (id == TQualifier::getBlendEquationString(be)) { |
| requireExtensions(loc, 1, &E_GL_KHR_blend_equation_advanced, "blend equation"); |
| intermediate.addBlendEquation(be); |
| //publicType.shaderQualifiers.blendEquation = true; |
| warn(loc, "ignored", id.c_str(), ""); |
| found = true; |
| break; |
| } |
| } |
| if (! found) |
| error(loc, "unknown blend equation", "blend_support", ""); |
| return; |
| } |
| } |
| error(loc, "unrecognized layout identifier, or qualifier requires assignment (e.g., binding = 4)", id.c_str(), ""); |
| } |
| |
| // Put the id's layout qualifier value into the public type, for qualifiers having a number set. |
| // This is before we know any type information for error checking. |
| void HlslParseContext::setLayoutQualifier(const TSourceLoc& loc, TQualifier& qualifier, TString& id, const TIntermTyped* node) |
| { |
| const char* feature = "layout-id value"; |
| //const char* nonLiteralFeature = "non-literal layout-id value"; |
| |
| integerCheck(node, feature); |
| const TIntermConstantUnion* constUnion = node->getAsConstantUnion(); |
| int value = 0; |
| if (constUnion) { |
| value = constUnion->getConstArray()[0].getIConst(); |
| } |
| |
| std::transform(id.begin(), id.end(), id.begin(), ::tolower); |
| |
| if (id == "offset") { |
| qualifier.layoutOffset = value; |
| return; |
| } else if (id == "align") { |
| // "The specified alignment must be a power of 2, or a compile-time error results." |
| if (! IsPow2(value)) |
| error(loc, "must be a power of 2", "align", ""); |
| else |
| qualifier.layoutAlign = value; |
| return; |
| } else if (id == "location") { |
| if ((unsigned int)value >= TQualifier::layoutLocationEnd) |
| error(loc, "location is too large", id.c_str(), ""); |
| else |
| qualifier.layoutLocation = value; |
| return; |
| } else if (id == "set") { |
| if ((unsigned int)value >= TQualifier::layoutSetEnd) |
| error(loc, "set is too large", id.c_str(), ""); |
| else |
| qualifier.layoutSet = value; |
| return; |
| } else if (id == "binding") { |
| if ((unsigned int)value >= TQualifier::layoutBindingEnd) |
| error(loc, "binding is too large", id.c_str(), ""); |
| else |
| qualifier.layoutBinding = value; |
| return; |
| } else if (id == "component") { |
| if ((unsigned)value >= TQualifier::layoutComponentEnd) |
| error(loc, "component is too large", id.c_str(), ""); |
| else |
| qualifier.layoutComponent = value; |
| return; |
| } else if (id.compare(0, 4, "xfb_") == 0) { |
| // "Any shader making any static use (after preprocessing) of any of these |
| // *xfb_* qualifiers will cause the shader to be in a transform feedback |
| // capturing mode and hence responsible for describing the transform feedback |
| // setup." |
| intermediate.setXfbMode(); |
| if (id == "xfb_buffer") { |
| // "It is a compile-time error to specify an *xfb_buffer* that is greater than |
| // the implementation-dependent constant gl_MaxTransformFeedbackBuffers." |
| if (value >= resources.maxTransformFeedbackBuffers) |
| error(loc, "buffer is too large:", id.c_str(), "gl_MaxTransformFeedbackBuffers is %d", resources.maxTransformFeedbackBuffers); |
| if (value >= (int)TQualifier::layoutXfbBufferEnd) |
| error(loc, "buffer is too large:", id.c_str(), "internal max is %d", TQualifier::layoutXfbBufferEnd - 1); |
| else |
| qualifier.layoutXfbBuffer = value; |
| return; |
| } else if (id == "xfb_offset") { |
| if (value >= (int)TQualifier::layoutXfbOffsetEnd) |
| error(loc, "offset is too large:", id.c_str(), "internal max is %d", TQualifier::layoutXfbOffsetEnd - 1); |
| else |
| qualifier.layoutXfbOffset = value; |
| return; |
| } else if (id == "xfb_stride") { |
| // "The resulting stride (implicit or explicit), when divided by 4, must be less than or equal to the |
| // implementation-dependent constant gl_MaxTransformFeedbackInterleavedComponents." |
| if (value > 4 * resources.maxTransformFeedbackInterleavedComponents) |
| error(loc, "1/4 stride is too large:", id.c_str(), "gl_MaxTransformFeedbackInterleavedComponents is %d", resources.maxTransformFeedbackInterleavedComponents); |
| else if (value >= (int)TQualifier::layoutXfbStrideEnd) |
| error(loc, "stride is too large:", id.c_str(), "internal max is %d", TQualifier::layoutXfbStrideEnd - 1); |
| if (value < (int)TQualifier::layoutXfbStrideEnd) |
| qualifier.layoutXfbStride = value; |
| return; |
| } |
| } |
| |
| if (id == "input_attachment_index") { |
| requireVulkan(loc, "input_attachment_index"); |
| if (value >= (int)TQualifier::layoutAttachmentEnd) |
| error(loc, "attachment index is too large", id.c_str(), ""); |
| else |
| qualifier.layoutAttachment = value; |
| return; |
| } |
| if (id == "constant_id") { |
| requireSpv(loc, "constant_id"); |
| if (value >= (int)TQualifier::layoutSpecConstantIdEnd) { |
| error(loc, "specialization-constant id is too large", id.c_str(), ""); |
| } else { |
| qualifier.layoutSpecConstantId = value; |
| qualifier.specConstant = true; |
| if (! intermediate.addUsedConstantId(value)) |
| error(loc, "specialization-constant id already used", id.c_str(), ""); |
| } |
| return; |
| } |
| |
| switch (language) { |
| case EShLangVertex: |
| break; |
| |
| case EShLangTessControl: |
| if (id == "vertices") { |
| if (value == 0) |
| error(loc, "must be greater than 0", "vertices", ""); |
| else |
| //publicType.shaderQualifiers.vertices = value; |
| warn(loc, "ignored", id.c_str(), ""); |
| return; |
| } |
| break; |
| |
| case EShLangTessEvaluation: |
| break; |
| |
| case EShLangGeometry: |
| if (id == "invocations") { |
| if (value == 0) |
| error(loc, "must be at least 1", "invocations", ""); |
| else |
| //publicType.shaderQualifiers.invocations = value; |
| warn(loc, "ignored", id.c_str(), ""); |
| return; |
| } |
| if (id == "max_vertices") { |
| //publicType.shaderQualifiers.vertices = value; |
| warn(loc, "ignored", id.c_str(), ""); |
| if (value > resources.maxGeometryOutputVertices) |
| error(loc, "too large, must be less than gl_MaxGeometryOutputVertices", "max_vertices", ""); |
| return; |
| } |
| if (id == "stream") { |
| qualifier.layoutStream = value; |
| return; |
| } |
| break; |
| |
| case EShLangFragment: |
| if (id == "index") { |
| qualifier.layoutIndex = value; |
| return; |
| } |
| break; |
| |
| case EShLangCompute: |
| if (id.compare(0, 11, "local_size_") == 0) { |
| if (id == "local_size_x") { |
| //publicType.shaderQualifiers.localSize[0] = value; |
| warn(loc, "ignored", id.c_str(), ""); |
| return; |
| } |
| if (id == "local_size_y") { |
| //publicType.shaderQualifiers.localSize[1] = value; |
| warn(loc, "ignored", id.c_str(), ""); |
| return; |
| } |
| if (id == "local_size_z") { |
| //publicType.shaderQualifiers.localSize[2] = value; |
| warn(loc, "ignored", id.c_str(), ""); |
| return; |
| } |
| if (spvVersion.spv != 0) { |
| if (id == "local_size_x_id") { |
| //publicType.shaderQualifiers.localSizeSpecId[0] = value; |
| warn(loc, "ignored", id.c_str(), ""); |
| return; |
| } |
| if (id == "local_size_y_id") { |
| //publicType.shaderQualifiers.localSizeSpecId[1] = value; |
| warn(loc, "ignored", id.c_str(), ""); |
| return; |
| } |
| if (id == "local_size_z_id") { |
| //publicType.shaderQualifiers.localSizeSpecId[2] = value; |
| warn(loc, "ignored", id.c_str(), ""); |
| return; |
| } |
| } |
| } |
| break; |
| |
| default: |
| break; |
| } |
| |
| error(loc, "there is no such layout identifier for this stage taking an assigned value", id.c_str(), ""); |
| } |
| |
| // Merge any layout qualifier information from src into dst, leaving everything else in dst alone |
| // |
| // "More than one layout qualifier may appear in a single declaration. |
| // Additionally, the same layout-qualifier-name can occur multiple times |
| // within a layout qualifier or across multiple layout qualifiers in the |
| // same declaration. When the same layout-qualifier-name occurs |
| // multiple times, in a single declaration, the last occurrence overrides |
| // the former occurrence(s). Further, if such a layout-qualifier-name |
| // will effect subsequent declarations or other observable behavior, it |
