| // |
| // Copyright (C) 2002-2005 3Dlabs Inc. Ltd. |
| // Copyright (C) 2012-2015 LunarG, Inc. |
| // Copyright (C) 2015-2016 Google, Inc. |
| // |
| // All rights reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions |
| // are met: |
| // |
| // Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // |
| // Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // |
| // Neither the name of 3Dlabs Inc. Ltd. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
| // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
| // COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
| // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
| // BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| // LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
| // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| // LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
| // ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| |
| #include "ParseHelper.h" |
| #include "Scan.h" |
| |
| #include "../OSDependent/osinclude.h" |
| #include <algorithm> |
| |
| #include "preprocessor/PpContext.h" |
| |
| extern int yyparse(glslang::TParseContext*); |
| |
| namespace glslang { |
| |
| TParseContext::TParseContext(TSymbolTable& symbolTable, TIntermediate& interm, bool parsingBuiltins, |
| int version, EProfile profile, const SpvVersion& spvVersion, EShLanguage language, |
| TInfoSink& infoSink, bool forwardCompatible, EShMessages messages, |
| const TString* entryPoint) : |
| TParseContextBase(symbolTable, interm, parsingBuiltins, version, profile, spvVersion, language, |
| infoSink, forwardCompatible, messages, entryPoint), |
| inMain(false), |
| blockName(nullptr), |
| limits(resources.limits), |
| atomicUintOffsets(nullptr), anyIndexLimits(false) |
| { |
| // decide whether precision qualifiers should be ignored or respected |
| if (profile == EEsProfile || spvVersion.vulkan > 0) { |
| precisionManager.respectPrecisionQualifiers(); |
| if (! parsingBuiltins && language == EShLangFragment && profile != EEsProfile && spvVersion.vulkan > 0) |
| precisionManager.warnAboutDefaults(); |
| } |
| |
| setPrecisionDefaults(); |
| |
| globalUniformDefaults.clear(); |
| globalUniformDefaults.layoutMatrix = ElmColumnMajor; |
| globalUniformDefaults.layoutPacking = spvVersion.spv != 0 ? ElpStd140 : ElpShared; |
| |
| globalBufferDefaults.clear(); |
| globalBufferDefaults.layoutMatrix = ElmColumnMajor; |
| globalBufferDefaults.layoutPacking = spvVersion.spv != 0 ? ElpStd430 : ElpShared; |
| |
| globalInputDefaults.clear(); |
| globalOutputDefaults.clear(); |
| |
| // "Shaders in the transform |
| // feedback capturing mode have an initial global default of |
| // layout(xfb_buffer = 0) out;" |
| if (language == EShLangVertex || |
| language == EShLangTessControl || |
| language == EShLangTessEvaluation || |
| language == EShLangGeometry) |
| globalOutputDefaults.layoutXfbBuffer = 0; |
| |
| if (language == EShLangGeometry) |
| globalOutputDefaults.layoutStream = 0; |
| |
| if (entryPoint != nullptr && entryPoint->size() > 0 && *entryPoint != "main") |
| infoSink.info.message(EPrefixError, "Source entry point must be \"main\""); |
| } |
| |
| TParseContext::~TParseContext() |
| { |
| delete [] atomicUintOffsets; |
| } |
| |
| // Set up all default precisions as needed by the current environment. |
| // Intended just as a TParseContext constructor helper. |
| void TParseContext::setPrecisionDefaults() |
| { |
| // Set all precision defaults to EpqNone, which is correct for all types |
| // when not obeying precision qualifiers, and correct for types that don't |
| // have defaults (thus getting an error on use) when obeying precision |
| // qualifiers. |
| |
| for (int type = 0; type < EbtNumTypes; ++type) |
| defaultPrecision[type] = EpqNone; |
| |
| for (int type = 0; type < maxSamplerIndex; ++type) |
| defaultSamplerPrecision[type] = EpqNone; |
| |
| // replace with real precision defaults for those that have them |
| if (obeyPrecisionQualifiers()) { |
| if (profile == EEsProfile) { |
| // Most don't have defaults, a few default to lowp. |
| TSampler sampler; |
| sampler.set(EbtFloat, Esd2D); |
| defaultSamplerPrecision[computeSamplerTypeIndex(sampler)] = EpqLow; |
| sampler.set(EbtFloat, EsdCube); |
| defaultSamplerPrecision[computeSamplerTypeIndex(sampler)] = EpqLow; |
| sampler.set(EbtFloat, Esd2D); |
| sampler.external = true; |
| defaultSamplerPrecision[computeSamplerTypeIndex(sampler)] = EpqLow; |
| } |
| |
| // If we are parsing built-in computational variables/functions, it is meaningful to record |
| // whether the built-in has no precision qualifier, as that ambiguity |
| // is used to resolve the precision from the supplied arguments/operands instead. |
| // So, we don't actually want to replace EpqNone with a default precision for built-ins. |
| if (! parsingBuiltins) { |
| if (profile == EEsProfile && language == EShLangFragment) { |
| defaultPrecision[EbtInt] = EpqMedium; |
| defaultPrecision[EbtUint] = EpqMedium; |
| } else { |
| defaultPrecision[EbtInt] = EpqHigh; |
| defaultPrecision[EbtUint] = EpqHigh; |
| defaultPrecision[EbtFloat] = EpqHigh; |
| } |
| |
| if (profile != EEsProfile) { |
| // Non-ES profile |
| // All sampler precisions default to highp. |
| for (int type = 0; type < maxSamplerIndex; ++type) |
| defaultSamplerPrecision[type] = EpqHigh; |
| } |
| } |
| |
| defaultPrecision[EbtSampler] = EpqLow; |
| defaultPrecision[EbtAtomicUint] = EpqHigh; |
| } |
| } |
| |
| void TParseContext::setLimits(const TBuiltInResource& r) |
| { |
| resources = r; |
| |
| anyIndexLimits = ! limits.generalAttributeMatrixVectorIndexing || |
| ! limits.generalConstantMatrixVectorIndexing || |
| ! limits.generalSamplerIndexing || |
| ! limits.generalUniformIndexing || |
| ! limits.generalVariableIndexing || |
| ! limits.generalVaryingIndexing; |
| |
| intermediate.setLimits(resources); |
| |
| // "Each binding point tracks its own current default offset for |
| // inheritance of subsequent variables using the same binding. The initial state of compilation is that all |
| // binding points have an offset of 0." |
| atomicUintOffsets = new int[resources.maxAtomicCounterBindings]; |
| for (int b = 0; b < resources.maxAtomicCounterBindings; ++b) |
| atomicUintOffsets[b] = 0; |
| } |
| |
| // |
| // Parse an array of strings using yyparse, going through the |
| // preprocessor to tokenize the shader strings, then through |
| // the GLSL scanner. |
| // |
| // Returns true for successful acceptance of the shader, false if any errors. |
| // |
| bool TParseContext::parseShaderStrings(TPpContext& ppContext, TInputScanner& input, bool versionWillBeError) |
| { |
| currentScanner = &input; |
| ppContext.setInput(input, versionWillBeError); |
| yyparse(this); |
| |
| finish(); |
| |
| return numErrors == 0; |
| } |
| |
| // This is called from bison when it has a parse (syntax) error |
| // Note though that to stop cascading errors, we set EOF, which |
| // will usually cause a syntax error, so be more accurate that |
| // compilation is terminating. |
| void TParseContext::parserError(const char* s) |
| { |
| if (! getScanner()->atEndOfInput() || numErrors == 0) |
| error(getCurrentLoc(), "", "", s, ""); |
| else |
| error(getCurrentLoc(), "compilation terminated", "", ""); |
| } |
| |
| void TParseContext::handlePragma(const TSourceLoc& loc, const TVector<TString>& tokens) |
| { |
| if (pragmaCallback) |
| pragmaCallback(loc.line, tokens); |
| |
| if (tokens.size() == 0) |
| return; |
| |
| if (tokens[0].compare("optimize") == 0) { |
| if (tokens.size() != 4) { |
| error(loc, "optimize pragma syntax is incorrect", "#pragma", ""); |
| return; |
| } |
| |
| if (tokens[1].compare("(") != 0) { |
| error(loc, "\"(\" expected after 'optimize' keyword", "#pragma", ""); |
| return; |
| } |
| |
| if (tokens[2].compare("on") == 0) |
| contextPragma.optimize = true; |
| else if (tokens[2].compare("off") == 0) |
| contextPragma.optimize = false; |
| else { |
| error(loc, "\"on\" or \"off\" expected after '(' for 'optimize' pragma", "#pragma", ""); |
| return; |
| } |
| |
| if (tokens[3].compare(")") != 0) { |
| error(loc, "\")\" expected to end 'optimize' pragma", "#pragma", ""); |
| return; |
| } |
| } else if (tokens[0].compare("debug") == 0) { |
| if (tokens.size() != 4) { |
| error(loc, "debug pragma syntax is incorrect", "#pragma", ""); |
| return; |
| } |
| |
| if (tokens[1].compare("(") != 0) { |
| error(loc, "\"(\" expected after 'debug' keyword", "#pragma", ""); |
| return; |
| } |
| |
| if (tokens[2].compare("on") == 0) |
| contextPragma.debug = true; |
| else if (tokens[2].compare("off") == 0) |
| contextPragma.debug = false; |
| else { |
| error(loc, "\"on\" or \"off\" expected after '(' for 'debug' pragma", "#pragma", ""); |
| return; |
| } |
| |
| if (tokens[3].compare(")") != 0) { |
| error(loc, "\")\" expected to end 'debug' pragma", "#pragma", ""); |
| return; |
| } |
| } else if (spvVersion.spv > 0 && tokens[0].compare("use_storage_buffer") == 0) { |
| if (tokens.size() != 1) |
| error(loc, "extra tokens", "#pragma", ""); |
| intermediate.setUseStorageBuffer(); |
| } else if (tokens[0].compare("once") == 0) { |
| warn(loc, "not implemented", "#pragma once", ""); |
| } |
| } |
| |
| // |
| // Handle seeing a variable identifier in the grammar. |
| // |
| TIntermTyped* TParseContext::handleVariable(const TSourceLoc& loc, TSymbol* symbol, const TString* string) |
| { |
| TIntermTyped* node = nullptr; |
| |
| // Error check for requiring specific extensions present. |
| if (symbol && symbol->getNumExtensions()) |
| requireExtensions(loc, symbol->getNumExtensions(), symbol->getExtensions(), symbol->getName().c_str()); |
| |
| if (symbol && symbol->isReadOnly()) { |
| // All shared things containing an implicitly sized array must be copied up |
| // on first use, so that all future references will share its array structure, |
| // so that editing the implicit size will effect all nodes consuming it, |
| // and so that editing the implicit size won't change the shared one. |
| // |
| // If this is a variable or a block, check it and all it contains, but if this |
| // is a member of an anonymous block, check the whole block, as the whole block |
| // will need to be copied up if it contains an implicitly-sized array. |
| if (symbol->getType().containsImplicitlySizedArray() || |
| (symbol->getAsAnonMember() && |
| symbol->getAsAnonMember()->getAnonContainer().getType().containsImplicitlySizedArray())) |
| makeEditable(symbol); |
| } |
| |
| const TVariable* variable; |
| const TAnonMember* anon = symbol ? symbol->getAsAnonMember() : nullptr; |
| if (anon) { |
| // It was a member of an anonymous container. |
| |
| // The "getNumExtensions()" mechanism above doesn't yet work for block members |
| blockMemberExtensionCheck(loc, nullptr, *string); |
| |
| // Create a subtree for its dereference. |
| variable = anon->getAnonContainer().getAsVariable(); |
| TIntermTyped* container = intermediate.addSymbol(*variable, loc); |
| TIntermTyped* constNode = intermediate.addConstantUnion(anon->getMemberNumber(), loc); |
| node = intermediate.addIndex(EOpIndexDirectStruct, container, constNode, loc); |
| |
| node->setType(*(*variable->getType().getStruct())[anon->getMemberNumber()].type); |
| if (node->getType().hiddenMember()) |
| error(loc, "member of nameless block was not redeclared", string->c_str(), ""); |
| } else { |
| // Not a member of an anonymous container. |
| |
| // The symbol table search was done in the lexical phase. |
| // See if it was a variable. |
| variable = symbol ? symbol->getAsVariable() : nullptr; |
| if (variable) { |
| if ((variable->getType().getBasicType() == EbtBlock || |
| variable->getType().getBasicType() == EbtStruct) && variable->getType().getStruct() == nullptr) { |
| error(loc, "cannot be used (maybe an instance name is needed)", string->c_str(), ""); |
| variable = nullptr; |
| } |
| } else { |
| if (symbol) |
| error(loc, "variable name expected", string->c_str(), ""); |
| } |
| |
| // Recovery, if it wasn't found or was not a variable. |
| if (! variable) |
| variable = new TVariable(string, TType(EbtVoid)); |
| |
| if (variable->getType().getQualifier().isFrontEndConstant()) |
| node = intermediate.addConstantUnion(variable->getConstArray(), variable->getType(), loc); |
| else |
| node = intermediate.addSymbol(*variable, loc); |
| } |
| |
| if (variable->getType().getQualifier().isIo()) |
| intermediate.addIoAccessed(*string); |
| |
| return node; |
| } |
| |
| // |
| // Handle seeing a base[index] dereference in the grammar. |
| // |
| TIntermTyped* TParseContext::handleBracketDereference(const TSourceLoc& loc, TIntermTyped* base, TIntermTyped* index) |
| { |
| TIntermTyped* result = nullptr; |
| |
| int indexValue = 0; |
| if (index->getQualifier().isFrontEndConstant()) |
| indexValue = index->getAsConstantUnion()->getConstArray()[0].getIConst(); |
| |
| variableCheck(base); |
| if (! base->isArray() && ! base->isMatrix() && ! base->isVector()) { |
| if (base->getAsSymbolNode()) |
| error(loc, " left of '[' is not of type array, matrix, or vector ", base->getAsSymbolNode()->getName().c_str(), ""); |
| else |
| error(loc, " left of '[' is not of type array, matrix, or vector ", "expression", ""); |
| } else if (base->getType().getQualifier().isFrontEndConstant() && index->getQualifier().isFrontEndConstant()) { |
| // both base and index are front-end constants |
| checkIndex(loc, base->getType(), indexValue); |
| return intermediate.foldDereference(base, indexValue, loc); |
| } else { |
| // at least one of base and index is not a front-end constant variable... |
| |
| if (base->getAsSymbolNode() && isIoResizeArray(base->getType())) |
| handleIoResizeArrayAccess(loc, base); |
| |
| if (index->getQualifier().isFrontEndConstant()) { |
| if (base->getType().isImplicitlySizedArray()) |
| updateImplicitArraySize(loc, base, indexValue); |
| else |
| checkIndex(loc, base->getType(), indexValue); |
| result = intermediate.addIndex(EOpIndexDirect, base, index, loc); |
| } else { |
| if (base->getType().isImplicitlySizedArray()) { |
| if (base->getAsSymbolNode() && isIoResizeArray(base->getType())) |
| error(loc, "", "[", "array must be sized by a redeclaration or layout qualifier before being indexed with a variable"); |
| else |
| error(loc, "", "[", "array must be redeclared with a size before being indexed with a variable"); |
| } |
| if (base->getBasicType() == EbtBlock) { |
| if (base->getQualifier().storage == EvqBuffer) |
| requireProfile(base->getLoc(), ~EEsProfile, "variable indexing buffer block array"); |
| else if (base->getQualifier().storage == EvqUniform) |
| profileRequires(base->getLoc(), EEsProfile, 320, Num_AEP_gpu_shader5, AEP_gpu_shader5, |
| "variable indexing uniform block array"); |
| else { |
| // input/output blocks either don't exist or can be variable indexed |
| } |
| } else if (language == EShLangFragment && base->getQualifier().isPipeOutput()) |
| requireProfile(base->getLoc(), ~EEsProfile, "variable indexing fragment shader output array"); |
| else if (base->getBasicType() == EbtSampler && version >= 130) { |
| const char* explanation = "variable indexing sampler array"; |
| requireProfile(base->getLoc(), EEsProfile | ECoreProfile | ECompatibilityProfile, explanation); |
| profileRequires(base->getLoc(), EEsProfile, 320, Num_AEP_gpu_shader5, AEP_gpu_shader5, explanation); |
| profileRequires(base->getLoc(), ECoreProfile | ECompatibilityProfile, 400, nullptr, explanation); |
| } |
| |
| result = intermediate.addIndex(EOpIndexIndirect, base, index, loc); |
| } |
| } |
| |
| if (result == nullptr) { |
| // Insert dummy error-recovery result |
| result = intermediate.addConstantUnion(0.0, EbtFloat, loc); |
| } else { |
| // Insert valid dereferenced result |
| TType newType(base->getType(), 0); // dereferenced type |
| if (base->getType().getQualifier().isConstant() && index->getQualifier().isConstant()) { |
| newType.getQualifier().storage = EvqConst; |
| // If base or index is a specialization constant, the result should also be a specialization constant. |
| if (base->getType().getQualifier().isSpecConstant() || index->getQualifier().isSpecConstant()) { |
| newType.getQualifier().makeSpecConstant(); |
| } |
| } else { |
| newType.getQualifier().makePartialTemporary(); |
| } |
| result->setType(newType); |
| |
| if (anyIndexLimits) |
| handleIndexLimits(loc, base, index); |
| } |
| |
| return result; |
| } |
| |
| // for ES 2.0 (version 100) limitations for almost all index operations except vertex-shader uniforms |
| void TParseContext::handleIndexLimits(const TSourceLoc& /*loc*/, TIntermTyped* base, TIntermTyped* index) |
| { |
| if ((! limits.generalSamplerIndexing && base->getBasicType() == EbtSampler) || |
| (! limits.generalUniformIndexing && base->getQualifier().isUniformOrBuffer() && language != EShLangVertex) || |
| (! limits.generalAttributeMatrixVectorIndexing && base->getQualifier().isPipeInput() && language == EShLangVertex && (base->getType().isMatrix() || base->getType().isVector())) || |
| (! limits.generalConstantMatrixVectorIndexing && base->getAsConstantUnion()) || |
| (! limits.generalVariableIndexing && ! base->getType().getQualifier().isUniformOrBuffer() && |
| ! base->getType().getQualifier().isPipeInput() && |
| ! base->getType().getQualifier().isPipeOutput() && |
| ! base->getType().getQualifier().isConstant()) || |
| (! limits.generalVaryingIndexing && (base->getType().getQualifier().isPipeInput() || |
| base->getType().getQualifier().isPipeOutput()))) { |
| // it's too early to know what the inductive variables are, save it for post processing |
| needsIndexLimitationChecking.push_back(index); |
| } |
| } |
| |
| // Make a shared symbol have a non-shared version that can be edited by the current |
| // compile, such that editing its type will not change the shared version and will |
| // effect all nodes sharing it. |
| void TParseContext::makeEditable(TSymbol*& symbol) |
| { |
| TParseContextBase::makeEditable(symbol); |
| |
| // See if it's tied to IO resizing |
| if (isIoResizeArray(symbol->getType())) |
| ioArraySymbolResizeList.push_back(symbol); |
| } |
| |
| // Return true if this is a geometry shader input array or tessellation control output array. |
| bool TParseContext::isIoResizeArray(const TType& type) const |
| { |
| return type.isArray() && |
| ((language == EShLangGeometry && type.getQualifier().storage == EvqVaryingIn) || |
| (language == EShLangTessControl && type.getQualifier().storage == EvqVaryingOut && ! type.getQualifier().patch)); |
| } |
| |
| // If an array is not isIoResizeArray() but is an io array, make sure it has the right size |
| void TParseContext::fixIoArraySize(const TSourceLoc& loc, TType& type) |
| { |
| if (! type.isArray() || type.getQualifier().patch || symbolTable.atBuiltInLevel()) |
| return; |
| |
| assert(! isIoResizeArray(type)); |
| |
| if (type.getQualifier().storage != EvqVaryingIn || type.getQualifier().patch) |
| return; |
| |
| if (language == EShLangTessControl || language == EShLangTessEvaluation) { |
| if (type.getOuterArraySize() != resources.maxPatchVertices) { |
| if (type.isExplicitlySizedArray()) |
| error(loc, "tessellation input array size must be gl_MaxPatchVertices or implicitly sized", "[]", ""); |
| type.changeOuterArraySize(resources.maxPatchVertices); |
| } |
| } |
| } |
| |
| // Issue any errors if the non-array object is missing arrayness WRT |
| // shader I/O that has array requirements. |
| // All arrayness checking is handled in array paths, this is for |
| void TParseContext::ioArrayCheck(const TSourceLoc& loc, const TType& type, const TString& identifier) |
| { |
| if (! type.isArray() && ! symbolTable.atBuiltInLevel()) { |
| if (type.getQualifier().isArrayedIo(language) |
| #ifdef NV_EXTENSIONS |
| && !type.getQualifier().layoutPassthrough |
| #endif |
| ) |
| error(loc, "type must be an array:", type.getStorageQualifierString(), identifier.c_str()); |
| } |
| } |
| |
| // Handle a dereference of a geometry shader input array or tessellation control output array. |
| // See ioArraySymbolResizeList comment in ParseHelper.h. |
| // |
| void TParseContext::handleIoResizeArrayAccess(const TSourceLoc& /*loc*/, TIntermTyped* base) |
| { |
| TIntermSymbol* symbolNode = base->getAsSymbolNode(); |
| assert(symbolNode); |
| if (! symbolNode) |
| return; |
| |
| // fix array size, if it can be fixed and needs to be fixed (will allow variable indexing) |
| if (symbolNode->getType().isImplicitlySizedArray()) { |
| int newSize = getIoArrayImplicitSize(); |
| if (newSize > 0) |
| symbolNode->getWritableType().changeOuterArraySize(newSize); |
| } |
| } |
| |
| // If there has been an input primitive declaration (geometry shader) or an output |
| // number of vertices declaration(tessellation shader), make sure all input array types |
| // match it in size. Types come either from nodes in the AST or symbols in the |
| // symbol table. |
| // |
| // Types without an array size will be given one. |
| // Types already having a size that is wrong will get an error. |
| // |
| void TParseContext::checkIoArraysConsistency(const TSourceLoc& loc, bool tailOnly) |
| { |
| int requiredSize = getIoArrayImplicitSize(); |
| if (requiredSize == 0) |
| return; |
| |
| const char* feature; |
| if (language == EShLangGeometry) |
| feature = TQualifier::getGeometryString(intermediate.getInputPrimitive()); |
| else if (language == EShLangTessControl) |
| feature = "vertices"; |
| else |
| feature = "unknown"; |
| |
| if (tailOnly) { |
| checkIoArrayConsistency(loc, requiredSize, feature, ioArraySymbolResizeList.back()->getWritableType(), ioArraySymbolResizeList.back()->getName()); |
| return; |
| } |
| |
| for (size_t i = 0; i < ioArraySymbolResizeList.size(); ++i) |
| checkIoArrayConsistency(loc, requiredSize, feature, ioArraySymbolResizeList[i]->getWritableType(), ioArraySymbolResizeList[i]->getName()); |
| } |
| |
| int TParseContext::getIoArrayImplicitSize() const |
| { |
| if (language == EShLangGeometry) |
| return TQualifier::mapGeometryToSize(intermediate.getInputPrimitive()); |
| else if (language == EShLangTessControl) |
| return intermediate.getVertices() != TQualifier::layoutNotSet ? intermediate.getVertices() : 0; |
| else |
| return 0; |
| } |
| |
| void TParseContext::checkIoArrayConsistency(const TSourceLoc& loc, int requiredSize, const char* feature, TType& type, const TString& name) |
| { |
| if (type.isImplicitlySizedArray()) |
| type.changeOuterArraySize(requiredSize); |
| else if (type.getOuterArraySize() != requiredSize) { |
| if (language == EShLangGeometry) |
| error(loc, "inconsistent input primitive for array size of", feature, name.c_str()); |
| else if (language == EShLangTessControl) |
| error(loc, "inconsistent output number of vertices for array size of", feature, name.c_str()); |
| else |
| assert(0); |
| } |
| } |
| |
| // Handle seeing a binary node with a math operation. |
| // Returns nullptr if not semantically allowed. |
| TIntermTyped* TParseContext::handleBinaryMath(const TSourceLoc& loc, const char* str, TOperator op, TIntermTyped* left, TIntermTyped* right) |
| { |
| rValueErrorCheck(loc, str, left->getAsTyped()); |
| rValueErrorCheck(loc, str, right->getAsTyped()); |
| |
| bool allowed = true; |
| switch (op) { |
| // TODO: Bring more source language-specific checks up from intermediate.cpp |
| // to the specific parse helpers for that source language. |
| case EOpLessThan: |
| case EOpGreaterThan: |
| case EOpLessThanEqual: |
| case EOpGreaterThanEqual: |
| if (! left->isScalar() || ! right->isScalar()) |
| allowed = false; |
| break; |
| default: |
| break; |
| } |
| |
| TIntermTyped* result = nullptr; |
| if (allowed) |
| result = intermediate.addBinaryMath(op, left, right, loc); |
| |
| if (result == nullptr) |
| binaryOpError(loc, str, left->getCompleteString(), right->getCompleteString()); |
| |
| return result; |
| } |
| |
| // Handle seeing a unary node with a math operation. |
| TIntermTyped* TParseContext::handleUnaryMath(const TSourceLoc& loc, const char* str, TOperator op, TIntermTyped* childNode) |
| { |
| rValueErrorCheck(loc, str, childNode); |
| |
| TIntermTyped* result = intermediate.addUnaryMath(op, childNode, loc); |
| |
| if (result) |
| return result; |
| else |
| unaryOpError(loc, str, childNode->getCompleteString()); |
| |
| return childNode; |
| } |
| |
| // |
| // Handle seeing a base.field dereference in the grammar. |
| // |
| TIntermTyped* TParseContext::handleDotDereference(const TSourceLoc& loc, TIntermTyped* base, const TString& field) |
| { |
| variableCheck(base); |
| |
| // |
| // .length() can't be resolved until we later see the function-calling syntax. |
| // Save away the name in the AST for now. Processing is completed in |
| // handleLengthMethod(). |
| // |
| if (field == "length") { |
| if (base->isArray()) { |
| profileRequires(loc, ENoProfile, 120, E_GL_3DL_array_objects, ".length"); |
| profileRequires(loc, EEsProfile, 300, nullptr, ".length"); |
| } else if (base->isVector() || base->isMatrix()) { |
| const char* feature = ".length() on vectors and matrices"; |
| requireProfile(loc, ~EEsProfile, feature); |
| profileRequires(loc, ~EEsProfile, 420, E_GL_ARB_shading_language_420pack, feature); |
| } else { |
| error(loc, "does not operate on this type:", field.c_str(), base->getType().getCompleteString().c_str()); |
| |
| return base; |
| } |
| |
| return intermediate.addMethod(base, TType(EbtInt), &field, loc); |
| } |
| |
| // It's not .length() if we get to here. |
| |
| if (base->isArray()) { |
| error(loc, "cannot apply to an array:", ".", field.c_str()); |
| |
| return base; |
| } |
| |
| // It's neither an array nor .length() if we get here, |
| // leaving swizzles and struct/block dereferences. |
| |
| TIntermTyped* result = base; |
| if ((base->isVector() || base->isScalar()) && |
| (base->isFloatingDomain() || base->isIntegerDomain() || base->getBasicType() == EbtBool)) { |
| if (base->isScalar()) { |
| const char* dotFeature = "scalar swizzle"; |
| requireProfile(loc, ~EEsProfile, dotFeature); |
| profileRequires(loc, ~EEsProfile, 420, E_GL_ARB_shading_language_420pack, dotFeature); |
| } |
| |
| TSwizzleSelectors<TVectorSelector> selectors; |
| parseSwizzleSelector(loc, field, base->getVectorSize(), selectors); |
| |
| if (base->isScalar()) { |
| if (selectors.size() == 1) |
| return result; |
| else { |
| TType type(base->getBasicType(), EvqTemporary, selectors.size()); |
| // Swizzle operations propagate specialization-constantness |
| if (base->getQualifier().isSpecConstant()) |
| type.getQualifier().makeSpecConstant(); |
| return addConstructor(loc, base, type); |
| } |
| } |
| |
| if (base->getType().getQualifier().isFrontEndConstant()) |
| result = intermediate.foldSwizzle(base, selectors, loc); |
| else { |
| if (selectors.size() == 1) { |
| TIntermTyped* index = intermediate.addConstantUnion(selectors[0], loc); |
| result = intermediate.addIndex(EOpIndexDirect, base, index, loc); |
| result->setType(TType(base->getBasicType(), EvqTemporary, base->getType().getQualifier().precision)); |
| } else { |
| TIntermTyped* index = intermediate.addSwizzle(selectors, loc); |
| result = intermediate.addIndex(EOpVectorSwizzle, base, index, loc); |
| result->setType(TType(base->getBasicType(), EvqTemporary, base->getType().getQualifier().precision, selectors.size())); |
| } |
| // Swizzle operations propagate specialization-constantness |
| if (base->getType().getQualifier().isSpecConstant()) |
| result->getWritableType().getQualifier().makeSpecConstant(); |
| } |
| } else if (base->getBasicType() == EbtStruct || base->getBasicType() == EbtBlock) { |
| const TTypeList* fields = base->getType().getStruct(); |
| bool fieldFound = false; |
| int member; |
| for (member = 0; member < (int)fields->size(); ++member) { |
| if ((*fields)[member].type->getFieldName() == field) { |
| fieldFound = true; |
| break; |
| } |
| } |
| if (fieldFound) { |
| if (base->getType().getQualifier().isFrontEndConstant()) |
| result = intermediate.foldDereference(base, member, loc); |
| else { |
| blockMemberExtensionCheck(loc, base, field); |
| TIntermTyped* index = intermediate.addConstantUnion(member, loc); |
| result = intermediate.addIndex(EOpIndexDirectStruct, base, index, loc); |
| result->setType(*(*fields)[member].type); |
| } |
| } else |
| error(loc, "no such field in structure", field.c_str(), ""); |
| } else |
| error(loc, "does not apply to this type:", field.c_str(), base->getType().getCompleteString().c_str()); |
| |
| // Propagate noContraction up the dereference chain |
| if (base->getQualifier().noContraction) |
| result->getWritableType().getQualifier().noContraction = true; |
| |
| return result; |
| } |
| |
| void TParseContext::blockMemberExtensionCheck(const TSourceLoc& loc, const TIntermTyped* /*base*/, const TString& field) |
| { |
| if (profile == EEsProfile && field == "gl_PointSize") { |
| if (language == EShLangGeometry) |
| requireExtensions(loc, Num_AEP_geometry_point_size, AEP_geometry_point_size, "gl_PointSize"); |
| else if (language == EShLangTessControl || language == EShLangTessEvaluation) |
| requireExtensions(loc, Num_AEP_tessellation_point_size, AEP_tessellation_point_size, "gl_PointSize"); |
| } |
| } |
| |
| // |
| // Handle seeing a function declarator in the grammar. This is the precursor |
| // to recognizing a function prototype or function definition. |
| // |
| TFunction* TParseContext::handleFunctionDeclarator(const TSourceLoc& loc, TFunction& function, bool prototype) |
| { |
| // ES can't declare prototypes inside functions |
| if (! symbolTable.atGlobalLevel()) |
| requireProfile(loc, ~EEsProfile, "local function declaration"); |
| |
| // |
| // Multiple declarations of the same function name are allowed. |
| // |
| // If this is a definition, the definition production code will check for redefinitions |
| // (we don't know at this point if it's a definition or not). |
| // |
| // Redeclarations (full signature match) are allowed. But, return types and parameter qualifiers must also match. |
| // - except ES 100, which only allows a single prototype |
| // |
| // ES 100 does not allow redefining, but does allow overloading of built-in functions. |
| // ES 300 does not allow redefining or overloading of built-in functions. |
| // |
| bool builtIn; |
| TSymbol* symbol = symbolTable.find(function.getMangledName(), &builtIn); |
| if (symbol && symbol->getAsFunction() && builtIn) |
| requireProfile(loc, ~EEsProfile, "redefinition of built-in function"); |
| const TFunction* prevDec = symbol ? symbol->getAsFunction() : 0; |
| if (prevDec) { |
| if (prevDec->isPrototyped() && prototype) |
| profileRequires(loc, EEsProfile, 300, nullptr, "multiple prototypes for same function"); |
| if (prevDec->getType() != function.getType()) |
| error(loc, "overloaded functions must have the same return type", function.getName().c_str(), ""); |
| for (int i = 0; i < prevDec->getParamCount(); ++i) { |
| if ((*prevDec)[i].type->getQualifier().storage != function[i].type->getQualifier().storage) |
| error(loc, "overloaded functions must have the same parameter storage qualifiers for argument", function[i].type->getStorageQualifierString(), "%d", i+1); |
| |
| if ((*prevDec)[i].type->getQualifier().precision != function[i].type->getQualifier().precision) |
| error(loc, "overloaded functions must have the same parameter precision qualifiers for argument", function[i].type->getPrecisionQualifierString(), "%d", i+1); |
| } |
| } |
| |
| arrayObjectCheck(loc, function.getType(), "array in function return type"); |
| |
| if (prototype) { |
| // All built-in functions are defined, even though they don't have a body. |
| // Count their prototype as a definition instead. |
| if (symbolTable.atBuiltInLevel()) |
| function.setDefined(); |
| else { |
| if (prevDec && ! builtIn) |
| symbol->getAsFunction()->setPrototyped(); // need a writable one, but like having prevDec as a const |
| function.setPrototyped(); |
| } |
| } |
| |
| // This insert won't actually insert it if it's a duplicate signature, but it will still check for |
| // other forms of name collisions. |
| if (! symbolTable.insert(function)) |
| error(loc, "function name is redeclaration of existing name", function.getName().c_str(), ""); |
| |
| // |
| // If this is a redeclaration, it could also be a definition, |
| // in which case, we need to use the parameter names from this one, and not the one that's |
| // being redeclared. So, pass back this declaration, not the one in the symbol table. |
| // |
| return &function; |
| } |
| |
| // |
| // Handle seeing the function prototype in front of a function definition in the grammar. |
| // The body is handled after this function returns. |
| // |
| TIntermAggregate* TParseContext::handleFunctionDefinition(const TSourceLoc& loc, TFunction& function) |
| { |
| currentCaller = function.getMangledName(); |
| TSymbol* symbol = symbolTable.find(function.getMangledName()); |
| TFunction* prevDec = symbol ? symbol->getAsFunction() : nullptr; |
| |
| if (! prevDec) |
| error(loc, "can't find function", function.getName().c_str(), ""); |
| // Note: 'prevDec' could be 'function' if this is the first time we've seen function |
| // as it would have just been put in the symbol table. Otherwise, we're looking up |
| // an earlier occurrence. |
| |
| if (prevDec && prevDec->isDefined()) { |
| // Then this function already has a body. |
| error(loc, "function already has a body", function.getName().c_str(), ""); |
| } |
| if (prevDec && ! prevDec->isDefined()) { |
| prevDec->setDefined(); |
| |
| // Remember the return type for later checking for RETURN statements. |
| currentFunctionType = &(prevDec->getType()); |
| } else |
| currentFunctionType = new TType(EbtVoid); |
| functionReturnsValue = false; |
| |
| // Check for entry point |
| if (function.getName().compare(intermediate.getEntryPointName().c_str()) == 0) { |
| intermediate.setEntryPointMangledName(function.getMangledName().c_str()); |
| intermediate.incrementEntryPointCount(); |
| inMain = true; |
| } else |
| inMain = false; |
| |
| // |
| // Raise error message if main function takes any parameters or returns anything other than void |
| // |
| if (inMain) { |
