blob: be665ac00d15e251c5d0b420be2f643018d035dd [file] [log] [blame]
//
// Copyright (C) 2017-2018 Google, Inc.
// Copyright (C) 2017 LunarG, Inc.
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
//
// Neither the name of 3Dlabs Inc. Ltd. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
// ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
#include "hlslParseHelper.h"
#include "hlslScanContext.h"
#include "hlslGrammar.h"
#include "hlslAttributes.h"
#include "../glslang/Include/Common.h"
#include "../glslang/MachineIndependent/Scan.h"
#include "../glslang/MachineIndependent/preprocessor/PpContext.h"
#include "../glslang/OSDependent/osinclude.h"
#include <algorithm>
#include <functional>
#include <cctype>
#include <array>
#include <set>
namespace glslang {
HlslParseContext::HlslParseContext(TSymbolTable& symbolTable, TIntermediate& interm, bool parsingBuiltins,
int version, EProfile profile, const SpvVersion& spvVersion, EShLanguage language,
TInfoSink& infoSink,
const TString sourceEntryPointName,
bool forwardCompatible, EShMessages messages) :
TParseContextBase(symbolTable, interm, parsingBuiltins, version, profile, spvVersion, language, infoSink,
forwardCompatible, messages, &sourceEntryPointName),
annotationNestingLevel(0),
inputPatch(nullptr),
nextInLocation(0), nextOutLocation(0),
entryPointFunction(nullptr),
entryPointFunctionBody(nullptr),
gsStreamOutput(nullptr),
clipDistanceOutput(nullptr),
cullDistanceOutput(nullptr),
clipDistanceInput(nullptr),
cullDistanceInput(nullptr)
{
globalUniformDefaults.clear();
globalUniformDefaults.layoutMatrix = ElmRowMajor;
globalUniformDefaults.layoutPacking = ElpStd140;
globalBufferDefaults.clear();
globalBufferDefaults.layoutMatrix = ElmRowMajor;
globalBufferDefaults.layoutPacking = ElpStd430;
globalInputDefaults.clear();
globalOutputDefaults.clear();
clipSemanticNSizeIn.fill(0);
cullSemanticNSizeIn.fill(0);
clipSemanticNSizeOut.fill(0);
cullSemanticNSizeOut.fill(0);
// "Shaders in the transform
// feedback capturing mode have an initial global default of
// layout(xfb_buffer = 0) out;"
if (language == EShLangVertex ||
language == EShLangTessControl ||
language == EShLangTessEvaluation ||
language == EShLangGeometry)
globalOutputDefaults.layoutXfbBuffer = 0;
if (language == EShLangGeometry)
globalOutputDefaults.layoutStream = 0;
}
HlslParseContext::~HlslParseContext()
{
}
void HlslParseContext::initializeExtensionBehavior()
{
TParseContextBase::initializeExtensionBehavior();
// HLSL allows #line by default.
extensionBehavior[E_GL_GOOGLE_cpp_style_line_directive] = EBhEnable;
}
void HlslParseContext::setLimits(const TBuiltInResource& r)
{
resources = r;
intermediate.setLimits(resources);
}
//
// Parse an array of strings using the parser in HlslRules.
//
// Returns true for successful acceptance of the shader, false if any errors.
//
bool HlslParseContext::parseShaderStrings(TPpContext& ppContext, TInputScanner& input, bool versionWillBeError)
{
currentScanner = &input;
ppContext.setInput(input, versionWillBeError);
HlslScanContext scanContext(*this, ppContext);
HlslGrammar grammar(scanContext, *this);
if (!grammar.parse()) {
// Print a message formated such that if you click on the message it will take you right to
// the line through most UIs.
const glslang::TSourceLoc& sourceLoc = input.getSourceLoc();
infoSink.info << sourceLoc.getFilenameStr() << "(" << sourceLoc.line << "): error at column " << sourceLoc.column
<< ", HLSL parsing failed.\n";
++numErrors;
return false;
}
finish();
return numErrors == 0;
}
//
// Return true if this l-value node should be converted in some manner.
// For instance: turning a load aggregate into a store in an l-value.
//
bool HlslParseContext::shouldConvertLValue(const TIntermNode* node) const
{
if (node == nullptr || node->getAsTyped() == nullptr)
return false;
const TIntermAggregate* lhsAsAggregate = node->getAsAggregate();
const TIntermBinary* lhsAsBinary = node->getAsBinaryNode();
// If it's a swizzled/indexed aggregate, look at the left node instead.
if (lhsAsBinary != nullptr &&
(lhsAsBinary->getOp() == EOpVectorSwizzle || lhsAsBinary->getOp() == EOpIndexDirect))
lhsAsAggregate = lhsAsBinary->getLeft()->getAsAggregate();
if (lhsAsAggregate != nullptr && lhsAsAggregate->getOp() == EOpImageLoad)
return true;
return false;
}
void HlslParseContext::growGlobalUniformBlock(const TSourceLoc& loc, TType& memberType, const TString& memberName,
TTypeList* newTypeList)
{
newTypeList = nullptr;
correctUniform(memberType.getQualifier());
if (memberType.isStruct()) {
auto it = ioTypeMap.find(memberType.getStruct());
if (it != ioTypeMap.end() && it->second.uniform)
newTypeList = it->second.uniform;
}
TParseContextBase::growGlobalUniformBlock(loc, memberType, memberName, newTypeList);
}
//
// Return a TLayoutFormat corresponding to the given texture type.
//
TLayoutFormat HlslParseContext::getLayoutFromTxType(const TSourceLoc& loc, const TType& txType)
{
if (txType.isStruct()) {
// TODO: implement.
error(loc, "unimplemented: structure type in image or buffer", "", "");
return ElfNone;
}
const int components = txType.getVectorSize();
const TBasicType txBasicType = txType.getBasicType();
const auto selectFormat = [this,&components](TLayoutFormat v1, TLayoutFormat v2, TLayoutFormat v4) -> TLayoutFormat {
if (intermediate.getNoStorageFormat())
return ElfNone;
return components == 1 ? v1 :
components == 2 ? v2 : v4;
};
switch (txBasicType) {
case EbtFloat: return selectFormat(ElfR32f, ElfRg32f, ElfRgba32f);
case EbtInt: return selectFormat(ElfR32i, ElfRg32i, ElfRgba32i);
case EbtUint: return selectFormat(ElfR32ui, ElfRg32ui, ElfRgba32ui);
default:
error(loc, "unknown basic type in image format", "", "");
return ElfNone;
}
}
//
// Both test and if necessary, spit out an error, to see if the node is really
// an l-value that can be operated on this way.
//
// Returns true if there was an error.
//
bool HlslParseContext::lValueErrorCheck(const TSourceLoc& loc, const char* op, TIntermTyped* node)
{
if (shouldConvertLValue(node)) {
// if we're writing to a texture, it must be an RW form.
TIntermAggregate* lhsAsAggregate = node->getAsAggregate();
TIntermTyped* object = lhsAsAggregate->getSequence()[0]->getAsTyped();
if (!object->getType().getSampler().isImage()) {
error(loc, "operator[] on a non-RW texture must be an r-value", "", "");
return true;
}
}
// We tolerate samplers as l-values, even though they are nominally
// illegal, because we expect a later optimization to eliminate them.
if (node->getType().getBasicType() == EbtSampler) {
intermediate.setNeedsLegalization();
return false;
}
// Let the base class check errors
return TParseContextBase::lValueErrorCheck(loc, op, node);
}
//
// This function handles l-value conversions and verifications. It uses, but is not synonymous
// with lValueErrorCheck. That function accepts an l-value directly, while this one must be
// given the surrounding tree - e.g, with an assignment, so we can convert the assign into a
// series of other image operations.
//
// Most things are passed through unmodified, except for error checking.
//
TIntermTyped* HlslParseContext::handleLvalue(const TSourceLoc& loc, const char* op, TIntermTyped*& node)
{
if (node == nullptr)
return nullptr;
TIntermBinary* nodeAsBinary = node->getAsBinaryNode();
TIntermUnary* nodeAsUnary = node->getAsUnaryNode();
TIntermAggregate* sequence = nullptr;
TIntermTyped* lhs = nodeAsUnary ? nodeAsUnary->getOperand() :
nodeAsBinary ? nodeAsBinary->getLeft() :
nullptr;
// Early bail out if there is no conversion to apply
if (!shouldConvertLValue(lhs)) {
if (lhs != nullptr)
if (lValueErrorCheck(loc, op, lhs))
return nullptr;
return node;
}
// *** If we get here, we're going to apply some conversion to an l-value.
// Helper to create a load.
const auto makeLoad = [&](TIntermSymbol* rhsTmp, TIntermTyped* object, TIntermTyped* coord, const TType& derefType) {
TIntermAggregate* loadOp = new TIntermAggregate(EOpImageLoad);
loadOp->setLoc(loc);
loadOp->getSequence().push_back(object);
loadOp->getSequence().push_back(intermediate.addSymbol(*coord->getAsSymbolNode()));
loadOp->setType(derefType);
sequence = intermediate.growAggregate(sequence,
intermediate.addAssign(EOpAssign, rhsTmp, loadOp, loc),
loc);
};
// Helper to create a store.
const auto makeStore = [&](TIntermTyped* object, TIntermTyped* coord, TIntermSymbol* rhsTmp) {
TIntermAggregate* storeOp = new TIntermAggregate(EOpImageStore);
storeOp->getSequence().push_back(object);
storeOp->getSequence().push_back(coord);
storeOp->getSequence().push_back(intermediate.addSymbol(*rhsTmp));
storeOp->setLoc(loc);
storeOp->setType(TType(EbtVoid));
sequence = intermediate.growAggregate(sequence, storeOp);
};
// Helper to create an assign.
const auto makeBinary = [&](TOperator op, TIntermTyped* lhs, TIntermTyped* rhs) {
sequence = intermediate.growAggregate(sequence,
intermediate.addBinaryNode(op, lhs, rhs, loc, lhs->getType()),
loc);
};
// Helper to complete sequence by adding trailing variable, so we evaluate to the right value.
const auto finishSequence = [&](TIntermSymbol* rhsTmp, const TType& derefType) -> TIntermAggregate* {
// Add a trailing use of the temp, so the sequence returns the proper value.
sequence = intermediate.growAggregate(sequence, intermediate.addSymbol(*rhsTmp));
sequence->setOperator(EOpSequence);
sequence->setLoc(loc);
sequence->setType(derefType);
return sequence;
};
// Helper to add unary op
const auto makeUnary = [&](TOperator op, TIntermSymbol* rhsTmp) {
sequence = intermediate.growAggregate(sequence,
intermediate.addUnaryNode(op, intermediate.addSymbol(*rhsTmp), loc,
rhsTmp->getType()),
loc);
};
// Return true if swizzle or index writes all components of the given variable.
const auto writesAllComponents = [&](TIntermSymbol* var, TIntermBinary* swizzle) -> bool {
if (swizzle == nullptr) // not a swizzle or index
return true;
// Track which components are being set.
std::array<bool, 4> compIsSet;
compIsSet.fill(false);
const TIntermConstantUnion* asConst = swizzle->getRight()->getAsConstantUnion();
const TIntermAggregate* asAggregate = swizzle->getRight()->getAsAggregate();
// This could be either a direct index, or a swizzle.
if (asConst) {
compIsSet[asConst->getConstArray()[0].getIConst()] = true;
} else if (asAggregate) {
const TIntermSequence& seq = asAggregate->getSequence();
for (int comp=0; comp<int(seq.size()); ++comp)
compIsSet[seq[comp]->getAsConstantUnion()->getConstArray()[0].getIConst()] = true;
} else {
assert(0);
}
// Return true if all components are being set by the index or swizzle
return std::all_of(compIsSet.begin(), compIsSet.begin() + var->getType().getVectorSize(),
[](bool isSet) { return isSet; } );
};
// Create swizzle matching input swizzle
const auto addSwizzle = [&](TIntermSymbol* var, TIntermBinary* swizzle) -> TIntermTyped* {
if (swizzle)
return intermediate.addBinaryNode(swizzle->getOp(), var, swizzle->getRight(), loc, swizzle->getType());
else
return var;
};
TIntermBinary* lhsAsBinary = lhs->getAsBinaryNode();
TIntermAggregate* lhsAsAggregate = lhs->getAsAggregate();
bool lhsIsSwizzle = false;
// If it's a swizzled L-value, remember the swizzle, and use the LHS.