| // is only the last occurrence that will have any effect, behaving as if |
| // the earlier occurrence(s) within the declaration are not present. |
| // This is also true for overriding layout-qualifier-names, where one |
| // overrides the other (e.g., row_major vs. column_major); only the last |
| // occurrence has any effect." |
| // |
| void HlslParseContext::mergeObjectLayoutQualifiers(TQualifier& dst, const TQualifier& src, bool inheritOnly) |
| { |
| if (src.hasMatrix()) |
| dst.layoutMatrix = src.layoutMatrix; |
| if (src.hasPacking()) |
| dst.layoutPacking = src.layoutPacking; |
| |
| if (src.hasStream()) |
| dst.layoutStream = src.layoutStream; |
| |
| if (src.hasFormat()) |
| dst.layoutFormat = src.layoutFormat; |
| |
| if (src.hasXfbBuffer()) |
| dst.layoutXfbBuffer = src.layoutXfbBuffer; |
| |
| if (src.hasAlign()) |
| dst.layoutAlign = src.layoutAlign; |
| |
| if (! inheritOnly) { |
| if (src.hasLocation()) |
| dst.layoutLocation = src.layoutLocation; |
| if (src.hasComponent()) |
| dst.layoutComponent = src.layoutComponent; |
| if (src.hasIndex()) |
| dst.layoutIndex = src.layoutIndex; |
| |
| if (src.hasOffset()) |
| dst.layoutOffset = src.layoutOffset; |
| |
| if (src.hasSet()) |
| dst.layoutSet = src.layoutSet; |
| if (src.layoutBinding != TQualifier::layoutBindingEnd) |
| dst.layoutBinding = src.layoutBinding; |
| |
| if (src.hasXfbStride()) |
| dst.layoutXfbStride = src.layoutXfbStride; |
| if (src.hasXfbOffset()) |
| dst.layoutXfbOffset = src.layoutXfbOffset; |
| if (src.hasAttachment()) |
| dst.layoutAttachment = src.layoutAttachment; |
| if (src.hasSpecConstantId()) |
| dst.layoutSpecConstantId = src.layoutSpecConstantId; |
| |
| if (src.layoutPushConstant) |
| dst.layoutPushConstant = true; |
| } |
| } |
| |
| // |
| // Look up a function name in the symbol table, and make sure it is a function. |
| // |
| // First, look for an exact match. If there is none, use the generic selector |
| // TParseContextBase::selectFunction() to find one, parameterized by the |
| // convertible() and better() predicates defined below. |
| // |
| // Return the function symbol if found, otherwise nullptr. |
| // |
| const TFunction* HlslParseContext::findFunction(const TSourceLoc& loc, const TFunction& call, bool& builtIn, |
| TIntermNode* args) |
| { |
| // const TFunction* function = nullptr; |
| |
| if (symbolTable.isFunctionNameVariable(call.getName())) { |
| error(loc, "can't use function syntax on variable", call.getName().c_str(), ""); |
| return nullptr; |
| } |
| |
| // first, look for an exact match |
| TSymbol* symbol = symbolTable.find(call.getMangledName(), &builtIn); |
| if (symbol) |
| return symbol->getAsFunction(); |
| |
| // no exact match, use the generic selector, parameterized by the GLSL rules |
| |
| // create list of candidates to send |
| TVector<const TFunction*> candidateList; |
| symbolTable.findFunctionNameList(call.getMangledName(), candidateList, builtIn); |
| |
| // These builtin ops can accept any type, so we bypass the argument selection |
| if (candidateList.size() == 1 && builtIn && |
| (candidateList[0]->getBuiltInOp() == EOpMethodAppend || |
| candidateList[0]->getBuiltInOp() == EOpMethodRestartStrip)) { |
| |
| return candidateList[0]; |
| } |
| |
| bool allowOnlyUpConversions = true; |
| |
| // can 'from' convert to 'to'? |
| const auto convertible = [&](const TType& from, const TType& to, TOperator op, int arg) -> bool { |
| if (from == to) |
| return true; |
| |
| // no aggregate conversions |
| if (from.isArray() || to.isArray() || |
| from.isStruct() || to.isStruct()) |
| return false; |
| |
| switch (op) { |
| case EOpInterlockedAdd: |
| case EOpInterlockedAnd: |
| case EOpInterlockedCompareExchange: |
| case EOpInterlockedCompareStore: |
| case EOpInterlockedExchange: |
| case EOpInterlockedMax: |
| case EOpInterlockedMin: |
| case EOpInterlockedOr: |
| case EOpInterlockedXor: |
| // We do not promote the texture or image type for these ocodes. Normally that would not |
| // be an issue because it's a buffer, but we haven't decomposed the opcode yet, and at this |
| // stage it's merely e.g, a basic integer type. |
| // |
| // Instead, we want to promote other arguments, but stay within the same family. In other |
| // words, InterlockedAdd(RWBuffer<int>, ...) will always use the int flavor, never the uint flavor, |
| // but it is allowed to promote its other arguments. |
| if (arg == 0) |
| return false; |
| default: |
| break; |
| } |
| |
| // basic types have to be convertible |
| if (allowOnlyUpConversions) |
| if (! intermediate.canImplicitlyPromote(from.getBasicType(), to.getBasicType(), EOpFunctionCall)) |
| return false; |
| |
| // shapes have to be convertible |
| if ((from.isScalarOrVec1() && to.isScalarOrVec1()) || |
| (from.isScalarOrVec1() && to.isVector()) || |
| (from.isVector() && to.isVector() && from.getVectorSize() >= to.getVectorSize())) |
| return true; |
| |
| // TODO: what are the matrix rules? they go here |
| |
| return false; |
| }; |
| |
| // Is 'to2' a better conversion than 'to1'? |
| // Ties should not be considered as better. |
| // Assumes 'convertible' already said true. |
| const auto better = [](const TType& from, const TType& to1, const TType& to2) -> bool { |
| // exact match is always better than mismatch |
| if (from == to2) |
| return from != to1; |
| if (from == to1) |
| return false; |
| |
| // shape changes are always worse |
| if (from.isScalar() || from.isVector()) { |
| if (from.getVectorSize() == to2.getVectorSize() && |
| from.getVectorSize() != to1.getVectorSize()) |
| return true; |
| if (from.getVectorSize() == to1.getVectorSize() && |
| from.getVectorSize() != to2.getVectorSize()) |
| return false; |
| } |
| |
| // Might or might not be changing shape, which means basic type might |
| // or might not match, so within that, the question is how big a |
| // basic-type conversion is being done. |
| // |
| // Use a hierarchy of domains, translated to order of magnitude |
| // in a linearized view: |
| // - floating-point vs. integer |
| // - 32 vs. 64 bit (or width in general) |
| // - bool vs. non bool |
| // - signed vs. not signed |
| const auto linearize = [](const TBasicType& basicType) -> int { |
| switch (basicType) { |
| case EbtBool: return 1; |
| case EbtInt: return 10; |
| case EbtUint: return 11; |
| case EbtInt64: return 20; |
| case EbtUint64: return 21; |
| case EbtFloat: return 100; |
| case EbtDouble: return 110; |
| default: return 0; |
| } |
| }; |
| |
| return std::abs(linearize(to2.getBasicType()) - linearize(from.getBasicType())) < |
| std::abs(linearize(to1.getBasicType()) - linearize(from.getBasicType())); |
| }; |
| |
| // for ambiguity reporting |
| bool tie = false; |
| |
| // send to the generic selector |
| const TFunction* bestMatch = selectFunction(candidateList, call, convertible, better, tie); |
| |
| if (bestMatch == nullptr) { |
| // If there is nothing selected by allowing only up-conversions (to a larger linearize() value), |
| // we instead try down-conversions, which are valid in HLSL, but not preferred if there are any |
| // upconversions possible. |
| allowOnlyUpConversions = false; |
| bestMatch = selectFunction(candidateList, call, convertible, better, tie); |
| } |
| |
| if (bestMatch == nullptr) { |
| error(loc, "no matching overloaded function found", call.getName().c_str(), ""); |
| return nullptr; |
| } |
| |
| // For builtins, we can convert across the arguments. This will happen in several steps: |
| // Step 1: If there's an exact match, use it. |
| // Step 2a: Otherwise, get the operator from the best match and promote arguments: |
| // Step 2b: reconstruct the TFunction based on the new arg types |
| // Step 3: Re-select after type promotion is applied, to find proper candidate. |
| if (builtIn) { |
| // Step 1: If there's an exact match, use it. |
| if (call.getMangledName() == bestMatch->getMangledName()) |
| return bestMatch; |
| |
| // Step 2a: Otherwise, get the operator from the best match and promote arguments as if we |
| // are that kind of operator. |