| if (function.getParamCount() > 0) |
| error(loc, "function cannot take any parameter(s)", function.getName().c_str(), ""); |
| if (function.getType().getBasicType() != EbtVoid) |
| error(loc, "", function.getType().getBasicTypeString().c_str(), "entry point cannot return a value"); |
| } |
| |
| // |
| // New symbol table scope for body of function plus its arguments |
| // |
| symbolTable.push(); |
| |
| // |
| // Insert parameters into the symbol table. |
| // If the parameter has no name, it's not an error, just don't insert it |
| // (could be used for unused args). |
| // |
| // Also, accumulate the list of parameters into the HIL, so lower level code |
| // knows where to find parameters. |
| // |
| TIntermAggregate* paramNodes = new TIntermAggregate; |
| for (int i = 0; i < function.getParamCount(); i++) { |
| TParameter& param = function[i]; |
| if (param.name != nullptr) { |
| TVariable *variable = new TVariable(param.name, *param.type); |
| |
| // Insert the parameters with name in the symbol table. |
| if (! symbolTable.insert(*variable)) |
| error(loc, "redefinition", variable->getName().c_str(), ""); |
| else { |
| // Transfer ownership of name pointer to symbol table. |
| param.name = nullptr; |
| |
| // Add the parameter to the HIL |
| paramNodes = intermediate.growAggregate(paramNodes, |
| intermediate.addSymbol(*variable, loc), |
| loc); |
| } |
| } else |
| paramNodes = intermediate.growAggregate(paramNodes, intermediate.addSymbol(*param.type, loc), loc); |
| } |
| intermediate.setAggregateOperator(paramNodes, EOpParameters, TType(EbtVoid), loc); |
| loopNestingLevel = 0; |
| statementNestingLevel = 0; |
| controlFlowNestingLevel = 0; |
| postEntryPointReturn = false; |
| |
| return paramNodes; |
| } |
| |
| // |
| // Handle seeing function call syntax in the grammar, which could be any of |
| // - .length() method |
| // - constructor |
| // - a call to a built-in function mapped to an operator |
| // - a call to a built-in function that will remain a function call (e.g., texturing) |
| // - user function |
| // - subroutine call (not implemented yet) |
| // |
| TIntermTyped* TParseContext::handleFunctionCall(const TSourceLoc& loc, TFunction* function, TIntermNode* arguments) |
| { |
| TIntermTyped* result = nullptr; |
| |
| if (function->getBuiltInOp() == EOpArrayLength) |
| result = handleLengthMethod(loc, function, arguments); |
| else if (function->getBuiltInOp() != EOpNull) { |
| // |
| // Then this should be a constructor. |
| // Don't go through the symbol table for constructors. |
| // Their parameters will be verified algorithmically. |
| // |
| TType type(EbtVoid); // use this to get the type back |
| if (! constructorError(loc, arguments, *function, function->getBuiltInOp(), type)) { |
| // |
| // It's a constructor, of type 'type'. |
| // |
| result = addConstructor(loc, arguments, type); |
| if (result == nullptr) |
| error(loc, "cannot construct with these arguments", type.getCompleteString().c_str(), ""); |
| } |
| } else { |
| // |
| // Find it in the symbol table. |
| // |
| const TFunction* fnCandidate; |
| bool builtIn; |
| fnCandidate = findFunction(loc, *function, builtIn); |
| if (fnCandidate) { |
| // This is a declared function that might map to |
| // - a built-in operator, |
| // - a built-in function not mapped to an operator, or |
| // - a user function. |
| |
| // Error check for a function requiring specific extensions present. |
| if (builtIn && fnCandidate->getNumExtensions()) |
| requireExtensions(loc, fnCandidate->getNumExtensions(), fnCandidate->getExtensions(), fnCandidate->getName().c_str()); |
| |
| if (arguments != nullptr) { |
| // Make sure qualifications work for these arguments. |
| TIntermAggregate* aggregate = arguments->getAsAggregate(); |
| for (int i = 0; i < fnCandidate->getParamCount(); ++i) { |
| // At this early point there is a slight ambiguity between whether an aggregate 'arguments' |
| // is the single argument itself or its children are the arguments. Only one argument |
| // means take 'arguments' itself as the one argument. |
| TIntermNode* arg = fnCandidate->getParamCount() == 1 ? arguments : (aggregate ? aggregate->getSequence()[i] : arguments); |
| TQualifier& formalQualifier = (*fnCandidate)[i].type->getQualifier(); |
| if (formalQualifier.isParamOutput()) { |
| if (lValueErrorCheck(arguments->getLoc(), "assign", arg->getAsTyped())) |
| error(arguments->getLoc(), "Non-L-value cannot be passed for 'out' or 'inout' parameters.", "out", ""); |
| } |
| TQualifier& argQualifier = arg->getAsTyped()->getQualifier(); |
| if (argQualifier.isMemory()) { |
| const char* message = "argument cannot drop memory qualifier when passed to formal parameter"; |
| if (argQualifier.volatil && ! formalQualifier.volatil) |
| error(arguments->getLoc(), message, "volatile", ""); |
| if (argQualifier.coherent && ! formalQualifier.coherent) |
| error(arguments->getLoc(), message, "coherent", ""); |
| if (argQualifier.readonly && ! formalQualifier.readonly) |
| error(arguments->getLoc(), message, "readonly", ""); |
| if (argQualifier.writeonly && ! formalQualifier.writeonly) |
| error(arguments->getLoc(), message, "writeonly", ""); |
| } |
| // TODO 4.5 functionality: A shader will fail to compile |
| // if the value passed to the memargument of an atomic memory function does not correspond to a buffer or |
| // shared variable. It is acceptable to pass an element of an array or a single component of a vector to the |
| // memargument of an atomic memory function, as long as the underlying array or vector is a buffer or |
| // shared variable. |
| } |
| |
| // Convert 'in' arguments |
| addInputArgumentConversions(*fnCandidate, arguments); // arguments may be modified if it's just a single argument node |
| } |
| |
| if (builtIn && fnCandidate->getBuiltInOp() != EOpNull) { |
| // A function call mapped to a built-in operation. |
| result = handleBuiltInFunctionCall(loc, arguments, *fnCandidate); |
| } else { |
| // This is a function call not mapped to built-in operator. |
| // It could still be a built-in function, but only if PureOperatorBuiltins == false. |
| result = intermediate.setAggregateOperator(arguments, EOpFunctionCall, fnCandidate->getType(), loc); |
| TIntermAggregate* call = result->getAsAggregate(); |
| call->setName(fnCandidate->getMangledName()); |
| |
| // this is how we know whether the given function is a built-in function or a user-defined function |
| // if builtIn == false, it's a userDefined -> could be an overloaded built-in function also |
| // if builtIn == true, it's definitely a built-in function with EOpNull |
| if (! builtIn) { |
| call->setUserDefined(); |
| if (symbolTable.atGlobalLevel()) { |
| requireProfile(loc, ~EEsProfile, "calling user function from global scope"); |
| intermediate.addToCallGraph(infoSink, "main(", fnCandidate->getMangledName()); |
| } else |
| intermediate.addToCallGraph(infoSink, currentCaller, fnCandidate->getMangledName()); |
| } |
| |
| if (builtIn) |
| nonOpBuiltInCheck(loc, *fnCandidate, *call); |
| else |
| userFunctionCallCheck(loc, *call); |
| } |
| |
| // Convert 'out' arguments. If it was a constant folded built-in, it won't be an aggregate anymore. |
| // Built-ins with a single argument aren't called with an aggregate, but they also don't have an output. |
| // Also, build the qualifier list for user function calls, which are always called with an aggregate. |
| if (result->getAsAggregate()) { |
| TQualifierList& qualifierList = result->getAsAggregate()->getQualifierList(); |
| for (int i = 0; i < fnCandidate->getParamCount(); ++i) { |
| TStorageQualifier qual = (*fnCandidate)[i].type->getQualifier().storage; |
| qualifierList.push_back(qual); |
| } |
| result = addOutputArgumentConversions(*fnCandidate, *result->getAsAggregate()); |
| } |
| } |
| } |
| |
| // generic error recovery |
| // TODO: simplification: localize all the error recoveries that look like this, and taking type into account to reduce cascades |
| if (result == nullptr) |
| result = intermediate.addConstantUnion(0.0, EbtFloat, loc); |
| |
| return result; |
| } |
| |
| TIntermTyped* TParseContext::handleBuiltInFunctionCall(TSourceLoc loc, TIntermNode* arguments, |
| const TFunction& function) |
| { |
| checkLocation(loc, function.getBuiltInOp()); |
| TIntermTyped *result = intermediate.addBuiltInFunctionCall(loc, function.getBuiltInOp(), |
| function.getParamCount() == 1, |
| arguments, function.getType()); |
| if (obeyPrecisionQualifiers()) |
| computeBuiltinPrecisions(*result, function); |
| |
| if (result == nullptr) { |
| if (arguments == nullptr) |
| error(loc, " wrong operand type", "Internal Error", |
| "built in unary operator function. Type: %s", ""); |
| else |
| error(arguments->getLoc(), " wrong operand type", "Internal Error", |
| "built in unary operator function. Type: %s", |
| static_cast<TIntermTyped*>(arguments)->getCompleteString().c_str()); |
| } else if (result->getAsOperator()) |
| builtInOpCheck(loc, function, *result->getAsOperator()); |
| |
| return result; |
| } |
| |
| // "The operation of a built-in function can have a different precision |
| // qualification than the precision qualification of the resulting value. |
| // These two precision qualifications are established as follows. |
| // |
| // The precision qualification of the operation of a built-in function is |
| // based on the precision qualification of its input arguments and formal |
| // parameters: When a formal parameter specifies a precision qualifier, |
| // that is used, otherwise, the precision qualification of the calling |
| // argument is used. The highest precision of these will be the precision |
| // qualification of the operation of the built-in function. Generally, |
| // this is applied across all arguments to a built-in function, with the |
| // exceptions being: |
| // - bitfieldExtract and bitfieldInsert ignore the 'offset' and 'bits' |
| // arguments. |
| // - interpolateAt* functions only look at the 'interpolant' argument. |
| // |
| // The precision qualification of the result of a built-in function is |
| // determined in one of the following ways: |
| // |
| // - For the texture sampling, image load, and image store functions, |
| // the precision of the return type matches the precision of the |
| // sampler type |
| // |
| // Otherwise: |
| // |
| // - For prototypes that do not specify a resulting precision qualifier, |
| // the precision will be the same as the precision of the operation. |
| // |
| // - For prototypes that do specify a resulting precision qualifier, |
| // the specified precision qualifier is the precision qualification of |
| // the result." |
| // |
| void TParseContext::computeBuiltinPrecisions(TIntermTyped& node, const TFunction& function) |
| { |
| TPrecisionQualifier operationPrecision = EpqNone; |
| TPrecisionQualifier resultPrecision = EpqNone; |
| |
| TIntermOperator* opNode = node.getAsOperator(); |
| if (opNode == nullptr) |
| return; |
| |
| if (TIntermUnary* unaryNode = node.getAsUnaryNode()) { |
| operationPrecision = std::max(function[0].type->getQualifier().precision, |
| unaryNode->getOperand()->getType().getQualifier().precision); |
| if (function.getType().getBasicType() != EbtBool) |
| resultPrecision = function.getType().getQualifier().precision == EpqNone ? |
| operationPrecision : |
| function.getType().getQualifier().precision; |
| } else if (TIntermAggregate* agg = node.getAsAggregate()) { |
| TIntermSequence& sequence = agg->getSequence(); |
| unsigned int numArgs = (unsigned int)sequence.size(); |
| switch (agg->getOp()) { |
| case EOpBitfieldExtract: |
| numArgs = 1; |
| break; |
| case EOpBitfieldInsert: |
| numArgs = 2; |
| break; |
| case EOpInterpolateAtCentroid: |
| case EOpInterpolateAtOffset: |
| case EOpInterpolateAtSample: |
| numArgs = 1; |
| break; |
| default: |
| break; |
| } |
| // find the maximum precision from the arguments and parameters |
| for (unsigned int arg = 0; arg < numArgs; ++arg) { |
| operationPrecision = std::max(operationPrecision, sequence[arg]->getAsTyped()->getQualifier().precision); |
| operationPrecision = std::max(operationPrecision, function[arg].type->getQualifier().precision); |
| } |
| // compute the result precision |
| #ifdef AMD_EXTENSIONS |
| if (agg->isSampling() || |
| agg->getOp() == EOpImageLoad || agg->getOp() == EOpImageStore || |
| agg->getOp() == EOpImageLoadLod || agg->getOp() == EOpImageStoreLod) |
| #else |
| if (agg->isSampling() || agg->getOp() == EOpImageLoad || agg->getOp() == EOpImageStore) |
| #endif |
| resultPrecision = sequence[0]->getAsTyped()->getQualifier().precision; |
| else if (function.getType().getBasicType() != EbtBool) |
| resultPrecision = function.getType().getQualifier().precision == EpqNone ? |
| operationPrecision : |
| function.getType().getQualifier().precision; |
| } |
| |
| // Propagate precision through this node and its children. That algorithm stops |
| // when a precision is found, so start by clearing this subroot precision |
| opNode->getQualifier().precision = EpqNone; |
| if (operationPrecision != EpqNone) { |
| opNode->propagatePrecision(operationPrecision); |
| opNode->setOperationPrecision(operationPrecision); |
| } |
| // Now, set the result precision, which might not match |
| opNode->getQualifier().precision = resultPrecision; |
| } |
| |
| TIntermNode* TParseContext::handleReturnValue(const TSourceLoc& loc, TIntermTyped* value) |
| { |
| functionReturnsValue = true; |
| if (currentFunctionType->getBasicType() == EbtVoid) { |
| error(loc, "void function cannot return a value", "return", ""); |
| return intermediate.addBranch(EOpReturn, loc); |
| } else if (*currentFunctionType != value->getType()) { |
| TIntermTyped* converted = intermediate.addConversion(EOpReturn, *currentFunctionType, value); |
| if (converted) { |
| if (*currentFunctionType != converted->getType()) |
| error(loc, "cannot convert return value to function return type", "return", ""); |
| if (version < 420) |
| warn(loc, "type conversion on return values was not explicitly allowed until version 420", "return", ""); |
| return intermediate.addBranch(EOpReturn, converted, loc); |
| } else { |
| error(loc, "type does not match, or is not convertible to, the function's return type", "return", ""); |
| return intermediate.addBranch(EOpReturn, value, loc); |
| } |
| } else |
| return intermediate.addBranch(EOpReturn, value, loc); |
| } |
| |
| // See if the operation is being done in an illegal location. |
| void TParseContext::checkLocation(const TSourceLoc& loc, TOperator op) |
| { |
| switch (op) { |
| case EOpBarrier: |
| if (language == EShLangTessControl) { |
| if (controlFlowNestingLevel > 0) |
| error(loc, "tessellation control barrier() cannot be placed within flow control", "", ""); |
| if (! inMain) |
| error(loc, "tessellation control barrier() must be in main()", "", ""); |
| else if (postEntryPointReturn) |
| error(loc, "tessellation control barrier() cannot be placed after a return from main()", "", ""); |
| } |
| break; |
| default: |
| break; |
| } |
| } |
| |
| // Finish processing object.length(). This started earlier in handleDotDereference(), where |
| // the ".length" part was recognized and semantically checked, and finished here where the |
| // function syntax "()" is recognized. |
| // |
| // Return resulting tree node. |
| TIntermTyped* TParseContext::handleLengthMethod(const TSourceLoc& loc, TFunction* function, TIntermNode* intermNode) |
| { |
| int length = 0; |
| |
| if (function->getParamCount() > 0) |
| error(loc, "method does not accept any arguments", function->getName().c_str(), ""); |
| else { |
| const TType& type = intermNode->getAsTyped()->getType(); |
| if (type.isArray()) { |
| if (type.isRuntimeSizedArray()) { |
| // Create a unary op and let the back end handle it |
| return intermediate.addBuiltInFunctionCall(loc, EOpArrayLength, true, intermNode, TType(EbtInt)); |
| } else if (type.isImplicitlySizedArray()) { |
| if (intermNode->getAsSymbolNode() && isIoResizeArray(type)) { |
| // We could be between a layout declaration that gives a built-in io array implicit size and |
| // a user redeclaration of that array, meaning we have to substitute its implicit size here |
| // without actually redeclaring the array. (It is an error to use a member before the |
| // redeclaration, but not an error to use the array name itself.) |
| const TString& name = intermNode->getAsSymbolNode()->getName(); |
| if (name == "gl_in" || name == "gl_out") |
| length = getIoArrayImplicitSize(); |
| } |
| if (length == 0) { |
| if (intermNode->getAsSymbolNode() && isIoResizeArray(type)) |
| error(loc, "", function->getName().c_str(), "array must first be sized by a redeclaration or layout qualifier"); |
| else |
| error(loc, "", function->getName().c_str(), "array must be declared with a size before using this method"); |
| } |
| } else if (type.getOuterArrayNode()) { |
| // If the array's outer size is specified by an intermediate node, it means the array's length |
| // was specified by a specialization constant. In such a case, we should return the node of the |
| // specialization constants to represent the length. |
| return type.getOuterArrayNode(); |
| } else |
| length = type.getOuterArraySize(); |
| } else if (type.isMatrix()) |
| length = type.getMatrixCols(); |
| else if (type.isVector()) |
| length = type.getVectorSize(); |
| else { |
| // we should not get here, because earlier semantic checking should have prevented this path |
| error(loc, ".length()", "unexpected use of .length()", ""); |
| } |
| } |
| |
| if (length == 0) |
| length = 1; |
| |
| return intermediate.addConstantUnion(length, loc); |
| } |
| |
| // |
| // Add any needed implicit conversions for function-call arguments to input parameters. |
| // |
| void TParseContext::addInputArgumentConversions(const TFunction& function, TIntermNode*& arguments) const |
| { |
| TIntermAggregate* aggregate = arguments->getAsAggregate(); |
| |
| // Process each argument's conversion |
| for (int i = 0; i < function.getParamCount(); ++i) { |
| // At this early point there is a slight ambiguity between whether an aggregate 'arguments' |
| // is the single argument itself or its children are the arguments. Only one argument |
| // means take 'arguments' itself as the one argument. |
| TIntermTyped* arg = function.getParamCount() == 1 ? arguments->getAsTyped() : (aggregate ? aggregate->getSequence()[i]->getAsTyped() : arguments->getAsTyped()); |
| if (*function[i].type != arg->getType()) { |
| if (function[i].type->getQualifier().isParamInput()) { |
| // In-qualified arguments just need an extra node added above the argument to |
| // convert to the correct type. |
| arg = intermediate.addConversion(EOpFunctionCall, *function[i].type, arg); |
| if (arg) { |
| if (function.getParamCount() == 1) |
| arguments = arg; |
| else { |
| if (aggregate) |
| aggregate->getSequence()[i] = arg; |
| else |
| arguments = arg; |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| // |
| // Add any needed implicit output conversions for function-call arguments. This |
| // can require a new tree topology, complicated further by whether the function |
| // has a return value. |
| // |
| // Returns a node of a subtree that evaluates to the return value of the function. |
| // |
| TIntermTyped* TParseContext::addOutputArgumentConversions(const TFunction& function, TIntermAggregate& intermNode) const |
| { |
| TIntermSequence& arguments = intermNode.getSequence(); |
| |
| // Will there be any output conversions? |
| bool outputConversions = false; |
| for (int i = 0; i < function.getParamCount(); ++i) { |
| if (*function[i].type != arguments[i]->getAsTyped()->getType() && function[i].type->getQualifier().isParamOutput()) { |
| outputConversions = true; |
| break; |
| } |
| } |
| |
| if (! outputConversions) |
| return &intermNode; |
| |
| // Setup for the new tree, if needed: |
| // |
| // Output conversions need a different tree topology. |
| // Out-qualified arguments need a temporary of the correct type, with the call |
| // followed by an assignment of the temporary to the original argument: |
| // void: function(arg, ...) -> ( function(tempArg, ...), arg = tempArg, ...) |
| // ret = function(arg, ...) -> ret = (tempRet = function(tempArg, ...), arg = tempArg, ..., tempRet) |
| // Where the "tempArg" type needs no conversion as an argument, but will convert on assignment. |
| TIntermTyped* conversionTree = nullptr; |
| TVariable* tempRet = nullptr; |
| if (intermNode.getBasicType() != EbtVoid) { |
| // do the "tempRet = function(...), " bit from above |
| tempRet = makeInternalVariable("tempReturn", intermNode.getType()); |
| TIntermSymbol* tempRetNode = intermediate.addSymbol(*tempRet, intermNode.getLoc()); |
| conversionTree = intermediate.addAssign(EOpAssign, tempRetNode, &intermNode, intermNode.getLoc()); |
| } else |
| conversionTree = &intermNode; |
| |
| conversionTree = intermediate.makeAggregate(conversionTree); |
| |
| // Process each argument's conversion |
| for (int i = 0; i < function.getParamCount(); ++i) { |
| if (*function[i].type != arguments[i]->getAsTyped()->getType()) { |
| if (function[i].type->getQualifier().isParamOutput()) { |
| // Out-qualified arguments need to use the topology set up above. |
| // do the " ...(tempArg, ...), arg = tempArg" bit from above |
| TVariable* tempArg = makeInternalVariable("tempArg", *function[i].type); |
| tempArg->getWritableType().getQualifier().makeTemporary(); |
| TIntermSymbol* tempArgNode = intermediate.addSymbol(*tempArg, intermNode.getLoc()); |
| TIntermTyped* tempAssign = intermediate.addAssign(EOpAssign, arguments[i]->getAsTyped(), tempArgNode, arguments[i]->getLoc()); |
| conversionTree = intermediate.growAggregate(conversionTree, tempAssign, arguments[i]->getLoc()); |
| // replace the argument with another node for the same tempArg variable |
| arguments[i] = intermediate.addSymbol(*tempArg, intermNode.getLoc()); |
| } |
| } |
| } |
| |
| // Finalize the tree topology (see bigger comment above). |
| if (tempRet) { |
| // do the "..., tempRet" bit from above |
| TIntermSymbol* tempRetNode = intermediate.addSymbol(*tempRet, intermNode.getLoc()); |
| conversionTree = intermediate.growAggregate(conversionTree, tempRetNode, intermNode.getLoc()); |
| } |
| conversionTree = intermediate.setAggregateOperator(conversionTree, EOpComma, intermNode.getType(), intermNode.getLoc()); |
| |
| return conversionTree; |
| } |
| |
| // |
| // Do additional checking of built-in function calls that is not caught |
| // by normal semantic checks on argument type, extension tagging, etc. |
| // |
| // Assumes there has been a semantically correct match to a built-in function prototype. |
| // |
| void TParseContext::builtInOpCheck(const TSourceLoc& loc, const TFunction& fnCandidate, TIntermOperator& callNode) |
| { |
| // Set up convenience accessors to the argument(s). There is almost always |
| // multiple arguments for the cases below, but when there might be one, |
| // check the unaryArg first. |
| const TIntermSequence* argp = nullptr; // confusing to use [] syntax on a pointer, so this is to help get a reference |
| const TIntermTyped* unaryArg = nullptr; |
| const TIntermTyped* arg0 = nullptr; |
| if (callNode.getAsAggregate()) { |
| argp = &callNode.getAsAggregate()->getSequence(); |
| if (argp->size() > 0) |
| arg0 = (*argp)[0]->getAsTyped(); |
| } else { |
| assert(callNode.getAsUnaryNode()); |
| unaryArg = callNode.getAsUnaryNode()->getOperand(); |
| arg0 = unaryArg; |
| } |
| |
| TString featureString; |
| const char* feature = nullptr; |
| switch (callNode.getOp()) { |
| case EOpTextureGather: |
| case EOpTextureGatherOffset: |
| case EOpTextureGatherOffsets: |
| { |
| // Figure out which variants are allowed by what extensions, |
| // and what arguments must be constant for which situations. |
| |
| featureString = fnCandidate.getName(); |
| featureString += "(...)"; |
| feature = featureString.c_str(); |
| profileRequires(loc, EEsProfile, 310, nullptr, feature); |
| int compArg = -1; // track which argument, if any, is the constant component argument |
| switch (callNode.getOp()) { |
| case EOpTextureGather: |
| // More than two arguments needs gpu_shader5, and rectangular or shadow needs gpu_shader5, |
| // otherwise, need GL_ARB_texture_gather. |
| if (fnCandidate.getParamCount() > 2 || fnCandidate[0].type->getSampler().dim == EsdRect || fnCandidate[0].type->getSampler().shadow) { |
| profileRequires(loc, ~EEsProfile, 400, E_GL_ARB_gpu_shader5, feature); |
| if (! fnCandidate[0].type->getSampler().shadow) |
| compArg = 2; |
| } else |
| profileRequires(loc, ~EEsProfile, 400, E_GL_ARB_texture_gather, feature); |
| break; |
| case EOpTextureGatherOffset: |
| // GL_ARB_texture_gather is good enough for 2D non-shadow textures with no component argument |
| if (fnCandidate[0].type->getSampler().dim == Esd2D && ! fnCandidate[0].type->getSampler().shadow && fnCandidate.getParamCount() == 3) |
| profileRequires(loc, ~EEsProfile, 400, E_GL_ARB_texture_gather, feature); |
| else |
| profileRequires(loc, ~EEsProfile, 400, E_GL_ARB_gpu_shader5, feature); |
| if (! (*argp)[fnCandidate[0].type->getSampler().shadow ? 3 : 2]->getAsConstantUnion()) |
| profileRequires(loc, EEsProfile, 320, Num_AEP_gpu_shader5, AEP_gpu_shader5, |
| "non-constant offset argument"); |
| if (! fnCandidate[0].type->getSampler().shadow) |
| compArg = 3; |
| break; |
| case EOpTextureGatherOffsets: |
| profileRequires(loc, ~EEsProfile, 400, E_GL_ARB_gpu_shader5, feature); |
| if (! fnCandidate[0].type->getSampler().shadow) |
| compArg = 3; |
| // check for constant offsets |
| if (! (*argp)[fnCandidate[0].type->getSampler().shadow ? 3 : 2]->getAsConstantUnion()) |
| error(loc, "must be a compile-time constant:", feature, "offsets argument"); |
| break; |
| default: |
| break; |
| } |
| |
| if (compArg > 0 && compArg < fnCandidate.getParamCount()) { |
| if ((*argp)[compArg]->getAsConstantUnion()) { |
| int value = (*argp)[compArg]->getAsConstantUnion()->getConstArray()[0].getIConst(); |
| if (value < 0 || value > 3) |
| error(loc, "must be 0, 1, 2, or 3:", feature, "component argument"); |
| } else |
| error(loc, "must be a compile-time constant:", feature, "component argument"); |
| } |
| |
| #ifdef AMD_EXTENSIONS |
| bool bias = false; |
| if (callNode.getOp() == EOpTextureGather) |
| bias = fnCandidate.getParamCount() > 3; |
| else if (callNode.getOp() == EOpTextureGatherOffset || |
| callNode.getOp() == EOpTextureGatherOffsets) |
| bias = fnCandidate.getParamCount() > 4; |
| |
| if (bias) { |
| featureString = fnCandidate.getName(); |
| featureString += "with bias argument"; |
| feature = featureString.c_str(); |
| profileRequires(loc, ~EEsProfile, 450, nullptr, feature); |
| requireExtensions(loc, 1, &E_GL_AMD_texture_gather_bias_lod, feature); |
| } |
| #endif |
| |
| break; |
| } |
| |
| #ifdef AMD_EXTENSIONS |
| case EOpSparseTextureGather: |
| case EOpSparseTextureGatherOffset: |
| case EOpSparseTextureGatherOffsets: |
| { |
| bool bias = false; |
| if (callNode.getOp() == EOpSparseTextureGather) |
| bias = fnCandidate.getParamCount() > 4; |
| else if (callNode.getOp() == EOpSparseTextureGatherOffset || |
| callNode.getOp() == EOpSparseTextureGatherOffsets) |
| bias = fnCandidate.getParamCount() > 5; |
| |
| if (bias) { |
| featureString = fnCandidate.getName(); |
| featureString += "with bias argument"; |
| feature = featureString.c_str(); |
| profileRequires(loc, ~EEsProfile, 450, nullptr, feature); |
| requireExtensions(loc, 1, &E_GL_AMD_texture_gather_bias_lod, feature); |
| } |
| |
| break; |
| } |
| |
| case EOpSparseTextureGatherLod: |
| case EOpSparseTextureGatherLodOffset: |
| case EOpSparseTextureGatherLodOffsets: |
| { |
| requireExtensions(loc, 1, &E_GL_ARB_sparse_texture2, fnCandidate.getName().c_str()); |
| break; |
| } |
| #endif |
| |
| case EOpTextureOffset: |
| case EOpTextureFetchOffset: |
| case EOpTextureProjOffset: |
| case EOpTextureLodOffset: |
| case EOpTextureProjLodOffset: |
| case EOpTextureGradOffset: |
| case EOpTextureProjGradOffset: |
| { |
| // Handle texture-offset limits checking |
| // Pick which argument has to hold constant offsets |
| int arg = -1; |
| switch (callNode.getOp()) { |
| case EOpTextureOffset: arg = 2; break; |
| case EOpTextureFetchOffset: arg = (arg0->getType().getSampler().dim != EsdRect) ? 3 : 2; break; |
| case EOpTextureProjOffset: arg = 2; break; |
| case EOpTextureLodOffset: arg = 3; break; |
| case EOpTextureProjLodOffset: arg = 3; break; |
| case EOpTextureGradOffset: arg = 4; break; |
| case EOpTextureProjGradOffset: arg = 4; break; |
| default: |
| assert(0); |
| break; |
| } |
| |
| if (arg > 0) { |
| |
| #ifdef AMD_EXTENSIONS |
| bool f16ShadowCompare = (*argp)[1]->getAsTyped()->getBasicType() == EbtFloat16 && arg0->getType().getSampler().shadow; |
| if (f16ShadowCompare) |
| ++arg; |
| #endif |
| if (! (*argp)[arg]->getAsConstantUnion()) |
| error(loc, "argument must be compile-time constant", "texel offset", ""); |
| else { |
| const TType& type = (*argp)[arg]->getAsTyped()->getType(); |
| for (int c = 0; c < type.getVectorSize(); ++c) { |
| int offset = (*argp)[arg]->getAsConstantUnion()->getConstArray()[c].getIConst(); |
| if (offset > resources.maxProgramTexelOffset || offset < resources.minProgramTexelOffset) |
| error(loc, "value is out of range:", "texel offset", "[gl_MinProgramTexelOffset, gl_MaxProgramTexelOffset]"); |
| } |
| } |
| } |
| |
| break; |
| } |
| |
| case EOpTextureQuerySamples: |
| case EOpImageQuerySamples: |
| // GL_ARB_shader_texture_image_samples |
| profileRequires(loc, ~EEsProfile, 450, E_GL_ARB_shader_texture_image_samples, "textureSamples and imageSamples"); |
| break; |
| |
| case EOpImageAtomicAdd: |
| case EOpImageAtomicMin: |
| case EOpImageAtomicMax: |
| case EOpImageAtomicAnd: |
| case EOpImageAtomicOr: |
| case EOpImageAtomicXor: |
| case EOpImageAtomicExchange: |
| case EOpImageAtomicCompSwap: |
| { |
| // Make sure the image types have the correct layout() format and correct argument types |
| const TType& imageType = arg0->getType(); |
| if (imageType.getSampler().type == EbtInt || imageType.getSampler().type == EbtUint) { |
| if (imageType.getQualifier().layoutFormat != ElfR32i && imageType.getQualifier().layoutFormat != ElfR32ui) |
| error(loc, "only supported on image with format r32i or r32ui", fnCandidate.getName().c_str(), ""); |
| } else { |
| if (fnCandidate.getName().compare(0, 19, "imageAtomicExchange") != 0) |
| error(loc, "only supported on integer images", fnCandidate.getName().c_str(), ""); |
| else if (imageType.getQualifier().layoutFormat != ElfR32f && profile == EEsProfile) |
| error(loc, "only supported on image with format r32f", fnCandidate.getName().c_str(), ""); |
| } |
| |
| break; |
| } |
| |
| #ifdef NV_EXTENSIONS |
| case EOpAtomicAdd: |
| case EOpAtomicMin: |
| case EOpAtomicMax: |
| case EOpAtomicAnd: |
| case EOpAtomicOr: |
| case EOpAtomicXor: |
| case EOpAtomicExchange: |
| case EOpAtomicCompSwap: |
| { |
| if (arg0->getType().getBasicType() == EbtInt64 || arg0->getType().getBasicType() == EbtUint64) |
| requireExtensions(loc, 1, &E_GL_NV_shader_atomic_int64, fnCandidate.getName().c_str()); |
| |
| break; |
| } |
| #endif |
| |
| case EOpInterpolateAtCentroid: |
| case EOpInterpolateAtSample: |
| case EOpInterpolateAtOffset: |
| #ifdef AMD_EXTENSIONS |
| case EOpInterpolateAtVertex: |
| #endif |
| // Make sure the first argument is an interpolant, or an array element of an interpolant |
| if (arg0->getType().getQualifier().storage != EvqVaryingIn) { |
| // It might still be an array element. |
| // |
| // We could check more, but the semantics of the first argument are already met; the |
| // only way to turn an array into a float/vec* is array dereference and swizzle. |
| // |
| // ES and desktop 4.3 and earlier: swizzles may not be used |
| // desktop 4.4 and later: swizzles may be used |
| bool swizzleOkay = (profile != EEsProfile) && (version >= 440); |
| const TIntermTyped* base = TIntermediate::findLValueBase(arg0, swizzleOkay); |
| if (base == nullptr || base->getType().getQualifier().storage != EvqVaryingIn) |
| error(loc, "first argument must be an interpolant, or interpolant-array element", fnCandidate.getName().c_str(), ""); |
| } |
| |
| #ifdef AMD_EXTENSIONS |
| if (callNode.getOp() == EOpInterpolateAtVertex) { |
| if (!arg0->getType().getQualifier().isExplicitInterpolation()) |
| error(loc, "argument must be qualified as __explicitInterpAMD in", "interpolant", ""); |
| else { |
| if (! (*argp)[1]->getAsConstantUnion()) |
| error(loc, "argument must be compile-time constant", "vertex index", ""); |
| else { |
| unsigned vertexIdx = (*argp)[1]->getAsConstantUnion()->getConstArray()[0].getUConst(); |
| if (vertexIdx > 2) |
| error(loc, "must be in the range [0, 2]", "vertex index", ""); |
| } |
| } |
| } |
| #endif |
| |
| break; |
| |
| case EOpEmitStreamVertex: |
| case EOpEndStreamPrimitive: |
| intermediate.setMultiStream(); |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| extern bool PureOperatorBuiltins; |
| |
| // Deprecated! Use PureOperatorBuiltins == true instead, in which case this |
| // functionality is handled in builtInOpCheck() instead of here. |
| // |
| // Do additional checking of built-in function calls that were not mapped |
| // to built-in operations (e.g., texturing functions). |
| // |
| // Assumes there has been a semantically correct match to a built-in function. |
| // |
| void TParseContext::nonOpBuiltInCheck(const TSourceLoc& loc, const TFunction& fnCandidate, TIntermAggregate& callNode) |
| { |
| // Further maintenance of this function is deprecated, because the "correct" |
| // future-oriented design is to not have to do string compares on function names. |
| |
| // If PureOperatorBuiltins == true, then all built-ins should be mapped |
| // to a TOperator, and this function would then never get called. |
| |
| assert(PureOperatorBuiltins == false); |
| |
| // built-in texturing functions get their return value precision from the precision of the sampler |
| if (fnCandidate.getType().getQualifier().precision == EpqNone && |
| fnCandidate.getParamCount() > 0 && fnCandidate[0].type->getBasicType() == EbtSampler) |