if (lhsAsBinary != nullptr && (lhsAsBinary->getOp() == EOpVectorSwizzle || lhsAsBinary->getOp() == EOpIndexDirect)) {
lhsAsAggregate = lhsAsBinary->getLeft()->getAsAggregate();
lhsIsSwizzle = true;
}
TIntermTyped* object = lhsAsAggregate->getSequence()[0]->getAsTyped();
TIntermTyped* coord = lhsAsAggregate->getSequence()[1]->getAsTyped();
const TSampler& texSampler = object->getType().getSampler();
TType objDerefType;
getTextureReturnType(texSampler, objDerefType);
if (nodeAsBinary) {
TIntermTyped* rhs = nodeAsBinary->getRight();
const TOperator assignOp = nodeAsBinary->getOp();
bool isModifyOp = false;
switch (assignOp) {
case EOpAddAssign:
case EOpSubAssign:
case EOpMulAssign:
case EOpVectorTimesMatrixAssign:
case EOpVectorTimesScalarAssign:
case EOpMatrixTimesScalarAssign:
case EOpMatrixTimesMatrixAssign:
case EOpDivAssign:
case EOpModAssign:
case EOpAndAssign:
case EOpInclusiveOrAssign:
case EOpExclusiveOrAssign:
case EOpLeftShiftAssign:
case EOpRightShiftAssign:
isModifyOp = true;
// fall through...
case EOpAssign:
{
// Since this is an lvalue, we'll convert an image load to a sequence like this
// (to still provide the value):
// OpSequence
// OpImageStore(object, lhs, rhs)
// rhs
// But if it's not a simple symbol RHS (say, a fn call), we don't want to duplicate the RHS,
// so we'll convert instead to this:
// OpSequence
// rhsTmp = rhs
// OpImageStore(object, coord, rhsTmp)
// rhsTmp
// If this is a read-modify-write op, like +=, we issue:
// OpSequence
// coordtmp = load's param1
// rhsTmp = OpImageLoad(object, coordTmp)
// rhsTmp op= rhs
// OpImageStore(object, coordTmp, rhsTmp)
// rhsTmp
//
// If the lvalue is swizzled, we apply that when writing the temp variable, like so:
// ...
// rhsTmp.some_swizzle = ...
// For partial writes, an error is generated.
TIntermSymbol* rhsTmp = rhs->getAsSymbolNode();
TIntermTyped* coordTmp = coord;
if (rhsTmp == nullptr || isModifyOp || lhsIsSwizzle) {
rhsTmp = makeInternalVariableNode(loc, "storeTemp", objDerefType);
// Partial updates not yet supported
if (!writesAllComponents(rhsTmp, lhsAsBinary)) {
error(loc, "unimplemented: partial image updates", "", "");
}
// Assign storeTemp = rhs
if (isModifyOp) {
// We have to make a temp var for the coordinate, to avoid evaluating it twice.
coordTmp = makeInternalVariableNode(loc, "coordTemp", coord->getType());
makeBinary(EOpAssign, coordTmp, coord); // coordtmp = load[param1]
makeLoad(rhsTmp, object, coordTmp, objDerefType); // rhsTmp = OpImageLoad(object, coordTmp)
}
// rhsTmp op= rhs.
makeBinary(assignOp, addSwizzle(intermediate.addSymbol(*rhsTmp), lhsAsBinary), rhs);
}
makeStore(object, coordTmp, rhsTmp); // add a store
return finishSequence(rhsTmp, objDerefType); // return rhsTmp from sequence
}
default:
break;
}
}
if (nodeAsUnary) {
const TOperator assignOp = nodeAsUnary->getOp();
switch (assignOp) {
case EOpPreIncrement:
case EOpPreDecrement:
{
// We turn this into:
// OpSequence
// coordtmp = load's param1
// rhsTmp = OpImageLoad(object, coordTmp)
// rhsTmp op
// OpImageStore(object, coordTmp, rhsTmp)
// rhsTmp
TIntermSymbol* rhsTmp = makeInternalVariableNode(loc, "storeTemp", objDerefType);
TIntermTyped* coordTmp = makeInternalVariableNode(loc, "coordTemp", coord->getType());
makeBinary(EOpAssign, coordTmp, coord); // coordtmp = load[param1]
makeLoad(rhsTmp, object, coordTmp, objDerefType); // rhsTmp = OpImageLoad(object, coordTmp)
makeUnary(assignOp, rhsTmp); // op rhsTmp
makeStore(object, coordTmp, rhsTmp); // OpImageStore(object, coordTmp, rhsTmp)
return finishSequence(rhsTmp, objDerefType); // return rhsTmp from sequence
}
case EOpPostIncrement:
case EOpPostDecrement:
{
// We turn this into:
// OpSequence
// coordtmp = load's param1
// rhsTmp1 = OpImageLoad(object, coordTmp)
// rhsTmp2 = rhsTmp1
// rhsTmp2 op
// OpImageStore(object, coordTmp, rhsTmp2)
// rhsTmp1 (pre-op value)
TIntermSymbol* rhsTmp1 = makeInternalVariableNode(loc, "storeTempPre", objDerefType);
TIntermSymbol* rhsTmp2 = makeInternalVariableNode(loc, "storeTempPost", objDerefType);
TIntermTyped* coordTmp = makeInternalVariableNode(loc, "coordTemp", coord->getType());
makeBinary(EOpAssign, coordTmp, coord); // coordtmp = load[param1]
makeLoad(rhsTmp1, object, coordTmp, objDerefType); // rhsTmp1 = OpImageLoad(object, coordTmp)
makeBinary(EOpAssign, rhsTmp2, rhsTmp1); // rhsTmp2 = rhsTmp1
makeUnary(assignOp, rhsTmp2); // rhsTmp op
makeStore(object, coordTmp, rhsTmp2); // OpImageStore(object, coordTmp, rhsTmp2)
return finishSequence(rhsTmp1, objDerefType); // return rhsTmp from sequence
}
default:
break;
}
}
if (lhs)
if (lValueErrorCheck(loc, op, lhs))
return nullptr;
return node;
}
void HlslParseContext::handlePragma(const TSourceLoc& loc, const TVector<TString>& tokens)
{
if (pragmaCallback)
pragmaCallback(loc.line, tokens);
if (tokens.size() == 0)
return;
// These pragmas are case insensitive in HLSL, so we'll compare in lower case.
TVector<TString> lowerTokens = tokens;
for (auto it = lowerTokens.begin(); it != lowerTokens.end(); ++it)
std::transform(it->begin(), it->end(), it->begin(), ::tolower);
// Handle pack_matrix
if (tokens.size() == 4 && lowerTokens[0] == "pack_matrix" && tokens[1] == "(" && tokens[3] == ")") {
// Note that HLSL semantic order is Mrc, not Mcr like SPIR-V, so we reverse the sense.
// Row major becomes column major and vice versa.
if (lowerTokens[2] == "row_major") {
globalUniformDefaults.layoutMatrix = globalBufferDefaults.layoutMatrix = ElmColumnMajor;
} else if (lowerTokens[2] == "column_major") {
globalUniformDefaults.layoutMatrix = globalBufferDefaults.layoutMatrix = ElmRowMajor;
} else {
// unknown majorness strings are treated as (HLSL column major)==(SPIR-V row major)
warn(loc, "unknown pack_matrix pragma value", tokens[2].c_str(), "");
globalUniformDefaults.layoutMatrix = globalBufferDefaults.layoutMatrix = ElmRowMajor;
}
return;
}
// Handle once
if (lowerTokens[0] == "once") {
warn(loc, "not implemented", "#pragma once", "");
return;
}
}
//
// Look at a '.' matrix selector string and change it into components
// for a matrix. There are two types:
//
// _21 second row, first column (one based)
// _m21 third row, second column (zero based)
//
// Returns true if there is no error.
//
bool HlslParseContext::parseMatrixSwizzleSelector(const TSourceLoc& loc, const TString& fields, int cols, int rows,
TSwizzleSelectors<TMatrixSelector>& components)
{
int startPos[MaxSwizzleSelectors];
int numComps = 0;
TString compString = fields;
// Find where each component starts,
// recording the first character position after the '_'.
for (size_t c = 0; c < compString.size(); ++c) {
if (compString[c] == '_') {
if (numComps >= MaxSwizzleSelectors) {
error(loc, "matrix component swizzle has too many components", compString.c_str(), "");
return false;
}
if (c > compString.size() - 3 ||
((compString[c+1] == 'm' || compString[c+1] == 'M') && c > compString.size() - 4)) {
error(loc, "matrix component swizzle missing", compString.c_str(), "");
return false;
}
startPos[numComps++] = (int)c + 1;
}
}
// Process each component
for (int i = 0; i < numComps; ++i) {
int pos = startPos[i];
int bias = -1;
if (compString[pos] == 'm' || compString[pos] == 'M') {
bias = 0;
++pos;
}
TMatrixSelector comp;
comp.coord1 = compString[pos+0] - '0' + bias;
comp.coord2 = compString[pos+1] - '0' + bias;
if (comp.coord1 < 0 || comp.coord1 >= cols) {
error(loc, "matrix row component out of range", compString.c_str(), "");
return false;
}
if (comp.coord2 < 0 || comp.coord2 >= rows) {
error(loc, "matrix column component out of range", compString.c_str(), "");
return false;
}
components.push_back(comp);
}
return true;
}
// If the 'comps' express a column of a matrix,
// return the column. Column means the first coords all match.
//
// Otherwise, return -1.
//
int HlslParseContext::getMatrixComponentsColumn(int rows, const TSwizzleSelectors<TMatrixSelector>& selector)
{
int col = -1;
// right number of comps?
if (selector.size() != rows)
return -1;
// all comps in the same column?
// rows in order?
col = selector[0].coord1;
for (int i = 0; i < rows; ++i) {
if (col != selector[i].coord1)
return -1;
if (i != selector[i].coord2)
return -1;
}
return col;
}
//
// Handle seeing a variable identifier in the grammar.
//
TIntermTyped* HlslParseContext::handleVariable(const TSourceLoc& loc, const TString* string)
{
int thisDepth;
TSymbol* symbol = symbolTable.find(*string, thisDepth);
if (symbol && symbol->getAsVariable() && symbol->getAsVariable()->isUserType()) {
error(loc, "expected symbol, not user-defined type", string->c_str(), "");
return nullptr;
}
const TVariable* variable = nullptr;
const TAnonMember* anon = symbol ? symbol->getAsAnonMember() : nullptr;
TIntermTyped* node = nullptr;
if (anon) {
// It was a member of an anonymous container, which could be a 'this' structure.
// Create a subtree for its dereference.
if (thisDepth > 0) {
variable = getImplicitThis(thisDepth);
if (variable == nullptr)
error(loc, "cannot access member variables (static member function?)", "this", "");
}
if (variable == nullptr)
variable = anon->getAnonContainer().getAsVariable();
TIntermTyped* container = intermediate.addSymbol(*variable, loc);
TIntermTyped* constNode = intermediate.addConstantUnion(anon->getMemberNumber(), loc);
node = intermediate.addIndex(EOpIndexDirectStruct, container, constNode, loc);
node->setType(*(*variable->getType().getStruct())[anon->getMemberNumber()].type);
if (node->getType().hiddenMember())
error(loc, "member of nameless block was not redeclared", string->c_str(), "");
} else {
// Not a member of an anonymous container.
// The symbol table search was done in the lexical phase.