| if (args != nullptr) { |
| // The arg list can be a unary node, or an aggregate. We have to handle both. |
| // We will use the normal promote() facilities, which require an interm node. |
| TIntermOperator* promote = nullptr; |
| |
| if (call.getParamCount() == 1) { |
| promote = new TIntermUnary(bestMatch->getBuiltInOp()); |
| promote->getAsUnaryNode()->setOperand(args->getAsTyped()); |
| } else { |
| promote = new TIntermAggregate(bestMatch->getBuiltInOp()); |
| promote->getAsAggregate()->getSequence().swap(args->getAsAggregate()->getSequence()); |
| } |
| |
| if (! intermediate.promote(promote)) |
| return nullptr; |
| |
| // Obtain the promoted arg list. |
| if (call.getParamCount() == 1) { |
| args = promote->getAsUnaryNode()->getOperand(); |
| } else { |
| promote->getAsAggregate()->getSequence().swap(args->getAsAggregate()->getSequence()); |
| } |
| } |
| |
| // Step 2b: reconstruct the TFunction based on the new arg types |
| TFunction convertedCall(&call.getName(), call.getType(), call.getBuiltInOp()); |
| |
| if (args->getAsAggregate()) { |
| // Handle aggregates: put all args into the new function call |
| for (int arg=0; arg<int(args->getAsAggregate()->getSequence().size()); ++arg) { |
| // TODO: But for constness, we could avoid the new & shallowCopy, and use the pointer directly. |
| TParameter param = { 0, new TType }; |
| param.type->shallowCopy(args->getAsAggregate()->getSequence()[arg]->getAsTyped()->getType()); |
| convertedCall.addParameter(param); |
| } |
| } else if (args->getAsUnaryNode()) { |
| // Handle unaries: put all args into the new function call |
| TParameter param = { 0, new TType }; |
| param.type->shallowCopy(args->getAsUnaryNode()->getOperand()->getAsTyped()->getType()); |
| convertedCall.addParameter(param); |
| } else if (args->getAsTyped()) { |
| // Handle bare e.g, floats, not in an aggregate. |
| TParameter param = { 0, new TType }; |
| param.type->shallowCopy(args->getAsTyped()->getType()); |
| convertedCall.addParameter(param); |
| } else { |
| assert(0); // unknown argument list. |
| return nullptr; |
| } |
| |
| // Step 3: Re-select after type promotion, to find proper candidate |
| // send to the generic selector |
| bestMatch = selectFunction(candidateList, convertedCall, convertible, better, tie); |
| |
| // At this point, there should be no tie. |
| } |
| |
| if (tie) |
| error(loc, "ambiguous best function under implicit type conversion", call.getName().c_str(), ""); |
| |
| return bestMatch; |
| } |
| |
| // |
| // Do everything necessary to handle a typedef declaration, for a single symbol. |
| // |
| // 'parseType' is the type part of the declaration (to the left) |
| // 'arraySizes' is the arrayness tagged on the identifier (to the right) |
| // |
| void HlslParseContext::declareTypedef(const TSourceLoc& loc, TString& identifier, const TType& parseType, TArraySizes* /*arraySizes*/) |
| { |
| TType type; |
| type.deepCopy(parseType); |
| |
| TVariable* typeSymbol = new TVariable(&identifier, type, true); |
| if (! symbolTable.insert(*typeSymbol)) |
| error(loc, "name already defined", "typedef", identifier.c_str()); |
| } |
| |
| // |
| // Do everything necessary to handle a variable (non-block) declaration. |
| // Either redeclaring a variable, or making a new one, updating the symbol |
| // table, and all error checking. |
| // |
| // Returns a subtree node that computes an initializer, if needed. |
| // Returns nullptr if there is no code to execute for initialization. |
| // |
| // 'parseType' is the type part of the declaration (to the left) |
| // 'arraySizes' is the arrayness tagged on the identifier (to the right) |
| // |
| TIntermNode* HlslParseContext::declareVariable(const TSourceLoc& loc, TString& identifier, TType& type, TIntermTyped* initializer) |
| { |
| if (voidErrorCheck(loc, identifier, type.getBasicType())) |
| return nullptr; |
| |
| // Check for redeclaration of built-ins and/or attempting to declare a reserved name |
| TSymbol* symbol = nullptr; |
| |
| inheritGlobalDefaults(type.getQualifier()); |
| |
| const bool flattenVar = shouldFlatten(type); |
| |
| // Declare the variable |
| if (type.isArray()) { |
| // array case |
| declareArray(loc, identifier, type, symbol, !flattenVar); |
| } else { |
| // non-array case |
| if (! symbol) |
| symbol = declareNonArray(loc, identifier, type, !flattenVar); |
| else if (type != symbol->getType()) |
| error(loc, "cannot change the type of", "redeclaration", symbol->getName().c_str()); |
| } |
| |
| if (flattenVar) |
| flatten(loc, *symbol->getAsVariable()); |
| |
| if (! symbol) |
| return nullptr; |
| |
| // Deal with initializer |
| TIntermNode* initNode = nullptr; |
| if (symbol && initializer) { |
| if (flattenVar) |
| error(loc, "flattened array with initializer list unsupported", identifier.c_str(), ""); |
| |
| TVariable* variable = symbol->getAsVariable(); |
| if (! variable) { |
| error(loc, "initializer requires a variable, not a member", identifier.c_str(), ""); |
| return nullptr; |
| } |
| initNode = executeInitializer(loc, initializer, variable); |
| } |
| |
| return initNode; |
| } |
| |
| // Pick up global defaults from the provide global defaults into dst. |
| void HlslParseContext::inheritGlobalDefaults(TQualifier& dst) const |
| { |
| if (dst.storage == EvqVaryingOut) { |
| if (! dst.hasStream() && language == EShLangGeometry) |
| dst.layoutStream = globalOutputDefaults.layoutStream; |
| if (! dst.hasXfbBuffer()) |
| dst.layoutXfbBuffer = globalOutputDefaults.layoutXfbBuffer; |
| } |
| } |
| |
| // |
| // Make an internal-only variable whose name is for debug purposes only |
| // and won't be searched for. Callers will only use the return value to use |
| // the variable, not the name to look it up. It is okay if the name |
| // is the same as other names; there won't be any conflict. |
| // |
| TVariable* HlslParseContext::makeInternalVariable(const char* name, const TType& type) const |
| { |
| TString* nameString = new TString(name); |
| TVariable* variable = new TVariable(nameString, type); |
| symbolTable.makeInternalVariable(*variable); |
| |
| return variable; |
| } |
| |
| // |
| // Declare a non-array variable, the main point being there is no redeclaration |
| // for resizing allowed. |
| // |
| // Return the successfully declared variable. |
| // |
| TVariable* HlslParseContext::declareNonArray(const TSourceLoc& loc, TString& identifier, TType& type, bool track) |
| { |
| // make a new variable |
| TVariable* variable = new TVariable(&identifier, type); |
| |
| // add variable to symbol table |
| if (symbolTable.insert(*variable)) { |
| if (track && symbolTable.atGlobalLevel()) |
| trackLinkageDeferred(*variable); |
| return variable; |
| } |
| |
| error(loc, "redefinition", variable->getName().c_str(), ""); |
| return nullptr; |
| } |
| |
| // |
| // Handle all types of initializers from the grammar. |
| // |
| // Returning nullptr just means there is no code to execute to handle the |
| // initializer, which will, for example, be the case for constant initializers. |
| // |
| TIntermNode* HlslParseContext::executeInitializer(const TSourceLoc& loc, TIntermTyped* initializer, TVariable* variable) |
| { |
| // |
| // Identifier must be of type constant, a global, or a temporary, and |
| // starting at version 120, desktop allows uniforms to have initializers. |
| // |
| TStorageQualifier qualifier = variable->getType().getQualifier().storage; |
| |
| // |
| // If the initializer was from braces { ... }, we convert the whole subtree to a |
| // constructor-style subtree, allowing the rest of the code to operate |
| // identically for both kinds of initializers. |
| // |
| if (initializer->getAsAggregate() && initializer->getAsAggregate()->getOp() == EOpNull) |
| initializer = convertInitializerList(loc, variable->getType(), initializer); |
| if (! initializer) { |
| // error recovery; don't leave const without constant values |
| if (qualifier == EvqConst) |
| variable->getWritableType().getQualifier().storage = EvqTemporary; |
| return nullptr; |
| } |
| |