| callNode.getQualifier().precision = callNode.getSequence()[0]->getAsTyped()->getQualifier().precision; |
| |
| if (fnCandidate.getName().compare(0, 7, "texture") == 0) { |
| if (fnCandidate.getName().compare(0, 13, "textureGather") == 0) { |
| TString featureString = fnCandidate.getName() + "(...)"; |
| const char* feature = featureString.c_str(); |
| profileRequires(loc, EEsProfile, 310, nullptr, feature); |
| |
| int compArg = -1; // track which argument, if any, is the constant component argument |
| if (fnCandidate.getName().compare("textureGatherOffset") == 0) { |
| // GL_ARB_texture_gather is good enough for 2D non-shadow textures with no component argument |
| if (fnCandidate[0].type->getSampler().dim == Esd2D && ! fnCandidate[0].type->getSampler().shadow && fnCandidate.getParamCount() == 3) |
| profileRequires(loc, ~EEsProfile, 400, E_GL_ARB_texture_gather, feature); |
| else |
| profileRequires(loc, ~EEsProfile, 400, E_GL_ARB_gpu_shader5, feature); |
| int offsetArg = fnCandidate[0].type->getSampler().shadow ? 3 : 2; |
| if (! callNode.getSequence()[offsetArg]->getAsConstantUnion()) |
| profileRequires(loc, EEsProfile, 320, Num_AEP_gpu_shader5, AEP_gpu_shader5, |
| "non-constant offset argument"); |
| if (! fnCandidate[0].type->getSampler().shadow) |
| compArg = 3; |
| } else if (fnCandidate.getName().compare("textureGatherOffsets") == 0) { |
| profileRequires(loc, ~EEsProfile, 400, E_GL_ARB_gpu_shader5, feature); |
| if (! fnCandidate[0].type->getSampler().shadow) |
| compArg = 3; |
| // check for constant offsets |
| int offsetArg = fnCandidate[0].type->getSampler().shadow ? 3 : 2; |
| if (! callNode.getSequence()[offsetArg]->getAsConstantUnion()) |
| error(loc, "must be a compile-time constant:", feature, "offsets argument"); |
| } else if (fnCandidate.getName().compare("textureGather") == 0) { |
| // More than two arguments needs gpu_shader5, and rectangular or shadow needs gpu_shader5, |
| // otherwise, need GL_ARB_texture_gather. |
| if (fnCandidate.getParamCount() > 2 || fnCandidate[0].type->getSampler().dim == EsdRect || fnCandidate[0].type->getSampler().shadow) { |
| profileRequires(loc, ~EEsProfile, 400, E_GL_ARB_gpu_shader5, feature); |
| if (! fnCandidate[0].type->getSampler().shadow) |
| compArg = 2; |
| } else |
| profileRequires(loc, ~EEsProfile, 400, E_GL_ARB_texture_gather, feature); |
| } |
| |
| if (compArg > 0 && compArg < fnCandidate.getParamCount()) { |
| if (callNode.getSequence()[compArg]->getAsConstantUnion()) { |
| int value = callNode.getSequence()[compArg]->getAsConstantUnion()->getConstArray()[0].getIConst(); |
| if (value < 0 || value > 3) |
| error(loc, "must be 0, 1, 2, or 3:", feature, "component argument"); |
| } else |
| error(loc, "must be a compile-time constant:", feature, "component argument"); |
| } |
| } else { |
| // this is only for functions not starting "textureGather"... |
| if (fnCandidate.getName().find("Offset") != TString::npos) { |
| |
| // Handle texture-offset limits checking |
| int arg = -1; |
| if (fnCandidate.getName().compare("textureOffset") == 0) |
| arg = 2; |
| else if (fnCandidate.getName().compare("texelFetchOffset") == 0) |
| arg = 3; |
| else if (fnCandidate.getName().compare("textureProjOffset") == 0) |
| arg = 2; |
| else if (fnCandidate.getName().compare("textureLodOffset") == 0) |
| arg = 3; |
| else if (fnCandidate.getName().compare("textureProjLodOffset") == 0) |
| arg = 3; |
| else if (fnCandidate.getName().compare("textureGradOffset") == 0) |
| arg = 4; |
| else if (fnCandidate.getName().compare("textureProjGradOffset") == 0) |
| arg = 4; |
| |
| if (arg > 0) { |
| if (! callNode.getSequence()[arg]->getAsConstantUnion()) |
| error(loc, "argument must be compile-time constant", "texel offset", ""); |
| else { |
| const TType& type = callNode.getSequence()[arg]->getAsTyped()->getType(); |
| for (int c = 0; c < type.getVectorSize(); ++c) { |
| int offset = callNode.getSequence()[arg]->getAsConstantUnion()->getConstArray()[c].getIConst(); |
| if (offset > resources.maxProgramTexelOffset || offset < resources.minProgramTexelOffset) |
| error(loc, "value is out of range:", "texel offset", "[gl_MinProgramTexelOffset, gl_MaxProgramTexelOffset]"); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| // GL_ARB_shader_texture_image_samples |
| if (fnCandidate.getName().compare(0, 14, "textureSamples") == 0 || fnCandidate.getName().compare(0, 12, "imageSamples") == 0) |
| profileRequires(loc, ~EEsProfile, 450, E_GL_ARB_shader_texture_image_samples, "textureSamples and imageSamples"); |
| |
| if (fnCandidate.getName().compare(0, 11, "imageAtomic") == 0) { |
| const TType& imageType = callNode.getSequence()[0]->getAsTyped()->getType(); |
| if (imageType.getSampler().type == EbtInt || imageType.getSampler().type == EbtUint) { |
| if (imageType.getQualifier().layoutFormat != ElfR32i && imageType.getQualifier().layoutFormat != ElfR32ui) |
| error(loc, "only supported on image with format r32i or r32ui", fnCandidate.getName().c_str(), ""); |
| } else { |
| if (fnCandidate.getName().compare(0, 19, "imageAtomicExchange") != 0) |
| error(loc, "only supported on integer images", fnCandidate.getName().c_str(), ""); |
| else if (imageType.getQualifier().layoutFormat != ElfR32f && profile == EEsProfile) |
| error(loc, "only supported on image with format r32f", fnCandidate.getName().c_str(), ""); |
| } |
| } |
| } |
| |
| // |
| // Do any extra checking for a user function call. |
| // |
| void TParseContext::userFunctionCallCheck(const TSourceLoc& loc, TIntermAggregate& callNode) |
| { |
| TIntermSequence& arguments = callNode.getSequence(); |
| |
| for (int i = 0; i < (int)arguments.size(); ++i) |
| samplerConstructorLocationCheck(loc, "call argument", arguments[i]); |
| } |
| |
| // |
| // Emit an error if this is a sampler constructor |
| // |
| void TParseContext::samplerConstructorLocationCheck(const TSourceLoc& loc, const char* token, TIntermNode* node) |
| { |
| if (node->getAsOperator() && node->getAsOperator()->getOp() == EOpConstructTextureSampler) |
| error(loc, "sampler constructor must appear at point of use", token, ""); |
| } |
| |
| // |
| // Handle seeing a built-in constructor in a grammar production. |
| // |
| TFunction* TParseContext::handleConstructorCall(const TSourceLoc& loc, const TPublicType& publicType) |
| { |
| TType type(publicType); |
| type.getQualifier().precision = EpqNone; |
| |
| if (type.isArray()) { |
| profileRequires(loc, ENoProfile, 120, E_GL_3DL_array_objects, "arrayed constructor"); |
| profileRequires(loc, EEsProfile, 300, nullptr, "arrayed constructor"); |
| } |
| |
| TOperator op = intermediate.mapTypeToConstructorOp(type); |
| |
| if (op == EOpNull) { |
| error(loc, "cannot construct this type", type.getBasicString(), ""); |
| op = EOpConstructFloat; |
| TType errorType(EbtFloat); |
| type.shallowCopy(errorType); |
| } |
| |
| TString empty(""); |
| |
| return new TFunction(&empty, type, op); |
| } |
| |
| // Handle seeing a precision qualifier in the grammar. |
| void TParseContext::handlePrecisionQualifier(const TSourceLoc& /*loc*/, TQualifier& qualifier, TPrecisionQualifier precision) |
| { |
| if (obeyPrecisionQualifiers()) |
| qualifier.precision = precision; |
| } |
| |
| // Check for messages to give on seeing a precision qualifier used in a |
| // declaration in the grammar. |
| void TParseContext::checkPrecisionQualifier(const TSourceLoc& loc, TPrecisionQualifier) |
| { |
| if (precisionManager.shouldWarnAboutDefaults()) { |
| warn(loc, "all default precisions are highp; use precision statements to quiet warning, e.g.:\n" |
| " \"precision mediump int; precision highp float;\"", "", ""); |
| precisionManager.defaultWarningGiven(); |
| } |
| } |
| |
| // |
| // Same error message for all places assignments don't work. |
| // |
| void TParseContext::assignError(const TSourceLoc& loc, const char* op, TString left, TString right) |
| { |
| error(loc, "", op, "cannot convert from '%s' to '%s'", |
| right.c_str(), left.c_str()); |
| } |
| |
| // |
| // Same error message for all places unary operations don't work. |
| // |
| void TParseContext::unaryOpError(const TSourceLoc& loc, const char* op, TString operand) |
| { |
| error(loc, " wrong operand type", op, |
| "no operation '%s' exists that takes an operand of type %s (or there is no acceptable conversion)", |
| op, operand.c_str()); |
| } |
| |
| // |
| // Same error message for all binary operations don't work. |
| // |
| void TParseContext::binaryOpError(const TSourceLoc& loc, const char* op, TString left, TString right) |
| { |
| error(loc, " wrong operand types:", op, |
| "no operation '%s' exists that takes a left-hand operand of type '%s' and " |
| "a right operand of type '%s' (or there is no acceptable conversion)", |
| op, left.c_str(), right.c_str()); |
| } |
| |
| // |
| // A basic type of EbtVoid is a key that the name string was seen in the source, but |
| // it was not found as a variable in the symbol table. If so, give the error |
| // message and insert a dummy variable in the symbol table to prevent future errors. |
| // |
| void TParseContext::variableCheck(TIntermTyped*& nodePtr) |
| { |
| TIntermSymbol* symbol = nodePtr->getAsSymbolNode(); |
| if (! symbol) |
| return; |
| |
| if (symbol->getType().getBasicType() == EbtVoid) { |
| const char *extraInfoFormat = ""; |
| if (spvVersion.vulkan != 0 && symbol->getName() == "gl_VertexID") { |
| extraInfoFormat = "(Did you mean gl_VertexIndex?)"; |
| } else if (spvVersion.vulkan != 0 && symbol->getName() == "gl_InstanceID") { |
| extraInfoFormat = "(Did you mean gl_InstanceIndex?)"; |
| } |
| error(symbol->getLoc(), "undeclared identifier", symbol->getName().c_str(), extraInfoFormat); |
| |
| // Add to symbol table to prevent future error messages on the same name |
| if (symbol->getName().size() > 0) { |
| TVariable* fakeVariable = new TVariable(&symbol->getName(), TType(EbtFloat)); |
| symbolTable.insert(*fakeVariable); |
| |
| // substitute a symbol node for this new variable |
| nodePtr = intermediate.addSymbol(*fakeVariable, symbol->getLoc()); |
| } |
| } else { |
| switch (symbol->getQualifier().storage) { |
| case EvqPointCoord: |
| profileRequires(symbol->getLoc(), ENoProfile, 120, nullptr, "gl_PointCoord"); |
| break; |
| default: break; // some compilers want this |
| } |
| } |
| } |
| |
| // |
| // Both test and if necessary, spit out an error, to see if the node is really |
| // an l-value that can be operated on this way. |
| // |
| // Returns true if there was an error. |
| // |
| bool TParseContext::lValueErrorCheck(const TSourceLoc& loc, const char* op, TIntermTyped* node) |
| { |
| TIntermBinary* binaryNode = node->getAsBinaryNode(); |
| |
| if (binaryNode) { |
| bool errorReturn = false; |
| |
| switch(binaryNode->getOp()) { |
| case EOpIndexDirect: |
| case EOpIndexIndirect: |
| // ... tessellation control shader ... |
| // If a per-vertex output variable is used as an l-value, it is a |
| // compile-time or link-time error if the expression indicating the |
| // vertex index is not the identifier gl_InvocationID. |
| if (language == EShLangTessControl) { |
| const TType& leftType = binaryNode->getLeft()->getType(); |
| if (leftType.getQualifier().storage == EvqVaryingOut && ! leftType.getQualifier().patch && binaryNode->getLeft()->getAsSymbolNode()) { |
| // we have a per-vertex output |
| const TIntermSymbol* rightSymbol = binaryNode->getRight()->getAsSymbolNode(); |
| if (! rightSymbol || rightSymbol->getQualifier().builtIn != EbvInvocationId) |
| error(loc, "tessellation-control per-vertex output l-value must be indexed with gl_InvocationID", "[]", ""); |
| } |
| } |
| |
| break; // left node is checked by base class |
| case EOpIndexDirectStruct: |
| break; // left node is checked by base class |
| case EOpVectorSwizzle: |
| errorReturn = lValueErrorCheck(loc, op, binaryNode->getLeft()); |
| if (!errorReturn) { |
| int offset[4] = {0,0,0,0}; |
| |
| TIntermTyped* rightNode = binaryNode->getRight(); |
| TIntermAggregate *aggrNode = rightNode->getAsAggregate(); |
| |
| for (TIntermSequence::iterator p = aggrNode->getSequence().begin(); |
| p != aggrNode->getSequence().end(); p++) { |
| int value = (*p)->getAsTyped()->getAsConstantUnion()->getConstArray()[0].getIConst(); |
| offset[value]++; |
| if (offset[value] > 1) { |
| error(loc, " l-value of swizzle cannot have duplicate components", op, "", ""); |
| |
| return true; |
| } |
| } |
| } |
| |
| return errorReturn; |
| default: |
| break; |
| } |
| |
| if (errorReturn) { |
| error(loc, " l-value required", op, "", ""); |
| return true; |
| } |
| } |
| |
| // Let the base class check errors |
| if (TParseContextBase::lValueErrorCheck(loc, op, node)) |
| return true; |
| |
| const char* symbol = nullptr; |
| TIntermSymbol* symNode = node->getAsSymbolNode(); |
| if (symNode != nullptr) |
| symbol = symNode->getName().c_str(); |
| |
| const char* message = nullptr; |
| switch (node->getQualifier().storage) { |
| case EvqVaryingIn: message = "can't modify shader input"; break; |
| case EvqInstanceId: message = "can't modify gl_InstanceID"; break; |
| case EvqVertexId: message = "can't modify gl_VertexID"; break; |
| case EvqFace: message = "can't modify gl_FrontFace"; break; |
| case EvqFragCoord: message = "can't modify gl_FragCoord"; break; |
| case EvqPointCoord: message = "can't modify gl_PointCoord"; break; |
| case EvqFragDepth: |
| intermediate.setDepthReplacing(); |
| // "In addition, it is an error to statically write to gl_FragDepth in the fragment shader." |
| if (profile == EEsProfile && intermediate.getEarlyFragmentTests()) |
| message = "can't modify gl_FragDepth if using early_fragment_tests"; |
| break; |
| |
| default: |
| break; |
| } |
| |
| if (message == nullptr && binaryNode == nullptr && symNode == nullptr) { |
| error(loc, " l-value required", op, "", ""); |
| |
| return true; |
| } |
| |
| // |
| // Everything else is okay, no error. |
| // |
| if (message == nullptr) |
| return false; |
| |
| // |
| // If we get here, we have an error and a message. |
| // |
| if (symNode) |
| error(loc, " l-value required", op, "\"%s\" (%s)", symbol, message); |
| else |
| error(loc, " l-value required", op, "(%s)", message); |
| |
| return true; |
| } |
| |
| // Test for and give an error if the node can't be read from. |
| void TParseContext::rValueErrorCheck(const TSourceLoc& loc, const char* op, TIntermTyped* node) |
| { |
| // Let the base class check errors |
| TParseContextBase::rValueErrorCheck(loc, op, node); |
| |
| #ifdef AMD_EXTENSIONS |
| TIntermSymbol* symNode = node->getAsSymbolNode(); |
| if (!(symNode && symNode->getQualifier().writeonly)) // base class checks |
| if (symNode && symNode->getQualifier().explicitInterp) |
| error(loc, "can't read from explicitly-interpolated object: ", op, symNode->getName().c_str()); |
| #endif |
| } |
| |
| // |
| // Both test, and if necessary spit out an error, to see if the node is really |
| // a constant. |
| // |
| void TParseContext::constantValueCheck(TIntermTyped* node, const char* token) |
| { |
| if (! node->getQualifier().isConstant()) |
| error(node->getLoc(), "constant expression required", token, ""); |
| } |
| |
| // |
| // Both test, and if necessary spit out an error, to see if the node is really |
| // an integer. |
| // |
| void TParseContext::integerCheck(const TIntermTyped* node, const char* token) |
| { |
| if ((node->getBasicType() == EbtInt || node->getBasicType() == EbtUint) && node->isScalar()) |
| return; |
| |
| error(node->getLoc(), "scalar integer expression required", token, ""); |
| } |
| |
| // |
| // Both test, and if necessary spit out an error, to see if we are currently |
| // globally scoped. |
| // |
| void TParseContext::globalCheck(const TSourceLoc& loc, const char* token) |
| { |
| if (! symbolTable.atGlobalLevel()) |
| error(loc, "not allowed in nested scope", token, ""); |
| } |
| |
| // |
| // Reserved errors for GLSL. |
| // |
| void TParseContext::reservedErrorCheck(const TSourceLoc& loc, const TString& identifier) |
| { |
| // "Identifiers starting with "gl_" are reserved for use by OpenGL, and may not be |
| // declared in a shader; this results in a compile-time error." |
| if (! symbolTable.atBuiltInLevel()) { |
| if (builtInName(identifier)) |
| error(loc, "identifiers starting with \"gl_\" are reserved", identifier.c_str(), ""); |
| |
| // "__" are not supposed to be an error. ES 310 (and desktop) added the clarification: |
| // "In addition, all identifiers containing two consecutive underscores (__) are |
| // reserved; using such a name does not itself result in an error, but may result |
| // in undefined behavior." |
| // however, before that, ES tests required an error. |
| if (identifier.find("__") != TString::npos) { |
| if (profile == EEsProfile && version <= 300) |
| error(loc, "identifiers containing consecutive underscores (\"__\") are reserved, and an error if version <= 300", identifier.c_str(), ""); |
| else |
| warn(loc, "identifiers containing consecutive underscores (\"__\") are reserved", identifier.c_str(), ""); |
| } |
| } |
| } |
| |
| // |
| // Reserved errors for the preprocessor. |
| // |
| void TParseContext::reservedPpErrorCheck(const TSourceLoc& loc, const char* identifier, const char* op) |
| { |
| // "__" are not supposed to be an error. ES 310 (and desktop) added the clarification: |
| // "All macro names containing two consecutive underscores ( __ ) are reserved; |
| // defining such a name does not itself result in an error, but may result in |
| // undefined behavior. All macro names prefixed with "GL_" ("GL" followed by a |
| // single underscore) are also reserved, and defining such a name results in a |
| // compile-time error." |
| // however, before that, ES tests required an error. |
| if (strncmp(identifier, "GL_", 3) == 0) |
| ppError(loc, "names beginning with \"GL_\" can't be (un)defined:", op, identifier); |
| else if (strncmp(identifier, "defined", 8) == 0) |
| ppError(loc, "\"defined\" can't be (un)defined:", op, identifier); |
| else if (strstr(identifier, "__") != 0) { |
| if (profile == EEsProfile && version >= 300 && |
| (strcmp(identifier, "__LINE__") == 0 || |
| strcmp(identifier, "__FILE__") == 0 || |
| strcmp(identifier, "__VERSION__") == 0)) |
| ppError(loc, "predefined names can't be (un)defined:", op, identifier); |
| else { |
| if (profile == EEsProfile && version <= 300) |
| ppError(loc, "names containing consecutive underscores are reserved, and an error if version <= 300:", op, identifier); |
| else |
| ppWarn(loc, "names containing consecutive underscores are reserved:", op, identifier); |
| } |
| } |
| } |
| |
| // |
| // See if this version/profile allows use of the line-continuation character '\'. |
| // |
| // Returns true if a line continuation should be done. |
| // |
| bool TParseContext::lineContinuationCheck(const TSourceLoc& loc, bool endOfComment) |
| { |
| const char* message = "line continuation"; |
| |
| bool lineContinuationAllowed = (profile == EEsProfile && version >= 300) || |
| (profile != EEsProfile && (version >= 420 || extensionTurnedOn(E_GL_ARB_shading_language_420pack))); |
| |
| if (endOfComment) { |
| if (lineContinuationAllowed) |
| warn(loc, "used at end of comment; the following line is still part of the comment", message, ""); |
| else |
| warn(loc, "used at end of comment, but this version does not provide line continuation", message, ""); |
| |
| return lineContinuationAllowed; |
| } |
| |
| if (relaxedErrors()) { |
| if (! lineContinuationAllowed) |
| warn(loc, "not allowed in this version", message, ""); |
| return true; |
| } else { |
| profileRequires(loc, EEsProfile, 300, nullptr, message); |
| profileRequires(loc, ~EEsProfile, 420, E_GL_ARB_shading_language_420pack, message); |
| } |
| |
| return lineContinuationAllowed; |
| } |
| |
| bool TParseContext::builtInName(const TString& identifier) |
| { |
| return identifier.compare(0, 3, "gl_") == 0; |
| } |
| |
| // |
| // Make sure there is enough data and not too many arguments provided to the |
| // constructor to build something of the type of the constructor. Also returns |
| // the type of the constructor. |
| // |
| // Part of establishing type is establishing specialization-constness. |
| // We don't yet know "top down" whether type is a specialization constant, |
| // but a const constructor can becomes a specialization constant if any of |
| // its children are, subject to KHR_vulkan_glsl rules: |
| // |
| // - int(), uint(), and bool() constructors for type conversions |
| // from any of the following types to any of the following types: |
| // * int |
| // * uint |
| // * bool |
| // - vector versions of the above conversion constructors |
| // |
| // Returns true if there was an error in construction. |
| // |
| bool TParseContext::constructorError(const TSourceLoc& loc, TIntermNode* node, TFunction& function, TOperator op, TType& type) |
| { |
| type.shallowCopy(function.getType()); |
| |
| bool constructingMatrix = false; |
| switch(op) { |
| case EOpConstructTextureSampler: |
| return constructorTextureSamplerError(loc, function); |
| case EOpConstructMat2x2: |
| case EOpConstructMat2x3: |
| case EOpConstructMat2x4: |
| case EOpConstructMat3x2: |
| case EOpConstructMat3x3: |
| case EOpConstructMat3x4: |
| case EOpConstructMat4x2: |
| case EOpConstructMat4x3: |
| case EOpConstructMat4x4: |
| case EOpConstructDMat2x2: |
| case EOpConstructDMat2x3: |
| case EOpConstructDMat2x4: |
| case EOpConstructDMat3x2: |
| case EOpConstructDMat3x3: |
| case EOpConstructDMat3x4: |
| case EOpConstructDMat4x2: |
| case EOpConstructDMat4x3: |
| case EOpConstructDMat4x4: |
| #ifdef AMD_EXTENSIONS |
| case EOpConstructF16Mat2x2: |
| case EOpConstructF16Mat2x3: |
| case EOpConstructF16Mat2x4: |
| case EOpConstructF16Mat3x2: |
| case EOpConstructF16Mat3x3: |
| case EOpConstructF16Mat3x4: |
| case EOpConstructF16Mat4x2: |
| case EOpConstructF16Mat4x3: |
| case EOpConstructF16Mat4x4: |
| #endif |
| constructingMatrix = true; |
| break; |
| default: |
| break; |
| } |
| |
| // |
| // Walk the arguments for first-pass checks and collection of information. |
| // |
| |
| int size = 0; |
| bool constType = true; |
| bool specConstType = false; // value is only valid if constType is true |
| bool full = false; |
| bool overFull = false; |
| bool matrixInMatrix = false; |
| bool arrayArg = false; |
| bool floatArgument = false; |
| for (int arg = 0; arg < function.getParamCount(); ++arg) { |
| if (function[arg].type->isArray()) { |
| if (! function[arg].type->isExplicitlySizedArray()) { |
| // Can't construct from an unsized array. |
| error(loc, "array argument must be sized", "constructor", ""); |
| return true; |
| } |
| arrayArg = true; |
| } |
| if (constructingMatrix && function[arg].type->isMatrix()) |
| matrixInMatrix = true; |
| |
| // 'full' will go to true when enough args have been seen. If we loop |
| // again, there is an extra argument. |
| if (full) { |
| // For vectors and matrices, it's okay to have too many components |
| // available, but not okay to have unused arguments. |
| overFull = true; |
| } |
| |
| size += function[arg].type->computeNumComponents(); |
| if (op != EOpConstructStruct && ! type.isArray() && size >= type.computeNumComponents()) |
| full = true; |
| |
| if (! function[arg].type->getQualifier().isConstant()) |
| constType = false; |
| if (function[arg].type->getQualifier().isSpecConstant()) |
| specConstType = true; |
| if (function[arg].type->isFloatingDomain()) |
| floatArgument = true; |
| } |
| |
| // inherit constness from children |
| if (constType) { |
| bool makeSpecConst; |
| // Finish pinning down spec-const semantics |
| if (specConstType) { |
| switch (op) { |
| case EOpConstructInt: |
| case EOpConstructUint: |
| case EOpConstructInt64: |
| case EOpConstructUint64: |
| #ifdef AMD_EXTENSIONS |
| case EOpConstructInt16: |
| case EOpConstructUint16: |
| #endif |
| case EOpConstructBool: |
| case EOpConstructBVec2: |
| case EOpConstructBVec3: |
| case EOpConstructBVec4: |
| case EOpConstructIVec2: |
| case EOpConstructIVec3: |
| case EOpConstructIVec4: |
| case EOpConstructUVec2: |
| case EOpConstructUVec3: |
| case EOpConstructUVec4: |
| case EOpConstructI64Vec2: |
| case EOpConstructI64Vec3: |
| case EOpConstructI64Vec4: |
| case EOpConstructU64Vec2: |
| case EOpConstructU64Vec3: |
| case EOpConstructU64Vec4: |
| #ifdef AMD_EXTENSIONS |
| case EOpConstructI16Vec2: |
| case EOpConstructI16Vec3: |
| case EOpConstructI16Vec4: |
| case EOpConstructU16Vec2: |
| case EOpConstructU16Vec3: |
| case EOpConstructU16Vec4: |
| #endif |
| // This was the list of valid ones, if they aren't converting from float |
| // and aren't making an array. |
| makeSpecConst = ! floatArgument && ! type.isArray(); |
| break; |
| default: |
| // anything else wasn't white-listed in the spec as a conversion |
| makeSpecConst = false; |
| break; |
| } |
| } else |
| makeSpecConst = false; |
| |
| if (makeSpecConst) |
| type.getQualifier().makeSpecConstant(); |
| else if (specConstType) |
| type.getQualifier().makeTemporary(); |
| else |
| type.getQualifier().storage = EvqConst; |
| } |
| |
| if (type.isArray()) { |
| if (function.getParamCount() == 0) { |
| error(loc, "array constructor must have at least one argument", "constructor", ""); |
| return true; |
| } |
| |
| if (type.isImplicitlySizedArray()) { |
| // auto adapt the constructor type to the number of arguments |
| type.changeOuterArraySize(function.getParamCount()); |
| } else if (type.getOuterArraySize() != function.getParamCount()) { |
| error(loc, "array constructor needs one argument per array element", "constructor", ""); |
| return true; |
| } |
| |
| if (type.isArrayOfArrays()) { |
| // Types have to match, but we're still making the type. |
| // Finish making the type, and the comparison is done later |
| // when checking for conversion. |
| TArraySizes& arraySizes = type.getArraySizes(); |
| |
| // At least the dimensionalities have to match. |
| if (! function[0].type->isArray() || arraySizes.getNumDims() != function[0].type->getArraySizes().getNumDims() + 1) { |
| error(loc, "array constructor argument not correct type to construct array element", "constructor", ""); |
| return true; |
| } |
| |
| if (arraySizes.isInnerImplicit()) { |
| // "Arrays of arrays ..., and the size for any dimension is optional" |
| // That means we need to adopt (from the first argument) the other array sizes into the type. |
| for (int d = 1; d < arraySizes.getNumDims(); ++d) { |
| if (arraySizes.getDimSize(d) == UnsizedArraySize) { |
| arraySizes.setDimSize(d, function[0].type->getArraySizes().getDimSize(d - 1)); |
| } |
| } |
| } |
| } |
| } |
| |
| if (arrayArg && op != EOpConstructStruct && ! type.isArrayOfArrays()) { |
| error(loc, "constructing non-array constituent from array argument", "constructor", ""); |
| return true; |
| } |
| |
| if (matrixInMatrix && ! type.isArray()) { |
| profileRequires(loc, ENoProfile, 120, nullptr, "constructing matrix from matrix"); |
| |
| // "If a matrix argument is given to a matrix constructor, |
| // it is a compile-time error to have any other arguments." |
| if (function.getParamCount() != 1) |
| error(loc, "matrix constructed from matrix can only have one argument", "constructor", ""); |
| return false; |
| } |
| |
| if (overFull) { |
| error(loc, "too many arguments", "constructor", ""); |
| return true; |
| } |
| |
| if (op == EOpConstructStruct && ! type.isArray() && (int)type.getStruct()->size() != function.getParamCount()) { |
| error(loc, "Number of constructor parameters does not match the number of structure fields", "constructor", ""); |
| return true; |
| } |
| |
| if ((op != EOpConstructStruct && size != 1 && size < type.computeNumComponents()) || |
| (op == EOpConstructStruct && size < type.computeNumComponents())) { |
| error(loc, "not enough data provided for construction", "constructor", ""); |
| return true; |
| } |
| |
| TIntermTyped* typed = node->getAsTyped(); |
| if (typed == nullptr) { |
| error(loc, "constructor argument does not have a type", "constructor", ""); |
| return true; |
| } |
| if (op != EOpConstructStruct && typed->getBasicType() == EbtSampler) { |
| error(loc, "cannot convert a sampler", "constructor", ""); |
| return true; |
| } |
| if (op != EOpConstructStruct && typed->getBasicType() == EbtAtomicUint) { |
| error(loc, "cannot convert an atomic_uint", "constructor", ""); |
| return true; |
| } |
| if (typed->getBasicType() == EbtVoid) { |
| error(loc, "cannot convert a void", "constructor", ""); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| // Verify all the correct semantics for constructing a combined texture/sampler. |
| // Return true if the semantics are incorrect. |
| bool TParseContext::constructorTextureSamplerError(const TSourceLoc& loc, const TFunction& function) |
| { |
| TString constructorName = function.getType().getBasicTypeString(); // TODO: performance: should not be making copy; interface needs to change |
| const char* token = constructorName.c_str(); |
| |
| // exactly two arguments needed |
| if (function.getParamCount() != 2) { |
| error(loc, "sampler-constructor requires two arguments", token, ""); |
| return true; |
| } |
| |
| // For now, not allowing arrayed constructors, the rest of this function |
| // is set up to allow them, if this test is removed: |
| if (function.getType().isArray()) { |
| error(loc, "sampler-constructor cannot make an array of samplers", token, ""); |
| return true; |
| } |
| |
| // first argument |
| // * the constructor's first argument must be a texture type |
| // * the dimensionality (1D, 2D, 3D, Cube, Rect, Buffer, MS, and Array) |
| // of the texture type must match that of the constructed sampler type |
| // (that is, the suffixes of the type of the first argument and the |
| // type of the constructor will be spelled the same way) |
| if (function[0].type->getBasicType() != EbtSampler || |
| ! function[0].type->getSampler().isTexture() || |
| function[0].type->isArray()) { |
| error(loc, "sampler-constructor first argument must be a scalar textureXXX type", token, ""); |
| return true; |
| } |
| // simulate the first argument's impact on the result type, so it can be compared with the encapsulated operator!=() |
| TSampler texture = function.getType().getSampler(); |
| texture.combined = false; |
| texture.shadow = false; |
| if (texture != function[0].type->getSampler()) { |
| error(loc, "sampler-constructor first argument must match type and dimensionality of constructor type", token, ""); |
| return true; |
| } |
| |
| // second argument |
| // * the constructor's second argument must be a scalar of type |
| // *sampler* or *samplerShadow* |
| // * the presence or absence of depth comparison (Shadow) must match |
| // between the constructed sampler type and the type of the second argument |
| if ( function[1].type->getBasicType() != EbtSampler || |
| ! function[1].type->getSampler().isPureSampler() || |
| function[1].type->isArray()) { |
| error(loc, "sampler-constructor second argument must be a scalar type 'sampler'", token, ""); |
| return true; |
| } |
| if (function.getType().getSampler().shadow != function[1].type->getSampler().shadow) { |
| error(loc, "sampler-constructor second argument presence of shadow must match constructor presence of shadow", token, ""); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| // Checks to see if a void variable has been declared and raise an error message for such a case |
| // |
| // returns true in case of an error |
| // |
| bool TParseContext::voidErrorCheck(const TSourceLoc& loc, const TString& identifier, const TBasicType basicType) |
| { |
| if (basicType == EbtVoid) { |
| error(loc, "illegal use of type 'void'", identifier.c_str(), ""); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| // Checks to see if the node (for the expression) contains a scalar boolean expression or not |
| void TParseContext::boolCheck(const TSourceLoc& loc, const TIntermTyped* type) |
| { |
| if (type->getBasicType() != EbtBool || type->isArray() || type->isMatrix() || type->isVector()) |
| error(loc, "boolean expression expected", "", ""); |
| } |
| |
| // This function checks to see if the node (for the expression) contains a scalar boolean expression or not |
| void TParseContext::boolCheck(const TSourceLoc& loc, const TPublicType& pType) |
| { |
| if (pType.basicType != EbtBool || pType.arraySizes || pType.matrixCols > 1 || (pType.vectorSize > 1)) |
| error(loc, "boolean expression expected", "", ""); |
| } |
| |
| void TParseContext::samplerCheck(const TSourceLoc& loc, const TType& type, const TString& identifier, TIntermTyped* /*initializer*/) |
| { |
| // Check that the appropriate extension is enabled if external sampler is used. |
| // There are two extensions. The correct one must be used based on GLSL version. |
| if (type.getBasicType() == EbtSampler && type.getSampler().external) { |
| if (version < 300) { |
| requireExtensions(loc, 1, &E_GL_OES_EGL_image_external, "samplerExternalOES"); |
| } else { |
| requireExtensions(loc, 1, &E_GL_OES_EGL_image_external_essl3, "samplerExternalOES"); |
| } |
| } |
| |
| if (type.getQualifier().storage == EvqUniform) |
| return; |
| |
| if (type.getBasicType() == EbtStruct && containsFieldWithBasicType(type, EbtSampler)) |
| error(loc, "non-uniform struct contains a sampler or image:", type.getBasicTypeString().c_str(), identifier.c_str()); |
| else if (type.getBasicType() == EbtSampler && type.getQualifier().storage != EvqUniform) { |
| // non-uniform sampler |
| // not yet: okay if it has an initializer |
| // if (! initializer) |
| error(loc, "sampler/image types can only be used in uniform variables or function parameters:", type.getBasicTypeString().c_str(), identifier.c_str()); |
| } |
| } |
| |
| void TParseContext::atomicUintCheck(const TSourceLoc& loc, const TType& type, const TString& identifier) |
| { |
| if (type.getQualifier().storage == EvqUniform) |
| return; |
| |
| if (type.getBasicType() == EbtStruct && containsFieldWithBasicType(type, EbtAtomicUint)) |
| error(loc, "non-uniform struct contains an atomic_uint:", type.getBasicTypeString().c_str(), identifier.c_str()); |
| else if (type.getBasicType() == EbtAtomicUint && type.getQualifier().storage != EvqUniform) |