// See if it was a variable.
variable = symbol ? symbol->getAsVariable() : nullptr;
if (variable) {
if ((variable->getType().getBasicType() == EbtBlock ||
variable->getType().getBasicType() == EbtStruct) && variable->getType().getStruct() == nullptr) {
error(loc, "cannot be used (maybe an instance name is needed)", string->c_str(), "");
variable = nullptr;
}
} else {
if (symbol)
error(loc, "variable name expected", string->c_str(), "");
}
// Recovery, if it wasn't found or was not a variable.
if (variable == nullptr) {
error(loc, "unknown variable", string->c_str(), "");
variable = new TVariable(string, TType(EbtVoid));
}
if (variable->getType().getQualifier().isFrontEndConstant())
node = intermediate.addConstantUnion(variable->getConstArray(), variable->getType(), loc);
else
node = intermediate.addSymbol(*variable, loc);
}
if (variable->getType().getQualifier().isIo())
intermediate.addIoAccessed(*string);
return node;
}
//
// Handle operator[] on any objects it applies to. Currently:
// Textures
// Buffers
//
TIntermTyped* HlslParseContext::handleBracketOperator(const TSourceLoc& loc, TIntermTyped* base, TIntermTyped* index)
{
// handle r-value operator[] on textures and images. l-values will be processed later.
if (base->getType().getBasicType() == EbtSampler && !base->isArray()) {
const TSampler& sampler = base->getType().getSampler();
if (sampler.isImage() || sampler.isTexture()) {
if (! mipsOperatorMipArg.empty() && mipsOperatorMipArg.back().mipLevel == nullptr) {
// The first operator[] to a .mips[] sequence is the mip level. We'll remember it.
mipsOperatorMipArg.back().mipLevel = index;
return base; // next [] index is to the same base.
} else {
TIntermAggregate* load = new TIntermAggregate(sampler.isImage() ? EOpImageLoad : EOpTextureFetch);
TType sampReturnType;
getTextureReturnType(sampler, sampReturnType);
load->setType(sampReturnType);
load->setLoc(loc);
load->getSequence().push_back(base);
load->getSequence().push_back(index);
// Textures need a MIP. If we saw one go by, use it. Otherwise, use zero.
if (sampler.isTexture()) {
if (! mipsOperatorMipArg.empty()) {
load->getSequence().push_back(mipsOperatorMipArg.back().mipLevel);
mipsOperatorMipArg.pop_back();
} else {
load->getSequence().push_back(intermediate.addConstantUnion(0, loc, true));
}
}
return load;
}
}
}
// Handle operator[] on structured buffers: this indexes into the array element of the buffer.
// indexStructBufferContent returns nullptr if it isn't a structuredbuffer (SSBO).
TIntermTyped* sbArray = indexStructBufferContent(loc, base);
if (sbArray != nullptr) {
if (sbArray == nullptr)
return nullptr;
// Now we'll apply the [] index to that array
const TOperator idxOp = (index->getQualifier().storage == EvqConst) ? EOpIndexDirect : EOpIndexIndirect;
TIntermTyped* element = intermediate.addIndex(idxOp, sbArray, index, loc);
const TType derefType(sbArray->getType(), 0);
element->setType(derefType);
return element;
}
return nullptr;
}
//
// Cast index value to a uint if it isn't already (for operator[], load indexes, etc)
TIntermTyped* HlslParseContext::makeIntegerIndex(TIntermTyped* index)
{
const TBasicType indexBasicType = index->getType().getBasicType();
const int vecSize = index->getType().getVectorSize();
// We can use int types directly as the index
if (indexBasicType == EbtInt || indexBasicType == EbtUint ||
indexBasicType == EbtInt64 || indexBasicType == EbtUint64)
return index;
// Cast index to unsigned integer if it isn't one.
return intermediate.addConversion(EOpConstructUint, TType(EbtUint, EvqTemporary, vecSize), index);
}
//
// Handle seeing a base[index] dereference in the grammar.
//
TIntermTyped* HlslParseContext::handleBracketDereference(const TSourceLoc& loc, TIntermTyped* base, TIntermTyped* index)
{
index = makeIntegerIndex(index);
if (index == nullptr) {
error(loc, " unknown index type ", "", "");
return nullptr;
}
TIntermTyped* result = handleBracketOperator(loc, base, index);
if (result != nullptr)
return result; // it was handled as an operator[]
bool flattened = false;
int indexValue = 0;
if (index->getQualifier().isFrontEndConstant())
indexValue = index->getAsConstantUnion()->getConstArray()[0].getIConst();
variableCheck(base);
if (! base->isArray() && ! base->isMatrix() && ! base->isVector()) {
if (base->getAsSymbolNode())
error(loc, " left of '[' is not of type array, matrix, or vector ",
base->getAsSymbolNode()->getName().c_str(), "");
else
error(loc, " left of '[' is not of type array, matrix, or vector ", "expression", "");
} else if (base->getType().getQualifier().isFrontEndConstant() &&
index->getQualifier().isFrontEndConstant()) {
// both base and index are front-end constants
checkIndex(loc, base->getType(), indexValue);
return intermediate.foldDereference(base, indexValue, loc);
} else {
// at least one of base and index is variable...
if (index->getQualifier().isFrontEndConstant())
checkIndex(loc, base->getType(), indexValue);
if (base->getType().isScalarOrVec1())
result = base;
else if (base->getAsSymbolNode() && wasFlattened(base)) {
if (index->getQualifier().storage != EvqConst)
error(loc, "Invalid variable index to flattened array", base->getAsSymbolNode()->getName().c_str(), "");
result = flattenAccess(base, indexValue);
flattened = (result != base);
} else {
if (index->getQualifier().isFrontEndConstant()) {
if (base->getType().isUnsizedArray())
base->getWritableType().updateImplicitArraySize(indexValue + 1);
else
checkIndex(loc, base->getType(), indexValue);
result = intermediate.addIndex(EOpIndexDirect, base, index, loc);
} else
result = intermediate.addIndex(EOpIndexIndirect, base, index, loc);
}
}
if (result == nullptr) {
// Insert dummy error-recovery result
result = intermediate.addConstantUnion(0.0, EbtFloat, loc);
} else {
// If the array reference was flattened, it has the correct type. E.g, if it was
// a uniform array, it was flattened INTO a set of scalar uniforms, not scalar temps.
// In that case, we preserve the qualifiers.
if (!flattened) {
// Insert valid dereferenced result
TType newType(base->getType(), 0); // dereferenced type
if (base->getType().getQualifier().storage == EvqConst && index->getQualifier().storage == EvqConst)
newType.getQualifier().storage = EvqConst;
else
newType.getQualifier().storage = EvqTemporary;
result->setType(newType);
}
}
return result;
}
// Handle seeing a binary node with a math operation.
TIntermTyped* HlslParseContext::handleBinaryMath(const TSourceLoc& loc, const char* str, TOperator op,
TIntermTyped* left, TIntermTyped* right)
{
TIntermTyped* result = intermediate.addBinaryMath(op, left, right, loc);
if (result == nullptr)
binaryOpError(loc, str, left->getCompleteString(), right->getCompleteString());
return result;
}
// Handle seeing a unary node with a math operation.
TIntermTyped* HlslParseContext::handleUnaryMath(const TSourceLoc& loc, const char* str, TOperator op,
TIntermTyped* childNode)
{
TIntermTyped* result = intermediate.addUnaryMath(op, childNode, loc);
if (result)
return result;
else
unaryOpError(loc, str, childNode->getCompleteString());
return childNode;
}
//
// Return true if the name is a struct buffer method
//
bool HlslParseContext::isStructBufferMethod(const TString& name) const
{
return
name == "GetDimensions" ||
name == "Load" ||
name == "Load2" ||
name == "Load3" ||
name == "Load4" ||
name == "Store" ||
name == "Store2" ||
name == "Store3" ||
name == "Store4" ||
name == "InterlockedAdd" ||
name == "InterlockedAnd" ||
name == "InterlockedCompareExchange" ||
name == "InterlockedCompareStore" ||
name == "InterlockedExchange" ||
name == "InterlockedMax" ||
name == "InterlockedMin" ||
name == "InterlockedOr" ||
name == "InterlockedXor" ||
name == "IncrementCounter" ||
name == "DecrementCounter" ||
name == "Append" ||
name == "Consume";
}
//
// Handle seeing a base.field dereference in the grammar, where 'field' is a
// swizzle or member variable.
//
TIntermTyped* HlslParseContext::handleDotDereference(const TSourceLoc& loc, TIntermTyped* base, const TString& field)
{
variableCheck(base);
if (base->isArray()) {
error(loc, "cannot apply to an array:", ".", field.c_str());
return base;
}
TIntermTyped* result = base;
if (base->getType().getBasicType() == EbtSampler) {
// Handle .mips[mipid][pos] operation on textures
const TSampler& sampler = base->getType().getSampler();
if (sampler.isTexture() && field == "mips") {
// Push a null to signify that we expect a mip level under operator[] next.
mipsOperatorMipArg.push_back(tMipsOperatorData(loc, nullptr));
// Keep 'result' pointing to 'base', since we expect an operator[] to go by next.
} else {
if (field == "mips")
error(loc, "unexpected texture type for .mips[][] operator:",
base->getType().getCompleteString().c_str(), "");
else
error(loc, "unexpected operator on texture type:", field.c_str(),
base->getType().getCompleteString().c_str());
}
} else if (base->isVector() || base->isScalar()) {
TSwizzleSelectors<TVectorSelector> selectors;
parseSwizzleSelector(loc, field, base->getVectorSize(), selectors);
if (base->isScalar()) {
if (selectors.size() == 1)
return result;
else {
TType type(base->getBasicType(), EvqTemporary, selectors.size());
return addConstructor(loc, base, type);
}
}
if (base->getVectorSize() == 1) {
TType scalarType(base->getBasicType(), EvqTemporary, 1);
if (selectors.size() == 1)
return addConstructor(loc, base, scalarType);
else {
TType vectorType(base->getBasicType(), EvqTemporary, selectors.size());
return addConstructor(loc, addConstructor(loc, base, scalarType), vectorType);
}
}
if (base->getType().getQualifier().isFrontEndConstant())
result = intermediate.foldSwizzle(base, selectors, loc);
else {
if (selectors.size() == 1) {
TIntermTyped* index = intermediate.addConstantUnion(selectors[0], loc);
result = intermediate.addIndex(EOpIndexDirect, base, index, loc);
result->setType(TType(base->getBasicType(), EvqTemporary));
} else {
TIntermTyped* index = intermediate.addSwizzle(selectors, loc);
result = intermediate.addIndex(EOpVectorSwizzle, base, index, loc);
result->setType(TType(base->getBasicType(), EvqTemporary, base->getType().getQualifier().precision,
selectors.size()));
}
}
} else if (base->isMatrix()) {
TSwizzleSelectors<TMatrixSelector> selectors;
if (! parseMatrixSwizzleSelector(loc, field, base->getMatrixCols(), base->getMatrixRows(), selectors))
return result;
if (selectors.size() == 1) {
// Representable by m[c][r]
if (base->getType().getQualifier().isFrontEndConstant()) {
result = intermediate.foldDereference(base, selectors[0].coord1, loc);
result = intermediate.foldDereference(result, selectors[0].coord2, loc);
} else {
result = intermediate.addIndex(EOpIndexDirect, base,
intermediate.addConstantUnion(selectors[0].coord1, loc),
loc);
TType dereferencedCol(base->getType(), 0);
result->setType(dereferencedCol);
result = intermediate.addIndex(EOpIndexDirect, result,
intermediate.addConstantUnion(selectors[0].coord2, loc),
loc);
TType dereferenced(dereferencedCol, 0);
result->setType(dereferenced);
}
} else {
int column = getMatrixComponentsColumn(base->getMatrixRows(), selectors);
if (column >= 0) {
// Representable by m[c]
if (base->getType().getQualifier().isFrontEndConstant())
result = intermediate.foldDereference(base, column, loc);
else {
result = intermediate.addIndex(EOpIndexDirect, base, intermediate.addConstantUnion(column, loc),
loc);
TType dereferenced(base->getType(), 0);
result->setType(dereferenced);
}
} else {
// general case, not a column, not a single component
TIntermTyped* index = intermediate.addSwizzle(selectors, loc);
result = intermediate.addIndex(EOpMatrixSwizzle, base, index, loc);
result->setType(TType(base->getBasicType(), EvqTemporary, base->getType().getQualifier().precision,
selectors.size()));
}
}
} else if (base->getBasicType() == EbtStruct || base->getBasicType() == EbtBlock) {
const TTypeList* fields = base->getType().getStruct();
bool fieldFound = false;
int member;
for (member = 0; member < (int)fields->size(); ++member) {
if ((*fields)[member].type->getFieldName() == field) {
fieldFound = true;
break;
}
}
if (fieldFound) {
if (base->getAsSymbolNode() && wasFlattened(base)) {
result = flattenAccess(base, member);
} else {
if (base->getType().getQualifier().storage == EvqConst)
result = intermediate.foldDereference(base, member, loc);
else {
TIntermTyped* index = intermediate.addConstantUnion(member, loc);
result = intermediate.addIndex(EOpIndexDirectStruct, base, index, loc);
result->setType(*(*fields)[member].type);
}
}
} else
error(loc, "no such field in structure", field.c_str(), "");
} else
error(loc, "does not apply to this type:", field.c_str(), base->getType().getCompleteString().c_str());
return result;
}
//
// Return true if the field should be treated as a built-in method.