| // Fix outer arrayness if variable is unsized, getting size from the initializer |
| if (initializer->getType().isExplicitlySizedArray() && |
| variable->getType().isImplicitlySizedArray()) |
| variable->getWritableType().changeOuterArraySize(initializer->getType().getOuterArraySize()); |
| |
| // Inner arrayness can also get set by an initializer |
| if (initializer->getType().isArrayOfArrays() && variable->getType().isArrayOfArrays() && |
| initializer->getType().getArraySizes()->getNumDims() == |
| variable->getType().getArraySizes()->getNumDims()) { |
| // adopt unsized sizes from the initializer's sizes |
| for (int d = 1; d < variable->getType().getArraySizes()->getNumDims(); ++d) { |
| if (variable->getType().getArraySizes()->getDimSize(d) == UnsizedArraySize) |
| variable->getWritableType().getArraySizes().setDimSize(d, initializer->getType().getArraySizes()->getDimSize(d)); |
| } |
| } |
| |
| // Uniform and global consts require a constant initializer |
| if (qualifier == EvqUniform && initializer->getType().getQualifier().storage != EvqConst) { |
| error(loc, "uniform initializers must be constant", "=", "'%s'", variable->getType().getCompleteString().c_str()); |
| variable->getWritableType().getQualifier().storage = EvqTemporary; |
| return nullptr; |
| } |
| if (qualifier == EvqConst && symbolTable.atGlobalLevel() && initializer->getType().getQualifier().storage != EvqConst) { |
| error(loc, "global const initializers must be constant", "=", "'%s'", variable->getType().getCompleteString().c_str()); |
| variable->getWritableType().getQualifier().storage = EvqTemporary; |
| return nullptr; |
| } |
| |
| // Const variables require a constant initializer, depending on version |
| if (qualifier == EvqConst) { |
| if (initializer->getType().getQualifier().storage != EvqConst) { |
| variable->getWritableType().getQualifier().storage = EvqConstReadOnly; |
| qualifier = EvqConstReadOnly; |
| } |
| } |
| |
| if (qualifier == EvqConst || qualifier == EvqUniform) { |
| // Compile-time tagging of the variable with its constant value... |
| |
| initializer = intermediate.addConversion(EOpAssign, variable->getType(), initializer); |
| if (! initializer || ! initializer->getAsConstantUnion() || variable->getType() != initializer->getType()) { |
| error(loc, "non-matching or non-convertible constant type for const initializer", |
| variable->getType().getStorageQualifierString(), ""); |
| variable->getWritableType().getQualifier().storage = EvqTemporary; |
| return nullptr; |
| } |
| |
| variable->setConstArray(initializer->getAsConstantUnion()->getConstArray()); |
| } else { |
| // normal assigning of a value to a variable... |
| specializationCheck(loc, initializer->getType(), "initializer"); |
| TIntermSymbol* intermSymbol = intermediate.addSymbol(*variable, loc); |
| TIntermNode* initNode = handleAssign(loc, EOpAssign, intermSymbol, initializer); |
| if (! initNode) |
| assignError(loc, "=", intermSymbol->getCompleteString(), initializer->getCompleteString()); |
| |
| return initNode; |
| } |
| |
| return nullptr; |
| } |
| |
| // |
| // Reprocess any initializer-list { ... } parts of the initializer. |
| // Need to hierarchically assign correct types and implicit |
| // conversions. Will do this mimicking the same process used for |
| // creating a constructor-style initializer, ensuring we get the |
| // same form. |
| // |
| // Returns a node representing an expression for the initializer list expressed |
| // as the correct type. |
| // |
| // Returns nullptr if there is an error. |
| // |
| TIntermTyped* HlslParseContext::convertInitializerList(const TSourceLoc& loc, const TType& type, TIntermTyped* initializer) |
| { |
| // Will operate recursively. Once a subtree is found that is constructor style, |
| // everything below it is already good: Only the "top part" of the initializer |
| // can be an initializer list, where "top part" can extend for several (or all) levels. |
| |
| // see if we have bottomed out in the tree within the initializer-list part |
| TIntermAggregate* initList = initializer->getAsAggregate(); |
| if (! initList || initList->getOp() != EOpNull) { |
| // We don't have a list, but if it's a scalar and the 'type' is a |
| // composite, we need to lengthen below to make it useful. |
| // Otherwise, this is an already formed object to initialize with. |
| if (type.isScalar() || !initializer->getType().isScalar()) |
| return initializer; |
| else |
| initList = intermediate.makeAggregate(initializer); |
| } |
| |
| // Of the initializer-list set of nodes, need to process bottom up, |
| // so recurse deep, then process on the way up. |
| |
| // Go down the tree here... |
| if (type.isArray()) { |
| // The type's array might be unsized, which could be okay, so base sizes on the size of the aggregate. |
| // Later on, initializer execution code will deal with array size logic. |
| TType arrayType; |
| arrayType.shallowCopy(type); // sharing struct stuff is fine |
| arrayType.newArraySizes(*type.getArraySizes()); // but get a fresh copy of the array information, to edit below |
| |
| // edit array sizes to fill in unsized dimensions |
| if (type.isImplicitlySizedArray()) |
| arrayType.changeOuterArraySize((int)initList->getSequence().size()); |
| TIntermTyped* firstInit = initList->getSequence()[0]->getAsTyped(); |
| if (arrayType.isArrayOfArrays() && firstInit->getType().isArray() && |
| arrayType.getArraySizes().getNumDims() == firstInit->getType().getArraySizes()->getNumDims() + 1) { |
| for (int d = 1; d < arrayType.getArraySizes().getNumDims(); ++d) { |
| if (arrayType.getArraySizes().getDimSize(d) == UnsizedArraySize) |
| arrayType.getArraySizes().setDimSize(d, firstInit->getType().getArraySizes()->getDimSize(d - 1)); |
| } |
| } |
| |
| // lengthen list to be long enough |
| lengthenList(loc, initList->getSequence(), arrayType.getOuterArraySize()); |
| |
| // recursively process each element |
| TType elementType(arrayType, 0); // dereferenced type |
| for (int i = 0; i < arrayType.getOuterArraySize(); ++i) { |
| initList->getSequence()[i] = convertInitializerList(loc, elementType, initList->getSequence()[i]->getAsTyped()); |
| if (initList->getSequence()[i] == nullptr) |
| return nullptr; |
| } |
| |
| return addConstructor(loc, initList, arrayType); |
| } else if (type.isStruct()) { |
| // lengthen list to be long enough |
| lengthenList(loc, initList->getSequence(), static_cast<int>(type.getStruct()->size())); |
| |
| if (type.getStruct()->size() != initList->getSequence().size()) { |
| error(loc, "wrong number of structure members", "initializer list", ""); |
| return nullptr; |
| } |
| for (size_t i = 0; i < type.getStruct()->size(); ++i) { |
| initList->getSequence()[i] = convertInitializerList(loc, *(*type.getStruct())[i].type, initList->getSequence()[i]->getAsTyped()); |
| if (initList->getSequence()[i] == nullptr) |
| return nullptr; |
| } |
| } else if (type.isMatrix()) { |
| if (type.computeNumComponents() == (int)initList->getSequence().size()) { |
| // This means the matrix is initialized component-wise, rather than as |
| // a series of rows and columns. We can just use the list directly as |
| // a constructor; no further processing needed. |
| } else { |
| // lengthen list to be long enough |
| lengthenList(loc, initList->getSequence(), type.getMatrixCols()); |
| |
| if (type.getMatrixCols() != (int)initList->getSequence().size()) { |
| error(loc, "wrong number of matrix columns:", "initializer list", type.getCompleteString().c_str()); |
| return nullptr; |
| } |
| TType vectorType(type, 0); // dereferenced type |
| for (int i = 0; i < type.getMatrixCols(); ++i) { |
| initList->getSequence()[i] = convertInitializerList(loc, vectorType, initList->getSequence()[i]->getAsTyped()); |
| if (initList->getSequence()[i] == nullptr) |
| return nullptr; |
| } |
| } |
| } else if (type.isVector()) { |
| // lengthen list to be long enough |
| lengthenList(loc, initList->getSequence(), type.getVectorSize()); |
| |
| // error check; we're at bottom, so work is finished below |