| error(loc, "atomic_uints can only be used in uniform variables or function parameters:", type.getBasicTypeString().c_str(), identifier.c_str()); |
| } |
| |
| void TParseContext::transparentOpaqueCheck(const TSourceLoc& loc, const TType& type, const TString& identifier) |
| { |
| if (parsingBuiltins) |
| return; |
| |
| if (type.getQualifier().storage != EvqUniform) |
| return; |
| |
| if (type.containsNonOpaque()) { |
| // Vulkan doesn't allow transparent uniforms outside of blocks |
| if (spvVersion.vulkan > 0) |
| vulkanRemoved(loc, "non-opaque uniforms outside a block"); |
| // OpenGL wants locations on these (unless they are getting automapped) |
| if (spvVersion.openGl > 0 && !type.getQualifier().hasLocation() && !intermediate.getAutoMapLocations()) |
| error(loc, "non-opaque uniform variables need a layout(location=L)", identifier.c_str(), ""); |
| } |
| } |
| |
| // |
| // Check/fix just a full qualifier (no variables or types yet, but qualifier is complete) at global level. |
| // |
| void TParseContext::globalQualifierFixCheck(const TSourceLoc& loc, TQualifier& qualifier) |
| { |
| // move from parameter/unknown qualifiers to pipeline in/out qualifiers |
| switch (qualifier.storage) { |
| case EvqIn: |
| profileRequires(loc, ENoProfile, 130, nullptr, "in for stage inputs"); |
| profileRequires(loc, EEsProfile, 300, nullptr, "in for stage inputs"); |
| qualifier.storage = EvqVaryingIn; |
| break; |
| case EvqOut: |
| profileRequires(loc, ENoProfile, 130, nullptr, "out for stage outputs"); |
| profileRequires(loc, EEsProfile, 300, nullptr, "out for stage outputs"); |
| qualifier.storage = EvqVaryingOut; |
| break; |
| case EvqInOut: |
| qualifier.storage = EvqVaryingIn; |
| error(loc, "cannot use 'inout' at global scope", "", ""); |
| break; |
| default: |
| break; |
| } |
| |
| invariantCheck(loc, qualifier); |
| } |
| |
| // |
| // Check a full qualifier and type (no variable yet) at global level. |
| // |
| void TParseContext::globalQualifierTypeCheck(const TSourceLoc& loc, const TQualifier& qualifier, const TPublicType& publicType) |
| { |
| if (! symbolTable.atGlobalLevel()) |
| return; |
| |
| if (qualifier.isMemory() && ! publicType.isImage() && publicType.qualifier.storage != EvqBuffer) |
| error(loc, "memory qualifiers cannot be used on this type", "", ""); |
| |
| if (qualifier.storage == EvqBuffer && publicType.basicType != EbtBlock) |
| error(loc, "buffers can be declared only as blocks", "buffer", ""); |
| |
| if (qualifier.storage != EvqVaryingIn && qualifier.storage != EvqVaryingOut) |
| return; |
| |
| if (publicType.shaderQualifiers.blendEquation) |
| error(loc, "can only be applied to a standalone 'out'", "blend equation", ""); |
| |
| // now, knowing it is a shader in/out, do all the in/out semantic checks |
| |
| if (publicType.basicType == EbtBool && !parsingBuiltins) { |
| error(loc, "cannot be bool", GetStorageQualifierString(qualifier.storage), ""); |
| return; |
| } |
| |
| if (publicType.basicType == EbtInt || publicType.basicType == EbtUint || |
| #ifdef AMD_EXTENSIONS |
| publicType.basicType == EbtInt16 || publicType.basicType == EbtUint16 || |
| #endif |
| publicType.basicType == EbtInt64 || publicType.basicType == EbtUint64 || |
| publicType.basicType == EbtDouble) |
| profileRequires(loc, EEsProfile, 300, nullptr, "shader input/output"); |
| |
| #ifdef AMD_EXTENSIONS |
| if (! qualifier.flat && ! qualifier.explicitInterp) { |
| #else |
| if (!qualifier.flat) { |
| #endif |
| if (publicType.basicType == EbtInt || publicType.basicType == EbtUint || |
| #ifdef AMD_EXTENSIONS |
| publicType.basicType == EbtInt16 || publicType.basicType == EbtUint16 || |
| #endif |
| publicType.basicType == EbtInt64 || publicType.basicType == EbtUint64 || |
| publicType.basicType == EbtDouble || |
| (publicType.userDef && (publicType.userDef->containsBasicType(EbtInt) || |
| publicType.userDef->containsBasicType(EbtUint) || |
| publicType.userDef->containsBasicType(EbtInt64) || |
| publicType.userDef->containsBasicType(EbtUint64) || |
| publicType.userDef->containsBasicType(EbtDouble)))) { |
| if (qualifier.storage == EvqVaryingIn && language == EShLangFragment) |
| error(loc, "must be qualified as flat", TType::getBasicString(publicType.basicType), GetStorageQualifierString(qualifier.storage)); |
| else if (qualifier.storage == EvqVaryingOut && language == EShLangVertex && version == 300) |
| error(loc, "must be qualified as flat", TType::getBasicString(publicType.basicType), GetStorageQualifierString(qualifier.storage)); |
| } |
| } |
| |
| if (qualifier.patch && qualifier.isInterpolation()) |
| error(loc, "cannot use interpolation qualifiers with patch", "patch", ""); |
| |
| if (qualifier.storage == EvqVaryingIn) { |
| switch (language) { |
| case EShLangVertex: |
| if (publicType.basicType == EbtStruct) { |
| error(loc, "cannot be a structure or array", GetStorageQualifierString(qualifier.storage), ""); |
| return; |
| } |
| if (publicType.arraySizes) { |
| requireProfile(loc, ~EEsProfile, "vertex input arrays"); |
| profileRequires(loc, ENoProfile, 150, nullptr, "vertex input arrays"); |
| } |
| if (publicType.basicType == EbtDouble) |
| profileRequires(loc, ~EEsProfile, 410, nullptr, "vertex-shader `double` type input"); |
| if (qualifier.isAuxiliary() || qualifier.isInterpolation() || qualifier.isMemory() || qualifier.invariant) |
| error(loc, "vertex input cannot be further qualified", "", ""); |
| break; |
| |
| case EShLangTessControl: |
| if (qualifier.patch) |
| error(loc, "can only use on output in tessellation-control shader", "patch", ""); |
| break; |
| |
| case EShLangTessEvaluation: |
| break; |
| |
| case EShLangGeometry: |
| break; |
| |
| case EShLangFragment: |
| if (publicType.userDef) { |
| profileRequires(loc, EEsProfile, 300, nullptr, "fragment-shader struct input"); |
| profileRequires(loc, ~EEsProfile, 150, nullptr, "fragment-shader struct input"); |
| if (publicType.userDef->containsStructure()) |
| requireProfile(loc, ~EEsProfile, "fragment-shader struct input containing structure"); |
| if (publicType.userDef->containsArray()) |
| requireProfile(loc, ~EEsProfile, "fragment-shader struct input containing an array"); |
| } |
| break; |
| |
| case EShLangCompute: |
| if (! symbolTable.atBuiltInLevel()) |
| error(loc, "global storage input qualifier cannot be used in a compute shader", "in", ""); |
| break; |
| |
| default: |
| break; |
| } |
| } else { |
| // qualifier.storage == EvqVaryingOut |
| switch (language) { |
| case EShLangVertex: |
| if (publicType.userDef) { |
| profileRequires(loc, EEsProfile, 300, nullptr, "vertex-shader struct output"); |
| profileRequires(loc, ~EEsProfile, 150, nullptr, "vertex-shader struct output"); |
| if (publicType.userDef->containsStructure()) |
| requireProfile(loc, ~EEsProfile, "vertex-shader struct output containing structure"); |
| if (publicType.userDef->containsArray()) |
| requireProfile(loc, ~EEsProfile, "vertex-shader struct output containing an array"); |
| } |
| |
| break; |
| |
| case EShLangTessControl: |
| break; |
| |
| case EShLangTessEvaluation: |
| if (qualifier.patch) |
| error(loc, "can only use on input in tessellation-evaluation shader", "patch", ""); |
| break; |
| |
| case EShLangGeometry: |
| break; |
| |
| case EShLangFragment: |
| profileRequires(loc, EEsProfile, 300, nullptr, "fragment shader output"); |
| if (publicType.basicType == EbtStruct) { |
| error(loc, "cannot be a structure", GetStorageQualifierString(qualifier.storage), ""); |
| return; |
| } |
| if (publicType.matrixRows > 0) { |
| error(loc, "cannot be a matrix", GetStorageQualifierString(qualifier.storage), ""); |
| return; |
| } |
| if (qualifier.isAuxiliary()) |
| error(loc, "can't use auxiliary qualifier on a fragment output", "centroid/sample/patch", ""); |
| if (qualifier.isInterpolation()) |
| error(loc, "can't use interpolation qualifier on a fragment output", "flat/smooth/noperspective", ""); |
| if (publicType.basicType == EbtDouble) |
| error(loc, "cannot contain a double", GetStorageQualifierString(qualifier.storage), ""); |
| break; |
| |
| case EShLangCompute: |
| error(loc, "global storage output qualifier cannot be used in a compute shader", "out", ""); |
| break; |
| |
| default: |
| break; |
| } |
| } |
| } |
| |
| // |
| // Merge characteristics of the 'src' qualifier into the 'dst'. |
| // If there is duplication, issue error messages, unless 'force' |
| // is specified, which means to just override default settings. |
| // |
| // Also, when force is false, it will be assumed that 'src' follows |
| // 'dst', for the purpose of error checking order for versions |
| // that require specific orderings of qualifiers. |
| // |
| void TParseContext::mergeQualifiers(const TSourceLoc& loc, TQualifier& dst, const TQualifier& src, bool force) |
| { |
| // Multiple auxiliary qualifiers (mostly done later by 'individual qualifiers') |
| if (src.isAuxiliary() && dst.isAuxiliary()) |
| error(loc, "can only have one auxiliary qualifier (centroid, patch, and sample)", "", ""); |
| |
| // Multiple interpolation qualifiers (mostly done later by 'individual qualifiers') |
| if (src.isInterpolation() && dst.isInterpolation()) |
| #ifdef AMD_EXTENSIONS |
| error(loc, "can only have one interpolation qualifier (flat, smooth, noperspective, __explicitInterpAMD)", "", ""); |
| #else |
| error(loc, "can only have one interpolation qualifier (flat, smooth, noperspective)", "", ""); |
| #endif |
| |
| // Ordering |
| if (! force && ((profile != EEsProfile && version < 420) || |
| (profile == EEsProfile && version < 310)) |
| && ! extensionTurnedOn(E_GL_ARB_shading_language_420pack)) { |
| // non-function parameters |
| if (src.noContraction && (dst.invariant || dst.isInterpolation() || dst.isAuxiliary() || dst.storage != EvqTemporary || dst.precision != EpqNone)) |
| error(loc, "precise qualifier must appear first", "", ""); |
| if (src.invariant && (dst.isInterpolation() || dst.isAuxiliary() || dst.storage != EvqTemporary || dst.precision != EpqNone)) |
| error(loc, "invariant qualifier must appear before interpolation, storage, and precision qualifiers ", "", ""); |
| else if (src.isInterpolation() && (dst.isAuxiliary() || dst.storage != EvqTemporary || dst.precision != EpqNone)) |
| error(loc, "interpolation qualifiers must appear before storage and precision qualifiers", "", ""); |
| else if (src.isAuxiliary() && (dst.storage != EvqTemporary || dst.precision != EpqNone)) |
| error(loc, "Auxiliary qualifiers (centroid, patch, and sample) must appear before storage and precision qualifiers", "", ""); |
| else if (src.storage != EvqTemporary && (dst.precision != EpqNone)) |
| error(loc, "precision qualifier must appear as last qualifier", "", ""); |
| |
| // function parameters |
| if (src.noContraction && (dst.storage == EvqConst || dst.storage == EvqIn || dst.storage == EvqOut)) |
| error(loc, "precise qualifier must appear first", "", ""); |
| if (src.storage == EvqConst && (dst.storage == EvqIn || dst.storage == EvqOut)) |
| error(loc, "in/out must appear before const", "", ""); |
| } |
| |
| // Storage qualification |
| if (dst.storage == EvqTemporary || dst.storage == EvqGlobal) |
| dst.storage = src.storage; |
| else if ((dst.storage == EvqIn && src.storage == EvqOut) || |
| (dst.storage == EvqOut && src.storage == EvqIn)) |
| dst.storage = EvqInOut; |
| else if ((dst.storage == EvqIn && src.storage == EvqConst) || |
| (dst.storage == EvqConst && src.storage == EvqIn)) |
| dst.storage = EvqConstReadOnly; |
| else if (src.storage != EvqTemporary && |
| src.storage != EvqGlobal) |
| error(loc, "too many storage qualifiers", GetStorageQualifierString(src.storage), ""); |
| |
| // Precision qualifiers |
| if (! force && src.precision != EpqNone && dst.precision != EpqNone) |
| error(loc, "only one precision qualifier allowed", GetPrecisionQualifierString(src.precision), ""); |
| if (dst.precision == EpqNone || (force && src.precision != EpqNone)) |
| dst.precision = src.precision; |
| |
| // Layout qualifiers |
| mergeObjectLayoutQualifiers(dst, src, false); |
| |
| // individual qualifiers |
| bool repeated = false; |
| #define MERGE_SINGLETON(field) repeated |= dst.field && src.field; dst.field |= src.field; |
| MERGE_SINGLETON(invariant); |
| MERGE_SINGLETON(noContraction); |
| MERGE_SINGLETON(centroid); |
| MERGE_SINGLETON(smooth); |
| MERGE_SINGLETON(flat); |
| MERGE_SINGLETON(nopersp); |
| #ifdef AMD_EXTENSIONS |
| MERGE_SINGLETON(explicitInterp); |
| #endif |
| MERGE_SINGLETON(patch); |
| MERGE_SINGLETON(sample); |
| MERGE_SINGLETON(coherent); |
| MERGE_SINGLETON(volatil); |
| MERGE_SINGLETON(restrict); |
| MERGE_SINGLETON(readonly); |
| MERGE_SINGLETON(writeonly); |
| MERGE_SINGLETON(specConstant); |
| |
| if (repeated) |
| error(loc, "replicated qualifiers", "", ""); |
| } |
| |
| void TParseContext::setDefaultPrecision(const TSourceLoc& loc, TPublicType& publicType, TPrecisionQualifier qualifier) |
| { |
| TBasicType basicType = publicType.basicType; |
| |
| if (basicType == EbtSampler) { |
| defaultSamplerPrecision[computeSamplerTypeIndex(publicType.sampler)] = qualifier; |
| |
| return; // all is well |
| } |
| |
| if (basicType == EbtInt || basicType == EbtFloat) { |
| if (publicType.isScalar()) { |
| defaultPrecision[basicType] = qualifier; |
| if (basicType == EbtInt) { |
| defaultPrecision[EbtUint] = qualifier; |
| precisionManager.explicitIntDefaultSeen(); |
| } else |
| precisionManager.explicitFloatDefaultSeen(); |
| |
| return; // all is well |
| } |
| } |
| |
| if (basicType == EbtAtomicUint) { |
| if (qualifier != EpqHigh) |
| error(loc, "can only apply highp to atomic_uint", "precision", ""); |
| |
| return; |
| } |
| |
| error(loc, "cannot apply precision statement to this type; use 'float', 'int' or a sampler type", TType::getBasicString(basicType), ""); |
| } |
| |
| // used to flatten the sampler type space into a single dimension |
| // correlates with the declaration of defaultSamplerPrecision[] |
| int TParseContext::computeSamplerTypeIndex(TSampler& sampler) |
| { |
| int arrayIndex = sampler.arrayed ? 1 : 0; |
| int shadowIndex = sampler.shadow ? 1 : 0; |
| int externalIndex = sampler.external? 1 : 0; |
| int imageIndex = sampler.image ? 1 : 0; |
| int msIndex = sampler.ms ? 1 : 0; |
| |
| int flattened = EsdNumDims * (EbtNumTypes * (2 * (2 * (2 * (2 * arrayIndex + msIndex) + imageIndex) + shadowIndex) + |
| externalIndex) + sampler.type) + sampler.dim; |
| assert(flattened < maxSamplerIndex); |
| |
| return flattened; |
| } |
| |
| TPrecisionQualifier TParseContext::getDefaultPrecision(TPublicType& publicType) |
| { |
| if (publicType.basicType == EbtSampler) |
| return defaultSamplerPrecision[computeSamplerTypeIndex(publicType.sampler)]; |
| else |
| return defaultPrecision[publicType.basicType]; |
| } |
| |
| void TParseContext::precisionQualifierCheck(const TSourceLoc& loc, TBasicType baseType, TQualifier& qualifier) |
| { |
| // Built-in symbols are allowed some ambiguous precisions, to be pinned down |
| // later by context. |
| if (! obeyPrecisionQualifiers() || parsingBuiltins) |
| return; |
| |
| if (baseType == EbtAtomicUint && qualifier.precision != EpqNone && qualifier.precision != EpqHigh) |
| error(loc, "atomic counters can only be highp", "atomic_uint", ""); |
| |
| if (baseType == EbtFloat || baseType == EbtUint || baseType == EbtInt || baseType == EbtSampler || baseType == EbtAtomicUint) { |
| if (qualifier.precision == EpqNone) { |
| if (relaxedErrors()) |
| warn(loc, "type requires declaration of default precision qualifier", TType::getBasicString(baseType), "substituting 'mediump'"); |
| else |
| error(loc, "type requires declaration of default precision qualifier", TType::getBasicString(baseType), ""); |
| qualifier.precision = EpqMedium; |
| defaultPrecision[baseType] = EpqMedium; |
| } |
| } else if (qualifier.precision != EpqNone) |
| error(loc, "type cannot have precision qualifier", TType::getBasicString(baseType), ""); |
| } |
| |
| void TParseContext::parameterTypeCheck(const TSourceLoc& loc, TStorageQualifier qualifier, const TType& type) |
| { |
| if ((qualifier == EvqOut || qualifier == EvqInOut) && type.isOpaque()) |
| error(loc, "samplers and atomic_uints cannot be output parameters", type.getBasicTypeString().c_str(), ""); |
| } |
| |
| bool TParseContext::containsFieldWithBasicType(const TType& type, TBasicType basicType) |
| { |
| if (type.getBasicType() == basicType) |
| return true; |
| |
| if (type.getBasicType() == EbtStruct) { |
| const TTypeList& structure = *type.getStruct(); |
| for (unsigned int i = 0; i < structure.size(); ++i) { |
| if (containsFieldWithBasicType(*structure[i].type, basicType)) |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| // |
| // Do size checking for an array type's size. |
| // |
| void TParseContext::arraySizeCheck(const TSourceLoc& loc, TIntermTyped* expr, TArraySize& sizePair) |
| { |
| bool isConst = false; |
| sizePair.node = nullptr; |
| |
| int size = 1; |
| |
| TIntermConstantUnion* constant = expr->getAsConstantUnion(); |
| if (constant) { |
| // handle true (non-specialization) constant |
| size = constant->getConstArray()[0].getIConst(); |
| isConst = true; |
| } else { |
| // see if it's a specialization constant instead |
| if (expr->getQualifier().isSpecConstant()) { |
| isConst = true; |
| sizePair.node = expr; |
| TIntermSymbol* symbol = expr->getAsSymbolNode(); |
| if (symbol && symbol->getConstArray().size() > 0) |
| size = symbol->getConstArray()[0].getIConst(); |
| } |
| } |
| |
| sizePair.size = size; |
| |
| if (! isConst || (expr->getBasicType() != EbtInt && expr->getBasicType() != EbtUint)) { |
| error(loc, "array size must be a constant integer expression", "", ""); |
| return; |
| } |
| |
| if (size <= 0) { |
| error(loc, "array size must be a positive integer", "", ""); |
| return; |
| } |
| } |
| |
| // |
| // See if this qualifier can be an array. |
| // |
| // Returns true if there is an error. |
| // |
| bool TParseContext::arrayQualifierError(const TSourceLoc& loc, const TQualifier& qualifier) |
| { |
| if (qualifier.storage == EvqConst) { |
| profileRequires(loc, ENoProfile, 120, E_GL_3DL_array_objects, "const array"); |
| profileRequires(loc, EEsProfile, 300, nullptr, "const array"); |
| } |
| |
| if (qualifier.storage == EvqVaryingIn && language == EShLangVertex) { |
| requireProfile(loc, ~EEsProfile, "vertex input arrays"); |
| profileRequires(loc, ENoProfile, 150, nullptr, "vertex input arrays"); |
| } |
| |
| return false; |
| } |
| |
| // |
| // See if this qualifier and type combination can be an array. |
| // Assumes arrayQualifierError() was also called to catch the type-invariant tests. |
| // |
| // Returns true if there is an error. |
| // |
| bool TParseContext::arrayError(const TSourceLoc& loc, const TType& type) |
| { |
| if (type.getQualifier().storage == EvqVaryingOut && language == EShLangVertex) { |
| if (type.isArrayOfArrays()) |
| requireProfile(loc, ~EEsProfile, "vertex-shader array-of-array output"); |
| else if (type.isStruct()) |
| requireProfile(loc, ~EEsProfile, "vertex-shader array-of-struct output"); |
| } |
| if (type.getQualifier().storage == EvqVaryingIn && language == EShLangFragment) { |
| if (type.isArrayOfArrays()) |
| requireProfile(loc, ~EEsProfile, "fragment-shader array-of-array input"); |
| else if (type.isStruct()) |
| requireProfile(loc, ~EEsProfile, "fragment-shader array-of-struct input"); |
| } |
| if (type.getQualifier().storage == EvqVaryingOut && language == EShLangFragment) { |
| if (type.isArrayOfArrays()) |
| requireProfile(loc, ~EEsProfile, "fragment-shader array-of-array output"); |
| } |
| |
| return false; |
| } |
| |
| // |
| // Require array to be completely sized |
| // |
| void TParseContext::arraySizeRequiredCheck(const TSourceLoc& loc, const TArraySizes& arraySizes) |
| { |
| if (arraySizes.isImplicit()) |
| error(loc, "array size required", "", ""); |
| } |
| |
| void TParseContext::structArrayCheck(const TSourceLoc& /*loc*/, const TType& type) |
| { |
| const TTypeList& structure = *type.getStruct(); |
| for (int m = 0; m < (int)structure.size(); ++m) { |
| const TType& member = *structure[m].type; |
| if (member.isArray()) |
| arraySizeRequiredCheck(structure[m].loc, *member.getArraySizes()); |
| } |
| } |
| |
| void TParseContext::arraySizesCheck(const TSourceLoc& loc, const TQualifier& qualifier, TArraySizes* arraySizes, bool initializer, bool lastMember) |
| { |
| assert(arraySizes); |
| |
| // always allow special built-in ins/outs sized to topologies |
| if (parsingBuiltins) |
| return; |
| |
| // always allow an initializer to set any unknown array sizes |
| if (initializer) |
| return; |
| |
| // No environment allows any non-outer-dimension to be implicitly sized |
| if (arraySizes->isInnerImplicit()) { |
| error(loc, "only outermost dimension of an array of arrays can be implicitly sized", "[]", ""); |
| arraySizes->clearInnerImplicit(); |
| } |
| |
| if (arraySizes->isInnerSpecialization()) |
| error(loc, "only outermost dimension of an array of arrays can be a specialization constant", "[]", ""); |
| |
| // desktop always allows outer-dimension-unsized variable arrays, |
| if (profile != EEsProfile) |
| return; |
| |
| // for ES, if size isn't coming from an initializer, it has to be explicitly declared now, |
| // with very few exceptions |
| |
| // last member of ssbo block exception: |
| if (qualifier.storage == EvqBuffer && lastMember) |
| return; |
| |
| // implicitly-sized io exceptions: |
| switch (language) { |
| case EShLangGeometry: |
| if (qualifier.storage == EvqVaryingIn) |
| if ((profile == EEsProfile && version >= 320) || |
| extensionsTurnedOn(Num_AEP_geometry_shader, AEP_geometry_shader)) |
| return; |
| break; |
| case EShLangTessControl: |
| if ( qualifier.storage == EvqVaryingIn || |
| (qualifier.storage == EvqVaryingOut && ! qualifier.patch)) |
| if ((profile == EEsProfile && version >= 320) || |
| extensionsTurnedOn(Num_AEP_tessellation_shader, AEP_tessellation_shader)) |
| return; |
| break; |
| case EShLangTessEvaluation: |
| if ((qualifier.storage == EvqVaryingIn && ! qualifier.patch) || |
| qualifier.storage == EvqVaryingOut) |
| if ((profile == EEsProfile && version >= 320) || |
| extensionsTurnedOn(Num_AEP_tessellation_shader, AEP_tessellation_shader)) |
| return; |
| break; |
| default: |
| break; |
| } |
| |
| arraySizeRequiredCheck(loc, *arraySizes); |
| } |
| |
| void TParseContext::arrayOfArrayVersionCheck(const TSourceLoc& loc) |
| { |
| const char* feature = "arrays of arrays"; |
| |
| requireProfile(loc, EEsProfile | ECoreProfile | ECompatibilityProfile, feature); |
| profileRequires(loc, EEsProfile, 310, nullptr, feature); |
| profileRequires(loc, ECoreProfile | ECompatibilityProfile, 430, nullptr, feature); |
| } |
| |
| void TParseContext::arrayDimCheck(const TSourceLoc& loc, const TArraySizes* sizes1, const TArraySizes* sizes2) |
| { |
| if ((sizes1 && sizes2) || |
| (sizes1 && sizes1->getNumDims() > 1) || |
| (sizes2 && sizes2->getNumDims() > 1)) |
| arrayOfArrayVersionCheck(loc); |
| } |
| |
| void TParseContext::arrayDimCheck(const TSourceLoc& loc, const TType* type, const TArraySizes* sizes2) |
| { |
| // skip checking for multiple dimensions on the type; it was caught earlier |
| if ((type && type->isArray() && sizes2) || |
| (sizes2 && sizes2->getNumDims() > 1)) |
| arrayOfArrayVersionCheck(loc); |
| } |
| |
| // Merge array dimensions listed in 'sizes' onto the type's array dimensions. |
| // |
| // From the spec: "vec4[2] a[3]; // size-3 array of size-2 array of vec4" |
| // |
| // That means, the 'sizes' go in front of the 'type' as outermost sizes. |
| // 'type' is the type part of the declaration (to the left) |
| // 'sizes' is the arrayness tagged on the identifier (to the right) |
| // |
| void TParseContext::arrayDimMerge(TType& type, const TArraySizes* sizes) |
| { |
| if (sizes != nullptr) |
| type.addArrayOuterSizes(*sizes); |
| } |
| |
| // |
| // Do all the semantic checking for declaring or redeclaring an array, with and |
| // without a size, and make the right changes to the symbol table. |
| // |
| void TParseContext::declareArray(const TSourceLoc& loc, const TString& identifier, const TType& type, TSymbol*& symbol) |
| { |
| if (symbol == nullptr) { |
| bool currentScope; |
| symbol = symbolTable.find(identifier, nullptr, ¤tScope); |
| |
| if (symbol && builtInName(identifier) && ! symbolTable.atBuiltInLevel()) { |
| // bad shader (errors already reported) trying to redeclare a built-in name as an array |
| symbol = nullptr; |
| return; |
| } |
| if (symbol == nullptr || ! currentScope) { |
| // |
| // Successfully process a new definition. |
| // (Redeclarations have to take place at the same scope; otherwise they are hiding declarations) |
| // |
| symbol = new TVariable(&identifier, type); |
| symbolTable.insert(*symbol); |
| if (symbolTable.atGlobalLevel()) |
| trackLinkage(*symbol); |
| |
| if (! symbolTable.atBuiltInLevel()) { |
| if (isIoResizeArray(type)) { |
| ioArraySymbolResizeList.push_back(symbol); |
| checkIoArraysConsistency(loc, true); |
| } else |
| fixIoArraySize(loc, symbol->getWritableType()); |
| } |
| |
| return; |
| } |
| if (symbol->getAsAnonMember()) { |
| error(loc, "cannot redeclare a user-block member array", identifier.c_str(), ""); |
| symbol = nullptr; |
| return; |
| } |
| } |
| |
| // |
| // Process a redeclaration. |
| // |
| |
| if (symbol == nullptr) { |
| error(loc, "array variable name expected", identifier.c_str(), ""); |
| return; |
| } |
| |
| // redeclareBuiltinVariable() should have already done the copyUp() |
| TType& existingType = symbol->getWritableType(); |
| |
| if (! existingType.isArray()) { |
| error(loc, "redeclaring non-array as array", identifier.c_str(), ""); |
| return; |
| } |
| |
| if (! existingType.sameElementType(type)) { |
| error(loc, "redeclaration of array with a different element type", identifier.c_str(), ""); |
| return; |
| } |
| |
| if (! existingType.sameInnerArrayness(type)) { |
| error(loc, "redeclaration of array with a different array dimensions or sizes", identifier.c_str(), ""); |
| return; |
| } |
| |
| if (existingType.isExplicitlySizedArray()) { |
| // be more leniant for input arrays to geometry shaders and tessellation control outputs, where the redeclaration is the same size |
| if (! (isIoResizeArray(type) && existingType.getOuterArraySize() == type.getOuterArraySize())) |
| error(loc, "redeclaration of array with size", identifier.c_str(), ""); |
| return; |
| } |
| |
| arrayLimitCheck(loc, identifier, type.getOuterArraySize()); |
| |
| existingType.updateArraySizes(type); |
| |
| if (isIoResizeArray(type)) |
| checkIoArraysConsistency(loc); |
| } |
| |
| void TParseContext::updateImplicitArraySize(const TSourceLoc& loc, TIntermNode *node, int index) |
| { |
| // maybe there is nothing to do... |
| TIntermTyped* typedNode = node->getAsTyped(); |
| if (typedNode->getType().getImplicitArraySize() > index) |
| return; |
| |
| // something to do... |
| |
| // Figure out what symbol to lookup, as we will use its type to edit for the size change, |
| // as that type will be shared through shallow copies for future references. |
| TSymbol* symbol = nullptr; |
| int blockIndex = -1; |
| const TString* lookupName = nullptr; |
| if (node->getAsSymbolNode()) |
| lookupName = &node->getAsSymbolNode()->getName(); |
| else if (node->getAsBinaryNode()) { |
| const TIntermBinary* deref = node->getAsBinaryNode(); |
| // This has to be the result of a block dereference, unless it's bad shader code |
| // If it's a uniform block, then an error will be issued elsewhere, but |
| // return early now to avoid crashing later in this function. |
| if (deref->getLeft()->getBasicType() != EbtBlock || |
| deref->getLeft()->getType().getQualifier().storage == EvqUniform || |
| deref->getRight()->getAsConstantUnion() == nullptr) |
| return; |
| |
| const TIntermTyped* left = deref->getLeft(); |
| const TIntermTyped* right = deref->getRight(); |
| |
| if (left->getAsBinaryNode()) { |
| left = left->getAsBinaryNode()->getLeft(); // Block array access |
| assert(left->isArray()); |
| } |
| |
| if (! left->getAsSymbolNode()) |
| return; |
| |
| blockIndex = right->getAsConstantUnion()->getConstArray()[0].getIConst(); |
| |
| lookupName = &left->getAsSymbolNode()->getName(); |
| if (IsAnonymous(*lookupName)) |
| lookupName = &(*left->getType().getStruct())[blockIndex].type->getFieldName(); |
| } |
| |
| // Lookup the symbol, should only fail if shader code is incorrect |
| symbol = symbolTable.find(*lookupName); |
| if (symbol == nullptr) |
| return; |
| |
| if (symbol->getAsFunction()) { |
| error(loc, "array variable name expected", symbol->getName().c_str(), ""); |
| return; |
| } |
| |
| if (symbol->getType().isStruct() && blockIndex != -1) |
| (*symbol->getWritableType().getStruct())[blockIndex].type->setImplicitArraySize(index + 1); |
| else |
| symbol->getWritableType().setImplicitArraySize(index + 1); |
| } |
| |
| // Returns true if the first argument to the #line directive is the line number for the next line. |
| // |
| // Desktop, pre-version 3.30: "After processing this directive |
| // (including its new-line), the implementation will behave as if it is compiling at line number line+1 and |
| // source string number source-string-number." |
| // |
| // Desktop, version 3.30 and later, and ES: "After processing this directive |
| // (including its new-line), the implementation will behave as if it is compiling at line number line and |
| // source string number source-string-number. |
| bool TParseContext::lineDirectiveShouldSetNextLine() const |
| { |
| return profile == EEsProfile || version >= 330; |
| } |
| |
| // |
| // Enforce non-initializer type/qualifier rules. |
| // |
| void TParseContext::nonInitConstCheck(const TSourceLoc& loc, TString& identifier, TType& type) |
| { |
| // |
| // Make the qualifier make sense, given that there is not an initializer. |
| // |
| if (type.getQualifier().storage == EvqConst || |
| type.getQualifier().storage == EvqConstReadOnly) { |
| type.getQualifier().makeTemporary(); |
| error(loc, "variables with qualifier 'const' must be initialized", identifier.c_str(), ""); |
| } |
| } |
| |
| // |
| // See if the identifier is a built-in symbol that can be redeclared, and if so, |
| // copy the symbol table's read-only built-in variable to the current |
| // global level, where it can be modified based on the passed in type. |
| // |
| // Returns nullptr if no redeclaration took place; meaning a normal declaration still |
| // needs to occur for it, not necessarily an error. |
| // |
| // Returns a redeclared and type-modified variable if a redeclarated occurred. |
| // |
| TSymbol* TParseContext::redeclareBuiltinVariable(const TSourceLoc& loc, const TString& identifier, |
| const TQualifier& qualifier, const TShaderQualifiers& publicType) |
| { |
| if (! builtInName(identifier) || symbolTable.atBuiltInLevel() || ! symbolTable.atGlobalLevel()) |
| return nullptr; |
| |
| bool nonEsRedecls = (profile != EEsProfile && (version >= 130 || identifier == "gl_TexCoord")); |
| bool esRedecls = (profile == EEsProfile && |
| (version >= 320 || extensionsTurnedOn(Num_AEP_shader_io_blocks, AEP_shader_io_blocks))); |
| if (! esRedecls && ! nonEsRedecls) |
| return nullptr; |
| |
| // Special case when using GL_ARB_separate_shader_objects |
| bool ssoPre150 = false; // means the only reason this variable is redeclared is due to this combination |
| if (profile != EEsProfile && version <= 140 && extensionTurnedOn(E_GL_ARB_separate_shader_objects)) { |
| if (identifier == "gl_Position" || |
| identifier == "gl_PointSize" || |
| identifier == "gl_ClipVertex" || |
| identifier == "gl_FogFragCoord") |
| ssoPre150 = true; |
| } |
| |
| // Potentially redeclaring a built-in variable... |
| |
| if (ssoPre150 || |
| (identifier == "gl_FragDepth" && ((nonEsRedecls && version >= 420) || esRedecls)) || |
| (identifier == "gl_FragCoord" && ((nonEsRedecls && version >= 150) || esRedecls)) || |
| identifier == "gl_ClipDistance" || |
| identifier == "gl_CullDistance" || |
| identifier == "gl_FrontColor" || |
| identifier == "gl_BackColor" || |
| identifier == "gl_FrontSecondaryColor" || |
| identifier == "gl_BackSecondaryColor" || |
| identifier == "gl_SecondaryColor" || |
| (identifier == "gl_Color" && language == EShLangFragment) || |
| #ifdef NV_EXTENSIONS |
| identifier == "gl_SampleMask" || |
| identifier == "gl_Layer" || |
| #endif |
| identifier == "gl_TexCoord") { |
| |
| // Find the existing symbol, if any. |
| bool builtIn; |
| TSymbol* symbol = symbolTable.find(identifier, &builtIn); |
| |
| // If the symbol was not found, this must be a version/profile/stage |
| // that doesn't have it. |
| if (! symbol) |
| return nullptr; |
| |
| // If it wasn't at a built-in level, then it's already been redeclared; |
| // that is, this is a redeclaration of a redeclaration; reuse that initial |
| // redeclaration. Otherwise, make the new one. |
| if (builtIn) |
| makeEditable(symbol); |
| |
| // Now, modify the type of the copy, as per the type of the current redeclaration. |
| |
| TQualifier& symbolQualifier = symbol->getWritableType().getQualifier(); |
| if (ssoPre150) { |
| if (intermediate.inIoAccessed(identifier)) |
| error(loc, "cannot redeclare after use", identifier.c_str(), ""); |
| if (qualifier.hasLayout()) |
| error(loc, "cannot apply layout qualifier to", "redeclaration", symbol->getName().c_str()); |
| if (qualifier.isMemory() || qualifier.isAuxiliary() || (language == EShLangVertex && qualifier.storage != EvqVaryingOut) || |
| (language == EShLangFragment && qualifier.storage != EvqVaryingIn)) |
| error(loc, "cannot change storage, memory, or auxiliary qualification of", "redeclaration", symbol->getName().c_str()); |
| if (! qualifier.smooth) |
| error(loc, "cannot change interpolation qualification of", "redeclaration", symbol->getName().c_str()); |
| } else if (identifier == "gl_FrontColor" || |
| identifier == "gl_BackColor" || |
| identifier == "gl_FrontSecondaryColor" || |
| identifier == "gl_BackSecondaryColor" || |
| identifier == "gl_SecondaryColor" || |
| identifier == "gl_Color") { |
| symbolQualifier.flat = qualifier.flat; |