// Return false otherwise.
//
bool HlslParseContext::isBuiltInMethod(const TSourceLoc&, TIntermTyped* base, const TString& field)
{
if (base == nullptr)
return false;
variableCheck(base);
if (base->getType().getBasicType() == EbtSampler) {
return true;
} else if (isStructBufferType(base->getType()) && isStructBufferMethod(field)) {
return true;
} else if (field == "Append" ||
field == "RestartStrip") {
// We cannot check the type here: it may be sanitized if we're not compiling a geometry shader, but
// the code is around in the shader source.
return true;
} else
return false;
}
// Independently establish a built-in that is a member of a structure.
// 'arraySizes' are what's desired for the independent built-in, whatever
// the higher-level source/expression of them was.
void HlslParseContext::splitBuiltIn(const TString& baseName, const TType& memberType, const TArraySizes* arraySizes,
const TQualifier& outerQualifier)
{
// Because of arrays of structs, we might be asked more than once,
// but the arraySizes passed in should have captured the whole thing
// the first time.
// However, clip/cull rely on multiple updates.
if (!isClipOrCullDistance(memberType))
if (splitBuiltIns.find(tInterstageIoData(memberType.getQualifier().builtIn, outerQualifier.storage)) !=
splitBuiltIns.end())
return;
TVariable* ioVar = makeInternalVariable(baseName + "." + memberType.getFieldName(), memberType);
if (arraySizes != nullptr && !memberType.isArray())
ioVar->getWritableType().copyArraySizes(*arraySizes);
splitBuiltIns[tInterstageIoData(memberType.getQualifier().builtIn, outerQualifier.storage)] = ioVar;
if (!isClipOrCullDistance(ioVar->getType()))
trackLinkage(*ioVar);
// Merge qualifier from the user structure
mergeQualifiers(ioVar->getWritableType().getQualifier(), outerQualifier);
// Fix the builtin type if needed (e.g, some types require fixed array sizes, no matter how the
// shader declared them). This is done after mergeQualifiers(), in case fixBuiltInIoType looks
// at the qualifier to determine e.g, in or out qualifications.
fixBuiltInIoType(ioVar->getWritableType());
// But, not location, we're losing that
ioVar->getWritableType().getQualifier().layoutLocation = TQualifier::layoutLocationEnd;
}
// Split a type into
// 1. a struct of non-I/O members
// 2. a collection of independent I/O variables
void HlslParseContext::split(const TVariable& variable)
{
// Create a new variable:
const TType& clonedType = *variable.getType().clone();
const TType& splitType = split(clonedType, variable.getName(), clonedType.getQualifier());
splitNonIoVars[variable.getUniqueId()] = makeInternalVariable(variable.getName(), splitType);
}
// Recursive implementation of split().
// Returns reference to the modified type.
const TType& HlslParseContext::split(const TType& type, const TString& name, const TQualifier& outerQualifier)
{
if (type.isStruct()) {
TTypeList* userStructure = type.getWritableStruct();
for (auto ioType = userStructure->begin(); ioType != userStructure->end(); ) {
if (ioType->type->isBuiltIn()) {
// move out the built-in
splitBuiltIn(name, *ioType->type, type.getArraySizes(), outerQualifier);
ioType = userStructure->erase(ioType);
} else {
split(*ioType->type, name + "." + ioType->type->getFieldName(), outerQualifier);
++ioType;
}
}
}
return type;
}
// Is this an aggregate that should be flattened?
// Can be applied to intermediate levels of type in a hierarchy.
// Some things like flattening uniform arrays are only about the top level
// of the aggregate, triggered on 'topLevel'.
bool HlslParseContext::shouldFlatten(const TType& type, TStorageQualifier qualifier, bool topLevel) const
{
switch (qualifier) {
case EvqVaryingIn:
case EvqVaryingOut:
return type.isStruct() || type.isArray();
case EvqUniform:
return (type.isArray() && intermediate.getFlattenUniformArrays() && topLevel) ||
(type.isStruct() && type.containsOpaque());
default:
return false;
};
}
// Top level variable flattening: construct data
void HlslParseContext::flatten(const TVariable& variable, bool linkage)
{
const TType& type = variable.getType();
// If it's a standalone built-in, there is nothing to flatten
if (type.isBuiltIn() && !type.isStruct())
return;
auto entry = flattenMap.insert(std::make_pair(variable.getUniqueId(),
TFlattenData(type.getQualifier().layoutBinding,
type.getQualifier().layoutLocation)));
// the item is a map pair, so first->second is the TFlattenData itself.
flatten(variable, type, entry.first->second, variable.getName(), linkage, type.getQualifier(), nullptr);
}
// Recursively flatten the given variable at the provided type, building the flattenData as we go.
//
// This is mutually recursive with flattenStruct and flattenArray.
// We are going to flatten an arbitrarily nested composite structure into a linear sequence of
// members, and later on, we want to turn a path through the tree structure into a final
// location in this linear sequence.
//
// If the tree was N-ary, that can be directly calculated. However, we are dealing with
// arbitrary numbers - perhaps a struct of 7 members containing an array of 3. Thus, we must
// build a data structure to allow the sequence of bracket and dot operators on arrays and
// structs to arrive at the proper member.
//
// To avoid storing a tree with pointers, we are going to flatten the tree into a vector of integers.
// The leaves are the indexes into the flattened member array.
// Each level will have the next location for the Nth item stored sequentially, so for instance:
//
// struct { float2 a[2]; int b; float4 c[3] };
//
// This will produce the following flattened tree:
// Pos: 0 1 2 3 4 5 6 7 8 9 10 11 12 13
// (3, 7, 8, 5, 6, 0, 1, 2, 11, 12, 13, 3, 4, 5}
//
// Given a reference to mystruct.c[1], the access chain is (2,1), so we traverse:
// (0+2) = 8 --> (8+1) = 12 --> 12 = 4
//
// so the 4th flattened member in traversal order is ours.
//
int HlslParseContext::flatten(const TVariable& variable, const TType& type,
TFlattenData& flattenData, TString name, bool linkage,
const TQualifier& outerQualifier,
const TArraySizes* builtInArraySizes)
{
// If something is an arrayed struct, the array flattener will recursively call flatten()
// to then flatten the struct, so this is an "if else": we don't do both.
if (type.isArray())
return flattenArray(variable, type, flattenData, name, linkage, outerQualifier);
else if (type.isStruct())
return flattenStruct(variable, type, flattenData, name, linkage, outerQualifier, builtInArraySizes);
else {
assert(0); // should never happen
return -1;
}
}
// Add a single flattened member to the flattened data being tracked for the composite
// Returns true for the final flattening level.
int HlslParseContext::addFlattenedMember(const TVariable& variable, const TType& type, TFlattenData& flattenData,
const TString& memberName, bool linkage,
const TQualifier& outerQualifier,
const TArraySizes* builtInArraySizes)
{
if (!shouldFlatten(type, outerQualifier.storage, false)) {
// This is as far as we flatten. Insert the variable.
TVariable* memberVariable = makeInternalVariable(memberName, type);
mergeQualifiers(memberVariable->getWritableType().getQualifier(), variable.getType().getQualifier());
if (flattenData.nextBinding != TQualifier::layoutBindingEnd)
memberVariable->getWritableType().getQualifier().layoutBinding = flattenData.nextBinding++;
if (memberVariable->getType().isBuiltIn()) {
// inherited locations are nonsensical for built-ins (TODO: what if semantic had a number)
memberVariable->getWritableType().getQualifier().layoutLocation = TQualifier::layoutLocationEnd;
} else {
// inherited locations must be auto bumped, not replicated
if (flattenData.nextLocation != TQualifier::layoutLocationEnd) {
memberVariable->getWritableType().getQualifier().layoutLocation = flattenData.nextLocation;
flattenData.nextLocation += intermediate.computeTypeLocationSize(memberVariable->getType(), language);
nextOutLocation = std::max(nextOutLocation, flattenData.nextLocation);
}
}
flattenData.offsets.push_back(static_cast<int>(flattenData.members.size()));
flattenData.members.push_back(memberVariable);
if (linkage)
trackLinkage(*memberVariable);
return static_cast<int>(flattenData.offsets.size()) - 1; // location of the member reference
} else {
// Further recursion required
return flatten(variable, type, flattenData, memberName, linkage, outerQualifier, builtInArraySizes);
}
}
// Figure out the mapping between an aggregate's top members and an
// equivalent set of individual variables.
//
// Assumes shouldFlatten() or equivalent was called first.
int HlslParseContext::flattenStruct(const TVariable& variable, const TType& type,
TFlattenData& flattenData, TString name, bool linkage,
const TQualifier& outerQualifier,
const TArraySizes* builtInArraySizes)
{
assert(type.isStruct());
auto members = *type.getStruct();
// Reserve space for this tree level.
int start = static_cast<int>(flattenData.offsets.size());
int pos = start;
flattenData.offsets.resize(int(pos + members.size()), -1);
for (int member = 0; member < (int)members.size(); ++member) {
TType& dereferencedType = *members[member].type;
if (dereferencedType.isBuiltIn())
splitBuiltIn(variable.getName(), dereferencedType, builtInArraySizes, outerQualifier);
else {
const int mpos = addFlattenedMember(variable, dereferencedType, flattenData,
name + "." + dereferencedType.getFieldName(),
linkage, outerQualifier,
builtInArraySizes == nullptr && dereferencedType.isArray()
? dereferencedType.getArraySizes()
: builtInArraySizes);
flattenData.offsets[pos++] = mpos;
}
}
return start;
}
// Figure out mapping between an array's members and an
// equivalent set of individual variables.
//
// Assumes shouldFlatten() or equivalent was called first.
int HlslParseContext::flattenArray(const TVariable& variable, const TType& type,
TFlattenData& flattenData, TString name, bool linkage,
const TQualifier& outerQualifier)
{
assert(type.isSizedArray());
const int size = type.getOuterArraySize();
const TType dereferencedType(type, 0);
if (name.empty())
name = variable.getName();
// Reserve space for this tree level.
int start = static_cast<int>(flattenData.offsets.size());
int pos = start;
flattenData.offsets.resize(int(pos + size), -1);
for (int element=0; element < size; ++element) {
char elementNumBuf[20]; // sufficient for MAXINT
snprintf(elementNumBuf, sizeof(elementNumBuf)-1, "[%d]", element);
const int mpos = addFlattenedMember(variable, dereferencedType, flattenData,
name + elementNumBuf, linkage, outerQualifier,
type.getArraySizes());
flattenData.offsets[pos++] = mpos;
}
return start;
}
// Return true if we have flattened this node.
bool HlslParseContext::wasFlattened(const TIntermTyped* node) const
{
return node != nullptr && node->getAsSymbolNode() != nullptr &&
wasFlattened(node->getAsSymbolNode()->getId());
}
// Return true if we have split this structure
bool HlslParseContext::wasSplit(const TIntermTyped* node) const
{
return node != nullptr && node->getAsSymbolNode() != nullptr &&
wasSplit(node->getAsSymbolNode()->getId());
}
// Turn an access into an aggregate that was flattened to instead be
// an access to the individual variable the member was flattened to.