| if (type.getVectorSize() != (int)initList->getSequence().size()) { |
| error(loc, "wrong vector size (or rows in a matrix column):", "initializer list", type.getCompleteString().c_str()); |
| return nullptr; |
| } |
| } else if (type.isScalar()) { |
| if ((int)initList->getSequence().size() != 1) { |
| error(loc, "scalar expected one element:", "initializer list", type.getCompleteString().c_str()); |
| return nullptr; |
| } |
| } else { |
| error(loc, "unexpected initializer-list type:", "initializer list", type.getCompleteString().c_str()); |
| return nullptr; |
| } |
| |
| // Now that the subtree is processed, process this node as if the |
| // initializer list is a set of arguments to a constructor. |
| TIntermNode* emulatedConstructorArguments; |
| if (initList->getSequence().size() == 1) |
| emulatedConstructorArguments = initList->getSequence()[0]; |
| else |
| emulatedConstructorArguments = initList; |
| |
| return addConstructor(loc, emulatedConstructorArguments, type); |
| } |
| |
| // Lengthen list to be long enough to cover any gap from the current list size |
| // to 'size'. If the list is longer, do nothing. |
| // The value to lengthen with is the default for short lists. |
| void HlslParseContext::lengthenList(const TSourceLoc& loc, TIntermSequence& list, int size) |
| { |
| for (int c = (int)list.size(); c < size; ++c) |
| list.push_back(intermediate.addConstantUnion(0, loc)); |
| } |
| |
| // |
| // Test for the correctness of the parameters passed to various constructor functions |
| // and also convert them to the right data type, if allowed and required. |
| // |
| // Returns nullptr for an error or the constructed node (aggregate or typed) for no error. |
| // |
| TIntermTyped* HlslParseContext::addConstructor(const TSourceLoc& loc, TIntermNode* node, const TType& type) |
| { |
| if (node == nullptr || node->getAsTyped() == nullptr) |
| return nullptr; |
| |
| // Handle the idiom "(struct type)0" |
| if (type.isStruct() && isZeroConstructor(node)) |
| return convertInitializerList(loc, type, intermediate.makeAggregate(loc)); |
| |
| TIntermAggregate* aggrNode = node->getAsAggregate(); |
| TOperator op = intermediate.mapTypeToConstructorOp(type); |
| |
| // Combined texture-sampler constructors are completely semantic checked |
| // in constructorTextureSamplerError() |
| if (op == EOpConstructTextureSampler) |
| return intermediate.setAggregateOperator(aggrNode, op, type, loc); |
| |
| TTypeList::const_iterator memberTypes; |
| if (op == EOpConstructStruct) |
| memberTypes = type.getStruct()->begin(); |
| |
| TType elementType; |
| if (type.isArray()) { |
| TType dereferenced(type, 0); |
| elementType.shallowCopy(dereferenced); |
| } else |
| elementType.shallowCopy(type); |
| |
| bool singleArg; |
| if (aggrNode) { |
| if (aggrNode->getOp() != EOpNull || aggrNode->getSequence().size() == 1) |
| singleArg = true; |
| else |
| singleArg = false; |
| } else |
| singleArg = true; |
| |
| TIntermTyped *newNode; |
| if (singleArg) { |
| // If structure constructor or array constructor is being called |
| // for only one parameter inside the structure, we need to call constructAggregate function once. |
| if (type.isArray()) |
| newNode = constructAggregate(node, elementType, 1, node->getLoc()); |
| else if (op == EOpConstructStruct) |
| newNode = constructAggregate(node, *(*memberTypes).type, 1, node->getLoc()); |
| else |
| newNode = constructBuiltIn(type, op, node->getAsTyped(), node->getLoc(), false); |
| |
| if (newNode && (type.isArray() || op == EOpConstructStruct)) |
| newNode = intermediate.setAggregateOperator(newNode, EOpConstructStruct, type, loc); |
| |
| return newNode; |
| } |
| |
| // |
| // Handle list of arguments. |
| // |
| TIntermSequence &sequenceVector = aggrNode->getSequence(); // Stores the information about the parameter to the constructor |
| // if the structure constructor contains more than one parameter, then construct |
| // each parameter |
| |
| int paramCount = 0; // keeps a track of the constructor parameter number being checked |
| |
| // for each parameter to the constructor call, check to see if the right type is passed or convert them |
| // to the right type if possible (and allowed). |
| // for structure constructors, just check if the right type is passed, no conversion is allowed. |
| |
| for (TIntermSequence::iterator p = sequenceVector.begin(); |
| p != sequenceVector.end(); p++, paramCount++) { |
| if (type.isArray()) |
| newNode = constructAggregate(*p, elementType, paramCount + 1, node->getLoc()); |
| else if (op == EOpConstructStruct) |
| newNode = constructAggregate(*p, *(memberTypes[paramCount]).type, paramCount + 1, node->getLoc()); |
| else |
| newNode = constructBuiltIn(type, op, (*p)->getAsTyped(), node->getLoc(), true); |
| |
| if (newNode) |
| *p = newNode; |
| else |
| return nullptr; |
| } |
| |
| TIntermTyped* constructor = intermediate.setAggregateOperator(aggrNode, op, type, loc); |
| |
| return constructor; |
| } |
| |
| // Function for constructor implementation. Calls addUnaryMath with appropriate EOp value |
| // for the parameter to the constructor (passed to this function). Essentially, it converts |
| // the parameter types correctly. If a constructor expects an int (like ivec2) and is passed a |
| // float, then float is converted to int. |
| // |
| // Returns nullptr for an error or the constructed node. |
| // |
| TIntermTyped* HlslParseContext::constructBuiltIn(const TType& type, TOperator op, TIntermTyped* node, const TSourceLoc& loc, bool subset) |
| { |
| TIntermTyped* newNode; |
| TOperator basicOp; |
| |
| // |
| // First, convert types as needed. |
| // |
| switch (op) { |
| case EOpConstructVec2: |
| case EOpConstructVec3: |
| case EOpConstructVec4: |
| case EOpConstructMat2x2: |
| case EOpConstructMat2x3: |
| case EOpConstructMat2x4: |
| case EOpConstructMat3x2: |
| case EOpConstructMat3x3: |
| case EOpConstructMat3x4: |
| case EOpConstructMat4x2: |
| case EOpConstructMat4x3: |
| case EOpConstructMat4x4: |
| case EOpConstructFloat: |
| basicOp = EOpConstructFloat; |
| break; |
| |
| case EOpConstructDVec2: |
| case EOpConstructDVec3: |
| case EOpConstructDVec4: |
| case EOpConstructDMat2x2: |
| case EOpConstructDMat2x3: |
| case EOpConstructDMat2x4: |
| case EOpConstructDMat3x2: |
| case EOpConstructDMat3x3: |
| case EOpConstructDMat3x4: |
| case EOpConstructDMat4x2: |
| case EOpConstructDMat4x3: |
| case EOpConstructDMat4x4: |
| case EOpConstructDouble: |
| basicOp = EOpConstructDouble; |
| break; |
| |
| case EOpConstructIVec2: |
| case EOpConstructIVec3: |
| case EOpConstructIVec4: |
| case EOpConstructInt: |
| basicOp = EOpConstructInt; |
| break; |
| |
| case EOpConstructUVec2: |
| case EOpConstructUVec3: |
| case EOpConstructUVec4: |
| case EOpConstructUint: |
| basicOp = EOpConstructUint; |
| break; |
| |
| case EOpConstructBVec2: |
| case EOpConstructBVec3: |
| case EOpConstructBVec4: |
| case EOpConstructBool: |
| basicOp = EOpConstructBool; |
| break; |
| |
| default: |
| error(loc, "unsupported construction", "", ""); |
| |
| return nullptr; |
| } |
| newNode = intermediate.addUnaryMath(basicOp, node, node->getLoc()); |
| if (newNode == nullptr) { |
| error(loc, "can't convert", "constructor", ""); |
| return nullptr; |
| } |
| |
| // |
| // Now, if there still isn't an operation to do the construction, and we need one, add one. |
| // |
| |
| // Otherwise, skip out early. |
| if (subset || (newNode != node && newNode->getType() == type)) |
| return newNode; |
| |
| // setAggregateOperator will insert a new node for the constructor, as needed. |
| return intermediate.setAggregateOperator(newNode, op, type, loc); |
| } |
| |
| // This function tests for the type of the parameters to the structure or array constructor. Raises |
| // an error message if the expected type does not match the parameter passed to the constructor. |
| // |
| // Returns nullptr for an error or the input node itself if the expected and the given parameter types match. |
| // |