| symbolQualifier.smooth = qualifier.smooth; |
| symbolQualifier.nopersp = qualifier.nopersp; |
| if (qualifier.hasLayout()) |
| error(loc, "cannot apply layout qualifier to", "redeclaration", symbol->getName().c_str()); |
| if (qualifier.isMemory() || qualifier.isAuxiliary() || symbol->getType().getQualifier().storage != qualifier.storage) |
| error(loc, "cannot change storage, memory, or auxiliary qualification of", "redeclaration", symbol->getName().c_str()); |
| } else if (identifier == "gl_TexCoord" || |
| identifier == "gl_ClipDistance" || |
| identifier == "gl_CullDistance") { |
| if (qualifier.hasLayout() || qualifier.isMemory() || qualifier.isAuxiliary() || |
| qualifier.nopersp != symbolQualifier.nopersp || qualifier.flat != symbolQualifier.flat || |
| symbolQualifier.storage != qualifier.storage) |
| error(loc, "cannot change qualification of", "redeclaration", symbol->getName().c_str()); |
| } else if (identifier == "gl_FragCoord") { |
| if (intermediate.inIoAccessed("gl_FragCoord")) |
| error(loc, "cannot redeclare after use", "gl_FragCoord", ""); |
| if (qualifier.nopersp != symbolQualifier.nopersp || qualifier.flat != symbolQualifier.flat || |
| qualifier.isMemory() || qualifier.isAuxiliary()) |
| error(loc, "can only change layout qualification of", "redeclaration", symbol->getName().c_str()); |
| if (qualifier.storage != EvqVaryingIn) |
| error(loc, "cannot change input storage qualification of", "redeclaration", symbol->getName().c_str()); |
| if (! builtIn && (publicType.pixelCenterInteger != intermediate.getPixelCenterInteger() || |
| publicType.originUpperLeft != intermediate.getOriginUpperLeft())) |
| error(loc, "cannot redeclare with different qualification:", "redeclaration", symbol->getName().c_str()); |
| if (publicType.pixelCenterInteger) |
| intermediate.setPixelCenterInteger(); |
| if (publicType.originUpperLeft) |
| intermediate.setOriginUpperLeft(); |
| } else if (identifier == "gl_FragDepth") { |
| if (qualifier.nopersp != symbolQualifier.nopersp || qualifier.flat != symbolQualifier.flat || |
| qualifier.isMemory() || qualifier.isAuxiliary()) |
| error(loc, "can only change layout qualification of", "redeclaration", symbol->getName().c_str()); |
| if (qualifier.storage != EvqVaryingOut) |
| error(loc, "cannot change output storage qualification of", "redeclaration", symbol->getName().c_str()); |
| if (publicType.layoutDepth != EldNone) { |
| if (intermediate.inIoAccessed("gl_FragDepth")) |
| error(loc, "cannot redeclare after use", "gl_FragDepth", ""); |
| if (! intermediate.setDepth(publicType.layoutDepth)) |
| error(loc, "all redeclarations must use the same depth layout on", "redeclaration", symbol->getName().c_str()); |
| } |
| } |
| #ifdef NV_EXTENSIONS |
| else if (identifier == "gl_SampleMask") { |
| if (!publicType.layoutOverrideCoverage) { |
| error(loc, "redeclaration only allowed for override_coverage layout", "redeclaration", symbol->getName().c_str()); |
| } |
| intermediate.setLayoutOverrideCoverage(); |
| } |
| else if (identifier == "gl_Layer") { |
| if (!qualifier.layoutViewportRelative && qualifier.layoutSecondaryViewportRelativeOffset == -2048) |
| error(loc, "redeclaration only allowed for viewport_relative or secondary_view_offset layout", "redeclaration", symbol->getName().c_str()); |
| symbolQualifier.layoutViewportRelative = qualifier.layoutViewportRelative; |
| symbolQualifier.layoutSecondaryViewportRelativeOffset = qualifier.layoutSecondaryViewportRelativeOffset; |
| } |
| #endif |
| |
| // TODO: semantics quality: separate smooth from nothing declared, then use IsInterpolation for several tests above |
| |
| return symbol; |
| } |
| |
| return nullptr; |
| } |
| |
| // |
| // Either redeclare the requested block, or give an error message why it can't be done. |
| // |
| // TODO: functionality: explicitly sizing members of redeclared blocks is not giving them an explicit size |
| void TParseContext::redeclareBuiltinBlock(const TSourceLoc& loc, TTypeList& newTypeList, const TString& blockName, const TString* instanceName, TArraySizes* arraySizes) |
| { |
| const char* feature = "built-in block redeclaration"; |
| profileRequires(loc, EEsProfile, 320, Num_AEP_shader_io_blocks, AEP_shader_io_blocks, feature); |
| profileRequires(loc, ~EEsProfile, 410, E_GL_ARB_separate_shader_objects, feature); |
| |
| if (blockName != "gl_PerVertex" && blockName != "gl_PerFragment") { |
| error(loc, "cannot redeclare block: ", "block declaration", blockName.c_str()); |
| return; |
| } |
| |
| // Redeclaring a built-in block... |
| |
| if (instanceName && ! builtInName(*instanceName)) { |
| error(loc, "cannot redeclare a built-in block with a user name", instanceName->c_str(), ""); |
| return; |
| } |
| |
| // Blocks with instance names are easy to find, lookup the instance name, |
| // Anonymous blocks need to be found via a member. |
| bool builtIn; |
| TSymbol* block; |
| if (instanceName) |
| block = symbolTable.find(*instanceName, &builtIn); |
| else |
| block = symbolTable.find(newTypeList.front().type->getFieldName(), &builtIn); |
| |
| // If the block was not found, this must be a version/profile/stage |
| // that doesn't have it, or the instance name is wrong. |
| const char* errorName = instanceName ? instanceName->c_str() : newTypeList.front().type->getFieldName().c_str(); |
| if (! block) { |
| error(loc, "no declaration found for redeclaration", errorName, ""); |
| return; |
| } |
| // Built-in blocks cannot be redeclared more than once, which if happened, |
| // we'd be finding the already redeclared one here, rather than the built in. |
| if (! builtIn) { |
| error(loc, "can only redeclare a built-in block once, and before any use", blockName.c_str(), ""); |
| return; |
| } |
| |
| // Copy the block to make a writable version, to insert into the block table after editing. |
| block = symbolTable.copyUpDeferredInsert(block); |
| |
| if (block->getType().getBasicType() != EbtBlock) { |
| error(loc, "cannot redeclare a non block as a block", errorName, ""); |
| return; |
| } |
| |
| // Fix XFB stuff up, it applies to the order of the redeclaration, not |
| // the order of the original members. |
| if (currentBlockQualifier.storage == EvqVaryingOut && globalOutputDefaults.hasXfbBuffer()) { |
| if (!currentBlockQualifier.hasXfbBuffer()) |
| currentBlockQualifier.layoutXfbBuffer = globalOutputDefaults.layoutXfbBuffer; |
| fixBlockXfbOffsets(currentBlockQualifier, newTypeList); |
| } |
| |
| // Edit and error check the container against the redeclaration |
| // - remove unused members |
| // - ensure remaining qualifiers/types match |
| |
| TType& type = block->getWritableType(); |
| |
| #ifdef NV_EXTENSIONS |
| // if gl_PerVertex is redeclared for the purpose of passing through "gl_Position" |
| // for passthrough purpose, the redeclared block should have the same qualifers as |
| // the current one |
| if (currentBlockQualifier.layoutPassthrough) { |
| type.getQualifier().layoutPassthrough = currentBlockQualifier.layoutPassthrough; |
| type.getQualifier().storage = currentBlockQualifier.storage; |
| type.getQualifier().layoutStream = currentBlockQualifier.layoutStream; |
| type.getQualifier().layoutXfbBuffer = currentBlockQualifier.layoutXfbBuffer; |
| } |
| #endif |
| |
| TTypeList::iterator member = type.getWritableStruct()->begin(); |
| size_t numOriginalMembersFound = 0; |
| while (member != type.getStruct()->end()) { |
| // look for match |
| bool found = false; |
| TTypeList::const_iterator newMember; |
| TSourceLoc memberLoc; |
| memberLoc.init(); |
| for (newMember = newTypeList.begin(); newMember != newTypeList.end(); ++newMember) { |
| if (member->type->getFieldName() == newMember->type->getFieldName()) { |
| found = true; |
| memberLoc = newMember->loc; |
| break; |
| } |
| } |
| |
| if (found) { |
| ++numOriginalMembersFound; |
| // - ensure match between redeclared members' types |
| // - check for things that can't be changed |
| // - update things that can be changed |
| TType& oldType = *member->type; |
| const TType& newType = *newMember->type; |
| if (! newType.sameElementType(oldType)) |
| error(memberLoc, "cannot redeclare block member with a different type", member->type->getFieldName().c_str(), ""); |
| if (oldType.isArray() != newType.isArray()) |
| error(memberLoc, "cannot change arrayness of redeclared block member", member->type->getFieldName().c_str(), ""); |
| else if (! oldType.sameArrayness(newType) && oldType.isExplicitlySizedArray()) |
| error(memberLoc, "cannot change array size of redeclared block member", member->type->getFieldName().c_str(), ""); |
| else if (newType.isArray()) |
| arrayLimitCheck(loc, member->type->getFieldName(), newType.getOuterArraySize()); |
| if (newType.getQualifier().isMemory()) |
| error(memberLoc, "cannot add memory qualifier to redeclared block member", member->type->getFieldName().c_str(), ""); |
| if (newType.getQualifier().hasNonXfbLayout()) |
| error(memberLoc, "cannot add non-XFB layout to redeclared block member", member->type->getFieldName().c_str(), ""); |
| if (newType.getQualifier().patch) |
| error(memberLoc, "cannot add patch to redeclared block member", member->type->getFieldName().c_str(), ""); |
| if (newType.getQualifier().hasXfbBuffer() && |
| newType.getQualifier().layoutXfbBuffer != currentBlockQualifier.layoutXfbBuffer) |
| error(memberLoc, "member cannot contradict block (or what block inherited from global)", "xfb_buffer", ""); |
| oldType.getQualifier().centroid = newType.getQualifier().centroid; |
| oldType.getQualifier().sample = newType.getQualifier().sample; |
| oldType.getQualifier().invariant = newType.getQualifier().invariant; |
| oldType.getQualifier().noContraction = newType.getQualifier().noContraction; |
| oldType.getQualifier().smooth = newType.getQualifier().smooth; |
| oldType.getQualifier().flat = newType.getQualifier().flat; |
| oldType.getQualifier().nopersp = newType.getQualifier().nopersp; |
| oldType.getQualifier().layoutXfbOffset = newType.getQualifier().layoutXfbOffset; |
| oldType.getQualifier().layoutXfbBuffer = newType.getQualifier().layoutXfbBuffer; |
| oldType.getQualifier().layoutXfbStride = newType.getQualifier().layoutXfbStride; |
| if (oldType.getQualifier().layoutXfbOffset != TQualifier::layoutXfbBufferEnd) { |
| // if any member as an xfb_offset, then the block's xfb_buffer inherents current xfb_buffer, |
| // and for xfb processing, the member needs it as well, along with xfb_stride |
| type.getQualifier().layoutXfbBuffer = currentBlockQualifier.layoutXfbBuffer; |
| oldType.getQualifier().layoutXfbBuffer = currentBlockQualifier.layoutXfbBuffer; |
| } |
| if (oldType.isImplicitlySizedArray() && newType.isExplicitlySizedArray()) |
| oldType.changeOuterArraySize(newType.getOuterArraySize()); |
| |
| // check and process the member's type, which will include managing xfb information |
| layoutTypeCheck(loc, oldType); |
| |
| // go to next member |
| ++member; |
| } else { |
| // For missing members of anonymous blocks that have been redeclared, |
| // hide the original (shared) declaration. |
| // Instance-named blocks can just have the member removed. |
| if (instanceName) |
| member = type.getWritableStruct()->erase(member); |
| else { |
| member->type->hideMember(); |
| ++member; |
| } |
| } |
| } |
| |
| if (numOriginalMembersFound < newTypeList.size()) |
| error(loc, "block redeclaration has extra members", blockName.c_str(), ""); |
| if (type.isArray() != (arraySizes != nullptr)) |
| error(loc, "cannot change arrayness of redeclared block", blockName.c_str(), ""); |
| else if (type.isArray()) { |
| if (type.isExplicitlySizedArray() && arraySizes->getOuterSize() == UnsizedArraySize) |
| error(loc, "block already declared with size, can't redeclare as implicitly-sized", blockName.c_str(), ""); |
| else if (type.isExplicitlySizedArray() && type.getArraySizes() != *arraySizes) |
| error(loc, "cannot change array size of redeclared block", blockName.c_str(), ""); |
| else if (type.isImplicitlySizedArray() && arraySizes->getOuterSize() != UnsizedArraySize) |
| type.changeOuterArraySize(arraySizes->getOuterSize()); |
| } |
| |
| symbolTable.insert(*block); |
| |
| // Check for general layout qualifier errors |
| layoutObjectCheck(loc, *block); |
| |
| // Tracking for implicit sizing of array |
| if (isIoResizeArray(block->getType())) { |
| ioArraySymbolResizeList.push_back(block); |
| checkIoArraysConsistency(loc, true); |
| } else if (block->getType().isArray()) |
| fixIoArraySize(loc, block->getWritableType()); |
| |
| // Save it in the AST for linker use. |
| trackLinkage(*block); |
| } |
| |
| void TParseContext::paramCheckFix(const TSourceLoc& loc, const TStorageQualifier& qualifier, TType& type) |
| { |
| switch (qualifier) { |
| case EvqConst: |
| case EvqConstReadOnly: |
| type.getQualifier().storage = EvqConstReadOnly; |
| break; |
| case EvqIn: |
| case EvqOut: |
| case EvqInOut: |
| type.getQualifier().storage = qualifier; |
| break; |
| case EvqGlobal: |
| case EvqTemporary: |
| type.getQualifier().storage = EvqIn; |
| break; |
| default: |
| type.getQualifier().storage = EvqIn; |
| error(loc, "storage qualifier not allowed on function parameter", GetStorageQualifierString(qualifier), ""); |
| break; |
| } |
| } |
| |
| void TParseContext::paramCheckFix(const TSourceLoc& loc, const TQualifier& qualifier, TType& type) |
| { |
| if (qualifier.isMemory()) { |
| type.getQualifier().volatil = qualifier.volatil; |
| type.getQualifier().coherent = qualifier.coherent; |
| type.getQualifier().readonly = qualifier.readonly; |
| type.getQualifier().writeonly = qualifier.writeonly; |
| type.getQualifier().restrict = qualifier.restrict; |
| } |
| |
| if (qualifier.isAuxiliary() || |
| qualifier.isInterpolation()) |
| error(loc, "cannot use auxiliary or interpolation qualifiers on a function parameter", "", ""); |
| if (qualifier.hasLayout()) |
| error(loc, "cannot use layout qualifiers on a function parameter", "", ""); |
| if (qualifier.invariant) |
| error(loc, "cannot use invariant qualifier on a function parameter", "", ""); |
| if (qualifier.noContraction) { |
| if (qualifier.isParamOutput()) |
| type.getQualifier().noContraction = true; |
| else |
| warn(loc, "qualifier has no effect on non-output parameters", "precise", ""); |
| } |
| |
| paramCheckFix(loc, qualifier.storage, type); |
| } |
| |
| void TParseContext::nestedBlockCheck(const TSourceLoc& loc) |
| { |
| if (structNestingLevel > 0) |
| error(loc, "cannot nest a block definition inside a structure or block", "", ""); |
| ++structNestingLevel; |
| } |
| |
| void TParseContext::nestedStructCheck(const TSourceLoc& loc) |
| { |
| if (structNestingLevel > 0) |
| error(loc, "cannot nest a structure definition inside a structure or block", "", ""); |
| ++structNestingLevel; |
| } |
| |
| void TParseContext::arrayObjectCheck(const TSourceLoc& loc, const TType& type, const char* op) |
| { |
| // Some versions don't allow comparing arrays or structures containing arrays |
| if (type.containsArray()) { |
| profileRequires(loc, ENoProfile, 120, E_GL_3DL_array_objects, op); |
| profileRequires(loc, EEsProfile, 300, nullptr, op); |
| } |
| } |
| |
| void TParseContext::opaqueCheck(const TSourceLoc& loc, const TType& type, const char* op) |
| { |
| if (containsFieldWithBasicType(type, EbtSampler)) |
| error(loc, "can't use with samplers or structs containing samplers", op, ""); |
| } |
| |
| void TParseContext::specializationCheck(const TSourceLoc& loc, const TType& type, const char* op) |
| { |
| if (type.containsSpecializationSize()) |
| error(loc, "can't use with types containing arrays sized with a specialization constant", op, ""); |
| } |
| |
| void TParseContext::structTypeCheck(const TSourceLoc& /*loc*/, TPublicType& publicType) |
| { |
| const TTypeList& typeList = *publicType.userDef->getStruct(); |
| |
| // fix and check for member storage qualifiers and types that don't belong within a structure |
| for (unsigned int member = 0; member < typeList.size(); ++member) { |
| TQualifier& memberQualifier = typeList[member].type->getQualifier(); |
| const TSourceLoc& memberLoc = typeList[member].loc; |
| if (memberQualifier.isAuxiliary() || |
| memberQualifier.isInterpolation() || |
| (memberQualifier.storage != EvqTemporary && memberQualifier.storage != EvqGlobal)) |
| error(memberLoc, "cannot use storage or interpolation qualifiers on structure members", typeList[member].type->getFieldName().c_str(), ""); |
| if (memberQualifier.isMemory()) |
| error(memberLoc, "cannot use memory qualifiers on structure members", typeList[member].type->getFieldName().c_str(), ""); |
| if (memberQualifier.hasLayout()) { |
| error(memberLoc, "cannot use layout qualifiers on structure members", typeList[member].type->getFieldName().c_str(), ""); |
| memberQualifier.clearLayout(); |
| } |
| if (memberQualifier.invariant) |
| error(memberLoc, "cannot use invariant qualifier on structure members", typeList[member].type->getFieldName().c_str(), ""); |
| } |
| } |
| |
| // |
| // See if this loop satisfies the limitations for ES 2.0 (version 100) for loops in Appendex A: |
| // |
| // "The loop index has type int or float. |
| // |
| // "The for statement has the form: |
| // for ( init-declaration ; condition ; expression ) |
| // init-declaration has the form: type-specifier identifier = constant-expression |
| // condition has the form: loop-index relational_operator constant-expression |
| // where relational_operator is one of: > >= < <= == or != |
| // expression [sic] has one of the following forms: |
| // loop-index++ |
| // loop-index-- |
| // loop-index += constant-expression |
| // loop-index -= constant-expression |
| // |
| // The body is handled in an AST traversal. |
| // |
| void TParseContext::inductiveLoopCheck(const TSourceLoc& loc, TIntermNode* init, TIntermLoop* loop) |
| { |
| // loop index init must exist and be a declaration, which shows up in the AST as an aggregate of size 1 of the declaration |
| bool badInit = false; |
| if (! init || ! init->getAsAggregate() || init->getAsAggregate()->getSequence().size() != 1) |
| badInit = true; |
| TIntermBinary* binaryInit = 0; |
| if (! badInit) { |
| // get the declaration assignment |
| binaryInit = init->getAsAggregate()->getSequence()[0]->getAsBinaryNode(); |
| if (! binaryInit) |
| badInit = true; |
| } |
| if (badInit) { |
| error(loc, "inductive-loop init-declaration requires the form \"type-specifier loop-index = constant-expression\"", "limitations", ""); |
| return; |
| } |
| |
| // loop index must be type int or float |
| if (! binaryInit->getType().isScalar() || (binaryInit->getBasicType() != EbtInt && binaryInit->getBasicType() != EbtFloat)) { |
| error(loc, "inductive loop requires a scalar 'int' or 'float' loop index", "limitations", ""); |
| return; |
| } |
| |
| // init is the form "loop-index = constant" |
| if (binaryInit->getOp() != EOpAssign || ! binaryInit->getLeft()->getAsSymbolNode() || ! binaryInit->getRight()->getAsConstantUnion()) { |
| error(loc, "inductive-loop init-declaration requires the form \"type-specifier loop-index = constant-expression\"", "limitations", ""); |
| return; |
| } |
| |
| // get the unique id of the loop index |
| int loopIndex = binaryInit->getLeft()->getAsSymbolNode()->getId(); |
| inductiveLoopIds.insert(loopIndex); |
| |
| // condition's form must be "loop-index relational-operator constant-expression" |
| bool badCond = ! loop->getTest(); |
| if (! badCond) { |
| TIntermBinary* binaryCond = loop->getTest()->getAsBinaryNode(); |
| badCond = ! binaryCond; |
| if (! badCond) { |
| switch (binaryCond->getOp()) { |
| case EOpGreaterThan: |
| case EOpGreaterThanEqual: |
| case EOpLessThan: |
| case EOpLessThanEqual: |
| case EOpEqual: |
| case EOpNotEqual: |
| break; |
| default: |
| badCond = true; |
| } |
| } |
| if (binaryCond && (! binaryCond->getLeft()->getAsSymbolNode() || |
| binaryCond->getLeft()->getAsSymbolNode()->getId() != loopIndex || |
| ! binaryCond->getRight()->getAsConstantUnion())) |
| badCond = true; |
| } |
| if (badCond) { |
| error(loc, "inductive-loop condition requires the form \"loop-index <comparison-op> constant-expression\"", "limitations", ""); |
| return; |
| } |
| |
| // loop-index++ |
| // loop-index-- |
| // loop-index += constant-expression |
| // loop-index -= constant-expression |
| bool badTerminal = ! loop->getTerminal(); |
| if (! badTerminal) { |
| TIntermUnary* unaryTerminal = loop->getTerminal()->getAsUnaryNode(); |
| TIntermBinary* binaryTerminal = loop->getTerminal()->getAsBinaryNode(); |
| if (unaryTerminal || binaryTerminal) { |
| switch(loop->getTerminal()->getAsOperator()->getOp()) { |
| case EOpPostDecrement: |
| case EOpPostIncrement: |
| case EOpAddAssign: |
| case EOpSubAssign: |
| break; |
| default: |
| badTerminal = true; |
| } |
| } else |
| badTerminal = true; |
| if (binaryTerminal && (! binaryTerminal->getLeft()->getAsSymbolNode() || |
| binaryTerminal->getLeft()->getAsSymbolNode()->getId() != loopIndex || |
| ! binaryTerminal->getRight()->getAsConstantUnion())) |
| badTerminal = true; |
| if (unaryTerminal && (! unaryTerminal->getOperand()->getAsSymbolNode() || |
| unaryTerminal->getOperand()->getAsSymbolNode()->getId() != loopIndex)) |
| badTerminal = true; |
| } |
| if (badTerminal) { |
| error(loc, "inductive-loop termination requires the form \"loop-index++, loop-index--, loop-index += constant-expression, or loop-index -= constant-expression\"", "limitations", ""); |
| return; |
| } |
| |
| // the body |
| inductiveLoopBodyCheck(loop->getBody(), loopIndex, symbolTable); |
| } |
| |
| // Do limit checks for built-in arrays. |
| void TParseContext::arrayLimitCheck(const TSourceLoc& loc, const TString& identifier, int size) |
| { |
| if (identifier.compare("gl_TexCoord") == 0) |
| limitCheck(loc, size, "gl_MaxTextureCoords", "gl_TexCoord array size"); |
| else if (identifier.compare("gl_ClipDistance") == 0) |
| limitCheck(loc, size, "gl_MaxClipDistances", "gl_ClipDistance array size"); |
| else if (identifier.compare("gl_CullDistance") == 0) |
| limitCheck(loc, size, "gl_MaxCullDistances", "gl_CullDistance array size"); |
| } |
| |
| // See if the provided value is less than or equal to the symbol indicated by limit, |
| // which should be a constant in the symbol table. |
| void TParseContext::limitCheck(const TSourceLoc& loc, int value, const char* limit, const char* feature) |
| { |
| TSymbol* symbol = symbolTable.find(limit); |
| assert(symbol->getAsVariable()); |
| const TConstUnionArray& constArray = symbol->getAsVariable()->getConstArray(); |
| assert(! constArray.empty()); |
| if (value > constArray[0].getIConst()) |
| error(loc, "must be less than or equal to", feature, "%s (%d)", limit, constArray[0].getIConst()); |
| } |
| |
| // |
| // Do any additional error checking, etc., once we know the parsing is done. |
| // |
| void TParseContext::finish() |
| { |
| TParseContextBase::finish(); |
| |
| if (parsingBuiltins) |
| return; |
| |
| // Check on array indexes for ES 2.0 (version 100) limitations. |
| for (size_t i = 0; i < needsIndexLimitationChecking.size(); ++i) |
| constantIndexExpressionCheck(needsIndexLimitationChecking[i]); |
| |
| // Check for stages that are enabled by extension. |
| // Can't do this at the beginning, it is chicken and egg to add a stage by |
| // extension. |
| // Stage-specific features were correctly tested for already, this is just |
| // about the stage itself. |
| switch (language) { |
| case EShLangGeometry: |
| if (profile == EEsProfile && version == 310) |
| requireExtensions(getCurrentLoc(), Num_AEP_geometry_shader, AEP_geometry_shader, "geometry shaders"); |
| break; |
| case EShLangTessControl: |
| case EShLangTessEvaluation: |
| if (profile == EEsProfile && version == 310) |
| requireExtensions(getCurrentLoc(), Num_AEP_tessellation_shader, AEP_tessellation_shader, "tessellation shaders"); |
| else if (profile != EEsProfile && version < 400) |
| requireExtensions(getCurrentLoc(), 1, &E_GL_ARB_tessellation_shader, "tessellation shaders"); |
| break; |
| case EShLangCompute: |
| if (profile != EEsProfile && version < 430) |
| requireExtensions(getCurrentLoc(), 1, &E_GL_ARB_compute_shader, "compute shaders"); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| // |
| // Layout qualifier stuff. |
| // |
| |
| // Put the id's layout qualification into the public type, for qualifiers not having a number set. |
| // This is before we know any type information for error checking. |
| void TParseContext::setLayoutQualifier(const TSourceLoc& loc, TPublicType& publicType, TString& id) |
| { |
| std::transform(id.begin(), id.end(), id.begin(), ::tolower); |
| |
| if (id == TQualifier::getLayoutMatrixString(ElmColumnMajor)) { |
| publicType.qualifier.layoutMatrix = ElmColumnMajor; |
| return; |
| } |
| if (id == TQualifier::getLayoutMatrixString(ElmRowMajor)) { |
| publicType.qualifier.layoutMatrix = ElmRowMajor; |
| return; |
| } |
| if (id == TQualifier::getLayoutPackingString(ElpPacked)) { |
| if (spvVersion.spv != 0) |
| spvRemoved(loc, "packed"); |
| publicType.qualifier.layoutPacking = ElpPacked; |
| return; |
| } |
| if (id == TQualifier::getLayoutPackingString(ElpShared)) { |
| if (spvVersion.spv != 0) |
| spvRemoved(loc, "shared"); |
| publicType.qualifier.layoutPacking = ElpShared; |
| return; |
| } |
| if (id == TQualifier::getLayoutPackingString(ElpStd140)) { |
| publicType.qualifier.layoutPacking = ElpStd140; |
| return; |
| } |
| if (id == TQualifier::getLayoutPackingString(ElpStd430)) { |
| requireProfile(loc, EEsProfile | ECoreProfile | ECompatibilityProfile, "std430"); |
| profileRequires(loc, ECoreProfile | ECompatibilityProfile, 430, nullptr, "std430"); |
| profileRequires(loc, EEsProfile, 310, nullptr, "std430"); |
| publicType.qualifier.layoutPacking = ElpStd430; |
| return; |
| } |
| // TODO: compile-time performance: may need to stop doing linear searches |
| for (TLayoutFormat format = (TLayoutFormat)(ElfNone + 1); format < ElfCount; format = (TLayoutFormat)(format + 1)) { |
| if (id == TQualifier::getLayoutFormatString(format)) { |
| if ((format > ElfEsFloatGuard && format < ElfFloatGuard) || |
| (format > ElfEsIntGuard && format < ElfIntGuard) || |
| (format > ElfEsUintGuard && format < ElfCount)) |
| requireProfile(loc, ENoProfile | ECoreProfile | ECompatibilityProfile, "image load-store format"); |
| profileRequires(loc, ENoProfile | ECoreProfile | ECompatibilityProfile, 420, E_GL_ARB_shader_image_load_store, "image load store"); |
| profileRequires(loc, EEsProfile, 310, E_GL_ARB_shader_image_load_store, "image load store"); |
| publicType.qualifier.layoutFormat = format; |
| return; |
| } |
| } |
| if (id == "push_constant") { |
| requireVulkan(loc, "push_constant"); |
| publicType.qualifier.layoutPushConstant = true; |
| return; |
| } |
| if (language == EShLangGeometry || language == EShLangTessEvaluation) { |
| if (id == TQualifier::getGeometryString(ElgTriangles)) { |
| publicType.shaderQualifiers.geometry = ElgTriangles; |
| return; |
| } |
| if (language == EShLangGeometry) { |
| if (id == TQualifier::getGeometryString(ElgPoints)) { |
| publicType.shaderQualifiers.geometry = ElgPoints; |
| return; |
| } |
| if (id == TQualifier::getGeometryString(ElgLineStrip)) { |
| publicType.shaderQualifiers.geometry = ElgLineStrip; |
| return; |
| } |
| if (id == TQualifier::getGeometryString(ElgLines)) { |
| publicType.shaderQualifiers.geometry = ElgLines; |
| return; |
| } |
| if (id == TQualifier::getGeometryString(ElgLinesAdjacency)) { |
| publicType.shaderQualifiers.geometry = ElgLinesAdjacency; |
| return; |
| } |
| if (id == TQualifier::getGeometryString(ElgTrianglesAdjacency)) { |
| publicType.shaderQualifiers.geometry = ElgTrianglesAdjacency; |
| return; |
| } |
| if (id == TQualifier::getGeometryString(ElgTriangleStrip)) { |
| publicType.shaderQualifiers.geometry = ElgTriangleStrip; |
| return; |
| } |
| #ifdef NV_EXTENSIONS |
| if (id == "passthrough") { |
| requireExtensions(loc, 1, &E_SPV_NV_geometry_shader_passthrough, "geometry shader passthrough"); |
| publicType.qualifier.layoutPassthrough = true; |
| intermediate.setGeoPassthroughEXT(); |
| return; |
| } |
| #endif |
| } else { |
| assert(language == EShLangTessEvaluation); |
| |
| // input primitive |
| if (id == TQualifier::getGeometryString(ElgTriangles)) { |
| publicType.shaderQualifiers.geometry = ElgTriangles; |
| return; |
| } |
| if (id == TQualifier::getGeometryString(ElgQuads)) { |
| publicType.shaderQualifiers.geometry = ElgQuads; |
| return; |
| } |
| if (id == TQualifier::getGeometryString(ElgIsolines)) { |
| publicType.shaderQualifiers.geometry = ElgIsolines; |
| return; |
| } |
| |
| // vertex spacing |
| if (id == TQualifier::getVertexSpacingString(EvsEqual)) { |
| publicType.shaderQualifiers.spacing = EvsEqual; |
| return; |
| } |
| if (id == TQualifier::getVertexSpacingString(EvsFractionalEven)) { |
| publicType.shaderQualifiers.spacing = EvsFractionalEven; |
| return; |
| } |
| if (id == TQualifier::getVertexSpacingString(EvsFractionalOdd)) { |
| publicType.shaderQualifiers.spacing = EvsFractionalOdd; |
| return; |
| } |
| |
| // triangle order |
| if (id == TQualifier::getVertexOrderString(EvoCw)) { |
| publicType.shaderQualifiers.order = EvoCw; |
| return; |
| } |
| if (id == TQualifier::getVertexOrderString(EvoCcw)) { |
| publicType.shaderQualifiers.order = EvoCcw; |
| return; |
| } |
| |
| // point mode |
| if (id == "point_mode") { |
| publicType.shaderQualifiers.pointMode = true; |
| return; |
| } |
| } |
| } |
| if (language == EShLangFragment) { |
| if (id == "origin_upper_left") { |
| requireProfile(loc, ECoreProfile | ECompatibilityProfile, "origin_upper_left"); |
| publicType.shaderQualifiers.originUpperLeft = true; |
| return; |
| } |
| if (id == "pixel_center_integer") { |
| requireProfile(loc, ECoreProfile | ECompatibilityProfile, "pixel_center_integer"); |
| publicType.shaderQualifiers.pixelCenterInteger = true; |
| return; |
| } |
| if (id == "early_fragment_tests") { |
| profileRequires(loc, ENoProfile | ECoreProfile | ECompatibilityProfile, 420, E_GL_ARB_shader_image_load_store, "early_fragment_tests"); |
| profileRequires(loc, EEsProfile, 310, nullptr, "early_fragment_tests"); |
| publicType.shaderQualifiers.earlyFragmentTests = true; |
| return; |
| } |
| if (id == "post_depth_coverage") { |
| requireExtensions(loc, Num_post_depth_coverageEXTs, post_depth_coverageEXTs, "post depth coverage"); |
| if (extensionTurnedOn(E_GL_ARB_post_depth_coverage)) { |
| publicType.shaderQualifiers.earlyFragmentTests = true; |
| } |
| publicType.shaderQualifiers.postDepthCoverage = true; |
| return; |
| } |
| for (TLayoutDepth depth = (TLayoutDepth)(EldNone + 1); depth < EldCount; depth = (TLayoutDepth)(depth+1)) { |
| if (id == TQualifier::getLayoutDepthString(depth)) { |
| requireProfile(loc, ECoreProfile | ECompatibilityProfile, "depth layout qualifier"); |
| profileRequires(loc, ECoreProfile | ECompatibilityProfile, 420, nullptr, "depth layout qualifier"); |
| publicType.shaderQualifiers.layoutDepth = depth; |
| return; |
| } |
| } |
| if (id.compare(0, 13, "blend_support") == 0) { |
| bool found = false; |
| for (TBlendEquationShift be = (TBlendEquationShift)0; be < EBlendCount; be = (TBlendEquationShift)(be + 1)) { |
| if (id == TQualifier::getBlendEquationString(be)) { |
| profileRequires(loc, EEsProfile, 320, E_GL_KHR_blend_equation_advanced, "blend equation"); |
| profileRequires(loc, ~EEsProfile, 0, E_GL_KHR_blend_equation_advanced, "blend equation"); |
| intermediate.addBlendEquation(be); |
| publicType.shaderQualifiers.blendEquation = true; |
| found = true; |
| break; |
| } |
| } |
| if (! found) |
| error(loc, "unknown blend equation", "blend_support", ""); |
| return; |
| } |
| #ifdef NV_EXTENSIONS |
| if (id == "override_coverage") { |
| requireExtensions(loc, 1, &E_GL_NV_sample_mask_override_coverage, "sample mask override coverage"); |
| publicType.shaderQualifiers.layoutOverrideCoverage = true; |
| return; |
| } |
| } |
| if (language == EShLangVertex || |
| language == EShLangTessControl || |
| language == EShLangTessEvaluation || |
| language == EShLangGeometry ) { |
| if (id == "viewport_relative") { |
| requireExtensions(loc, 1, &E_GL_NV_viewport_array2, "view port array2"); |
| publicType.qualifier.layoutViewportRelative = true; |
| return; |
| } |
| } |
| #else |
| } |
| #endif |
| error(loc, "unrecognized layout identifier, or qualifier requires assignment (e.g., binding = 4)", id.c_str(), ""); |
| } |
| |
| // Put the id's layout qualifier value into the public type, for qualifiers having a number set. |
| // This is before we know any type information for error checking. |
| void TParseContext::setLayoutQualifier(const TSourceLoc& loc, TPublicType& publicType, TString& id, const TIntermTyped* node) |
| { |
| const char* feature = "layout-id value"; |
| const char* nonLiteralFeature = "non-literal layout-id value"; |
| |
| integerCheck(node, feature); |
| const TIntermConstantUnion* constUnion = node->getAsConstantUnion(); |
| int value; |
| if (constUnion) { |
| value = constUnion->getConstArray()[0].getIConst(); |
| if (! constUnion->isLiteral()) { |
| requireProfile(loc, ECoreProfile | ECompatibilityProfile, nonLiteralFeature); |
| profileRequires(loc, ECoreProfile | ECompatibilityProfile, 440, E_GL_ARB_enhanced_layouts, nonLiteralFeature); |
| } |
| } else { |
| // grammar should have give out the error message |
| value = 0; |
| } |
| |
| if (value < 0) { |
| error(loc, "cannot be negative", feature, ""); |
| return; |
| } |
| |
| std::transform(id.begin(), id.end(), id.begin(), ::tolower); |
| |
| if (id == "offset") { |
| // "offset" can be for either |
| // - uniform offsets |
| // - atomic_uint offsets |
| const char* feature = "offset"; |
| if (spvVersion.spv == 0) { |
| requireProfile(loc, EEsProfile | ECoreProfile | ECompatibilityProfile, feature); |
| const char* exts[2] = { E_GL_ARB_enhanced_layouts, E_GL_ARB_shader_atomic_counters }; |
| profileRequires(loc, ECoreProfile | ECompatibilityProfile, 420, 2, exts, feature); |
| profileRequires(loc, EEsProfile, 310, nullptr, feature); |
| } |
| publicType.qualifier.layoutOffset = value; |
| return; |
| } else if (id == "align") { |
| const char* feature = "uniform buffer-member align"; |
| if (spvVersion.spv == 0) { |