// Assumes wasFlattened() or equivalent was called first.
TIntermTyped* HlslParseContext::flattenAccess(TIntermTyped* base, int member)
{
const TType dereferencedType(base->getType(), member); // dereferenced type
const TIntermSymbol& symbolNode = *base->getAsSymbolNode();
TIntermTyped* flattened = flattenAccess(symbolNode.getId(), member, base->getQualifier().storage,
dereferencedType, symbolNode.getFlattenSubset());
return flattened ? flattened : base;
}
TIntermTyped* HlslParseContext::flattenAccess(int uniqueId, int member, TStorageQualifier outerStorage,
const TType& dereferencedType, int subset)
{
const auto flattenData = flattenMap.find(uniqueId);
if (flattenData == flattenMap.end())
return nullptr;
// Calculate new cumulative offset from the packed tree
int newSubset = flattenData->second.offsets[subset >= 0 ? subset + member : member];
TIntermSymbol* subsetSymbol;
if (!shouldFlatten(dereferencedType, outerStorage, false)) {
// Finished flattening: create symbol for variable
member = flattenData->second.offsets[newSubset];
const TVariable* memberVariable = flattenData->second.members[member];
subsetSymbol = intermediate.addSymbol(*memberVariable);
subsetSymbol->setFlattenSubset(-1);
} else {
// If this is not the final flattening, accumulate the position and return
// an object of the partially dereferenced type.
subsetSymbol = new TIntermSymbol(uniqueId, "flattenShadow", dereferencedType);
subsetSymbol->setFlattenSubset(newSubset);
}
return subsetSymbol;
}
// For finding where the first leaf is in a subtree of a multi-level aggregate
// that is just getting a subset assigned. Follows the same logic as flattenAccess,
// but logically going down the "left-most" tree branch each step of the way.
//
// Returns the offset into the first leaf of the subset.
int HlslParseContext::findSubtreeOffset(const TIntermNode& node) const
{
const TIntermSymbol* sym = node.getAsSymbolNode();
if (sym == nullptr)
return 0;
if (!sym->isArray() && !sym->isStruct())
return 0;
int subset = sym->getFlattenSubset();
if (subset == -1)
return 0;
// Getting this far means a partial aggregate is identified by the flatten subset.
// Find the first leaf of the subset.
const auto flattenData = flattenMap.find(sym->getId());
if (flattenData == flattenMap.end())
return 0;
return findSubtreeOffset(sym->getType(), subset, flattenData->second.offsets);
do {
subset = flattenData->second.offsets[subset];
} while (true);
}
// Recursively do the desent
int HlslParseContext::findSubtreeOffset(const TType& type, int subset, const TVector<int>& offsets) const
{
if (!type.isArray() && !type.isStruct())
return offsets[subset];
TType derefType(type, 0);
return findSubtreeOffset(derefType, offsets[subset], offsets);
};
// Find and return the split IO TVariable for id, or nullptr if none.
TVariable* HlslParseContext::getSplitNonIoVar(int id) const
{
const auto splitNonIoVar = splitNonIoVars.find(id);
if (splitNonIoVar == splitNonIoVars.end())
return nullptr;
return splitNonIoVar->second;
}
// Pass through to base class after remembering built-in mappings.
void HlslParseContext::trackLinkage(TSymbol& symbol)
{
TBuiltInVariable biType = symbol.getType().getQualifier().builtIn;
if (biType != EbvNone)
builtInTessLinkageSymbols[biType] = symbol.clone();
TParseContextBase::trackLinkage(symbol);
}
// Returns true if the built-in is a clip or cull distance variable.
bool HlslParseContext::isClipOrCullDistance(TBuiltInVariable builtIn)
{
return builtIn == EbvClipDistance || builtIn == EbvCullDistance;
}
// Some types require fixed array sizes in SPIR-V, but can be scalars or
// arrays of sizes SPIR-V doesn't allow. For example, tessellation factors.
// This creates the right size. A conversion is performed when the internal
// type is copied to or from the external type. This corrects the externally
// facing input or output type to abide downstream semantics.
void HlslParseContext::fixBuiltInIoType(TType& type)
{
int requiredArraySize = 0;
int requiredVectorSize = 0;
switch (type.getQualifier().builtIn) {
case EbvTessLevelOuter: requiredArraySize = 4; break;
case EbvTessLevelInner: requiredArraySize = 2; break;
case EbvSampleMask:
{
// Promote scalar to array of size 1. Leave existing arrays alone.
if (!type.isArray())
requiredArraySize = 1;
break;
}
case EbvWorkGroupId: requiredVectorSize = 3; break;
case EbvGlobalInvocationId: requiredVectorSize = 3; break;
case EbvLocalInvocationId: requiredVectorSize = 3; break;
case EbvTessCoord: requiredVectorSize = 3; break;
default:
if (isClipOrCullDistance(type)) {
const int loc = type.getQualifier().layoutLocation;
if (type.getQualifier().builtIn == EbvClipDistance) {
if (type.getQualifier().storage == EvqVaryingIn)
clipSemanticNSizeIn[loc] = type.getVectorSize();
else
clipSemanticNSizeOut[loc] = type.getVectorSize();
} else {
if (type.getQualifier().storage == EvqVaryingIn)
cullSemanticNSizeIn[loc] = type.getVectorSize();
else
cullSemanticNSizeOut[loc] = type.getVectorSize();
}
}
return;
}
// Alter or set vector size as needed.
if (requiredVectorSize > 0) {
TType newType(type.getBasicType(), type.getQualifier().storage, requiredVectorSize);
newType.getQualifier() = type.getQualifier();
type.shallowCopy(newType);
}
// Alter or set array size as needed.
if (requiredArraySize > 0) {
if (!type.isArray() || type.getOuterArraySize() != requiredArraySize) {
TArraySizes* arraySizes = new TArraySizes;
arraySizes->addInnerSize(requiredArraySize);
type.transferArraySizes(arraySizes);
}
}
}
// Variables that correspond to the user-interface in and out of a stage
// (not the built-in interface) are
// - assigned locations
// - registered as a linkage node (part of the stage's external interface).
// Assumes it is called in the order in which locations should be assigned.
void HlslParseContext::assignToInterface(TVariable& variable)
{
const auto assignLocation = [&](TVariable& variable) {
TType& type = variable.getWritableType();
if (!type.isStruct() || type.getStruct()->size() > 0) {
TQualifier& qualifier = type.getQualifier();
if (qualifier.storage == EvqVaryingIn || qualifier.storage == EvqVaryingOut) {
if (qualifier.builtIn == EbvNone && !qualifier.hasLocation()) {
// Strip off the outer array dimension for those having an extra one.
int size;
if (type.isArray() && qualifier.isArrayedIo(language)) {
TType elementType(type, 0);
size = intermediate.computeTypeLocationSize(elementType, language);
} else
size = intermediate.computeTypeLocationSize(type, language);
if (qualifier.storage == EvqVaryingIn) {
variable.getWritableType().getQualifier().layoutLocation = nextInLocation;
nextInLocation += size;
} else {
variable.getWritableType().getQualifier().layoutLocation = nextOutLocation;
nextOutLocation += size;
}
}
trackLinkage(variable);
}
}
};
if (wasFlattened(variable.getUniqueId())) {
auto& memberList = flattenMap[variable.getUniqueId()].members;
for (auto member = memberList.begin(); member != memberList.end(); ++member)
assignLocation(**member);
} else if (wasSplit(variable.getUniqueId())) {
TVariable* splitIoVar = getSplitNonIoVar(variable.getUniqueId());
assignLocation(*splitIoVar);
} else {
assignLocation(variable);
}
}
//
// Handle seeing a function declarator in the grammar. This is the precursor
// to recognizing a function prototype or function definition.
//
void HlslParseContext::handleFunctionDeclarator(const TSourceLoc& loc, TFunction& function, bool prototype)
{
//
// Multiple declarations of the same function name are allowed.
//
// If this is a definition, the definition production code will check for redefinitions
// (we don't know at this point if it's a definition or not).
//
bool builtIn;
TSymbol* symbol = symbolTable.find(function.getMangledName(), &builtIn);
const TFunction* prevDec = symbol ? symbol->getAsFunction() : 0;
if (prototype) {
// All built-in functions are defined, even though they don't have a body.
// Count their prototype as a definition instead.
if (symbolTable.atBuiltInLevel())
function.setDefined();
else {
if (prevDec && ! builtIn)
symbol->getAsFunction()->setPrototyped(); // need a writable one, but like having prevDec as a const
function.setPrototyped();
}
}
// This insert won't actually insert it if it's a duplicate signature, but it will still check for
// other forms of name collisions.
if (! symbolTable.insert(function))
error(loc, "function name is redeclaration of existing name", function.getName().c_str(), "");
}
// For struct buffers with counters, we must pass the counter buffer as hidden parameter.
// This adds the hidden parameter to the parameter list in 'paramNodes' if needed.
// Otherwise, it's a no-op
void HlslParseContext::addStructBufferHiddenCounterParam(const TSourceLoc& loc, TParameter& param,
TIntermAggregate*& paramNodes)
{
if (! hasStructBuffCounter(*param.type))
return;
const TString counterBlockName(intermediate.addCounterBufferName(*param.name));
TType counterType;
counterBufferType(loc, counterType);
TVariable *variable = makeInternalVariable(counterBlockName, counterType);
if (! symbolTable.insert(*variable))
error(loc, "redefinition", variable->getName().c_str(), "");
paramNodes = intermediate.growAggregate(paramNodes,
intermediate.addSymbol(*variable, loc),
loc);
}
//
// Handle seeing the function prototype in front of a function definition in the grammar.
// The body is handled after this function returns.
//
// Returns an aggregate of parameter-symbol nodes.
//
TIntermAggregate* HlslParseContext::handleFunctionDefinition(const TSourceLoc& loc, TFunction& function,
const TAttributes& attributes,
TIntermNode*& entryPointTree)
{
currentCaller = function.getMangledName();
TSymbol* symbol = symbolTable.find(function.getMangledName());
TFunction* prevDec = symbol ? symbol->getAsFunction() : nullptr;
if (prevDec == nullptr)
error(loc, "can't find function", function.getName().c_str(), "");
// Note: 'prevDec' could be 'function' if this is the first time we've seen function
// as it would have just been put in the symbol table. Otherwise, we're looking up
// an earlier occurrence.
if (prevDec && prevDec->isDefined()) {
// Then this function already has a body.
error(loc, "function already has a body", function.getName().c_str(), "");
}
if (prevDec && ! prevDec->isDefined()) {
prevDec->setDefined();
// Remember the return type for later checking for RETURN statements.
currentFunctionType = &(prevDec->getType());
} else
currentFunctionType = new TType(EbtVoid);
functionReturnsValue = false;
// Entry points need different I/O and other handling, transform it so the
// rest of this function doesn't care.
entryPointTree = transformEntryPoint(loc, function, attributes);
//
// New symbol table scope for body of function plus its arguments
//
pushScope();
//
// Insert parameters into the symbol table.
// If the parameter has no name, it's not an error, just don't insert it
// (could be used for unused args).
//
// Also, accumulate the list of parameters into the AST, so lower level code
// knows where to find parameters.