| TIntermTyped* HlslParseContext::constructAggregate(TIntermNode* node, const TType& type, int paramCount, const TSourceLoc& loc) |
| { |
| TIntermTyped* converted = intermediate.addConversion(EOpConstructStruct, type, node->getAsTyped()); |
| if (! converted || converted->getType() != type) { |
| error(loc, "", "constructor", "cannot convert parameter %d from '%s' to '%s'", paramCount, |
| node->getAsTyped()->getType().getCompleteString().c_str(), type.getCompleteString().c_str()); |
| |
| return nullptr; |
| } |
| |
| return converted; |
| } |
| |
| // |
| // Do everything needed to add an interface block. |
| // |
| void HlslParseContext::declareBlock(const TSourceLoc& loc, TType& type, const TString* instanceName, TArraySizes* arraySizes) |
| { |
| assert(type.getWritableStruct() != nullptr); |
| |
| TTypeList& typeList = *type.getWritableStruct(); |
| // fix and check for member storage qualifiers and types that don't belong within a block |
| for (unsigned int member = 0; member < typeList.size(); ++member) { |
| TType& memberType = *typeList[member].type; |
| TQualifier& memberQualifier = memberType.getQualifier(); |
| const TSourceLoc& memberLoc = typeList[member].loc; |
| globalQualifierFix(memberLoc, memberQualifier); |
| memberQualifier.storage = type.getQualifier().storage; |
| } |
| |
| // This might be a redeclaration of a built-in block. If so, redeclareBuiltinBlock() will |
| // do all the rest. |
| //if (! symbolTable.atBuiltInLevel() && builtInName(*blockName)) { |
| // redeclareBuiltinBlock(loc, typeList, *blockName, instanceName, arraySizes); |
| // return; |
| //} |
| |
| // Make default block qualification, and adjust the member qualifications |
| |
| TQualifier defaultQualification; |
| switch (type.getQualifier().storage) { |
| case EvqUniform: defaultQualification = globalUniformDefaults; break; |
| case EvqBuffer: defaultQualification = globalBufferDefaults; break; |
| case EvqVaryingIn: defaultQualification = globalInputDefaults; break; |
| case EvqVaryingOut: defaultQualification = globalOutputDefaults; break; |
| default: defaultQualification.clear(); break; |
| } |
| |
| // Special case for "push_constant uniform", which has a default of std430, |
| // contrary to normal uniform defaults, and can't have a default tracked for it. |
| if (type.getQualifier().layoutPushConstant && ! type.getQualifier().hasPacking()) |
| type.getQualifier().layoutPacking = ElpStd430; |
| |
| // fix and check for member layout qualifiers |
| |
| mergeObjectLayoutQualifiers(defaultQualification, type.getQualifier(), true); |
| |
| bool memberWithLocation = false; |
| bool memberWithoutLocation = false; |
| for (unsigned int member = 0; member < typeList.size(); ++member) { |
| TQualifier& memberQualifier = typeList[member].type->getQualifier(); |
| const TSourceLoc& memberLoc = typeList[member].loc; |
| if (memberQualifier.hasStream()) { |
| if (defaultQualification.layoutStream != memberQualifier.layoutStream) |
| error(memberLoc, "member cannot contradict block", "stream", ""); |
| } |
| |
| // "This includes a block's inheritance of the |
| // current global default buffer, a block member's inheritance of the block's |
| // buffer, and the requirement that any *xfb_buffer* declared on a block |
| // member must match the buffer inherited from the block." |
| if (memberQualifier.hasXfbBuffer()) { |
| if (defaultQualification.layoutXfbBuffer != memberQualifier.layoutXfbBuffer) |
| error(memberLoc, "member cannot contradict block (or what block inherited from global)", "xfb_buffer", ""); |
| } |
| |
| if (memberQualifier.hasPacking()) |
| error(memberLoc, "member of block cannot have a packing layout qualifier", typeList[member].type->getFieldName().c_str(), ""); |
| if (memberQualifier.hasLocation()) { |
| switch (type.getQualifier().storage) { |
| case EvqVaryingIn: |
| case EvqVaryingOut: |
| memberWithLocation = true; |
| break; |
| default: |
| break; |
| } |
| } else |
| memberWithoutLocation = true; |
| if (memberQualifier.hasAlign()) { |
| if (defaultQualification.layoutPacking != ElpStd140 && defaultQualification.layoutPacking != ElpStd430) |
| error(memberLoc, "can only be used with std140 or std430 layout packing", "align", ""); |
| } |
| |
| TQualifier newMemberQualification = defaultQualification; |
| mergeQualifiers(newMemberQualification, memberQualifier); |
| memberQualifier = newMemberQualification; |
| } |
| |
| // Process the members |
| fixBlockLocations(loc, type.getQualifier(), typeList, memberWithLocation, memberWithoutLocation); |
| fixBlockXfbOffsets(type.getQualifier(), typeList); |
| fixBlockUniformOffsets(type.getQualifier(), typeList); |
| |
| // reverse merge, so that currentBlockQualifier now has all layout information |
| // (can't use defaultQualification directly, it's missing other non-layout-default-class qualifiers) |
| mergeObjectLayoutQualifiers(type.getQualifier(), defaultQualification, true); |
| |
| // |
| // Build and add the interface block as a new type named 'blockName' |
| // |
| |
| // Use the instance name as the interface name if one exists, else the block name. |
| const TString& interfaceName = (instanceName && !instanceName->empty()) ? *instanceName : type.getTypeName(); |
| |
| TType blockType(&typeList, interfaceName, type.getQualifier()); |
| if (arraySizes) |
| blockType.newArraySizes(*arraySizes); |
| |
| // Add the variable, as anonymous or named instanceName. |
| // Make an anonymous variable if no name was provided. |
| if (! instanceName) |
| instanceName = NewPoolTString(""); |
| |
| TVariable& variable = *new TVariable(instanceName, blockType); |
| if (! symbolTable.insert(variable)) { |
| if (*instanceName == "") |
| error(loc, "nameless block contains a member that already has a name at global scope", "" /* blockName->c_str() */, ""); |
| else |
| error(loc, "block instance name redefinition", variable.getName().c_str(), ""); |
| |
| return; |
| } |
| |
| // Save it in the AST for linker use. |
| trackLinkageDeferred(variable); |
| } |
| |
| void HlslParseContext::finalizeGlobalUniformBlockLayout(TVariable& block) |
| { |
| block.getWritableType().getQualifier().layoutPacking = ElpStd140; |
| block.getWritableType().getQualifier().layoutMatrix = ElmRowMajor; |
| fixBlockUniformOffsets(block.getType().getQualifier(), *block.getWritableType().getWritableStruct()); |
| } |
| |
| // |
| // "For a block, this process applies to the entire block, or until the first member |
| // is reached that has a location layout qualifier. When a block member is declared with a location |
| // qualifier, its location comes from that qualifier: The member's location qualifier overrides the block-level |
| // declaration. Subsequent members are again assigned consecutive locations, based on the newest location, |
| // until the next member declared with a location qualifier. The values used for locations do not have to be |
| // declared in increasing order." |
| void HlslParseContext::fixBlockLocations(const TSourceLoc& loc, TQualifier& qualifier, TTypeList& typeList, bool memberWithLocation, bool memberWithoutLocation) |
| { |
| // "If a block has no block-level location layout qualifier, it is required that either all or none of its members |
| // have a location layout qualifier, or a compile-time error results." |
| if (! qualifier.hasLocation() && memberWithLocation && memberWithoutLocation) |
| error(loc, "either the block needs a location, or all members need a location, or no members have a location", "location", ""); |
| else { |
| if (memberWithLocation) { |
| // remove any block-level location and make it per *every* member |
| int nextLocation = 0; // by the rule above, initial value is not relevant |
| if (qualifier.hasAnyLocation()) { |
| nextLocation = qualifier.layoutLocation; |
| qualifier.layoutLocation = TQualifier::layoutLocationEnd; |
| if (qualifier.hasComponent()) { |
| // "It is a compile-time error to apply the *component* qualifier to a ... block" |
| error(loc, "cannot apply to a block", "component", ""); |
| } |
| if (qualifier.hasIndex()) { |
| error(loc, "cannot apply to a block", "index", ""); |