| requireProfile(loc, ECoreProfile | ECompatibilityProfile, feature); |
| profileRequires(loc, ECoreProfile | ECompatibilityProfile, 440, E_GL_ARB_enhanced_layouts, feature); |
| } |
| // "The specified alignment must be a power of 2, or a compile-time error results." |
| if (! IsPow2(value)) |
| error(loc, "must be a power of 2", "align", ""); |
| else |
| publicType.qualifier.layoutAlign = value; |
| return; |
| } else if (id == "location") { |
| profileRequires(loc, EEsProfile, 300, nullptr, "location"); |
| const char* exts[2] = { E_GL_ARB_separate_shader_objects, E_GL_ARB_explicit_attrib_location }; |
| profileRequires(loc, ~EEsProfile, 330, 2, exts, "location"); |
| if ((unsigned int)value >= TQualifier::layoutLocationEnd) |
| error(loc, "location is too large", id.c_str(), ""); |
| else |
| publicType.qualifier.layoutLocation = value; |
| return; |
| } else if (id == "set") { |
| if ((unsigned int)value >= TQualifier::layoutSetEnd) |
| error(loc, "set is too large", id.c_str(), ""); |
| else |
| publicType.qualifier.layoutSet = value; |
| if (value != 0) |
| requireVulkan(loc, "descriptor set"); |
| return; |
| } else if (id == "binding") { |
| profileRequires(loc, ~EEsProfile, 420, E_GL_ARB_shading_language_420pack, "binding"); |
| profileRequires(loc, EEsProfile, 310, nullptr, "binding"); |
| if ((unsigned int)value >= TQualifier::layoutBindingEnd) |
| error(loc, "binding is too large", id.c_str(), ""); |
| else |
| publicType.qualifier.layoutBinding = value; |
| return; |
| } else if (id == "component") { |
| requireProfile(loc, ECoreProfile | ECompatibilityProfile, "component"); |
| profileRequires(loc, ECoreProfile | ECompatibilityProfile, 440, E_GL_ARB_enhanced_layouts, "component"); |
| if ((unsigned)value >= TQualifier::layoutComponentEnd) |
| error(loc, "component is too large", id.c_str(), ""); |
| else |
| publicType.qualifier.layoutComponent = value; |
| return; |
| } else if (id.compare(0, 4, "xfb_") == 0) { |
| // "Any shader making any static use (after preprocessing) of any of these |
| // *xfb_* qualifiers will cause the shader to be in a transform feedback |
| // capturing mode and hence responsible for describing the transform feedback |
| // setup." |
| intermediate.setXfbMode(); |
| const char* feature = "transform feedback qualifier"; |
| requireStage(loc, (EShLanguageMask)(EShLangVertexMask | EShLangGeometryMask | EShLangTessControlMask | EShLangTessEvaluationMask), feature); |
| requireProfile(loc, ECoreProfile | ECompatibilityProfile, feature); |
| profileRequires(loc, ECoreProfile | ECompatibilityProfile, 440, E_GL_ARB_enhanced_layouts, feature); |
| if (id == "xfb_buffer") { |
| // "It is a compile-time error to specify an *xfb_buffer* that is greater than |
| // the implementation-dependent constant gl_MaxTransformFeedbackBuffers." |
| if (value >= resources.maxTransformFeedbackBuffers) |
| error(loc, "buffer is too large:", id.c_str(), "gl_MaxTransformFeedbackBuffers is %d", resources.maxTransformFeedbackBuffers); |
| if (value >= (int)TQualifier::layoutXfbBufferEnd) |
| error(loc, "buffer is too large:", id.c_str(), "internal max is %d", TQualifier::layoutXfbBufferEnd-1); |
| else |
| publicType.qualifier.layoutXfbBuffer = value; |
| return; |
| } else if (id == "xfb_offset") { |
| if (value >= (int)TQualifier::layoutXfbOffsetEnd) |
| error(loc, "offset is too large:", id.c_str(), "internal max is %d", TQualifier::layoutXfbOffsetEnd-1); |
| else |
| publicType.qualifier.layoutXfbOffset = value; |
| return; |
| } else if (id == "xfb_stride") { |
| // "The resulting stride (implicit or explicit), when divided by 4, must be less than or equal to the |
| // implementation-dependent constant gl_MaxTransformFeedbackInterleavedComponents." |
| if (value > 4 * resources.maxTransformFeedbackInterleavedComponents) |
| error(loc, "1/4 stride is too large:", id.c_str(), "gl_MaxTransformFeedbackInterleavedComponents is %d", resources.maxTransformFeedbackInterleavedComponents); |
| else if (value >= (int)TQualifier::layoutXfbStrideEnd) |
| error(loc, "stride is too large:", id.c_str(), "internal max is %d", TQualifier::layoutXfbStrideEnd-1); |
| if (value < (int)TQualifier::layoutXfbStrideEnd) |
| publicType.qualifier.layoutXfbStride = value; |
| return; |
| } |
| } |
| |
| if (id == "input_attachment_index") { |
| requireVulkan(loc, "input_attachment_index"); |
| if (value >= (int)TQualifier::layoutAttachmentEnd) |
| error(loc, "attachment index is too large", id.c_str(), ""); |
| else |
| publicType.qualifier.layoutAttachment = value; |
| return; |
| } |
| if (id == "constant_id") { |
| requireSpv(loc, "constant_id"); |
| if (value >= (int)TQualifier::layoutSpecConstantIdEnd) { |
| error(loc, "specialization-constant id is too large", id.c_str(), ""); |
| } else { |
| publicType.qualifier.layoutSpecConstantId = value; |
| publicType.qualifier.specConstant = true; |
| if (! intermediate.addUsedConstantId(value)) |
| error(loc, "specialization-constant id already used", id.c_str(), ""); |
| } |
| return; |
| } |
| if (id == "num_views") { |
| requireExtensions(loc, Num_OVR_multiview_EXTs, OVR_multiview_EXTs, "num_views"); |
| publicType.shaderQualifiers.numViews = value; |
| return; |
| } |
| |
| #if NV_EXTENSIONS |
| if (language == EShLangVertex || |
| language == EShLangTessControl || |
| language == EShLangTessEvaluation || |
| language == EShLangGeometry) { |
| if (id == "secondary_view_offset") { |
| requireExtensions(loc, 1, &E_GL_NV_stereo_view_rendering, "stereo view rendering"); |
| publicType.qualifier.layoutSecondaryViewportRelativeOffset = value; |
| return; |
| } |
| } |
| #endif |
| |
| switch (language) { |
| case EShLangVertex: |
| break; |
| |
| case EShLangTessControl: |
| if (id == "vertices") { |
| if (value == 0) |
| error(loc, "must be greater than 0", "vertices", ""); |
| else |
| publicType.shaderQualifiers.vertices = value; |
| return; |
| } |
| break; |
| |
| case EShLangTessEvaluation: |
| break; |
| |
| case EShLangGeometry: |
| if (id == "invocations") { |
| profileRequires(loc, ECompatibilityProfile | ECoreProfile, 400, nullptr, "invocations"); |
| if (value == 0) |
| error(loc, "must be at least 1", "invocations", ""); |
| else |
| publicType.shaderQualifiers.invocations = value; |
| return; |
| } |
| if (id == "max_vertices") { |
| publicType.shaderQualifiers.vertices = value; |
| if (value > resources.maxGeometryOutputVertices) |
| error(loc, "too large, must be less than gl_MaxGeometryOutputVertices", "max_vertices", ""); |
| return; |
| } |
| if (id == "stream") { |
| requireProfile(loc, ~EEsProfile, "selecting output stream"); |
| publicType.qualifier.layoutStream = value; |
| if (value > 0) |
| intermediate.setMultiStream(); |
| return; |
| } |
| break; |
| |
| case EShLangFragment: |
| if (id == "index") { |
| requireProfile(loc, ECompatibilityProfile | ECoreProfile, "index layout qualifier on fragment output"); |
| const char* exts[2] = { E_GL_ARB_separate_shader_objects, E_GL_ARB_explicit_attrib_location }; |
| profileRequires(loc, ECompatibilityProfile | ECoreProfile, 330, 2, exts, "index layout qualifier on fragment output"); |
| |
| // "It is also a compile-time error if a fragment shader sets a layout index to less than 0 or greater than 1." |
| if (value < 0 || value > 1) { |
| value = 0; |
| error(loc, "value must be 0 or 1", "index", ""); |
| } |
| |
| publicType.qualifier.layoutIndex = value; |
| return; |
| } |
| break; |
| |
| case EShLangCompute: |
| if (id.compare(0, 11, "local_size_") == 0) { |
| profileRequires(loc, EEsProfile, 310, 0, "gl_WorkGroupSize"); |
| profileRequires(loc, ~EEsProfile, 430, E_GL_ARB_compute_shader, "gl_WorkGroupSize"); |
| if (id.size() == 12 && value == 0) { |
| error(loc, "must be at least 1", id.c_str(), ""); |
| return; |
| } |
| if (id == "local_size_x") { |
| publicType.shaderQualifiers.localSize[0] = value; |
| return; |
| } |
| if (id == "local_size_y") { |
| publicType.shaderQualifiers.localSize[1] = value; |
| return; |
| } |
| if (id == "local_size_z") { |
| publicType.shaderQualifiers.localSize[2] = value; |
| return; |
| } |
| if (spvVersion.spv != 0) { |
| if (id == "local_size_x_id") { |
| publicType.shaderQualifiers.localSizeSpecId[0] = value; |
| return; |
| } |
| if (id == "local_size_y_id") { |
| publicType.shaderQualifiers.localSizeSpecId[1] = value; |
| return; |
| } |
| if (id == "local_size_z_id") { |
| publicType.shaderQualifiers.localSizeSpecId[2] = value; |
| return; |
| } |
| } |
| } |
| break; |
| |
| default: |
| break; |
| } |
| |
| error(loc, "there is no such layout identifier for this stage taking an assigned value", id.c_str(), ""); |
| } |
| |
| // Merge any layout qualifier information from src into dst, leaving everything else in dst alone |
| // |
| // "More than one layout qualifier may appear in a single declaration. |
| // Additionally, the same layout-qualifier-name can occur multiple times |
| // within a layout qualifier or across multiple layout qualifiers in the |
| // same declaration. When the same layout-qualifier-name occurs |
| // multiple times, in a single declaration, the last occurrence overrides |
| // the former occurrence(s). Further, if such a layout-qualifier-name |
| // will effect subsequent declarations or other observable behavior, it |
| // is only the last occurrence that will have any effect, behaving as if |
| // the earlier occurrence(s) within the declaration are not present. |
| // This is also true for overriding layout-qualifier-names, where one |
| // overrides the other (e.g., row_major vs. column_major); only the last |
| // occurrence has any effect." |
| void TParseContext::mergeObjectLayoutQualifiers(TQualifier& dst, const TQualifier& src, bool inheritOnly) |
| { |
| if (src.hasMatrix()) |
| dst.layoutMatrix = src.layoutMatrix; |
| if (src.hasPacking()) |
| dst.layoutPacking = src.layoutPacking; |
| |
| if (src.hasStream()) |
| dst.layoutStream = src.layoutStream; |
| |
| if (src.hasFormat()) |
| dst.layoutFormat = src.layoutFormat; |
| |
| if (src.hasXfbBuffer()) |
| dst.layoutXfbBuffer = src.layoutXfbBuffer; |
| |
| if (src.hasAlign()) |
| dst.layoutAlign = src.layoutAlign; |
| |
| if (! inheritOnly) { |
| if (src.hasLocation()) |
| dst.layoutLocation = src.layoutLocation; |
| if (src.hasComponent()) |
| dst.layoutComponent = src.layoutComponent; |
| if (src.hasIndex()) |
| dst.layoutIndex = src.layoutIndex; |
| |
| if (src.hasOffset()) |
| dst.layoutOffset = src.layoutOffset; |
| |
| if (src.hasSet()) |
| dst.layoutSet = src.layoutSet; |
| if (src.layoutBinding != TQualifier::layoutBindingEnd) |
| dst.layoutBinding = src.layoutBinding; |
| |
| if (src.hasXfbStride()) |
| dst.layoutXfbStride = src.layoutXfbStride; |
| if (src.hasXfbOffset()) |
| dst.layoutXfbOffset = src.layoutXfbOffset; |
| if (src.hasAttachment()) |
| dst.layoutAttachment = src.layoutAttachment; |
| if (src.hasSpecConstantId()) |
| dst.layoutSpecConstantId = src.layoutSpecConstantId; |
| |
| if (src.layoutPushConstant) |
| dst.layoutPushConstant = true; |
| |
| #ifdef NV_EXTENSIONS |
| if (src.layoutPassthrough) |
| dst.layoutPassthrough = true; |
| if (src.layoutViewportRelative) |
| dst.layoutViewportRelative = true; |
| if (src.layoutSecondaryViewportRelativeOffset != -2048) |
| dst.layoutSecondaryViewportRelativeOffset = src.layoutSecondaryViewportRelativeOffset; |
| #endif |
| } |
| } |
| |
| // Do error layout error checking given a full variable/block declaration. |
| void TParseContext::layoutObjectCheck(const TSourceLoc& loc, const TSymbol& symbol) |
| { |
| const TType& type = symbol.getType(); |
| const TQualifier& qualifier = type.getQualifier(); |
| |
| // first, cross check WRT to just the type |
| layoutTypeCheck(loc, type); |
| |
| // now, any remaining error checking based on the object itself |
| |
| if (qualifier.hasAnyLocation()) { |
| switch (qualifier.storage) { |
| case EvqUniform: |
| case EvqBuffer: |
| if (symbol.getAsVariable() == nullptr) |
| error(loc, "can only be used on variable declaration", "location", ""); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| // user-variable location check, which are required for SPIR-V in/out: |
| // - variables have it directly, |
| // - blocks have it on each member (already enforced), so check first one |
| if (spvVersion.spv > 0 && !parsingBuiltins && qualifier.builtIn == EbvNone && |
| !qualifier.hasLocation() && !intermediate.getAutoMapLocations()) { |
| |
| switch (qualifier.storage) { |
| case EvqVaryingIn: |
| case EvqVaryingOut: |
| if (type.getBasicType() != EbtBlock || |
| (!(*type.getStruct())[0].type->getQualifier().hasLocation() && |
| (*type.getStruct())[0].type->getQualifier().builtIn == EbvNone)) |
| error(loc, "SPIR-V requires location for user input/output", "location", ""); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| // Check packing and matrix |
| if (qualifier.hasUniformLayout()) { |
| switch (qualifier.storage) { |
| case EvqUniform: |
| case EvqBuffer: |
| if (type.getBasicType() != EbtBlock) { |
| if (qualifier.hasMatrix()) |
| error(loc, "cannot specify matrix layout on a variable declaration", "layout", ""); |
| if (qualifier.hasPacking()) |
| error(loc, "cannot specify packing on a variable declaration", "layout", ""); |
| // "The offset qualifier can only be used on block members of blocks..." |
| if (qualifier.hasOffset() && type.getBasicType() != EbtAtomicUint) |
| error(loc, "cannot specify on a variable declaration", "offset", ""); |
| // "The align qualifier can only be used on blocks or block members..." |
| if (qualifier.hasAlign()) |
| error(loc, "cannot specify on a variable declaration", "align", ""); |
| if (qualifier.layoutPushConstant) |
| error(loc, "can only specify on a uniform block", "push_constant", ""); |
| } |
| break; |
| default: |
| // these were already filtered by layoutTypeCheck() (or its callees) |
| break; |
| } |
| } |
| } |
| |
| // "For some blocks declared as arrays, the location can only be applied at the block level: |
| // When a block is declared as an array where additional locations are needed for each member |
| // for each block array element, it is a compile-time error to specify locations on the block |
| // members. That is, when locations would be under specified by applying them on block members, |
| // they are not allowed on block members. For arrayed interfaces (those generally having an |
| // extra level of arrayness due to interface expansion), the outer array is stripped before |
| // applying this rule." |
| void TParseContext::layoutMemberLocationArrayCheck(const TSourceLoc& loc, bool memberWithLocation, TArraySizes* arraySizes) |
| { |
| if (memberWithLocation && arraySizes != nullptr) { |
| if (arraySizes->getNumDims() > (currentBlockQualifier.isArrayedIo(language) ? 1 : 0)) |
| error(loc, "cannot use in a block array where new locations are needed for each block element", |
| "location", ""); |
| } |
| } |
| |
| // Do layout error checking with respect to a type. |
| void TParseContext::layoutTypeCheck(const TSourceLoc& loc, const TType& type) |
| { |
| const TQualifier& qualifier = type.getQualifier(); |
| |
| // first, intra-layout qualifier-only error checking |
| layoutQualifierCheck(loc, qualifier); |
| |
| // now, error checking combining type and qualifier |
| |
| if (qualifier.hasAnyLocation()) { |
| if (qualifier.hasLocation()) { |
| if (qualifier.storage == EvqVaryingOut && language == EShLangFragment) { |
| if (qualifier.layoutLocation >= (unsigned int)resources.maxDrawBuffers) |
| error(loc, "too large for fragment output", "location", ""); |
| } |
| } |
| if (qualifier.hasComponent()) { |
| // "It is a compile-time error if this sequence of components gets larger than 3." |
| if (qualifier.layoutComponent + type.getVectorSize() * (type.getBasicType() == EbtDouble ? 2 : 1) > 4) |
| error(loc, "type overflows the available 4 components", "component", ""); |
| |
| // "It is a compile-time error to apply the component qualifier to a matrix, a structure, a block, or an array containing any of these." |
| if (type.isMatrix() || type.getBasicType() == EbtBlock || type.getBasicType() == EbtStruct) |
| error(loc, "cannot apply to a matrix, structure, or block", "component", ""); |
| |
| // " It is a compile-time error to use component 1 or 3 as the beginning of a double or dvec2." |
| if (type.getBasicType() == EbtDouble) |
| if (qualifier.layoutComponent & 1) |
| error(loc, "doubles cannot start on an odd-numbered component", "component", ""); |
| } |
| |
| switch (qualifier.storage) { |
| case EvqVaryingIn: |
| case EvqVaryingOut: |
| if (type.getBasicType() == EbtBlock) |
| profileRequires(loc, ECoreProfile | ECompatibilityProfile, 440, E_GL_ARB_enhanced_layouts, "location qualifier on in/out block"); |
| break; |
| case EvqUniform: |
| case EvqBuffer: |
| if (type.getBasicType() == EbtBlock) |
| error(loc, "cannot apply to uniform or buffer block", "location", ""); |
| break; |
| default: |
| error(loc, "can only apply to uniform, buffer, in, or out storage qualifiers", "location", ""); |
| break; |
| } |
| |
| bool typeCollision; |
| int repeated = intermediate.addUsedLocation(qualifier, type, typeCollision); |
| if (repeated >= 0 && ! typeCollision) |
| error(loc, "overlapping use of location", "location", "%d", repeated); |
| // "fragment-shader outputs ... if two variables are placed within the same |
| // location, they must have the same underlying type (floating-point or integer)" |
| if (typeCollision && language == EShLangFragment && qualifier.isPipeOutput()) |
| error(loc, "fragment outputs sharing the same location must be the same basic type", "location", "%d", repeated); |
| } |
| |
| if (qualifier.hasXfbOffset() && qualifier.hasXfbBuffer()) { |
| int repeated = intermediate.addXfbBufferOffset(type); |
| if (repeated >= 0) |
| error(loc, "overlapping offsets at", "xfb_offset", "offset %d in buffer %d", repeated, qualifier.layoutXfbBuffer); |
| |
| // "The offset must be a multiple of the size of the first component of the first |
| // qualified variable or block member, or a compile-time error results. Further, if applied to an aggregate |
| // containing a double, the offset must also be a multiple of 8..." |
| if (type.containsBasicType(EbtDouble) && ! IsMultipleOfPow2(qualifier.layoutXfbOffset, 8)) |
| error(loc, "type contains double; xfb_offset must be a multiple of 8", "xfb_offset", ""); |
| #ifdef AMD_EXTENSIONS |
| // ..., if applied to an aggregate containing a float16_t, the offset must also be a multiple of 2..." |
| else if (type.containsBasicType(EbtFloat16) && !IsMultipleOfPow2(qualifier.layoutXfbOffset, 2)) |
| error(loc, "type contains half float; xfb_offset must be a multiple of 2", "xfb_offset", ""); |
| #endif |
| else if (! IsMultipleOfPow2(qualifier.layoutXfbOffset, 4)) |
| error(loc, "must be a multiple of size of first component", "xfb_offset", ""); |
| } |
| |
| if (qualifier.hasXfbStride() && qualifier.hasXfbBuffer()) { |
| if (! intermediate.setXfbBufferStride(qualifier.layoutXfbBuffer, qualifier.layoutXfbStride)) |
| error(loc, "all stride settings must match for xfb buffer", "xfb_stride", "%d", qualifier.layoutXfbBuffer); |
| } |
| |
| if (qualifier.hasBinding()) { |
| // Binding checking, from the spec: |
| // |
| // "If the binding point for any uniform or shader storage block instance is less than zero, or greater than or |
| // equal to the implementation-dependent maximum number of uniform buffer bindings, a compile-time |
| // error will occur. When the binding identifier is used with a uniform or shader storage block instanced as |
| // an array of size N, all elements of the array from binding through binding + N - 1 must be within this |
| // range." |
| // |
| if (! type.isOpaque() && type.getBasicType() != EbtBlock) |
| error(loc, "requires block, or sampler/image, or atomic-counter type", "binding", ""); |
| if (type.getBasicType() == EbtSampler) { |
| int lastBinding = qualifier.layoutBinding; |
| if (type.isArray()) { |
| if (type.isImplicitlySizedArray()) { |
| lastBinding += 1; |
| warn(loc, "assuming array size of one for compile-time checking of binding numbers for implicitly-sized array", "[]", ""); |
| } else |
| lastBinding += type.getCumulativeArraySize(); |
| } |
| if (spvVersion.vulkan == 0 && lastBinding >= resources.maxCombinedTextureImageUnits) |
| error(loc, "sampler binding not less than gl_MaxCombinedTextureImageUnits", "binding", type.isArray() ? "(using array)" : ""); |
| } |
| if (type.getBasicType() == EbtAtomicUint) { |
| if (qualifier.layoutBinding >= (unsigned int)resources.maxAtomicCounterBindings) { |
| error(loc, "atomic_uint binding is too large; see gl_MaxAtomicCounterBindings", "binding", ""); |
| return; |
| } |
| } |
| } else if (!intermediate.getAutoMapBindings()) { |
| // some types require bindings |
| |
| // atomic_uint |
| if (type.getBasicType() == EbtAtomicUint) |
| error(loc, "layout(binding=X) is required", "atomic_uint", ""); |
| |
| // SPIR-V |
| if (spvVersion.spv > 0) { |
| if (qualifier.isUniformOrBuffer()) { |
| if (type.getBasicType() == EbtBlock && !qualifier.layoutPushConstant && |
| !qualifier.layoutAttachment) |
| error(loc, "uniform/buffer blocks require layout(binding=X)", "binding", ""); |
| else if (spvVersion.vulkan > 0 && type.getBasicType() == EbtSampler) |
| error(loc, "sampler/texture/image requires layout(binding=X)", "binding", ""); |
| } |
| } |
| } |
| |
| // "The offset qualifier can only be used on block members of blocks..." |
| if (qualifier.hasOffset()) { |
| if (type.getBasicType() == EbtBlock) |
| error(loc, "only applies to block members, not blocks", "offset", ""); |
| } |
| |
| // Image format |
| if (qualifier.hasFormat()) { |
| if (! type.isImage()) |
| error(loc, "only apply to images", TQualifier::getLayoutFormatString(qualifier.layoutFormat), ""); |
| else { |
| if (type.getSampler().type == EbtFloat && qualifier.layoutFormat > ElfFloatGuard) |
| error(loc, "does not apply to floating point images", TQualifier::getLayoutFormatString(qualifier.layoutFormat), ""); |
| if (type.getSampler().type == EbtInt && (qualifier.layoutFormat < ElfFloatGuard || qualifier.layoutFormat > ElfIntGuard)) |
| error(loc, "does not apply to signed integer images", TQualifier::getLayoutFormatString(qualifier.layoutFormat), ""); |
| if (type.getSampler().type == EbtUint && qualifier.layoutFormat < ElfIntGuard) |
| error(loc, "does not apply to unsigned integer images", TQualifier::getLayoutFormatString(qualifier.layoutFormat), ""); |
| |
| if (profile == EEsProfile) { |
| // "Except for image variables qualified with the format qualifiers r32f, r32i, and r32ui, image variables must |
| // specify either memory qualifier readonly or the memory qualifier writeonly." |
| if (! (qualifier.layoutFormat == ElfR32f || qualifier.layoutFormat == ElfR32i || qualifier.layoutFormat == ElfR32ui)) { |
| if (! qualifier.readonly && ! qualifier.writeonly) |
| error(loc, "format requires readonly or writeonly memory qualifier", TQualifier::getLayoutFormatString(qualifier.layoutFormat), ""); |
| } |
| } |
| } |
| } else if (type.isImage() && ! qualifier.writeonly) { |
| const char *explanation = "image variables not declared 'writeonly' and without a format layout qualifier"; |
| requireProfile(loc, ECoreProfile | ECompatibilityProfile, explanation); |
| profileRequires(loc, ECoreProfile | ECompatibilityProfile, 0, E_GL_EXT_shader_image_load_formatted, explanation); |
| } |
| |
| if (qualifier.layoutPushConstant && type.getBasicType() != EbtBlock) |
| error(loc, "can only be used with a block", "push_constant", ""); |
| |
| // input attachment |
| if (type.isSubpass()) { |
| if (! qualifier.hasAttachment()) |
| error(loc, "requires an input_attachment_index layout qualifier", "subpass", ""); |
| } else { |
| if (qualifier.hasAttachment()) |
| error(loc, "can only be used with a subpass", "input_attachment_index", ""); |
| } |
| |
| // specialization-constant id |
| if (qualifier.hasSpecConstantId()) { |
| if (type.getQualifier().storage != EvqConst) |
| error(loc, "can only be applied to 'const'-qualified scalar", "constant_id", ""); |
| if (! type.isScalar()) |
| error(loc, "can only be applied to a scalar", "constant_id", ""); |
| switch (type.getBasicType()) |
| { |
| case EbtInt: |
| case EbtUint: |
| case EbtInt64: |
| case EbtUint64: |
| #ifdef AMD_EXTENSIONS |
| case EbtInt16: |
| case EbtUint16: |
| #endif |
| case EbtBool: |
| case EbtFloat: |
| case EbtDouble: |
| #ifdef AMD_EXTENSIONS |
| case EbtFloat16: |
| #endif |
| break; |
| default: |
| error(loc, "cannot be applied to this type", "constant_id", ""); |
| break; |
| } |
| } |
| } |
| |
| // Do layout error checking that can be done within a layout qualifier proper, not needing to know |
| // if there are blocks, atomic counters, variables, etc. |
| void TParseContext::layoutQualifierCheck(const TSourceLoc& loc, const TQualifier& qualifier) |
| { |
| if (qualifier.storage == EvqShared && qualifier.hasLayout()) |
| error(loc, "cannot apply layout qualifiers to a shared variable", "shared", ""); |
| |
| // "It is a compile-time error to use *component* without also specifying the location qualifier (order does not matter)." |
| if (qualifier.hasComponent() && ! qualifier.hasLocation()) |
| error(loc, "must specify 'location' to use 'component'", "component", ""); |
| |
| if (qualifier.hasAnyLocation()) { |
| |
| // "As with input layout qualifiers, all shaders except compute shaders |
| // allow *location* layout qualifiers on output variable declarations, |
| // output block declarations, and output block member declarations." |
| |
| switch (qualifier.storage) { |
| case EvqVaryingIn: |
| { |
| const char* feature = "location qualifier on input"; |
| if (profile == EEsProfile && version < 310) |
| requireStage(loc, EShLangVertex, feature); |
| else |
| requireStage(loc, (EShLanguageMask)~EShLangComputeMask, feature); |
| if (language == EShLangVertex) { |
| const char* exts[2] = { E_GL_ARB_separate_shader_objects, E_GL_ARB_explicit_attrib_location }; |
| profileRequires(loc, ~EEsProfile, 330, 2, exts, feature); |
| profileRequires(loc, EEsProfile, 300, nullptr, feature); |
| } else { |
| profileRequires(loc, ~EEsProfile, 410, E_GL_ARB_separate_shader_objects, feature); |
| profileRequires(loc, EEsProfile, 310, nullptr, feature); |
| } |
| break; |
| } |
| case EvqVaryingOut: |
| { |
| const char* feature = "location qualifier on output"; |
| if (profile == EEsProfile && version < 310) |
| requireStage(loc, EShLangFragment, feature); |
| else |
| requireStage(loc, (EShLanguageMask)~EShLangComputeMask, feature); |
| if (language == EShLangFragment) { |
| const char* exts[2] = { E_GL_ARB_separate_shader_objects, E_GL_ARB_explicit_attrib_location }; |
| profileRequires(loc, ~EEsProfile, 330, 2, exts, feature); |
| profileRequires(loc, EEsProfile, 300, nullptr, feature); |
| } else { |
| profileRequires(loc, ~EEsProfile, 410, E_GL_ARB_separate_shader_objects, feature); |
| profileRequires(loc, EEsProfile, 310, nullptr, feature); |
| } |
| break; |
| } |
| case EvqUniform: |
| case EvqBuffer: |
| { |
| const char* feature = "location qualifier on uniform or buffer"; |
| requireProfile(loc, EEsProfile | ECoreProfile | ECompatibilityProfile, feature); |
| profileRequires(loc, ECoreProfile | ECompatibilityProfile, 430, nullptr, feature); |
| profileRequires(loc, EEsProfile, 310, nullptr, feature); |
| break; |
| } |
| default: |
| break; |
| } |
| if (qualifier.hasIndex()) { |
| if (qualifier.storage != EvqVaryingOut) |
| error(loc, "can only be used on an output", "index", ""); |
| if (! qualifier.hasLocation()) |
| error(loc, "can only be used with an explicit location", "index", ""); |
| } |
| } |
| |
| if (qualifier.hasBinding()) { |
| if (! qualifier.isUniformOrBuffer()) |
| error(loc, "requires uniform or buffer storage qualifier", "binding", ""); |
| } |
| if (qualifier.hasStream()) { |
| if (!qualifier.isPipeOutput()) |
| error(loc, "can only be used on an output", "stream", ""); |
| } |
| if (qualifier.hasXfb()) { |
| if (!qualifier.isPipeOutput()) |
| error(loc, "can only be used on an output", "xfb layout qualifier", ""); |
| } |
| if (qualifier.hasUniformLayout()) { |
| if (! qualifier.isUniformOrBuffer()) { |
| if (qualifier.hasMatrix() || qualifier.hasPacking()) |
| error(loc, "matrix or packing qualifiers can only be used on a uniform or buffer", "layout", ""); |
| if (qualifier.hasOffset() || qualifier.hasAlign()) |
| error(loc, "offset/align can only be used on a uniform or buffer", "layout", ""); |
| } |
| } |
| if (qualifier.layoutPushConstant) { |
| if (qualifier.storage != EvqUniform) |
| error(loc, "can only be used with a uniform", "push_constant", ""); |
| if (qualifier.hasSet()) |
| error(loc, "cannot be used with push_constant", "set", ""); |
| } |
| } |
| |
| // For places that can't have shader-level layout qualifiers |
| void TParseContext::checkNoShaderLayouts(const TSourceLoc& loc, const TShaderQualifiers& shaderQualifiers) |
| { |
| const char* message = "can only apply to a standalone qualifier"; |
| |
| if (shaderQualifiers.geometry != ElgNone) |
| error(loc, message, TQualifier::getGeometryString(shaderQualifiers.geometry), ""); |
| if (shaderQualifiers.spacing != EvsNone) |
| error(loc, message, TQualifier::getVertexSpacingString(shaderQualifiers.spacing), ""); |
| if (shaderQualifiers.order != EvoNone) |
| error(loc, message, TQualifier::getVertexOrderString(shaderQualifiers.order), ""); |
| if (shaderQualifiers.pointMode) |
| error(loc, message, "point_mode", ""); |
| if (shaderQualifiers.invocations != TQualifier::layoutNotSet) |
| error(loc, message, "invocations", ""); |
| if (shaderQualifiers.earlyFragmentTests) |
| error(loc, message, "early_fragment_tests", ""); |
| if (shaderQualifiers.postDepthCoverage) |
| error(loc, message, "post_depth_coverage", ""); |
| for (int i = 0; i < 3; ++i) { |
| if (shaderQualifiers.localSize[i] > 1) |
| error(loc, message, "local_size", ""); |
| if (shaderQualifiers.localSizeSpecId[i] != TQualifier::layoutNotSet) |
| error(loc, message, "local_size id", ""); |
| } |
| if (shaderQualifiers.vertices != TQualifier::layoutNotSet) { |
| if (language == EShLangGeometry) |
| error(loc, message, "max_vertices", ""); |
| else if (language == EShLangTessControl) |
| error(loc, message, "vertices", ""); |
| else |
| assert(0); |
| } |
| if (shaderQualifiers.blendEquation) |
| error(loc, message, "blend equation", ""); |
| if (shaderQualifiers.numViews != TQualifier::layoutNotSet) |
| error(loc, message, "num_views", ""); |
| } |
| |
| // Correct and/or advance an object's offset layout qualifier. |
| void TParseContext::fixOffset(const TSourceLoc& loc, TSymbol& symbol) |
| { |
| const TQualifier& qualifier = symbol.getType().getQualifier(); |
| if (symbol.getType().getBasicType() == EbtAtomicUint) { |
| if (qualifier.hasBinding() && (int)qualifier.layoutBinding < resources.maxAtomicCounterBindings) { |
| |
| // Set the offset |
| int offset; |
| if (qualifier.hasOffset()) |
| offset = qualifier.layoutOffset; |
| else |
| offset = atomicUintOffsets[qualifier.layoutBinding]; |
| symbol.getWritableType().getQualifier().layoutOffset = offset; |
| |
| // Check for overlap |
| int numOffsets = 4; |
| if (symbol.getType().isArray()) { |
| if (symbol.getType().isExplicitlySizedArray() && ! symbol.getType().getArraySizes()->isInnerImplicit()) |
| numOffsets *= symbol.getType().getCumulativeArraySize(); |
| else { |
| // "It is a compile-time error to declare an unsized array of atomic_uint." |
| error(loc, "array must be explicitly sized", "atomic_uint", ""); |
| } |
| } |
| int repeated = intermediate.addUsedOffsets(qualifier.layoutBinding, offset, numOffsets); |
| if (repeated >= 0) |
| error(loc, "atomic counters sharing the same offset:", "offset", "%d", repeated); |
| |
| // Bump the default offset |
| atomicUintOffsets[qualifier.layoutBinding] = offset + numOffsets; |
| } |
| } |
| } |
| |
| // |
| // Look up a function name in the symbol table, and make sure it is a function. |
| // |
| // Return the function symbol if found, otherwise nullptr. |
| // |
| const TFunction* TParseContext::findFunction(const TSourceLoc& loc, const TFunction& call, bool& builtIn) |
| { |
| const TFunction* function = nullptr; |
| |
| if (symbolTable.isFunctionNameVariable(call.getName())) { |
| error(loc, "can't use function syntax on variable", call.getName().c_str(), ""); |
| return nullptr; |
| } |
| |
| if (profile == EEsProfile || version < 120) |
| function = findFunctionExact(loc, call, builtIn); |
| else if (version < 400) |
| function = findFunction120(loc, call, builtIn); |
| else |
| function = findFunction400(loc, call, builtIn); |
| |
| return function; |
| } |
| |
| // Function finding algorithm for ES and desktop 110. |
| const TFunction* TParseContext::findFunctionExact(const TSourceLoc& loc, const TFunction& call, bool& builtIn) |
| { |
| TSymbol* symbol = symbolTable.find(call.getMangledName(), &builtIn); |
| if (symbol == nullptr) { |
| error(loc, "no matching overloaded function found", call.getName().c_str(), ""); |
| |
| return nullptr; |
| } |
| |
| return symbol->getAsFunction(); |
| } |
| |
| // Function finding algorithm for desktop versions 120 through 330. |
| const TFunction* TParseContext::findFunction120(const TSourceLoc& loc, const TFunction& call, bool& builtIn) |
| { |
| // first, look for an exact match |
| TSymbol* symbol = symbolTable.find(call.getMangledName(), &builtIn); |
| if (symbol) |
| return symbol->getAsFunction(); |
| |
| // exact match not found, look through a list of overloaded functions of the same name |
| |
| // "If no exact match is found, then [implicit conversions] will be applied to find a match. Mismatched types |
| // on input parameters (in or inout or default) must have a conversion from the calling argument type to the |
| // formal parameter type. Mismatched types on output parameters (out or inout) must have a conversion |
| // from the formal parameter type to the calling argument type. When argument conversions are used to find |
| // a match, it is a semantic error if there are multiple ways to apply these conversions to make the call match |
| // more than one function." |
| |
| const TFunction* candidate = nullptr; |