//
TIntermAggregate* paramNodes = new TIntermAggregate;
for (int i = 0; i < function.getParamCount(); i++) {
TParameter& param = function[i];
if (param.name != nullptr) {
TVariable *variable = new TVariable(param.name, *param.type);
if (i == 0 && function.hasImplicitThis()) {
// Anonymous 'this' members are already in a symbol-table level,
// and we need to know what function parameter to map them to.
symbolTable.makeInternalVariable(*variable);
pushImplicitThis(variable);
}
// Insert the parameters with name in the symbol table.
if (! symbolTable.insert(*variable))
error(loc, "redefinition", variable->getName().c_str(), "");
// Add parameters to the AST list.
if (shouldFlatten(variable->getType(), variable->getType().getQualifier().storage, true)) {
// Expand the AST parameter nodes (but not the name mangling or symbol table view)
// for structures that need to be flattened.
flatten(*variable, false);
const TTypeList* structure = variable->getType().getStruct();
for (int mem = 0; mem < (int)structure->size(); ++mem) {
paramNodes = intermediate.growAggregate(paramNodes,
flattenAccess(variable->getUniqueId(), mem,
variable->getType().getQualifier().storage,
*(*structure)[mem].type),
loc);
}
} else {
// Add the parameter to the AST
paramNodes = intermediate.growAggregate(paramNodes,
intermediate.addSymbol(*variable, loc),
loc);
}
// Add hidden AST parameter for struct buffer counters, if needed.
addStructBufferHiddenCounterParam(loc, param, paramNodes);
} else
paramNodes = intermediate.growAggregate(paramNodes, intermediate.addSymbol(*param.type, loc), loc);
}
if (function.hasIllegalImplicitThis())
pushImplicitThis(nullptr);
intermediate.setAggregateOperator(paramNodes, EOpParameters, TType(EbtVoid), loc);
loopNestingLevel = 0;
controlFlowNestingLevel = 0;
postEntryPointReturn = false;
return paramNodes;
}
// Handle all [attrib] attribute for the shader entry point
void HlslParseContext::handleEntryPointAttributes(const TSourceLoc& loc, const TAttributes& attributes)
{
for (auto it = attributes.begin(); it != attributes.end(); ++it) {
switch (it->name) {
case EatNumThreads:
{
const TIntermSequence& sequence = it->args->getSequence();
for (int lid = 0; lid < int(sequence.size()); ++lid)
intermediate.setLocalSize(lid, sequence[lid]->getAsConstantUnion()->getConstArray()[0].getIConst());
break;
}
case EatMaxVertexCount:
{
int maxVertexCount;
if (! it->getInt(maxVertexCount)) {
error(loc, "invalid maxvertexcount", "", "");
} else {
if (! intermediate.setVertices(maxVertexCount))
error(loc, "cannot change previously set maxvertexcount attribute", "", "");
}
break;
}
case EatPatchConstantFunc:
{
TString pcfName;
if (! it->getString(pcfName, 0, false)) {
error(loc, "invalid patch constant function", "", "");
} else {
patchConstantFunctionName = pcfName;
}
break;
}
case EatDomain:
{
// Handle [domain("...")]
TString domainStr;
if (! it->getString(domainStr)) {
error(loc, "invalid domain", "", "");
} else {
TLayoutGeometry domain = ElgNone;
if (domainStr == "tri") {
domain = ElgTriangles;
} else if (domainStr == "quad") {
domain = ElgQuads;
} else if (domainStr == "isoline") {
domain = ElgIsolines;
} else {
error(loc, "unsupported domain type", domainStr.c_str(), "");
}
if (language == EShLangTessEvaluation) {
if (! intermediate.setInputPrimitive(domain))
error(loc, "cannot change previously set domain", TQualifier::getGeometryString(domain), "");
} else {
if (! intermediate.setOutputPrimitive(domain))
error(loc, "cannot change previously set domain", TQualifier::getGeometryString(domain), "");
}
}
break;
}
case EatOutputTopology:
{
// Handle [outputtopology("...")]
TString topologyStr;
if (! it->getString(topologyStr)) {
error(loc, "invalid outputtopology", "", "");
} else {
TVertexOrder vertexOrder = EvoNone;
TLayoutGeometry primitive = ElgNone;
if (topologyStr == "point") {
intermediate.setPointMode();
} else if (topologyStr == "line") {
primitive = ElgIsolines;
} else if (topologyStr == "triangle_cw") {
vertexOrder = EvoCw;
primitive = ElgTriangles;
} else if (topologyStr == "triangle_ccw") {
vertexOrder = EvoCcw;
primitive = ElgTriangles;
} else {
error(loc, "unsupported outputtopology type", topologyStr.c_str(), "");
}
if (vertexOrder != EvoNone) {
if (! intermediate.setVertexOrder(vertexOrder)) {
error(loc, "cannot change previously set outputtopology",
TQualifier::getVertexOrderString(vertexOrder), "");
}
}
if (primitive != ElgNone)
intermediate.setOutputPrimitive(primitive);
}
break;
}
case EatPartitioning:
{
// Handle [partitioning("...")]
TString partitionStr;
if (! it->getString(partitionStr)) {
error(loc, "invalid partitioning", "", "");
} else {
TVertexSpacing partitioning = EvsNone;
if (partitionStr == "integer") {
partitioning = EvsEqual;
} else if (partitionStr == "fractional_even") {
partitioning = EvsFractionalEven;
} else if (partitionStr == "fractional_odd") {
partitioning = EvsFractionalOdd;
//} else if (partition == "pow2") { // TODO: currently nothing to map this to.
} else {
error(loc, "unsupported partitioning type", partitionStr.c_str(), "");
}
if (! intermediate.setVertexSpacing(partitioning))
error(loc, "cannot change previously set partitioning",
TQualifier::getVertexSpacingString(partitioning), "");
}
break;
}
case EatOutputControlPoints:
{
// Handle [outputcontrolpoints("...")]
int ctrlPoints;
if (! it->getInt(ctrlPoints)) {
error(loc, "invalid outputcontrolpoints", "", "");
} else {
if (! intermediate.setVertices(ctrlPoints)) {
error(loc, "cannot change previously set outputcontrolpoints attribute", "", "");
}
}
break;
}
case EatEarlyDepthStencil:
intermediate.setEarlyFragmentTests();
break;
case EatBuiltIn:
case EatLocation:
// tolerate these because of dual use of entrypoint and type attributes
break;
default:
warn(loc, "attribute does not apply to entry point", "", "");
break;
}
}
}
// Update the given type with any type-like attribute information in the
// attributes.
void HlslParseContext::transferTypeAttributes(const TSourceLoc& loc, const TAttributes& attributes, TType& type,
bool allowEntry)
{
if (attributes.size() == 0)
return;
int value;
TString builtInString;
for (auto it = attributes.begin(); it != attributes.end(); ++it) {
switch (it->name) {
case EatLocation:
// location
if (it->getInt(value))
type.getQualifier().layoutLocation = value;
else
error(loc, "needs a literal integer", "location", "");
break;
case EatBinding:
// binding
if (it->getInt(value)) {
type.getQualifier().layoutBinding = value;
type.getQualifier().layoutSet = 0;
} else
error(loc, "needs a literal integer", "binding", "");
// set
if (it->getInt(value, 1))
type.getQualifier().layoutSet = value;
break;
case EatGlobalBinding:
// global cbuffer binding
if (it->getInt(value))
globalUniformBinding = value;
else
error(loc, "needs a literal integer", "global binding", "");
// global cbuffer set
if (it->getInt(value, 1))
globalUniformSet = value;
break;
case EatInputAttachment:
// input attachment
if (it->getInt(value))
type.getQualifier().layoutAttachment = value;
else
error(loc, "needs a literal integer", "input attachment", "");
break;
case EatBuiltIn:
// PointSize built-in
if (it->getString(builtInString, 0, false)) {
if (builtInString == "PointSize")
type.getQualifier().builtIn = EbvPointSize;
}
break;
case EatPushConstant:
// push_constant
type.getQualifier().layoutPushConstant = true;
break;
case EatConstantId:
// specialization constant
if (it->getInt(value)) {
TSourceLoc loc;
loc.init();
setSpecConstantId(loc, type.getQualifier(), value);
}
break;
// image formats
case EatFormatRgba32f: type.getQualifier().layoutFormat = ElfRgba32f; break;
case EatFormatRgba16f: type.getQualifier().layoutFormat = ElfRgba16f; break;
case EatFormatR32f: type.getQualifier().layoutFormat = ElfR32f; break;
case EatFormatRgba8: type.getQualifier().layoutFormat = ElfRgba8; break;
case EatFormatRgba8Snorm: type.getQualifier().layoutFormat = ElfRgba8Snorm; break;
case EatFormatRg32f: type.getQualifier().layoutFormat = ElfRg32f; break;
case EatFormatRg16f: type.getQualifier().layoutFormat = ElfRg16f; break;
case EatFormatR11fG11fB10f: type.getQualifier().layoutFormat = ElfR11fG11fB10f; break;
case EatFormatR16f: type.getQualifier().layoutFormat = ElfR16f; break;
case EatFormatRgba16: type.getQualifier().layoutFormat = ElfRgba16; break;
case EatFormatRgb10A2: type.getQualifier().layoutFormat = ElfRgb10A2; break;
case EatFormatRg16: type.getQualifier().layoutFormat = ElfRg16; break;
case EatFormatRg8: type.getQualifier().layoutFormat = ElfRg8; break;
case EatFormatR16: type.getQualifier().layoutFormat = ElfR16; break;
case EatFormatR8: type.getQualifier().layoutFormat = ElfR8; break;
case EatFormatRgba16Snorm: type.getQualifier().layoutFormat = ElfRgba16Snorm; break;
case EatFormatRg16Snorm: type.getQualifier().layoutFormat = ElfRg16Snorm; break;
case EatFormatRg8Snorm: type.getQualifier().layoutFormat = ElfRg8Snorm; break;
case EatFormatR16Snorm: type.getQualifier().layoutFormat = ElfR16Snorm; break;
case EatFormatR8Snorm: type.getQualifier().layoutFormat = ElfR8Snorm; break;
case EatFormatRgba32i: type.getQualifier().layoutFormat = ElfRgba32i; break;
case EatFormatRgba16i: type.getQualifier().layoutFormat = ElfRgba16i; break;
case EatFormatRgba8i: type.getQualifier().layoutFormat = ElfRgba8i; break;
case EatFormatR32i: type.getQualifier().layoutFormat = ElfR32i; break;
case EatFormatRg32i: type.getQualifier().layoutFormat = ElfRg32i; break;
case EatFormatRg16i: type.getQualifier().layoutFormat = ElfRg16i; break;
case EatFormatRg8i: type.getQualifier().layoutFormat = ElfRg8i; break;
case EatFormatR16i: type.getQualifier().layoutFormat = ElfR16i; break;
case EatFormatR8i: type.getQualifier().layoutFormat = ElfR8i; break;
case EatFormatRgba32ui: type.getQualifier().layoutFormat = ElfRgba32ui; break;
case EatFormatRgba16ui: type.getQualifier().layoutFormat = ElfRgba16ui; break;
case EatFormatRgba8ui: type.getQualifier().layoutFormat = ElfRgba8ui; break;
case EatFormatR32ui: type.getQualifier().layoutFormat = ElfR32ui; break;
case EatFormatRgb10a2ui: type.getQualifier().layoutFormat = ElfRgb10a2ui; break;
case EatFormatRg32ui: type.getQualifier().layoutFormat = ElfRg32ui; break;
case EatFormatRg16ui: type.getQualifier().layoutFormat = ElfRg16ui; break;
case EatFormatRg8ui: type.getQualifier().layoutFormat = ElfRg8ui; break;
case EatFormatR16ui: type.getQualifier().layoutFormat = ElfR16ui; break;
case EatFormatR8ui: type.getQualifier().layoutFormat = ElfR8ui; break;
case EatFormatUnknown: type.getQualifier().layoutFormat = ElfNone; break;
case EatNonWritable: type.getQualifier().readonly = true; break;
case EatNonReadable: type.getQualifier().writeonly = true; break;
default:
if (! allowEntry)
warn(loc, "attribute does not apply to a type", "", "");
break;
}
}
}
//
// Do all special handling for the entry point, including wrapping
// the shader's entry point with the official entry point that will call it.
//
// The following:
//
// retType shaderEntryPoint(args...) // shader declared entry point
// { body }
//
// Becomes
//
// out retType ret;
// in iargs<that are input>...;
// out oargs<that are output> ...;
//
// void shaderEntryPoint() // synthesized, but official, entry point
// {
// args<that are input> = iargs...;
// ret = @shaderEntryPoint(args...);
// oargs = args<that are output>...;
// }
// retType @shaderEntryPoint(args...)