| } |
| } |
| for (unsigned int member = 0; member < typeList.size(); ++member) { |
| TQualifier& memberQualifier = typeList[member].type->getQualifier(); |
| const TSourceLoc& memberLoc = typeList[member].loc; |
| if (! memberQualifier.hasLocation()) { |
| if (nextLocation >= (int)TQualifier::layoutLocationEnd) |
| error(memberLoc, "location is too large", "location", ""); |
| memberQualifier.layoutLocation = nextLocation; |
| memberQualifier.layoutComponent = 0; |
| } |
| nextLocation = memberQualifier.layoutLocation + intermediate.computeTypeLocationSize(*typeList[member].type); |
| } |
| } |
| } |
| } |
| |
| void HlslParseContext::fixBlockXfbOffsets(TQualifier& qualifier, TTypeList& typeList) |
| { |
| // "If a block is qualified with xfb_offset, all its |
| // members are assigned transform feedback buffer offsets. If a block is not qualified with xfb_offset, any |
| // members of that block not qualified with an xfb_offset will not be assigned transform feedback buffer |
| // offsets." |
| |
| if (! qualifier.hasXfbBuffer() || ! qualifier.hasXfbOffset()) |
| return; |
| |
| int nextOffset = qualifier.layoutXfbOffset; |
| for (unsigned int member = 0; member < typeList.size(); ++member) { |
| TQualifier& memberQualifier = typeList[member].type->getQualifier(); |
| bool containsDouble = false; |
| int memberSize = intermediate.computeTypeXfbSize(*typeList[member].type, containsDouble); |
| // see if we need to auto-assign an offset to this member |
| if (! memberQualifier.hasXfbOffset()) { |
| // "if applied to an aggregate containing a double, the offset must also be a multiple of 8" |
| if (containsDouble) |
| RoundToPow2(nextOffset, 8); |
| memberQualifier.layoutXfbOffset = nextOffset; |
| } else |
| nextOffset = memberQualifier.layoutXfbOffset; |
| nextOffset += memberSize; |
| } |
| |
| // The above gave all block members an offset, so we can take it off the block now, |
| // which will avoid double counting the offset usage. |
| qualifier.layoutXfbOffset = TQualifier::layoutXfbOffsetEnd; |
| } |
| |
| // Calculate and save the offset of each block member, using the recursively |
| // defined block offset rules and the user-provided offset and align. |
| // |
| // Also, compute and save the total size of the block. For the block's size, arrayness |
| // is not taken into account, as each element is backed by a separate buffer. |
| // |
| void HlslParseContext::fixBlockUniformOffsets(const TQualifier& qualifier, TTypeList& typeList) |
| { |
| if (! qualifier.isUniformOrBuffer()) |
| return; |
| if (qualifier.layoutPacking != ElpStd140 && qualifier.layoutPacking != ElpStd430) |
| return; |
| |
| int offset = 0; |
| int memberSize; |
| for (unsigned int member = 0; member < typeList.size(); ++member) { |
| TQualifier& memberQualifier = typeList[member].type->getQualifier(); |
| const TSourceLoc& memberLoc = typeList[member].loc; |
| |
| // "When align is applied to an array, it effects only the start of the array, not the array's internal stride." |
| |
| // modify just the children's view of matrix layout, if there is one for this member |
| TLayoutMatrix subMatrixLayout = typeList[member].type->getQualifier().layoutMatrix; |
| int dummyStride; |
| int memberAlignment = intermediate.getBaseAlignment(*typeList[member].type, memberSize, dummyStride, |
| qualifier.layoutPacking == ElpStd140, |
| subMatrixLayout != ElmNone ? subMatrixLayout == ElmRowMajor |
| : qualifier.layoutMatrix == ElmRowMajor); |
| if (memberQualifier.hasOffset()) { |
| // "The specified offset must be a multiple |
| // of the base alignment of the type of the block member it qualifies, or a compile-time error results." |
| if (! IsMultipleOfPow2(memberQualifier.layoutOffset, memberAlignment)) |
| error(memberLoc, "must be a multiple of the member's alignment", "offset", ""); |
| |
| // "The offset qualifier forces the qualified member to start at or after the specified |
| // integral-constant expression, which will be its byte offset from the beginning of the buffer. |
| // "The actual offset of a member is computed as |
| // follows: If offset was declared, start with that offset, otherwise start with the next available offset." |
| offset = std::max(offset, memberQualifier.layoutOffset); |
| } |
| |
| // "The actual alignment of a member will be the greater of the specified align alignment and the standard |
| // (e.g., std140) base alignment for the member's type." |
| if (memberQualifier.hasAlign()) |
| memberAlignment = std::max(memberAlignment, memberQualifier.layoutAlign); |
| |
| // "If the resulting offset is not a multiple of the actual alignment, |
| // increase it to the first offset that is a multiple of |
| // the actual alignment." |
| RoundToPow2(offset, memberAlignment); |
| typeList[member].type->getQualifier().layoutOffset = offset; |
| offset += memberSize; |
| } |
| } |
| |
| // For an identifier that is already declared, add more qualification to it. |
| void HlslParseContext::addQualifierToExisting(const TSourceLoc& loc, TQualifier qualifier, const TString& identifier) |
| { |
| TSymbol* symbol = symbolTable.find(identifier); |
| if (! symbol) { |
| error(loc, "identifier not previously declared", identifier.c_str(), ""); |
| return; |
| } |
| if (symbol->getAsFunction()) { |
| error(loc, "cannot re-qualify a function name", identifier.c_str(), ""); |
| return; |
| } |
| |
| if (qualifier.isAuxiliary() || |
| qualifier.isMemory() || |
| qualifier.isInterpolation() || |
| qualifier.hasLayout() || |
| qualifier.storage != EvqTemporary || |
| qualifier.precision != EpqNone) { |
| error(loc, "cannot add storage, auxiliary, memory, interpolation, layout, or precision qualifier to an existing variable", identifier.c_str(), ""); |
| return; |
| } |
| |
| // For read-only built-ins, add a new symbol for holding the modified qualifier. |
| // This will bring up an entire block, if a block type has to be modified (e.g., gl_Position inside a block) |
| if (symbol->isReadOnly()) |
| symbol = symbolTable.copyUp(symbol); |
| |
| if (qualifier.invariant) { |
| if (intermediate.inIoAccessed(identifier)) |
| error(loc, "cannot change qualification after use", "invariant", ""); |
| symbol->getWritableType().getQualifier().invariant = true; |
| } else if (qualifier.noContraction) { |
| if (intermediate.inIoAccessed(identifier)) |
| error(loc, "cannot change qualification after use", "precise", ""); |
| symbol->getWritableType().getQualifier().noContraction = true; |
| } else if (qualifier.specConstant) { |
| symbol->getWritableType().getQualifier().makeSpecConstant(); |
| if (qualifier.hasSpecConstantId()) |
| symbol->getWritableType().getQualifier().layoutSpecConstantId = qualifier.layoutSpecConstantId; |
| } else |
| warn(loc, "unknown requalification", "", ""); |
| } |
| |
| void HlslParseContext::addQualifierToExisting(const TSourceLoc& loc, TQualifier qualifier, TIdentifierList& identifiers) |
| { |
| for (unsigned int i = 0; i < identifiers.size(); ++i) |
| addQualifierToExisting(loc, qualifier, *identifiers[i]); |
| } |
| |
| // |
| // Update the intermediate for the given input geometry |
| // |
| bool HlslParseContext::handleInputGeometry(const TSourceLoc& loc, const TLayoutGeometry& geometry) |
| { |
| switch (geometry) { |
| case ElgPoints: // fall through |
| case ElgLines: // ... |
| case ElgTriangles: // ... |
| case ElgLinesAdjacency: // ... |
| case ElgTrianglesAdjacency: // ... |
| if (! intermediate.setInputPrimitive(geometry)) { |
| error(loc, "input primitive geometry redefinition", TQualifier::getGeometryString(geometry), ""); |
| return false; |
| } |
| break; |
| |
| default: |
| error(loc, "cannot apply to 'in'", TQualifier::getGeometryString(geometry), ""); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| // |
| // Update the intermediate for the given output geometry |
| // |
| bool HlslParseContext::handleOutputGeometry(const TSourceLoc& loc, const TLayoutGeometry& geometry) |
| { |
| switch (geometry) { |
| case ElgPoints: |
| case ElgLineStrip: |
| case ElgTriangleStrip: |