| TVector<const TFunction*> candidateList; |
| symbolTable.findFunctionNameList(call.getMangledName(), candidateList, builtIn); |
| |
| for (auto it = candidateList.begin(); it != candidateList.end(); ++it) { |
| const TFunction& function = *(*it); |
| |
| // to even be a potential match, number of arguments has to match |
| if (call.getParamCount() != function.getParamCount()) |
| continue; |
| |
| bool possibleMatch = true; |
| for (int i = 0; i < function.getParamCount(); ++i) { |
| // same types is easy |
| if (*function[i].type == *call[i].type) |
| continue; |
| |
| // We have a mismatch in type, see if it is implicitly convertible |
| |
| if (function[i].type->isArray() || call[i].type->isArray() || |
| ! function[i].type->sameElementShape(*call[i].type)) |
| possibleMatch = false; |
| else { |
| // do direction-specific checks for conversion of basic type |
| if (function[i].type->getQualifier().isParamInput()) { |
| if (! intermediate.canImplicitlyPromote(call[i].type->getBasicType(), function[i].type->getBasicType())) |
| possibleMatch = false; |
| } |
| if (function[i].type->getQualifier().isParamOutput()) { |
| if (! intermediate.canImplicitlyPromote(function[i].type->getBasicType(), call[i].type->getBasicType())) |
| possibleMatch = false; |
| } |
| } |
| if (! possibleMatch) |
| break; |
| } |
| if (possibleMatch) { |
| if (candidate) { |
| // our second match, meaning ambiguity |
| error(loc, "ambiguous function signature match: multiple signatures match under implicit type conversion", call.getName().c_str(), ""); |
| } else |
| candidate = &function; |
| } |
| } |
| |
| if (candidate == nullptr) |
| error(loc, "no matching overloaded function found", call.getName().c_str(), ""); |
| |
| return candidate; |
| } |
| |
| // Function finding algorithm for desktop version 400 and above. |
| // |
| // "When function calls are resolved, an exact type match for all the arguments |
| // is sought. If an exact match is found, all other functions are ignored, and |
| // the exact match is used. If no exact match is found, then the implicit |
| // conversions in section 4.1.10 Implicit Conversions will be applied to find |
| // a match. Mismatched types on input parameters (in or inout or default) must |
| // have a conversion from the calling argument type to the formal parameter type. |
| // Mismatched types on output parameters (out or inout) must have a conversion |
| // from the formal parameter type to the calling argument type. |
| // |
| // "If implicit conversions can be used to find more than one matching function, |
| // a single best-matching function is sought. To determine a best match, the |
| // conversions between calling argument and formal parameter types are compared |
| // for each function argument and pair of matching functions. After these |
| // comparisons are performed, each pair of matching functions are compared. |
| // A function declaration A is considered a better match than function |
| // declaration B if |
| // |
| // * for at least one function argument, the conversion for that argument in A |
| // is better than the corresponding conversion in B; and |
| // * there is no function argument for which the conversion in B is better than |
| // the corresponding conversion in A. |
| // |
| // "If a single function declaration is considered a better match than every |
| // other matching function declaration, it will be used. Otherwise, a |
| // compile-time semantic error for an ambiguous overloaded function call occurs. |
| // |
| // "To determine whether the conversion for a single argument in one match is |
| // better than that for another match, the following rules are applied, in order: |
| // |
| // 1. An exact match is better than a match involving any implicit conversion. |
| // 2. A match involving an implicit conversion from float to double is better |
| // than a match involving any other implicit conversion. |
| // 3. A match involving an implicit conversion from either int or uint to float |
| // is better than a match involving an implicit conversion from either int |
| // or uint to double. |
| // |
| // "If none of the rules above apply to a particular pair of conversions, neither |
| // conversion is considered better than the other." |
| // |
| const TFunction* TParseContext::findFunction400(const TSourceLoc& loc, const TFunction& call, bool& builtIn) |
| { |
| // first, look for an exact match |
| TSymbol* symbol = symbolTable.find(call.getMangledName(), &builtIn); |
| if (symbol) |
| return symbol->getAsFunction(); |
| |
| // no exact match, use the generic selector, parameterized by the GLSL rules |
| |
| // create list of candidates to send |
| TVector<const TFunction*> candidateList; |
| symbolTable.findFunctionNameList(call.getMangledName(), candidateList, builtIn); |
| |
| // can 'from' convert to 'to'? |
| const auto convertible = [this](const TType& from, const TType& to, TOperator, int) -> bool { |
| if (from == to) |
| return true; |
| if (from.isArray() || to.isArray() || ! from.sameElementShape(to)) |
| return false; |
| return intermediate.canImplicitlyPromote(from.getBasicType(), to.getBasicType()); |
| }; |
| |
| // Is 'to2' a better conversion than 'to1'? |
| // Ties should not be considered as better. |
| // Assumes 'convertible' already said true. |
| const auto better = [](const TType& from, const TType& to1, const TType& to2) -> bool { |
| // 1. exact match |
| if (from == to2) |
| return from != to1; |
| if (from == to1) |
| return false; |
| |
| // 2. float -> double is better |
| if (from.getBasicType() == EbtFloat) { |
| if (to2.getBasicType() == EbtDouble && to1.getBasicType() != EbtDouble) |
| return true; |
| } |
| |
| // 3. -> float is better than -> double |
| return to2.getBasicType() == EbtFloat && to1.getBasicType() == EbtDouble; |
| }; |
| |
| // for ambiguity reporting |
| bool tie = false; |
| |
| // send to the generic selector |
| const TFunction* bestMatch = selectFunction(candidateList, call, convertible, better, tie); |
| |
| if (bestMatch == nullptr) |
| error(loc, "no matching overloaded function found", call.getName().c_str(), ""); |
| else if (tie) |
| error(loc, "ambiguous best function under implicit type conversion", call.getName().c_str(), ""); |
| |
| return bestMatch; |
| } |
| |
| // When a declaration includes a type, but not a variable name, it can be |
| // to establish defaults. |
| void TParseContext::declareTypeDefaults(const TSourceLoc& loc, const TPublicType& publicType) |
| { |
| if (publicType.basicType == EbtAtomicUint && publicType.qualifier.hasBinding() && publicType.qualifier.hasOffset()) { |
| if (publicType.qualifier.layoutBinding >= (unsigned int)resources.maxAtomicCounterBindings) { |
| error(loc, "atomic_uint binding is too large", "binding", ""); |
| return; |
| } |
| atomicUintOffsets[publicType.qualifier.layoutBinding] = publicType.qualifier.layoutOffset; |
| return; |
| } |
| |
| if (publicType.qualifier.hasLayout()) |
| warn(loc, "useless application of layout qualifier", "layout", ""); |
| } |
| |
| // |
| // Do everything necessary to handle a variable (non-block) declaration. |
| // Either redeclaring a variable, or making a new one, updating the symbol |
| // table, and all error checking. |
| // |
| // Returns a subtree node that computes an initializer, if needed. |
| // Returns nullptr if there is no code to execute for initialization. |
| // |
| // 'publicType' is the type part of the declaration (to the left) |
| // 'arraySizes' is the arrayness tagged on the identifier (to the right) |
| // |
| TIntermNode* TParseContext::declareVariable(const TSourceLoc& loc, TString& identifier, const TPublicType& publicType, TArraySizes* arraySizes, TIntermTyped* initializer) |
| { |
| TType type(publicType); // shallow copy; 'type' shares the arrayness and structure definition with 'publicType' |
| if (type.isImplicitlySizedArray()) { |
| // Because "int[] a = int[2](...), b = int[3](...)" makes two arrays a and b |
| // of different sizes, for this case sharing the shallow copy of arrayness |
| // with the publicType oversubscribes it, so get a deep copy of the arrayness. |
| type.newArraySizes(*publicType.arraySizes); |
| } |
| |
| if (voidErrorCheck(loc, identifier, type.getBasicType())) |
| return nullptr; |
| |
| if (initializer) |
| rValueErrorCheck(loc, "initializer", initializer); |
| else |
| nonInitConstCheck(loc, identifier, type); |
| |
| samplerCheck(loc, type, identifier, initializer); |
| atomicUintCheck(loc, type, identifier); |
| transparentOpaqueCheck(loc, type, identifier); |
| |
| if (identifier != "gl_FragCoord" && (publicType.shaderQualifiers.originUpperLeft || publicType.shaderQualifiers.pixelCenterInteger)) |
| error(loc, "can only apply origin_upper_left and pixel_center_origin to gl_FragCoord", "layout qualifier", ""); |
| if (identifier != "gl_FragDepth" && publicType.shaderQualifiers.layoutDepth != EldNone) |
| error(loc, "can only apply depth layout to gl_FragDepth", "layout qualifier", ""); |
| |
| // Check for redeclaration of built-ins and/or attempting to declare a reserved name |
| TSymbol* symbol = redeclareBuiltinVariable(loc, identifier, type.getQualifier(), publicType.shaderQualifiers); |
| if (symbol == nullptr) |
| reservedErrorCheck(loc, identifier); |
| |
| inheritGlobalDefaults(type.getQualifier()); |
| |
| // Declare the variable |
| if (arraySizes || type.isArray()) { |
| // Arrayness is potentially coming both from the type and from the |
| // variable: "int[] a[];" or just one or the other. |
| // Merge it all to the type, so all arrayness is part of the type. |
| arrayDimCheck(loc, &type, arraySizes); |
| arrayDimMerge(type, arraySizes); |
| |
| // Check that implicit sizing is only where allowed. |
| arraySizesCheck(loc, type.getQualifier(), &type.getArraySizes(), initializer != nullptr, false); |
| |
| if (! arrayQualifierError(loc, type.getQualifier()) && ! arrayError(loc, type)) |
| declareArray(loc, identifier, type, symbol); |
| |
| if (initializer) { |
| profileRequires(loc, ENoProfile, 120, E_GL_3DL_array_objects, "initializer"); |
| profileRequires(loc, EEsProfile, 300, nullptr, "initializer"); |
| } |
| } else { |
| // non-array case |
| if (symbol == nullptr) |
| symbol = declareNonArray(loc, identifier, type); |
| else if (type != symbol->getType()) |
| error(loc, "cannot change the type of", "redeclaration", symbol->getName().c_str()); |
| } |
| |
| if (symbol == nullptr) |
| return nullptr; |
| |
| // Deal with initializer |
| TIntermNode* initNode = nullptr; |
| if (symbol != nullptr && initializer) { |
| TVariable* variable = symbol->getAsVariable(); |
| if (! variable) { |
| error(loc, "initializer requires a variable, not a member", identifier.c_str(), ""); |
| return nullptr; |
| } |
| initNode = executeInitializer(loc, initializer, variable); |
| } |
| |
| // look for errors in layout qualifier use |
| layoutObjectCheck(loc, *symbol); |
| |
| // fix up |
| fixOffset(loc, *symbol); |
| |
| return initNode; |
| } |
| |
| // Pick up global defaults from the provide global defaults into dst. |
| void TParseContext::inheritGlobalDefaults(TQualifier& dst) const |
| { |
| if (dst.storage == EvqVaryingOut) { |
| if (! dst.hasStream() && language == EShLangGeometry) |
| dst.layoutStream = globalOutputDefaults.layoutStream; |
| if (! dst.hasXfbBuffer()) |
| dst.layoutXfbBuffer = globalOutputDefaults.layoutXfbBuffer; |
| } |
| } |
| |
| // |
| // Make an internal-only variable whose name is for debug purposes only |
| // and won't be searched for. Callers will only use the return value to use |
| // the variable, not the name to look it up. It is okay if the name |
| // is the same as other names; there won't be any conflict. |
| // |
| TVariable* TParseContext::makeInternalVariable(const char* name, const TType& type) const |
| { |
| TString* nameString = NewPoolTString(name); |
| TVariable* variable = new TVariable(nameString, type); |
| symbolTable.makeInternalVariable(*variable); |
| |
| return variable; |
| } |
| |
| // |
| // Declare a non-array variable, the main point being there is no redeclaration |
| // for resizing allowed. |
| // |
| // Return the successfully declared variable. |
| // |
| TVariable* TParseContext::declareNonArray(const TSourceLoc& loc, const TString& identifier, const TType& type) |
| { |
| // make a new variable |
| TVariable* variable = new TVariable(&identifier, type); |
| |
| ioArrayCheck(loc, type, identifier); |
| |
| // add variable to symbol table |
| if (symbolTable.insert(*variable)) { |
| if (symbolTable.atGlobalLevel()) |
| trackLinkage(*variable); |
| return variable; |
| } |
| |
| error(loc, "redefinition", variable->getName().c_str(), ""); |
| return nullptr; |
| } |
| |
| // |
| // Handle all types of initializers from the grammar. |
| // |
| // Returning nullptr just means there is no code to execute to handle the |
| // initializer, which will, for example, be the case for constant initializers. |
| // |
| TIntermNode* TParseContext::executeInitializer(const TSourceLoc& loc, TIntermTyped* initializer, TVariable* variable) |
| { |
| // |
| // Identifier must be of type constant, a global, or a temporary, and |
| // starting at version 120, desktop allows uniforms to have initializers. |
| // |
| TStorageQualifier qualifier = variable->getType().getQualifier().storage; |
| if (! (qualifier == EvqTemporary || qualifier == EvqGlobal || qualifier == EvqConst || |
| (qualifier == EvqUniform && profile != EEsProfile && version >= 120))) { |
| error(loc, " cannot initialize this type of qualifier ", variable->getType().getStorageQualifierString(), ""); |
| return nullptr; |
| } |
| arrayObjectCheck(loc, variable->getType(), "array initializer"); |
| |
| // |
| // If the initializer was from braces { ... }, we convert the whole subtree to a |
| // constructor-style subtree, allowing the rest of the code to operate |
| // identically for both kinds of initializers. |
| // |
| // Type can't be deduced from the initializer list, so a skeletal type to |
| // follow has to be passed in. Constness and specialization-constness |
| // should be deduced bottom up, not dictated by the skeletal type. |
| // |
| TType skeletalType; |
| skeletalType.shallowCopy(variable->getType()); |
| skeletalType.getQualifier().makeTemporary(); |
| initializer = convertInitializerList(loc, skeletalType, initializer); |
| if (! initializer) { |
| // error recovery; don't leave const without constant values |
| if (qualifier == EvqConst) |
| variable->getWritableType().getQualifier().makeTemporary(); |
| return nullptr; |
| } |
| |
| // Fix outer arrayness if variable is unsized, getting size from the initializer |
| if (initializer->getType().isExplicitlySizedArray() && |
| variable->getType().isImplicitlySizedArray()) |
| variable->getWritableType().changeOuterArraySize(initializer->getType().getOuterArraySize()); |
| |
| // Inner arrayness can also get set by an initializer |
| if (initializer->getType().isArrayOfArrays() && variable->getType().isArrayOfArrays() && |
| initializer->getType().getArraySizes()->getNumDims() == |
| variable->getType().getArraySizes()->getNumDims()) { |
| // adopt unsized sizes from the initializer's sizes |
| for (int d = 1; d < variable->getType().getArraySizes()->getNumDims(); ++d) { |
| if (variable->getType().getArraySizes()->getDimSize(d) == UnsizedArraySize) |
| variable->getWritableType().getArraySizes().setDimSize(d, initializer->getType().getArraySizes()->getDimSize(d)); |
| } |
| } |
| |
| // Uniforms require a compile-time constant initializer |
| if (qualifier == EvqUniform && ! initializer->getType().getQualifier().isFrontEndConstant()) { |
| error(loc, "uniform initializers must be constant", "=", "'%s'", variable->getType().getCompleteString().c_str()); |
| variable->getWritableType().getQualifier().makeTemporary(); |
| return nullptr; |
| } |
| // Global consts require a constant initializer (specialization constant is okay) |
| if (qualifier == EvqConst && symbolTable.atGlobalLevel() && ! initializer->getType().getQualifier().isConstant()) { |
| error(loc, "global const initializers must be constant", "=", "'%s'", variable->getType().getCompleteString().c_str()); |
| variable->getWritableType().getQualifier().makeTemporary(); |
| return nullptr; |
| } |
| |
| // Const variables require a constant initializer, depending on version |
| if (qualifier == EvqConst) { |
| if (! initializer->getType().getQualifier().isConstant()) { |
| const char* initFeature = "non-constant initializer"; |
| requireProfile(loc, ~EEsProfile, initFeature); |
| profileRequires(loc, ~EEsProfile, 420, E_GL_ARB_shading_language_420pack, initFeature); |
| variable->getWritableType().getQualifier().storage = EvqConstReadOnly; |
| qualifier = EvqConstReadOnly; |
| } |
| } else { |
| // Non-const global variables in ES need a const initializer. |
| // |
| // "In declarations of global variables with no storage qualifier or with a const |
| // qualifier any initializer must be a constant expression." |
| if (symbolTable.atGlobalLevel() && ! initializer->getType().getQualifier().isConstant()) { |
| const char* initFeature = "non-constant global initializer (needs GL_EXT_shader_non_constant_global_initializers)"; |
| if (profile == EEsProfile) { |
| if (relaxedErrors() && ! extensionTurnedOn(E_GL_EXT_shader_non_constant_global_initializers)) |
| warn(loc, "not allowed in this version", initFeature, ""); |
| else |
| profileRequires(loc, EEsProfile, 0, E_GL_EXT_shader_non_constant_global_initializers, initFeature); |
| } |
| } |
| } |
| |
| if (qualifier == EvqConst || qualifier == EvqUniform) { |
| // Compile-time tagging of the variable with its constant value... |
| |
| initializer = intermediate.addConversion(EOpAssign, variable->getType(), initializer); |
| if (! initializer || ! initializer->getType().getQualifier().isConstant() || variable->getType() != initializer->getType()) { |
| error(loc, "non-matching or non-convertible constant type for const initializer", |
| variable->getType().getStorageQualifierString(), ""); |
| variable->getWritableType().getQualifier().makeTemporary(); |
| return nullptr; |
| } |
| |
| // We either have a folded constant in getAsConstantUnion, or we have to use |
| // the initializer's subtree in the AST to represent the computation of a |
| // specialization constant. |
| assert(initializer->getAsConstantUnion() || initializer->getType().getQualifier().isSpecConstant()); |
| if (initializer->getAsConstantUnion()) |
| variable->setConstArray(initializer->getAsConstantUnion()->getConstArray()); |
| else { |
| // It's a specialization constant. |
| variable->getWritableType().getQualifier().makeSpecConstant(); |
| |
| // Keep the subtree that computes the specialization constant with the variable. |
| // Later, a symbol node will adopt the subtree from the variable. |
| variable->setConstSubtree(initializer); |
| } |
| } else { |
| // normal assigning of a value to a variable... |
| specializationCheck(loc, initializer->getType(), "initializer"); |
| TIntermSymbol* intermSymbol = intermediate.addSymbol(*variable, loc); |
| TIntermTyped* initNode = intermediate.addAssign(EOpAssign, intermSymbol, initializer, loc); |
| if (! initNode) |
| assignError(loc, "=", intermSymbol->getCompleteString(), initializer->getCompleteString()); |
| |
| return initNode; |
| } |
| |
| return nullptr; |
| } |
| |
| // |
| // Reprocess any initializer-list (the "{ ... }" syntax) parts of the |
| // initializer. |
| // |
| // Need to hierarchically assign correct types and implicit |
| // conversions. Will do this mimicking the same process used for |
| // creating a constructor-style initializer, ensuring we get the |
| // same form. However, it has to in parallel walk the 'type' |
| // passed in, as type cannot be deduced from an initializer list. |
| // |
| TIntermTyped* TParseContext::convertInitializerList(const TSourceLoc& loc, const TType& type, TIntermTyped* initializer) |
| { |
| // Will operate recursively. Once a subtree is found that is constructor style, |
| // everything below it is already good: Only the "top part" of the initializer |
| // can be an initializer list, where "top part" can extend for several (or all) levels. |
| |
| // see if we have bottomed out in the tree within the initializer-list part |
| TIntermAggregate* initList = initializer->getAsAggregate(); |
| if (! initList || initList->getOp() != EOpNull) |
| return initializer; |
| |
| // Of the initializer-list set of nodes, need to process bottom up, |
| // so recurse deep, then process on the way up. |
| |
| // Go down the tree here... |
| if (type.isArray()) { |
| // The type's array might be unsized, which could be okay, so base sizes on the size of the aggregate. |
| // Later on, initializer execution code will deal with array size logic. |
| TType arrayType; |
| arrayType.shallowCopy(type); // sharing struct stuff is fine |
| arrayType.newArraySizes(*type.getArraySizes()); // but get a fresh copy of the array information, to edit below |
| |
| // edit array sizes to fill in unsized dimensions |
| arrayType.changeOuterArraySize((int)initList->getSequence().size()); |
| TIntermTyped* firstInit = initList->getSequence()[0]->getAsTyped(); |
| if (arrayType.isArrayOfArrays() && firstInit->getType().isArray() && |
| arrayType.getArraySizes().getNumDims() == firstInit->getType().getArraySizes()->getNumDims() + 1) { |
| for (int d = 1; d < arrayType.getArraySizes().getNumDims(); ++d) { |
| if (arrayType.getArraySizes().getDimSize(d) == UnsizedArraySize) |
| arrayType.getArraySizes().setDimSize(d, firstInit->getType().getArraySizes()->getDimSize(d - 1)); |
| } |
| } |
| |
| TType elementType(arrayType, 0); // dereferenced type |
| for (size_t i = 0; i < initList->getSequence().size(); ++i) { |
| initList->getSequence()[i] = convertInitializerList(loc, elementType, initList->getSequence()[i]->getAsTyped()); |
| if (initList->getSequence()[i] == nullptr) |
| return nullptr; |
| } |
| |
| return addConstructor(loc, initList, arrayType); |
| } else if (type.isStruct()) { |
| if (type.getStruct()->size() != initList->getSequence().size()) { |
| error(loc, "wrong number of structure members", "initializer list", ""); |
| return nullptr; |
| } |
| for (size_t i = 0; i < type.getStruct()->size(); ++i) { |
| initList->getSequence()[i] = convertInitializerList(loc, *(*type.getStruct())[i].type, initList->getSequence()[i]->getAsTyped()); |
| if (initList->getSequence()[i] == nullptr) |
| return nullptr; |
| } |
| } else if (type.isMatrix()) { |
| if (type.getMatrixCols() != (int)initList->getSequence().size()) { |
| error(loc, "wrong number of matrix columns:", "initializer list", type.getCompleteString().c_str()); |
| return nullptr; |
| } |
| TType vectorType(type, 0); // dereferenced type |
| for (int i = 0; i < type.getMatrixCols(); ++i) { |
| initList->getSequence()[i] = convertInitializerList(loc, vectorType, initList->getSequence()[i]->getAsTyped()); |
| if (initList->getSequence()[i] == nullptr) |
| return nullptr; |
| } |
| } else if (type.isVector()) { |
| if (type.getVectorSize() != (int)initList->getSequence().size()) { |
| error(loc, "wrong vector size (or rows in a matrix column):", "initializer list", type.getCompleteString().c_str()); |
| return nullptr; |
| } |
| } else { |
| error(loc, "unexpected initializer-list type:", "initializer list", type.getCompleteString().c_str()); |
| return nullptr; |
| } |
| |
| // Now that the subtree is processed, process this node as if the |
| // initializer list is a set of arguments to a constructor. |
| TIntermNode* emulatedConstructorArguments; |
| if (initList->getSequence().size() == 1) |
| emulatedConstructorArguments = initList->getSequence()[0]; |
| else |
| emulatedConstructorArguments = initList; |
| return addConstructor(loc, emulatedConstructorArguments, type); |
| } |
| |
| // |
| // Test for the correctness of the parameters passed to various constructor functions |
| // and also convert them to the right data type, if allowed and required. |
| // |
| // 'node' is what to construct from. |
| // 'type' is what type to construct. |
| // |
| // Returns nullptr for an error or the constructed node (aggregate or typed) for no error. |
| // |
| TIntermTyped* TParseContext::addConstructor(const TSourceLoc& loc, TIntermNode* node, const TType& type) |
| { |
| if (node == nullptr || node->getAsTyped() == nullptr) |
| return nullptr; |
| rValueErrorCheck(loc, "constructor", node->getAsTyped()); |
| |
| TIntermAggregate* aggrNode = node->getAsAggregate(); |
| TOperator op = intermediate.mapTypeToConstructorOp(type); |
| |
| // Combined texture-sampler constructors are completely semantic checked |
| // in constructorTextureSamplerError() |
| if (op == EOpConstructTextureSampler) |
| return intermediate.setAggregateOperator(aggrNode, op, type, loc); |
| |
| TTypeList::const_iterator memberTypes; |
| if (op == EOpConstructStruct) |
| memberTypes = type.getStruct()->begin(); |
| |
| TType elementType; |
| if (type.isArray()) { |
| TType dereferenced(type, 0); |
| elementType.shallowCopy(dereferenced); |
| } else |
| elementType.shallowCopy(type); |
| |
| bool singleArg; |
| if (aggrNode) { |
| if (aggrNode->getOp() != EOpNull) |
| singleArg = true; |
| else |
| singleArg = false; |
| } else |
| singleArg = true; |
| |
| TIntermTyped *newNode; |
| if (singleArg) { |
| // If structure constructor or array constructor is being called |
| // for only one parameter inside the structure, we need to call constructAggregate function once. |
| if (type.isArray()) |
| newNode = constructAggregate(node, elementType, 1, node->getLoc()); |
| else if (op == EOpConstructStruct) |
| newNode = constructAggregate(node, *(*memberTypes).type, 1, node->getLoc()); |
| else |
| newNode = constructBuiltIn(type, op, node->getAsTyped(), node->getLoc(), false); |
| |
| if (newNode && (type.isArray() || op == EOpConstructStruct)) |
| newNode = intermediate.setAggregateOperator(newNode, EOpConstructStruct, type, loc); |
| |
| return newNode; |
| } |
| |
| // |
| // Handle list of arguments. |
| // |
| TIntermSequence &sequenceVector = aggrNode->getSequence(); // Stores the information about the parameter to the constructor |
| // if the structure constructor contains more than one parameter, then construct |
| // each parameter |
| |
| int paramCount = 0; // keeps track of the constructor parameter number being checked |
| |
| // for each parameter to the constructor call, check to see if the right type is passed or convert them |
| // to the right type if possible (and allowed). |
| // for structure constructors, just check if the right type is passed, no conversion is allowed. |
| for (TIntermSequence::iterator p = sequenceVector.begin(); |
| p != sequenceVector.end(); p++, paramCount++) { |
| if (type.isArray()) |
| newNode = constructAggregate(*p, elementType, paramCount+1, node->getLoc()); |
| else if (op == EOpConstructStruct) |
| newNode = constructAggregate(*p, *(memberTypes[paramCount]).type, paramCount+1, node->getLoc()); |
| else |
| newNode = constructBuiltIn(type, op, (*p)->getAsTyped(), node->getLoc(), true); |
| |
| if (newNode) |
| *p = newNode; |
| else |
| return nullptr; |
| } |
| |
| return intermediate.setAggregateOperator(aggrNode, op, type, loc); |
| } |
| |
| // Function for constructor implementation. Calls addUnaryMath with appropriate EOp value |
| // for the parameter to the constructor (passed to this function). Essentially, it converts |
| // the parameter types correctly. If a constructor expects an int (like ivec2) and is passed a |
| // float, then float is converted to int. |
| // |
| // Returns nullptr for an error or the constructed node. |
| // |
| TIntermTyped* TParseContext::constructBuiltIn(const TType& type, TOperator op, TIntermTyped* node, const TSourceLoc& loc, bool subset) |
| { |
| TIntermTyped* newNode; |
| TOperator basicOp; |
| |
| // |
| // First, convert types as needed. |
| // |
| switch (op) { |
| case EOpConstructVec2: |
| case EOpConstructVec3: |
| case EOpConstructVec4: |
| case EOpConstructMat2x2: |
| case EOpConstructMat2x3: |
| case EOpConstructMat2x4: |
| case EOpConstructMat3x2: |
| case EOpConstructMat3x3: |
| case EOpConstructMat3x4: |
| case EOpConstructMat4x2: |
| case EOpConstructMat4x3: |
| case EOpConstructMat4x4: |
| case EOpConstructFloat: |
| basicOp = EOpConstructFloat; |
| break; |
| |
| case EOpConstructDVec2: |
| case EOpConstructDVec3: |
| case EOpConstructDVec4: |
| case EOpConstructDMat2x2: |
| case EOpConstructDMat2x3: |
| case EOpConstructDMat2x4: |
| case EOpConstructDMat3x2: |
| case EOpConstructDMat3x3: |
| case EOpConstructDMat3x4: |
| case EOpConstructDMat4x2: |
| case EOpConstructDMat4x3: |
| case EOpConstructDMat4x4: |
| case EOpConstructDouble: |
| basicOp = EOpConstructDouble; |
| break; |
| |
| #ifdef AMD_EXTENSIONS |
| case EOpConstructF16Vec2: |
| case EOpConstructF16Vec3: |
| case EOpConstructF16Vec4: |
| case EOpConstructF16Mat2x2: |
| case EOpConstructF16Mat2x3: |
| case EOpConstructF16Mat2x4: |
| case EOpConstructF16Mat3x2: |
| case EOpConstructF16Mat3x3: |
| case EOpConstructF16Mat3x4: |
| case EOpConstructF16Mat4x2: |
| case EOpConstructF16Mat4x3: |
| case EOpConstructF16Mat4x4: |
| case EOpConstructFloat16: |
| basicOp = EOpConstructFloat16; |
| break; |
| #endif |
| |
| case EOpConstructIVec2: |
| case EOpConstructIVec3: |
| case EOpConstructIVec4: |
| case EOpConstructInt: |
| basicOp = EOpConstructInt; |
| break; |
| |
| case EOpConstructUVec2: |
| case EOpConstructUVec3: |
| case EOpConstructUVec4: |
| case EOpConstructUint: |
| basicOp = EOpConstructUint; |
| break; |
| |
| case EOpConstructI64Vec2: |
| case EOpConstructI64Vec3: |
| case EOpConstructI64Vec4: |
| case EOpConstructInt64: |
| basicOp = EOpConstructInt64; |
| break; |
| |
| case EOpConstructU64Vec2: |
| case EOpConstructU64Vec3: |
| case EOpConstructU64Vec4: |
| case EOpConstructUint64: |
| basicOp = EOpConstructUint64; |
| break; |
| |
| #ifdef AMD_EXTENSIONS |
| case EOpConstructI16Vec2: |
| case EOpConstructI16Vec3: |
| case EOpConstructI16Vec4: |
| case EOpConstructInt16: |
| basicOp = EOpConstructInt16; |
| break; |
| |
| case EOpConstructU16Vec2: |
| case EOpConstructU16Vec3: |
| case EOpConstructU16Vec4: |
| case EOpConstructUint16: |
| basicOp = EOpConstructUint16; |
| break; |
| #endif |
| |
| case EOpConstructBVec2: |
| case EOpConstructBVec3: |
| case EOpConstructBVec4: |
| case EOpConstructBool: |
| basicOp = EOpConstructBool; |
| break; |
| |
| default: |
| error(loc, "unsupported construction", "", ""); |
| |
| return nullptr; |
| } |
| newNode = intermediate.addUnaryMath(basicOp, node, node->getLoc()); |
| if (newNode == nullptr) { |
| error(loc, "can't convert", "constructor", ""); |
| return nullptr; |
| } |
| |
| // |
| // Now, if there still isn't an operation to do the construction, and we need one, add one. |
| // |
| |
| // Otherwise, skip out early. |
| if (subset || (newNode != node && newNode->getType() == type)) |
| return newNode; |
| |
| // setAggregateOperator will insert a new node for the constructor, as needed. |
| return intermediate.setAggregateOperator(newNode, op, type, loc); |
| } |
| |
| // This function tests for the type of the parameters to the structure or array constructor. Raises |
| // an error message if the expected type does not match the parameter passed to the constructor. |
| // |
| // Returns nullptr for an error or the input node itself if the expected and the given parameter types match. |
| // |
| TIntermTyped* TParseContext::constructAggregate(TIntermNode* node, const TType& type, int paramCount, const TSourceLoc& loc) |
| { |
| TIntermTyped* converted = intermediate.addConversion(EOpConstructStruct, type, node->getAsTyped()); |
| if (! converted || converted->getType() != type) { |
| error(loc, "", "constructor", "cannot convert parameter %d from '%s' to '%s'", paramCount, |
| node->getAsTyped()->getType().getCompleteString().c_str(), type.getCompleteString().c_str()); |
| |
| return nullptr; |
| } |
| |
| return converted; |
| } |
| |
| // |
| // Do everything needed to add an interface block. |
| // |
| void TParseContext::declareBlock(const TSourceLoc& loc, TTypeList& typeList, const TString* instanceName, TArraySizes* arraySizes) |
| { |
| blockStageIoCheck(loc, currentBlockQualifier); |
| blockQualifierCheck(loc, currentBlockQualifier, instanceName != nullptr); |
| if (arraySizes) { |
| arraySizesCheck(loc, currentBlockQualifier, arraySizes, false, false); |
| arrayDimCheck(loc, arraySizes, 0); |
| if (arraySizes->getNumDims() > 1) |
| requireProfile(loc, ~EEsProfile, "array-of-array of block"); |
| } |
| |
| // fix and check for member storage qualifiers and types that don't belong within a block |
| for (unsigned int member = 0; member < typeList.size(); ++member) { |
| TType& memberType = *typeList[member].type; |
| TQualifier& memberQualifier = memberType.getQualifier(); |
| const TSourceLoc& memberLoc = typeList[member].loc; |
| globalQualifierFixCheck(memberLoc, memberQualifier); |
| if (memberQualifier.storage != EvqTemporary && memberQualifier.storage != EvqGlobal && memberQualifier.storage != currentBlockQualifier.storage) |
| error(memberLoc, "member storage qualifier cannot contradict block storage qualifier", memberType.getFieldName().c_str(), ""); |
| memberQualifier.storage = currentBlockQualifier.storage; |
| if ((currentBlockQualifier.storage == EvqUniform || currentBlockQualifier.storage == EvqBuffer) && (memberQualifier.isInterpolation() || memberQualifier.isAuxiliary())) |
| error(memberLoc, "member of uniform or buffer block cannot have an auxiliary or interpolation qualifier", memberType.getFieldName().c_str(), ""); |
| if (memberType.isArray()) |
| arraySizesCheck(memberLoc, currentBlockQualifier, &memberType.getArraySizes(), false, member == typeList.size() - 1); |
| if (memberQualifier.hasOffset()) { |
| if (spvVersion.spv == 0) { |
| requireProfile(memberLoc, ~EEsProfile, "offset on block member"); |
| profileRequires(memberLoc, ~EEsProfile, 440, E_GL_ARB_enhanced_layouts, "offset on block member"); |
| } |
| } |
| |
| if (memberType.containsOpaque()) |
| error(memberLoc, "member of block cannot be or contain a sampler, image, or atomic_uint type", typeList[member].type->getFieldName().c_str(), ""); |