// { body }
//
// The symbol table will still map the original entry point name to the
// the modified function and its new name:
//
// symbol table: shaderEntryPoint -> @shaderEntryPoint
//
// Returns nullptr if no entry-point tree was built, otherwise, returns
// a subtree that creates the entry point.
//
TIntermNode* HlslParseContext::transformEntryPoint(const TSourceLoc& loc, TFunction& userFunction,
const TAttributes& attributes)
{
// Return true if this is a tessellation patch constant function input to a domain shader.
const auto isDsPcfInput = [this](const TType& type) {
return language == EShLangTessEvaluation &&
type.contains([](const TType* t) {
return t->getQualifier().builtIn == EbvTessLevelOuter ||
t->getQualifier().builtIn == EbvTessLevelInner;
});
};
// if we aren't in the entry point, fix the IO as such and exit
if (userFunction.getName().compare(intermediate.getEntryPointName().c_str()) != 0) {
remapNonEntryPointIO(userFunction);
return nullptr;
}
entryPointFunction = &userFunction; // needed in finish()
// Handle entry point attributes
handleEntryPointAttributes(loc, attributes);
// entry point logic...
// Move parameters and return value to shader in/out
TVariable* entryPointOutput; // gets created in remapEntryPointIO
TVector<TVariable*> inputs;
TVector<TVariable*> outputs;
remapEntryPointIO(userFunction, entryPointOutput, inputs, outputs);
// Further this return/in/out transform by flattening, splitting, and assigning locations
const auto makeVariableInOut = [&](TVariable& variable) {
if (variable.getType().isStruct()) {
if (variable.getType().getQualifier().isArrayedIo(language)) {
if (variable.getType().containsBuiltIn())
split(variable);
} else if (shouldFlatten(variable.getType(), EvqVaryingIn /* not assigned yet, but close enough */, true))
flatten(variable, false /* don't track linkage here, it will be tracked in assignToInterface() */);
}
// TODO: flatten arrays too
// TODO: flatten everything in I/O
// TODO: replace all split with flatten, make all paths can create flattened I/O, then split code can be removed
// For clip and cull distance, multiple output variables potentially get merged
// into one in assignClipCullDistance. That code in assignClipCullDistance
// handles the interface logic, so we avoid it here in that case.
if (!isClipOrCullDistance(variable.getType()))
assignToInterface(variable);
};
if (entryPointOutput != nullptr)
makeVariableInOut(*entryPointOutput);
for (auto it = inputs.begin(); it != inputs.end(); ++it)
if (!isDsPcfInput((*it)->getType())) // wait until the end for PCF input (see comment below)
makeVariableInOut(*(*it));
for (auto it = outputs.begin(); it != outputs.end(); ++it)
makeVariableInOut(*(*it));
// In the domain shader, PCF input must be at the end of the linkage. That's because in the
// hull shader there is no ordering: the output comes from the separate PCF, which does not
// participate in the argument list. That is always put at the end of the HS linkage, so the
// input side of the DS must match. The argument may be in any position in the DS argument list
// however, so this ensures the linkage is built in the correct order regardless of argument order.
if (language == EShLangTessEvaluation) {
for (auto it = inputs.begin(); it != inputs.end(); ++it)
if (isDsPcfInput((*it)->getType()))
makeVariableInOut(*(*it));
}
// Synthesize the call
pushScope(); // matches the one in handleFunctionBody()
// new signature
TType voidType(EbtVoid);
TFunction synthEntryPoint(&userFunction.getName(), voidType);
TIntermAggregate* synthParams = new TIntermAggregate();
intermediate.setAggregateOperator(synthParams, EOpParameters, voidType, loc);
intermediate.setEntryPointMangledName(synthEntryPoint.getMangledName().c_str());
intermediate.incrementEntryPointCount();
TFunction callee(&userFunction.getName(), voidType); // call based on old name, which is still in the symbol table
// change original name
userFunction.addPrefix("@"); // change the name in the function, but not in the symbol table
// Copy inputs (shader-in -> calling arg), while building up the call node
TVector<TVariable*> argVars;
TIntermAggregate* synthBody = new TIntermAggregate();
auto inputIt = inputs.begin();
TIntermTyped* callingArgs = nullptr;
for (int i = 0; i < userFunction.getParamCount(); i++) {
TParameter& param = userFunction[i];
argVars.push_back(makeInternalVariable(*param.name, *param.type));
argVars.back()->getWritableType().getQualifier().makeTemporary();
// Track the input patch, which is the only non-builtin supported by hull shader PCF.
if (param.getDeclaredBuiltIn() == EbvInputPatch)
inputPatch = argVars.back();
TIntermSymbol* arg = intermediate.addSymbol(*argVars.back());
handleFunctionArgument(&callee, callingArgs, arg);
if (param.type->getQualifier().isParamInput()) {
intermediate.growAggregate(synthBody, handleAssign(loc, EOpAssign, arg,
intermediate.addSymbol(**inputIt)));
inputIt++;
}
}
// Call
currentCaller = synthEntryPoint.getMangledName();
TIntermTyped* callReturn = handleFunctionCall(loc, &callee, callingArgs);
currentCaller = userFunction.getMangledName();
// Return value
if (entryPointOutput) {
TIntermTyped* returnAssign;
// For hull shaders, the wrapped entry point return value is written to
// an array element as indexed by invocation ID, which we might have to make up.
// This is required to match SPIR-V semantics.
if (language == EShLangTessControl) {
TIntermSymbol* invocationIdSym = findTessLinkageSymbol(EbvInvocationId);
// If there is no user declared invocation ID, we must make one.
if (invocationIdSym == nullptr) {
TType invocationIdType(EbtUint, EvqIn, 1);
TString* invocationIdName = NewPoolTString("InvocationId");
invocationIdType.getQualifier().builtIn = EbvInvocationId;
TVariable* variable = makeInternalVariable(*invocationIdName, invocationIdType);
globalQualifierFix(loc, variable->getWritableType().getQualifier());
trackLinkage(*variable);
invocationIdSym = intermediate.addSymbol(*variable);
}
TIntermTyped* element = intermediate.addIndex(EOpIndexIndirect, intermediate.addSymbol(*entryPointOutput),
invocationIdSym, loc);
// Set the type of the array element being dereferenced
const TType derefElementType(entryPointOutput->getType(), 0);
element->setType(derefElementType);
returnAssign = handleAssign(loc, EOpAssign, element, callReturn);
} else {
returnAssign = handleAssign(loc, EOpAssign, intermediate.addSymbol(*entryPointOutput), callReturn);
}
intermediate.growAggregate(synthBody, returnAssign);
} else
intermediate.growAggregate(synthBody, callReturn);
// Output copies
auto outputIt = outputs.begin();
for (int i = 0; i < userFunction.getParamCount(); i++) {
TParameter& param = userFunction[i];
// GS outputs are via emit, so we do not copy them here.
if (param.type->getQualifier().isParamOutput()) {
if (param.getDeclaredBuiltIn() == EbvGsOutputStream) {
// GS output stream does not assign outputs here: it's the Append() method
// which writes to the output, probably multiple times separated by Emit.
// We merely remember the output to use, here.
gsStreamOutput = *outputIt;
} else {
intermediate.growAggregate(synthBody, handleAssign(loc, EOpAssign,
intermediate.addSymbol(**outputIt),
intermediate.addSymbol(*argVars[i])));
}
outputIt++;
}
}
// Put the pieces together to form a full function subtree
// for the synthesized entry point.
synthBody->setOperator(EOpSequence);
TIntermNode* synthFunctionDef = synthParams;
handleFunctionBody(loc, synthEntryPoint, synthBody, synthFunctionDef);
entryPointFunctionBody = synthBody;
return synthFunctionDef;
}
void HlslParseContext::handleFunctionBody(const TSourceLoc& loc, TFunction& function, TIntermNode* functionBody,
TIntermNode*& node)
{
node = intermediate.growAggregate(node, functionBody);
intermediate.setAggregateOperator(node, EOpFunction, function.getType(), loc);
node->getAsAggregate()->setName(function.getMangledName().c_str());
popScope();
if (function.hasImplicitThis())
popImplicitThis();
if (function.getType().getBasicType() != EbtVoid && ! functionReturnsValue)
error(loc, "function does not return a value:", "", function.getName().c_str());
}
// AST I/O is done through shader globals declared in the 'in' or 'out'
// storage class. An HLSL entry point has a return value, input parameters
// and output parameters. These need to get remapped to the AST I/O.
void HlslParseContext::remapEntryPointIO(TFunction& function, TVariable*& returnValue,
TVector<TVariable*>& inputs, TVector<TVariable*>& outputs)
{
// We might have in input structure type with no decorations that caused it
// to look like an input type, yet it has (e.g.) interpolation types that
// must be modified that turn it into an input type.
// Hence, a missing ioTypeMap for 'input' might need to be synthesized.
const auto synthesizeEditedInput = [this](TType& type) {
// True if a type needs to be 'flat'
const auto needsFlat = [](const TType& type) {
return type.containsBasicType(EbtInt) ||
type.containsBasicType(EbtUint) ||
type.containsBasicType(EbtInt64) ||
type.containsBasicType(EbtUint64) ||
type.containsBasicType(EbtBool) ||
type.containsBasicType(EbtDouble);
};
if (language == EShLangFragment && needsFlat(type)) {
if (type.isStruct()) {
TTypeList* finalList = nullptr;
auto it = ioTypeMap.find(type.getStruct());
if (it == ioTypeMap.end() || it->second.input == nullptr) {
// Getting here means we have no input struct, but we need one.
auto list = new TTypeList;
for (auto member = type.getStruct()->begin(); member != type.getStruct()->end(); ++member) {
TType* newType = new TType;
newType->shallowCopy(*member->type);
TTypeLoc typeLoc = { newType, member->loc };
list->push_back(typeLoc);
}
// install the new input type
if (it == ioTypeMap.end()) {
tIoKinds newLists = { list, nullptr, nullptr };
ioTypeMap[type.getStruct()] = newLists;
} else
it->second.input = list;
finalList = list;
} else
finalList = it->second.input;
// edit for 'flat'
for (auto member = finalList->begin(); member != finalList->end(); ++member) {
if (needsFlat(*member->type)) {
member->type->getQualifier().clearInterpolation();
member->type->getQualifier().flat = true;
}
}
} else {
type.getQualifier().clearInterpolation();
type.getQualifier().flat = true;
}
}
};
// Do the actual work to make a type be a shader input or output variable,
// and clear the original to be non-IO (for use as a normal function parameter/return).
const auto makeIoVariable = [this](const char* name, TType& type, TStorageQualifier storage) -> TVariable* {
TVariable* ioVariable = makeInternalVariable(name, type);
clearUniformInputOutput(type.getQualifier());
if (type.isStruct()) {
auto newLists = ioTypeMap.find(ioVariable->getType().getStruct());
if (newLists != ioTypeMap.end()) {
if (storage == EvqVaryingIn && newLists->second.input)
ioVariable->getWritableType().setStruct(newLists->second.input);
else if (storage == EvqVaryingOut && newLists->second.output)
ioVariable->getWritableType().setStruct(newLists->second.output);
}
}
if (storage == EvqVaryingIn) {
correctInput(ioVariable->getWritableType().getQualifier());
if (language == EShLangTessEvaluation)
if (!ioVariable->getType().isArray())
ioVariable->getWritableType().getQualifier().patch = true;
} else {
correctOutput(ioVariable->getWritableType().getQualifier());
}
ioVariable->getWritableType().getQualifier().storage = storage;
fixBuiltInIoType(ioVariable->getWritableType());
return ioVariable;
};
// return value is actually a shader-scoped output (out)
if (function.getType().getBasicType() == EbtVoid) {
returnValue = nullptr;
} else {
if (language == EShLangTessControl) {
// tessellation evaluation in HLSL writes a per-ctrl-pt value, but it needs to be an
// array in SPIR-V semantics. We'll write to it indexed by invocation ID.
returnValue = makeIoVariable("@entryPointOutput", function.getWritableType(), EvqVaryingOut);
TType outputType;
outputType.shallowCopy(function.getType());
// vertices has necessarily already been set when handling entry point attributes.