| if (! intermediate.setOutputPrimitive(geometry)) { |
| error(loc, "output primitive geometry redefinition", TQualifier::getGeometryString(geometry), ""); |
| return false; |
| } |
| break; |
| default: |
| error(loc, "cannot apply to 'out'", TQualifier::getGeometryString(geometry), ""); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| // |
| // Updating default qualifier for the case of a declaration with just a qualifier, |
| // no type, block, or identifier. |
| // |
| void HlslParseContext::updateStandaloneQualifierDefaults(const TSourceLoc& loc, const TPublicType& publicType) |
| { |
| if (publicType.shaderQualifiers.vertices != TQualifier::layoutNotSet) { |
| assert(language == EShLangTessControl || language == EShLangGeometry); |
| // const char* id = (language == EShLangTessControl) ? "vertices" : "max_vertices"; |
| } |
| if (publicType.shaderQualifiers.invocations != TQualifier::layoutNotSet) { |
| if (! intermediate.setInvocations(publicType.shaderQualifiers.invocations)) |
| error(loc, "cannot change previously set layout value", "invocations", ""); |
| } |
| if (publicType.shaderQualifiers.geometry != ElgNone) { |
| if (publicType.qualifier.storage == EvqVaryingIn) { |
| switch (publicType.shaderQualifiers.geometry) { |
| case ElgPoints: |
| case ElgLines: |
| case ElgLinesAdjacency: |
| case ElgTriangles: |
| case ElgTrianglesAdjacency: |
| case ElgQuads: |
| case ElgIsolines: |
| break; |
| default: |
| error(loc, "cannot apply to input", TQualifier::getGeometryString(publicType.shaderQualifiers.geometry), ""); |
| } |
| } else if (publicType.qualifier.storage == EvqVaryingOut) { |
| handleOutputGeometry(loc, publicType.shaderQualifiers.geometry); |
| } else |
| error(loc, "cannot apply to:", TQualifier::getGeometryString(publicType.shaderQualifiers.geometry), GetStorageQualifierString(publicType.qualifier.storage)); |
| } |
| if (publicType.shaderQualifiers.spacing != EvsNone) |
| intermediate.setVertexSpacing(publicType.shaderQualifiers.spacing); |
| if (publicType.shaderQualifiers.order != EvoNone) |
| intermediate.setVertexOrder(publicType.shaderQualifiers.order); |
| if (publicType.shaderQualifiers.pointMode) |
| intermediate.setPointMode(); |
| for (int i = 0; i < 3; ++i) { |
| if (publicType.shaderQualifiers.localSize[i] > 1) { |
| int max = 0; |
| switch (i) { |
| case 0: max = resources.maxComputeWorkGroupSizeX; break; |
| case 1: max = resources.maxComputeWorkGroupSizeY; break; |
| case 2: max = resources.maxComputeWorkGroupSizeZ; break; |
| default: break; |
| } |
| if (intermediate.getLocalSize(i) > (unsigned int)max) |
| error(loc, "too large; see gl_MaxComputeWorkGroupSize", "local_size", ""); |
| |
| // Fix the existing constant gl_WorkGroupSize with this new information. |
| TVariable* workGroupSize = getEditableVariable("gl_WorkGroupSize"); |
| workGroupSize->getWritableConstArray()[i].setUConst(intermediate.getLocalSize(i)); |
| } |
| if (publicType.shaderQualifiers.localSizeSpecId[i] != TQualifier::layoutNotSet) { |
| intermediate.setLocalSizeSpecId(i, publicType.shaderQualifiers.localSizeSpecId[i]); |
| // Set the workgroup built-in variable as a specialization constant |
| TVariable* workGroupSize = getEditableVariable("gl_WorkGroupSize"); |
| workGroupSize->getWritableType().getQualifier().specConstant = true; |
| } |
| } |
| if (publicType.shaderQualifiers.earlyFragmentTests) |
| intermediate.setEarlyFragmentTests(); |
| |
| const TQualifier& qualifier = publicType.qualifier; |
| |
| switch (qualifier.storage) { |
| case EvqUniform: |
| if (qualifier.hasMatrix()) |
| globalUniformDefaults.layoutMatrix = qualifier.layoutMatrix; |
| if (qualifier.hasPacking()) |
| globalUniformDefaults.layoutPacking = qualifier.layoutPacking; |
| break; |
| case EvqBuffer: |
| if (qualifier.hasMatrix()) |
| globalBufferDefaults.layoutMatrix = qualifier.layoutMatrix; |
| if (qualifier.hasPacking()) |
| globalBufferDefaults.layoutPacking = qualifier.layoutPacking; |
| break; |
| case EvqVaryingIn: |
| break; |
| case EvqVaryingOut: |
| if (qualifier.hasStream()) |
| globalOutputDefaults.layoutStream = qualifier.layoutStream; |
| if (qualifier.hasXfbBuffer()) |
| globalOutputDefaults.layoutXfbBuffer = qualifier.layoutXfbBuffer; |
| if (globalOutputDefaults.hasXfbBuffer() && qualifier.hasXfbStride()) { |
| if (! intermediate.setXfbBufferStride(globalOutputDefaults.layoutXfbBuffer, qualifier.layoutXfbStride)) |
| error(loc, "all stride settings must match for xfb buffer", "xfb_stride", "%d", qualifier.layoutXfbBuffer); |
| } |
| break; |
| default: |
| error(loc, "default qualifier requires 'uniform', 'buffer', 'in', or 'out' storage qualification", "", ""); |
| return; |
| } |
| } |
| |
| // |
| // Take the sequence of statements that has been built up since the last case/default, |
| // put it on the list of top-level nodes for the current (inner-most) switch statement, |
| // and follow that by the case/default we are on now. (See switch topology comment on |
| // TIntermSwitch.) |
| // |
| void HlslParseContext::wrapupSwitchSubsequence(TIntermAggregate* statements, TIntermNode* branchNode) |
| { |
| TIntermSequence* switchSequence = switchSequenceStack.back(); |
| |
| if (statements) { |
| statements->setOperator(EOpSequence); |
| switchSequence->push_back(statements); |
| } |
| if (branchNode) { |
| // check all previous cases for the same label (or both are 'default') |
| for (unsigned int s = 0; s < switchSequence->size(); ++s) { |
| TIntermBranch* prevBranch = (*switchSequence)[s]->getAsBranchNode(); |
| if (prevBranch) { |
| TIntermTyped* prevExpression = prevBranch->getExpression(); |
| TIntermTyped* newExpression = branchNode->getAsBranchNode()->getExpression(); |
| if (prevExpression == nullptr && newExpression == nullptr) |
| error(branchNode->getLoc(), "duplicate label", "default", ""); |
| else if (prevExpression != nullptr && |
| newExpression != nullptr && |
| prevExpression->getAsConstantUnion() && |
| newExpression->getAsConstantUnion() && |
| prevExpression->getAsConstantUnion()->getConstArray()[0].getIConst() == |
| newExpression->getAsConstantUnion()->getConstArray()[0].getIConst()) |
| error(branchNode->getLoc(), "duplicated value", "case", ""); |
| } |
| } |
| switchSequence->push_back(branchNode); |
| } |
| } |
| |
| // |
| // Turn the top-level node sequence built up of wrapupSwitchSubsequence |
| // into a switch node. |
| // |
| TIntermNode* HlslParseContext::addSwitch(const TSourceLoc& loc, TIntermTyped* expression, TIntermAggregate* lastStatements) |
| { |
| wrapupSwitchSubsequence(lastStatements, nullptr); |
| |
| if (expression == nullptr || |
| (expression->getBasicType() != EbtInt && expression->getBasicType() != EbtUint) || |
| expression->getType().isArray() || expression->getType().isMatrix() || expression->getType().isVector()) |
| error(loc, "condition must be a scalar integer expression", "switch", ""); |
| |
| // If there is nothing to do, drop the switch but still execute the expression |
| TIntermSequence* switchSequence = switchSequenceStack.back(); |
| if (switchSequence->size() == 0) |
| return expression; |
| |
| if (lastStatements == nullptr) { |
| // emulate a break for error recovery |
| lastStatements = intermediate.makeAggregate(intermediate.addBranch(EOpBreak, loc)); |
| lastStatements->setOperator(EOpSequence); |
| switchSequence->push_back(lastStatements); |
| } |
| |
| TIntermAggregate* body = new TIntermAggregate(EOpSequence); |
| body->getSequence() = *switchSequenceStack.back(); |
| body->setLoc(loc); |
| |
| TIntermSwitch* switchNode = new TIntermSwitch(expression, body); |
| switchNode->setLoc(loc); |
| |
| return switchNode; |
| } |
| |
| // Potentially rename shader entry point function |
| void HlslParseContext::renameShaderFunction(TString*& name) const |
| { |
| // Replace the entry point name given in the shader with the real entry point name, |
| // if there is a substitution. |
| if (name != nullptr && *name == sourceEntryPointName) |
| name = new TString(intermediate.getEntryPointName().c_str()); |
| } |
| |
| } // end namespace glslang |