| } |
| |
| // This might be a redeclaration of a built-in block. If so, redeclareBuiltinBlock() will |
| // do all the rest. |
| if (! symbolTable.atBuiltInLevel() && builtInName(*blockName)) { |
| redeclareBuiltinBlock(loc, typeList, *blockName, instanceName, arraySizes); |
| return; |
| } |
| |
| // Not a redeclaration of a built-in; check that all names are user names. |
| reservedErrorCheck(loc, *blockName); |
| if (instanceName) |
| reservedErrorCheck(loc, *instanceName); |
| for (unsigned int member = 0; member < typeList.size(); ++member) |
| reservedErrorCheck(typeList[member].loc, typeList[member].type->getFieldName()); |
| |
| // Make default block qualification, and adjust the member qualifications |
| |
| TQualifier defaultQualification; |
| switch (currentBlockQualifier.storage) { |
| case EvqUniform: defaultQualification = globalUniformDefaults; break; |
| case EvqBuffer: defaultQualification = globalBufferDefaults; break; |
| case EvqVaryingIn: defaultQualification = globalInputDefaults; break; |
| case EvqVaryingOut: defaultQualification = globalOutputDefaults; break; |
| default: defaultQualification.clear(); break; |
| } |
| |
| // Special case for "push_constant uniform", which has a default of std430, |
| // contrary to normal uniform defaults, and can't have a default tracked for it. |
| if (currentBlockQualifier.layoutPushConstant && !currentBlockQualifier.hasPacking()) |
| currentBlockQualifier.layoutPacking = ElpStd430; |
| |
| // fix and check for member layout qualifiers |
| |
| mergeObjectLayoutQualifiers(defaultQualification, currentBlockQualifier, true); |
| |
| // "The align qualifier can only be used on blocks or block members, and only for blocks declared with std140 or std430 layouts." |
| if (currentBlockQualifier.hasAlign()) { |
| if (defaultQualification.layoutPacking != ElpStd140 && defaultQualification.layoutPacking != ElpStd430) { |
| error(loc, "can only be used with std140 or std430 layout packing", "align", ""); |
| defaultQualification.layoutAlign = -1; |
| } |
| } |
| |
| bool memberWithLocation = false; |
| bool memberWithoutLocation = false; |
| for (unsigned int member = 0; member < typeList.size(); ++member) { |
| TQualifier& memberQualifier = typeList[member].type->getQualifier(); |
| const TSourceLoc& memberLoc = typeList[member].loc; |
| if (memberQualifier.hasStream()) { |
| if (defaultQualification.layoutStream != memberQualifier.layoutStream) |
| error(memberLoc, "member cannot contradict block", "stream", ""); |
| } |
| |
| // "This includes a block's inheritance of the |
| // current global default buffer, a block member's inheritance of the block's |
| // buffer, and the requirement that any *xfb_buffer* declared on a block |
| // member must match the buffer inherited from the block." |
| if (memberQualifier.hasXfbBuffer()) { |
| if (defaultQualification.layoutXfbBuffer != memberQualifier.layoutXfbBuffer) |
| error(memberLoc, "member cannot contradict block (or what block inherited from global)", "xfb_buffer", ""); |
| } |
| |
| if (memberQualifier.hasPacking()) |
| error(memberLoc, "member of block cannot have a packing layout qualifier", typeList[member].type->getFieldName().c_str(), ""); |
| if (memberQualifier.hasLocation()) { |
| const char* feature = "location on block member"; |
| switch (currentBlockQualifier.storage) { |
| case EvqVaryingIn: |
| case EvqVaryingOut: |
| requireProfile(memberLoc, ECoreProfile | ECompatibilityProfile | EEsProfile, feature); |
| profileRequires(memberLoc, ECoreProfile | ECompatibilityProfile, 440, E_GL_ARB_enhanced_layouts, feature); |
| profileRequires(memberLoc, EEsProfile, 320, Num_AEP_shader_io_blocks, AEP_shader_io_blocks, feature); |
| memberWithLocation = true; |
| break; |
| default: |
| error(memberLoc, "can only use in an in/out block", feature, ""); |
| break; |
| } |
| } else |
| memberWithoutLocation = true; |
| |
| // "The offset qualifier can only be used on block members of blocks declared with std140 or std430 layouts." |
| // "The align qualifier can only be used on blocks or block members, and only for blocks declared with std140 or std430 layouts." |
| if (memberQualifier.hasAlign() || memberQualifier.hasOffset()) { |
| if (defaultQualification.layoutPacking != ElpStd140 && defaultQualification.layoutPacking != ElpStd430) |
| error(memberLoc, "can only be used with std140 or std430 layout packing", "offset/align", ""); |
| } |
| |
| TQualifier newMemberQualification = defaultQualification; |
| mergeQualifiers(memberLoc, newMemberQualification, memberQualifier, false); |
| memberQualifier = newMemberQualification; |
| } |
| |
| layoutMemberLocationArrayCheck(loc, memberWithLocation, arraySizes); |
| |
| // Process the members |
| fixBlockLocations(loc, currentBlockQualifier, typeList, memberWithLocation, memberWithoutLocation); |
| fixBlockXfbOffsets(currentBlockQualifier, typeList); |
| fixBlockUniformOffsets(currentBlockQualifier, typeList); |
| for (unsigned int member = 0; member < typeList.size(); ++member) |
| layoutTypeCheck(typeList[member].loc, *typeList[member].type); |
| |
| // reverse merge, so that currentBlockQualifier now has all layout information |
| // (can't use defaultQualification directly, it's missing other non-layout-default-class qualifiers) |
| mergeObjectLayoutQualifiers(currentBlockQualifier, defaultQualification, true); |
| |
| // |
| // Build and add the interface block as a new type named 'blockName' |
| // |
| |
| TType blockType(&typeList, *blockName, currentBlockQualifier); |
| if (arraySizes) |
| blockType.newArraySizes(*arraySizes); |
| else |
| ioArrayCheck(loc, blockType, instanceName ? *instanceName : *blockName); |
| |
| // |
| // Don't make a user-defined type out of block name; that will cause an error |
| // if the same block name gets reused in a different interface. |
| // |
| // "Block names have no other use within a shader |
| // beyond interface matching; it is a compile-time error to use a block name at global scope for anything |
| // other than as a block name (e.g., use of a block name for a global variable name or function name is |
| // currently reserved)." |
| // |
| // Use the symbol table to prevent normal reuse of the block's name, as a variable entry, |
| // whose type is EbtBlock, but without all the structure; that will come from the type |
| // the instances point to. |
| // |
| TType blockNameType(EbtBlock, blockType.getQualifier().storage); |
| TVariable* blockNameVar = new TVariable(blockName, blockNameType); |
| if (! symbolTable.insert(*blockNameVar)) { |
| TSymbol* existingName = symbolTable.find(*blockName); |
| if (existingName->getType().getBasicType() == EbtBlock) { |
| if (existingName->getType().getQualifier().storage == blockType.getQualifier().storage) { |
| error(loc, "Cannot reuse block name within the same interface:", blockName->c_str(), blockType.getStorageQualifierString()); |
| return; |
| } |
| } else { |
| error(loc, "block name cannot redefine a non-block name", blockName->c_str(), ""); |
| return; |
| } |
| } |
| |
| // Add the variable, as anonymous or named instanceName. |
| // Make an anonymous variable if no name was provided. |
| if (! instanceName) |
| instanceName = NewPoolTString(""); |
| |
| TVariable& variable = *new TVariable(instanceName, blockType); |
| if (! symbolTable.insert(variable)) { |
| if (*instanceName == "") |
| error(loc, "nameless block contains a member that already has a name at global scope", blockName->c_str(), ""); |
| else |
| error(loc, "block instance name redefinition", variable.getName().c_str(), ""); |
| |
| return; |
| } |
| |
| // Check for general layout qualifier errors |
| layoutObjectCheck(loc, variable); |
| |
| // fix up |
| if (isIoResizeArray(blockType)) { |
| ioArraySymbolResizeList.push_back(&variable); |
| checkIoArraysConsistency(loc, true); |
| } else |
| fixIoArraySize(loc, variable.getWritableType()); |
| |
| // Save it in the AST for linker use. |
| trackLinkage(variable); |
| } |
| |
| // Do all block-declaration checking regarding the combination of in/out/uniform/buffer |
| // with a particular stage. |
| void TParseContext::blockStageIoCheck(const TSourceLoc& loc, const TQualifier& qualifier) |
| { |
| switch (qualifier.storage) { |
| case EvqUniform: |
| profileRequires(loc, EEsProfile, 300, nullptr, "uniform block"); |
| profileRequires(loc, ENoProfile, 140, nullptr, "uniform block"); |
| if (currentBlockQualifier.layoutPacking == ElpStd430 && ! currentBlockQualifier.layoutPushConstant) |
| error(loc, "requires the 'buffer' storage qualifier", "std430", ""); |
| break; |
| case EvqBuffer: |
| requireProfile(loc, EEsProfile | ECoreProfile | ECompatibilityProfile, "buffer block"); |
| profileRequires(loc, ECoreProfile | ECompatibilityProfile, 430, nullptr, "buffer block"); |
| profileRequires(loc, EEsProfile, 310, nullptr, "buffer block"); |
| break; |
| case EvqVaryingIn: |
| profileRequires(loc, ~EEsProfile, 150, E_GL_ARB_separate_shader_objects, "input block"); |
| // It is a compile-time error to have an input block in a vertex shader or an output block in a fragment shader |
| // "Compute shaders do not permit user-defined input variables..." |
| requireStage(loc, (EShLanguageMask)(EShLangTessControlMask|EShLangTessEvaluationMask|EShLangGeometryMask|EShLangFragmentMask), "input block"); |
| if (language == EShLangFragment) |
| profileRequires(loc, EEsProfile, 320, Num_AEP_shader_io_blocks, AEP_shader_io_blocks, "fragment input block"); |
| break; |
| case EvqVaryingOut: |
| profileRequires(loc, ~EEsProfile, 150, E_GL_ARB_separate_shader_objects, "output block"); |
| requireStage(loc, (EShLanguageMask)(EShLangVertexMask|EShLangTessControlMask|EShLangTessEvaluationMask|EShLangGeometryMask), "output block"); |
| // ES 310 can have a block before shader_io is turned on, so skip this test for built-ins |
| if (language == EShLangVertex && ! parsingBuiltins) |
| profileRequires(loc, EEsProfile, 320, Num_AEP_shader_io_blocks, AEP_shader_io_blocks, "vertex output block"); |
| break; |
| default: |
| error(loc, "only uniform, buffer, in, or out blocks are supported", blockName->c_str(), ""); |
| break; |
| } |
| } |
| |
| // Do all block-declaration checking regarding its qualifiers. |
| void TParseContext::blockQualifierCheck(const TSourceLoc& loc, const TQualifier& qualifier, bool /*instanceName*/) |
| { |
| // The 4.5 specification says: |
| // |
| // interface-block : |
| // layout-qualifieropt interface-qualifier block-name { member-list } instance-nameopt ; |
| // |
| // interface-qualifier : |
| // in |
| // out |
| // patch in |
| // patch out |
| // uniform |
| // buffer |
| // |
| // Note however memory qualifiers aren't included, yet the specification also says |
| // |
| // "...memory qualifiers may also be used in the declaration of shader storage blocks..." |
| |
| if (qualifier.isInterpolation()) |
| error(loc, "cannot use interpolation qualifiers on an interface block", "flat/smooth/noperspective", ""); |
| if (qualifier.centroid) |
| error(loc, "cannot use centroid qualifier on an interface block", "centroid", ""); |
| if (qualifier.sample) |
| error(loc, "cannot use sample qualifier on an interface block", "sample", ""); |
| if (qualifier.invariant) |
| error(loc, "cannot use invariant qualifier on an interface block", "invariant", ""); |
| if (qualifier.layoutPushConstant) |
| intermediate.addPushConstantCount(); |
| } |
| |
| // |
| // "For a block, this process applies to the entire block, or until the first member |
| // is reached that has a location layout qualifier. When a block member is declared with a location |
| // qualifier, its location comes from that qualifier: The member's location qualifier overrides the block-level |
| // declaration. Subsequent members are again assigned consecutive locations, based on the newest location, |
| // until the next member declared with a location qualifier. The values used for locations do not have to be |
| // declared in increasing order." |
| void TParseContext::fixBlockLocations(const TSourceLoc& loc, TQualifier& qualifier, TTypeList& typeList, bool memberWithLocation, bool memberWithoutLocation) |
| { |
| // "If a block has no block-level location layout qualifier, it is required that either all or none of its members |
| // have a location layout qualifier, or a compile-time error results." |
| if (! qualifier.hasLocation() && memberWithLocation && memberWithoutLocation) |
| error(loc, "either the block needs a location, or all members need a location, or no members have a location", "location", ""); |
| else { |
| if (memberWithLocation) { |
| // remove any block-level location and make it per *every* member |
| int nextLocation = 0; // by the rule above, initial value is not relevant |
| if (qualifier.hasAnyLocation()) { |
| nextLocation = qualifier.layoutLocation; |
| qualifier.layoutLocation = TQualifier::layoutLocationEnd; |
| if (qualifier.hasComponent()) { |
| // "It is a compile-time error to apply the *component* qualifier to a ... block" |
| error(loc, "cannot apply to a block", "component", ""); |
| } |
| if (qualifier.hasIndex()) { |
| error(loc, "cannot apply to a block", "index", ""); |
| } |
| } |
| for (unsigned int member = 0; member < typeList.size(); ++member) { |
| TQualifier& memberQualifier = typeList[member].type->getQualifier(); |
| const TSourceLoc& memberLoc = typeList[member].loc; |
| if (! memberQualifier.hasLocation()) { |
| if (nextLocation >= (int)TQualifier::layoutLocationEnd) |
| error(memberLoc, "location is too large", "location", ""); |
| memberQualifier.layoutLocation = nextLocation; |
| memberQualifier.layoutComponent = TQualifier::layoutComponentEnd; |
| } |
| nextLocation = memberQualifier.layoutLocation + intermediate.computeTypeLocationSize( |
| *typeList[member].type, language); |
| } |
| } |
| } |
| } |
| |
| void TParseContext::fixBlockXfbOffsets(TQualifier& qualifier, TTypeList& typeList) |
| { |
| // "If a block is qualified with xfb_offset, all its |
| // members are assigned transform feedback buffer offsets. If a block is not qualified with xfb_offset, any |
| // members of that block not qualified with an xfb_offset will not be assigned transform feedback buffer |
| // offsets." |
| |
| if (! qualifier.hasXfbBuffer() || ! qualifier.hasXfbOffset()) |
| return; |
| |
| int nextOffset = qualifier.layoutXfbOffset; |
| for (unsigned int member = 0; member < typeList.size(); ++member) { |
| TQualifier& memberQualifier = typeList[member].type->getQualifier(); |
| bool containsDouble = false; |
| int memberSize = intermediate.computeTypeXfbSize(*typeList[member].type, containsDouble); |
| // see if we need to auto-assign an offset to this member |
| if (! memberQualifier.hasXfbOffset()) { |
| // "if applied to an aggregate containing a double, the offset must also be a multiple of 8" |
| if (containsDouble) |
| RoundToPow2(nextOffset, 8); |
| memberQualifier.layoutXfbOffset = nextOffset; |
| } else |
| nextOffset = memberQualifier.layoutXfbOffset; |
| nextOffset += memberSize; |
| } |
| |
| // The above gave all block members an offset, so we can take it off the block now, |
| // which will avoid double counting the offset usage. |
| qualifier.layoutXfbOffset = TQualifier::layoutXfbOffsetEnd; |
| } |
| |
| // Calculate and save the offset of each block member, using the recursively |
| // defined block offset rules and the user-provided offset and align. |
| // |
| // Also, compute and save the total size of the block. For the block's size, arrayness |
| // is not taken into account, as each element is backed by a separate buffer. |
| // |
| void TParseContext::fixBlockUniformOffsets(TQualifier& qualifier, TTypeList& typeList) |
| { |
| if (! qualifier.isUniformOrBuffer()) |
| return; |
| if (qualifier.layoutPacking != ElpStd140 && qualifier.layoutPacking != ElpStd430) |
| return; |
| |
| int offset = 0; |
| int memberSize; |
| for (unsigned int member = 0; member < typeList.size(); ++member) { |
| TQualifier& memberQualifier = typeList[member].type->getQualifier(); |
| const TSourceLoc& memberLoc = typeList[member].loc; |
| |
| // "When align is applied to an array, it effects only the start of the array, not the array's internal stride." |
| |
| // modify just the children's view of matrix layout, if there is one for this member |
| TLayoutMatrix subMatrixLayout = typeList[member].type->getQualifier().layoutMatrix; |
| int dummyStride; |
| int memberAlignment = intermediate.getBaseAlignment(*typeList[member].type, memberSize, dummyStride, qualifier.layoutPacking == ElpStd140, |
| subMatrixLayout != ElmNone ? subMatrixLayout == ElmRowMajor : qualifier.layoutMatrix == ElmRowMajor); |
| if (memberQualifier.hasOffset()) { |
| // "The specified offset must be a multiple |
| // of the base alignment of the type of the block member it qualifies, or a compile-time error results." |
| if (! IsMultipleOfPow2(memberQualifier.layoutOffset, memberAlignment)) |
| error(memberLoc, "must be a multiple of the member's alignment", "offset", ""); |
| |
| // GLSL: "It is a compile-time error to specify an offset that is smaller than the offset of the previous |
| // member in the block or that lies within the previous member of the block" |
| if (spvVersion.spv == 0) { |
| if (memberQualifier.layoutOffset < offset) |
| error(memberLoc, "cannot lie in previous members", "offset", ""); |
| |
| // "The offset qualifier forces the qualified member to start at or after the specified |
| // integral-constant expression, which will be its byte offset from the beginning of the buffer. |
| // "The actual offset of a member is computed as |
| // follows: If offset was declared, start with that offset, otherwise start with the next available offset." |
| offset = std::max(offset, memberQualifier.layoutOffset); |
| } else { |
| // TODO: Vulkan: "It is a compile-time error to have any offset, explicit or assigned, |
| // that lies within another member of the block." |
| |
| offset = memberQualifier.layoutOffset; |
| } |
| } |
| |
| // "The actual alignment of a member will be the greater of the specified align alignment and the standard |
| // (e.g., std140) base alignment for the member's type." |
| if (memberQualifier.hasAlign()) |
| memberAlignment = std::max(memberAlignment, memberQualifier.layoutAlign); |
| |
| // "If the resulting offset is not a multiple of the actual alignment, |
| // increase it to the first offset that is a multiple of |
| // the actual alignment." |
| RoundToPow2(offset, memberAlignment); |
| typeList[member].type->getQualifier().layoutOffset = offset; |
| offset += memberSize; |
| } |
| } |
| |
| // For an identifier that is already declared, add more qualification to it. |
| void TParseContext::addQualifierToExisting(const TSourceLoc& loc, TQualifier qualifier, const TString& identifier) |
| { |
| TSymbol* symbol = symbolTable.find(identifier); |
| if (! symbol) { |
| error(loc, "identifier not previously declared", identifier.c_str(), ""); |
| return; |
| } |
| if (symbol->getAsFunction()) { |
| error(loc, "cannot re-qualify a function name", identifier.c_str(), ""); |
| return; |
| } |
| |
| if (qualifier.isAuxiliary() || |
| qualifier.isMemory() || |
| qualifier.isInterpolation() || |
| qualifier.hasLayout() || |
| qualifier.storage != EvqTemporary || |
| qualifier.precision != EpqNone) { |
| error(loc, "cannot add storage, auxiliary, memory, interpolation, layout, or precision qualifier to an existing variable", identifier.c_str(), ""); |
| return; |
| } |
| |
| // For read-only built-ins, add a new symbol for holding the modified qualifier. |
| // This will bring up an entire block, if a block type has to be modified (e.g., gl_Position inside a block) |
| if (symbol->isReadOnly()) |
| symbol = symbolTable.copyUp(symbol); |
| |
| if (qualifier.invariant) { |
| if (intermediate.inIoAccessed(identifier)) |
| error(loc, "cannot change qualification after use", "invariant", ""); |
| symbol->getWritableType().getQualifier().invariant = true; |
| invariantCheck(loc, symbol->getType().getQualifier()); |
| } else if (qualifier.noContraction) { |
| if (intermediate.inIoAccessed(identifier)) |
| error(loc, "cannot change qualification after use", "precise", ""); |
| symbol->getWritableType().getQualifier().noContraction = true; |
| } else if (qualifier.specConstant) { |
| symbol->getWritableType().getQualifier().makeSpecConstant(); |
| if (qualifier.hasSpecConstantId()) |
| symbol->getWritableType().getQualifier().layoutSpecConstantId = qualifier.layoutSpecConstantId; |
| } else |
| warn(loc, "unknown requalification", "", ""); |
| } |
| |
| void TParseContext::addQualifierToExisting(const TSourceLoc& loc, TQualifier qualifier, TIdentifierList& identifiers) |
| { |
| for (unsigned int i = 0; i < identifiers.size(); ++i) |
| addQualifierToExisting(loc, qualifier, *identifiers[i]); |
| } |
| |
| // Make sure 'invariant' isn't being applied to a non-allowed object. |
| void TParseContext::invariantCheck(const TSourceLoc& loc, const TQualifier& qualifier) |
| { |
| if (! qualifier.invariant) |
| return; |
| |
| bool pipeOut = qualifier.isPipeOutput(); |
| bool pipeIn = qualifier.isPipeInput(); |
| if (version >= 300 || (profile != EEsProfile && version >= 420)) { |
| if (! pipeOut) |
| error(loc, "can only apply to an output", "invariant", ""); |
| } else { |
| if ((language == EShLangVertex && pipeIn) || (! pipeOut && ! pipeIn)) |
| error(loc, "can only apply to an output, or to an input in a non-vertex stage\n", "invariant", ""); |
| } |
| } |
| |
| // |
| // Updating default qualifier for the case of a declaration with just a qualifier, |
| // no type, block, or identifier. |
| // |
| void TParseContext::updateStandaloneQualifierDefaults(const TSourceLoc& loc, const TPublicType& publicType) |
| { |
| if (publicType.shaderQualifiers.vertices != TQualifier::layoutNotSet) { |
| assert(language == EShLangTessControl || language == EShLangGeometry); |
| const char* id = (language == EShLangTessControl) ? "vertices" : "max_vertices"; |
| |
| if (publicType.qualifier.storage != EvqVaryingOut) |
| error(loc, "can only apply to 'out'", id, ""); |
| if (! intermediate.setVertices(publicType.shaderQualifiers.vertices)) |
| error(loc, "cannot change previously set layout value", id, ""); |
| |
| if (language == EShLangTessControl) |
| checkIoArraysConsistency(loc); |
| } |
| if (publicType.shaderQualifiers.invocations != TQualifier::layoutNotSet) { |
| if (publicType.qualifier.storage != EvqVaryingIn) |
| error(loc, "can only apply to 'in'", "invocations", ""); |
| if (! intermediate.setInvocations(publicType.shaderQualifiers.invocations)) |
| error(loc, "cannot change previously set layout value", "invocations", ""); |
| } |
| if (publicType.shaderQualifiers.geometry != ElgNone) { |
| if (publicType.qualifier.storage == EvqVaryingIn) { |
| switch (publicType.shaderQualifiers.geometry) { |
| case ElgPoints: |
| case ElgLines: |
| case ElgLinesAdjacency: |
| case ElgTriangles: |
| case ElgTrianglesAdjacency: |
| case ElgQuads: |
| case ElgIsolines: |
| if (intermediate.setInputPrimitive(publicType.shaderQualifiers.geometry)) { |
| if (language == EShLangGeometry) |
| checkIoArraysConsistency(loc); |
| } else |
| error(loc, "cannot change previously set input primitive", TQualifier::getGeometryString(publicType.shaderQualifiers.geometry), ""); |
| break; |
| default: |
| error(loc, "cannot apply to input", TQualifier::getGeometryString(publicType.shaderQualifiers.geometry), ""); |
| } |
| } else if (publicType.qualifier.storage == EvqVaryingOut) { |
| switch (publicType.shaderQualifiers.geometry) { |
| case ElgPoints: |
| case ElgLineStrip: |
| case ElgTriangleStrip: |
| if (! intermediate.setOutputPrimitive(publicType.shaderQualifiers.geometry)) |
| error(loc, "cannot change previously set output primitive", TQualifier::getGeometryString(publicType.shaderQualifiers.geometry), ""); |
| break; |
| default: |
| error(loc, "cannot apply to 'out'", TQualifier::getGeometryString(publicType.shaderQualifiers.geometry), ""); |
| } |
| } else |
| error(loc, "cannot apply to:", TQualifier::getGeometryString(publicType.shaderQualifiers.geometry), GetStorageQualifierString(publicType.qualifier.storage)); |
| } |
| if (publicType.shaderQualifiers.spacing != EvsNone) { |
| if (publicType.qualifier.storage == EvqVaryingIn) { |
| if (! intermediate.setVertexSpacing(publicType.shaderQualifiers.spacing)) |
| error(loc, "cannot change previously set vertex spacing", TQualifier::getVertexSpacingString(publicType.shaderQualifiers.spacing), ""); |
| } else |
| error(loc, "can only apply to 'in'", TQualifier::getVertexSpacingString(publicType.shaderQualifiers.spacing), ""); |
| } |
| if (publicType.shaderQualifiers.order != EvoNone) { |
| if (publicType.qualifier.storage == EvqVaryingIn) { |
| if (! intermediate.setVertexOrder(publicType.shaderQualifiers.order)) |
| error(loc, "cannot change previously set vertex order", TQualifier::getVertexOrderString(publicType.shaderQualifiers.order), ""); |
| } else |
| error(loc, "can only apply to 'in'", TQualifier::getVertexOrderString(publicType.shaderQualifiers.order), ""); |
| } |
| if (publicType.shaderQualifiers.pointMode) { |
| if (publicType.qualifier.storage == EvqVaryingIn) |
| intermediate.setPointMode(); |
| else |
| error(loc, "can only apply to 'in'", "point_mode", ""); |
| } |
| for (int i = 0; i < 3; ++i) { |
| if (publicType.shaderQualifiers.localSize[i] > 1) { |
| if (publicType.qualifier.storage == EvqVaryingIn) { |
| if (! intermediate.setLocalSize(i, publicType.shaderQualifiers.localSize[i])) |
| error(loc, "cannot change previously set size", "local_size", ""); |
| else { |
| int max = 0; |
| switch (i) { |
| case 0: max = resources.maxComputeWorkGroupSizeX; break; |
| case 1: max = resources.maxComputeWorkGroupSizeY; break; |
| case 2: max = resources.maxComputeWorkGroupSizeZ; break; |
| default: break; |
| } |
| if (intermediate.getLocalSize(i) > (unsigned int)max) |
| error(loc, "too large; see gl_MaxComputeWorkGroupSize", "local_size", ""); |
| |
| // Fix the existing constant gl_WorkGroupSize with this new information. |
| TVariable* workGroupSize = getEditableVariable("gl_WorkGroupSize"); |
| if (workGroupSize != nullptr) |
| workGroupSize->getWritableConstArray()[i].setUConst(intermediate.getLocalSize(i)); |
| } |
| } else |
| error(loc, "can only apply to 'in'", "local_size", ""); |
| } |
| if (publicType.shaderQualifiers.localSizeSpecId[i] != TQualifier::layoutNotSet) { |
| if (publicType.qualifier.storage == EvqVaryingIn) { |
| if (! intermediate.setLocalSizeSpecId(i, publicType.shaderQualifiers.localSizeSpecId[i])) |
| error(loc, "cannot change previously set size", "local_size", ""); |
| } else |
| error(loc, "can only apply to 'in'", "local_size id", ""); |
| // Set the workgroup built-in variable as a specialization constant |
| TVariable* workGroupSize = getEditableVariable("gl_WorkGroupSize"); |
| if (workGroupSize != nullptr) |
| workGroupSize->getWritableType().getQualifier().specConstant = true; |
| } |
| } |
| if (publicType.shaderQualifiers.earlyFragmentTests) { |
| if (publicType.qualifier.storage == EvqVaryingIn) |
| intermediate.setEarlyFragmentTests(); |
| else |
| error(loc, "can only apply to 'in'", "early_fragment_tests", ""); |
| } |
| if (publicType.shaderQualifiers.postDepthCoverage) { |
| if (publicType.qualifier.storage == EvqVaryingIn) |
| intermediate.setPostDepthCoverage(); |
| else |
| error(loc, "can only apply to 'in'", "post_coverage_coverage", ""); |
| } |
| if (publicType.shaderQualifiers.blendEquation) { |
| if (publicType.qualifier.storage != EvqVaryingOut) |
| error(loc, "can only apply to 'out'", "blend equation", ""); |
| } |
| |
| const TQualifier& qualifier = publicType.qualifier; |
| |
| if (qualifier.isAuxiliary() || |
| qualifier.isMemory() || |
| qualifier.isInterpolation() || |
| qualifier.precision != EpqNone) |
| error(loc, "cannot use auxiliary, memory, interpolation, or precision qualifier in a default qualifier declaration (declaration with no type)", "qualifier", ""); |
| // "The offset qualifier can only be used on block members of blocks..." |
| // "The align qualifier can only be used on blocks or block members..." |
| if (qualifier.hasOffset() || |
| qualifier.hasAlign()) |
| error(loc, "cannot use offset or align qualifiers in a default qualifier declaration (declaration with no type)", "layout qualifier", ""); |
| |
| layoutQualifierCheck(loc, qualifier); |
| |
| switch (qualifier.storage) { |
| case EvqUniform: |
| if (qualifier.hasMatrix()) |
| globalUniformDefaults.layoutMatrix = qualifier.layoutMatrix; |
| if (qualifier.hasPacking()) |
| globalUniformDefaults.layoutPacking = qualifier.layoutPacking; |
| break; |
| case EvqBuffer: |
| if (qualifier.hasMatrix()) |
| globalBufferDefaults.layoutMatrix = qualifier.layoutMatrix; |
| if (qualifier.hasPacking()) |
| globalBufferDefaults.layoutPacking = qualifier.layoutPacking; |
| break; |
| case EvqVaryingIn: |
| break; |
| case EvqVaryingOut: |
| if (qualifier.hasStream()) |
| globalOutputDefaults.layoutStream = qualifier.layoutStream; |
| if (qualifier.hasXfbBuffer()) |
| globalOutputDefaults.layoutXfbBuffer = qualifier.layoutXfbBuffer; |
| if (globalOutputDefaults.hasXfbBuffer() && qualifier.hasXfbStride()) { |
| if (! intermediate.setXfbBufferStride(globalOutputDefaults.layoutXfbBuffer, qualifier.layoutXfbStride)) |
| error(loc, "all stride settings must match for xfb buffer", "xfb_stride", "%d", qualifier.layoutXfbBuffer); |
| } |
| break; |
| default: |
| error(loc, "default qualifier requires 'uniform', 'buffer', 'in', or 'out' storage qualification", "", ""); |
| return; |
| } |
| |
| if (qualifier.hasBinding()) |
| error(loc, "cannot declare a default, include a type or full declaration", "binding", ""); |
| if (qualifier.hasAnyLocation()) |
| error(loc, "cannot declare a default, use a full declaration", "location/component/index", ""); |
| if (qualifier.hasXfbOffset()) |
| error(loc, "cannot declare a default, use a full declaration", "xfb_offset", ""); |
| if (qualifier.layoutPushConstant) |
| error(loc, "cannot declare a default, can only be used on a block", "push_constant", ""); |
| if (qualifier.hasSpecConstantId()) |
| error(loc, "cannot declare a default, can only be used on a scalar", "constant_id", ""); |
| } |
| |
| // |
| // Take the sequence of statements that has been built up since the last case/default, |
| // put it on the list of top-level nodes for the current (inner-most) switch statement, |
| // and follow that by the case/default we are on now. (See switch topology comment on |
| // TIntermSwitch.) |
| // |
| void TParseContext::wrapupSwitchSubsequence(TIntermAggregate* statements, TIntermNode* branchNode) |
| { |
| TIntermSequence* switchSequence = switchSequenceStack.back(); |
| |
| if (statements) { |
| if (switchSequence->size() == 0) |
| error(statements->getLoc(), "cannot have statements before first case/default label", "switch", ""); |
| statements->setOperator(EOpSequence); |
| switchSequence->push_back(statements); |
| } |
| if (branchNode) { |
| // check all previous cases for the same label (or both are 'default') |
| for (unsigned int s = 0; s < switchSequence->size(); ++s) { |
| TIntermBranch* prevBranch = (*switchSequence)[s]->getAsBranchNode(); |
| if (prevBranch) { |
| TIntermTyped* prevExpression = prevBranch->getExpression(); |
| TIntermTyped* newExpression = branchNode->getAsBranchNode()->getExpression(); |
| if (prevExpression == nullptr && newExpression == nullptr) |
| error(branchNode->getLoc(), "duplicate label", "default", ""); |
| else if (prevExpression != nullptr && |
| newExpression != nullptr && |
| prevExpression->getAsConstantUnion() && |
| newExpression->getAsConstantUnion() && |
| prevExpression->getAsConstantUnion()->getConstArray()[0].getIConst() == |
| newExpression->getAsConstantUnion()->getConstArray()[0].getIConst()) |
| error(branchNode->getLoc(), "duplicated value", "case", ""); |
| } |
| } |
| switchSequence->push_back(branchNode); |
| } |
| } |
| |
| // |
| // Turn the top-level node sequence built up of wrapupSwitchSubsequence9) |
| // into a switch node. |
| // |
| TIntermNode* TParseContext::addSwitch(const TSourceLoc& loc, TIntermTyped* expression, TIntermAggregate* lastStatements) |
| { |
| profileRequires(loc, EEsProfile, 300, nullptr, "switch statements"); |
| profileRequires(loc, ENoProfile, 130, nullptr, "switch statements"); |
| |
| wrapupSwitchSubsequence(lastStatements, nullptr); |
| |
| if (expression == nullptr || |
| (expression->getBasicType() != EbtInt && expression->getBasicType() != EbtUint) || |
| expression->getType().isArray() || expression->getType().isMatrix() || expression->getType().isVector()) |
| error(loc, "condition must be a scalar integer expression", "switch", ""); |
| |
| // If there is nothing to do, drop the switch but still execute the expression |
| TIntermSequence* switchSequence = switchSequenceStack.back(); |
| if (switchSequence->size() == 0) |
| return expression; |
| |
| if (lastStatements == nullptr) { |
| // This was originally an ERRROR, because early versions of the specification said |
| // "it is an error to have no statement between a label and the end of the switch statement." |
| // The specifications were updated to remove this (being ill-defined what a "statement" was), |
| // so, this became a warning. However, 3.0 tests still check for the error. |
| if (profile == EEsProfile && version <= 300 && ! relaxedErrors()) |
| error(loc, "last case/default label not followed by statements", "switch", ""); |
| else |
| warn(loc, "last case/default label not followed by statements", "switch", ""); |
| |
| // emulate a break for error recovery |
| lastStatements = intermediate.makeAggregate(intermediate.addBranch(EOpBreak, loc)); |
| lastStatements->setOperator(EOpSequence); |
| switchSequence->push_back(lastStatements); |
| } |
| |
| TIntermAggregate* body = new TIntermAggregate(EOpSequence); |
| body->getSequence() = *switchSequenceStack.back(); |
| body->setLoc(loc); |
| |
| TIntermSwitch* switchNode = new TIntermSwitch(expression, body); |
| switchNode->setLoc(loc); |
| |
| return switchNode; |
| } |
| |
| } // end namespace glslang |