TArraySizes* arraySizes = new TArraySizes;
arraySizes->addInnerSize(intermediate.getVertices());
outputType.transferArraySizes(arraySizes);
clearUniformInputOutput(function.getWritableType().getQualifier());
returnValue = makeIoVariable("@entryPointOutput", outputType, EvqVaryingOut);
} else {
returnValue = makeIoVariable("@entryPointOutput", function.getWritableType(), EvqVaryingOut);
}
}
// parameters are actually shader-scoped inputs and outputs (in or out)
for (int i = 0; i < function.getParamCount(); i++) {
TType& paramType = *function[i].type;
if (paramType.getQualifier().isParamInput()) {
synthesizeEditedInput(paramType);
TVariable* argAsGlobal = makeIoVariable(function[i].name->c_str(), paramType, EvqVaryingIn);
inputs.push_back(argAsGlobal);
}
if (paramType.getQualifier().isParamOutput()) {
TVariable* argAsGlobal = makeIoVariable(function[i].name->c_str(), paramType, EvqVaryingOut);
outputs.push_back(argAsGlobal);
}
}
}
// An HLSL function that looks like an entry point, but is not,
// declares entry point IO built-ins, but these have to be undone.
void HlslParseContext::remapNonEntryPointIO(TFunction& function)
{
// return value
if (function.getType().getBasicType() != EbtVoid)
clearUniformInputOutput(function.getWritableType().getQualifier());
// parameters.
// References to structuredbuffer types are left unmodified
for (int i = 0; i < function.getParamCount(); i++)
if (!isReference(*function[i].type))
clearUniformInputOutput(function[i].type->getQualifier());
}
// Handle function returns, including type conversions to the function return type
// if necessary.
TIntermNode* HlslParseContext::handleReturnValue(const TSourceLoc& loc, TIntermTyped* value)
{
functionReturnsValue = true;
if (currentFunctionType->getBasicType() == EbtVoid) {
error(loc, "void function cannot return a value", "return", "");
return intermediate.addBranch(EOpReturn, loc);
} else if (*currentFunctionType != value->getType()) {
value = intermediate.addConversion(EOpReturn, *currentFunctionType, value);
if (value && *currentFunctionType != value->getType())
value = intermediate.addUniShapeConversion(EOpReturn, *currentFunctionType, value);
if (value == nullptr || *currentFunctionType != value->getType()) {
error(loc, "type does not match, or is not convertible to, the function's return type", "return", "");
return value;
}
}
return intermediate.addBranch(EOpReturn, value, loc);
}
void HlslParseContext::handleFunctionArgument(TFunction* function,
TIntermTyped*& arguments, TIntermTyped* newArg)
{
TParameter param = { 0, new TType, nullptr };
param.type->shallowCopy(newArg->getType());
function->addParameter(param);
if (arguments)
arguments = intermediate.growAggregate(arguments, newArg);
else
arguments = newArg;
}
// Position may require special handling: we can optionally invert Y.
// See: https://github.com/KhronosGroup/glslang/issues/1173
// https://github.com/KhronosGroup/glslang/issues/494
TIntermTyped* HlslParseContext::assignPosition(const TSourceLoc& loc, TOperator op,
TIntermTyped* left, TIntermTyped* right)
{
// If we are not asked for Y inversion, use a plain old assign.
if (!intermediate.getInvertY())
return intermediate.addAssign(op, left, right, loc);
// If we get here, we should invert Y.
TIntermAggregate* assignList = nullptr;
// If this is a complex rvalue, we don't want to dereference it many times. Create a temporary.
TVariable* rhsTempVar = nullptr;
rhsTempVar = makeInternalVariable("@position", right->getType());
rhsTempVar->getWritableType().getQualifier().makeTemporary();
{
TIntermTyped* rhsTempSym = intermediate.addSymbol(*rhsTempVar, loc);
assignList = intermediate.growAggregate(assignList,
intermediate.addAssign(EOpAssign, rhsTempSym, right, loc), loc);
}
// pos.y = -pos.y
{
const int Y = 1;
TIntermTyped* tempSymL = intermediate.addSymbol(*rhsTempVar, loc);
TIntermTyped* tempSymR = intermediate.addSymbol(*rhsTempVar, loc);
TIntermTyped* index = intermediate.addConstantUnion(Y, loc);
TIntermTyped* lhsElement = intermediate.addIndex(EOpIndexDirect, tempSymL, index, loc);
TIntermTyped* rhsElement = intermediate.addIndex(EOpIndexDirect, tempSymR, index, loc);
const TType derefType(right->getType(), 0);
lhsElement->setType(derefType);
rhsElement->setType(derefType);
TIntermTyped* yNeg = intermediate.addUnaryMath(EOpNegative, rhsElement, loc);
assignList = intermediate.growAggregate(assignList, intermediate.addAssign(EOpAssign, lhsElement, yNeg, loc));
}
// Assign the rhs temp (now with Y inversion) to the final output
{
TIntermTyped* rhsTempSym = intermediate.addSymbol(*rhsTempVar, loc);
assignList = intermediate.growAggregate(assignList, intermediate.addAssign(op, left, rhsTempSym, loc));
}
assert(assignList != nullptr);
assignList->setOperator(EOpSequence);
return assignList;
}
// Clip and cull distance require special handling due to a semantic mismatch. In HLSL,
// these can be float scalar, float vector, or arrays of float scalar or float vector.
// In SPIR-V, they are arrays of scalar floats in all cases. We must copy individual components
// (e.g, both x and y components of a float2) out into the destination float array.
//
// The values are assigned to sequential members of the output array. The inner dimension
// is vector components. The outer dimension is array elements.
TIntermAggregate* HlslParseContext::assignClipCullDistance(const TSourceLoc& loc, TOperator op, int semanticId,
TIntermTyped* left, TIntermTyped* right)
{
switch (language) {
case EShLangFragment:
case EShLangVertex:
case EShLangGeometry:
break;
default:
error(loc, "unimplemented: clip/cull not currently implemented for this stage", "", "");
return nullptr;
}
TVariable** clipCullVar = nullptr;
// Figure out if we are assigning to, or from, clip or cull distance.
const bool isOutput = isClipOrCullDistance(left->getType());
// This is the rvalue or lvalue holding the clip or cull distance.
TIntermTyped* clipCullNode = isOutput ? left : right;
// This is the value going into or out of the clip or cull distance.
TIntermTyped* internalNode = isOutput ? right : left;
const TBuiltInVariable builtInType = clipCullNode->getQualifier().builtIn;
decltype(clipSemanticNSizeIn)* semanticNSize = nullptr;
// Refer to either the clip or the cull distance, depending on semantic.
switch (builtInType) {
case EbvClipDistance:
clipCullVar = isOutput ? &clipDistanceOutput : &clipDistanceInput;
semanticNSize = isOutput ? &clipSemanticNSizeOut : &clipSemanticNSizeIn;
break;
case EbvCullDistance:
clipCullVar = isOutput ? &cullDistanceOutput : &cullDistanceInput;
semanticNSize = isOutput ? &cullSemanticNSizeOut : &cullSemanticNSizeIn;
break;
// called invalidly: we expected a clip or a cull distance.
// static compile time problem: should not happen.
default: assert(0); return nullptr;
}
// This is the offset in the destination array of a given semantic's data
std::array<int, maxClipCullRegs> semanticOffset;
// Calculate offset of variable of semantic N in destination array
int arrayLoc = 0;
int vecItems = 0;
for (int x = 0; x < maxClipCullRegs; ++x) {
// See if we overflowed the vec4 packing
if ((vecItems + (*semanticNSize)[x]) > 4) {
arrayLoc = (arrayLoc + 3) & (~0x3); // round up to next multiple of 4
vecItems = 0;
}
semanticOffset[x] = arrayLoc;
vecItems += (*semanticNSize)[x];
arrayLoc += (*semanticNSize)[x];
}
// It can have up to 2 array dimensions (in the case of geometry shader inputs)
const TArraySizes* const internalArraySizes = internalNode->getType().getArraySizes();
const int internalArrayDims = internalNode->getType().isArray() ? internalArraySizes->getNumDims() : 0;
// vector sizes:
const int internalVectorSize = internalNode->getType().getVectorSize();
// array sizes, or 1 if it's not an array:
const int internalInnerArraySize = (internalArrayDims > 0 ? internalArraySizes->getDimSize(internalArrayDims-1) : 1);
const int internalOuterArraySize = (internalArrayDims > 1 ? internalArraySizes->getDimSize(0) : 1);
// The created type may be an array of arrays, e.g, for geometry shader inputs.
const bool isImplicitlyArrayed = (language == EShLangGeometry && !isOutput);
// If we haven't created the output already, create it now.
if (*clipCullVar == nullptr) {
// ClipDistance and CullDistance are handled specially in the entry point input/output copy
// algorithm, because they may need to be unpacked from components of vectors (or a scalar)
// into a float array, or vice versa. Here, we make the array the right size and type,
// which depends on the incoming data, which has several potential dimensions:
// * Semantic ID
// * vector size
// * array size
// Of those, semantic ID and array size cannot appear simultaneously.
//
// Also to note: for implicitly arrayed forms (e.g, geometry shader inputs), we need to create two
// array dimensions. The shader's declaration may have one or two array dimensions. One is always
// the geometry's dimension.
const bool useInnerSize = internalArrayDims > 1 || !isImplicitlyArrayed;
const int requiredInnerArraySize = arrayLoc * (useInnerSize ? internalInnerArraySize : 1);
const int requiredOuterArraySize = (internalArrayDims > 0) ? internalArraySizes->getDimSize(0) : 1;
TType clipCullType(EbtFloat, clipCullNode->getType().getQualifier().storage, 1);
clipCullType.getQualifier() = clipCullNode->getType().getQualifier();
// Create required array dimension
TArraySizes* arraySizes = new TArraySizes;
if (isImplicitlyArrayed)
arraySizes->addInnerSize(requiredOuterArraySize);
arraySizes->addInnerSize(requiredInnerArraySize);
clipCullType.transferArraySizes(arraySizes);
// Obtain symbol name: we'll use that for the symbol we introduce.
TIntermSymbol* sym = clipCullNode->getAsSymbolNode();
assert(sym != nullptr);
// We are moving the semantic ID from the layout location, so it is no longer needed or
// desired there.
clipCullType.getQualifier().layoutLocation = TQualifier::layoutLocationEnd;
// Create variable and track its linkage
*clipCullVar = makeInternalVariable(sym->getName().c_str(), clipCullType);
trackLinkage(**clipCullVar);
}
// Create symbol for the clip or cull variable.
TIntermSymbol* clipCullSym = intermediate.addSymbol(**clipCullVar);
// vector sizes:
const int clipCullVectorSize = clipCullSym->getType().getVectorSize();
// array sizes, or 1 if it's not an array:
const TArraySizes* const clipCullArraySizes = clipCullSym->getType().getArraySizes();
const int clipCullOuterArraySize = isImplicitlyArrayed ? clipCullArraySizes->getDimSize(0) : 1;
const int clipCullInnerArraySize = clipCullArraySizes->getDimSize(isImplicitlyArrayed ? 1 : 0);
// clipCullSym has got to be an array of scalar floats, per SPIR-V semantics.
// fixBuiltInIoType() should have handled that upstream.
assert(clipCullSym->getType().isArray());
assert(clipCullSym->getType().getVectorSize() == 1);
assert(clipCullSym->getType().getBasicType() == EbtFloat);
// We may be creating multiple sub-assignments. This is an aggregate to hold them.
// TODO: it would be possible to be clever sometimes and avoid the sequence node if not needed.
TIntermAggregate* assignList = nullptr;
// Holds individual component assignments as we make them.
TIntermTyped* clipCullAssign = nullptr;
// If the types are homomorphic, use a simple assign. No need to mess about with
// individual components.
if (clipCullSym->getType().isArray() == internalNode->getType().isArray() &&
clipCullInnerArraySize == internalInnerArraySize &&
clipCullOuterArraySize == internalOuterArraySize &&
clipCullVectorSize == internalVectorSize) {
if (isOutput)
clipCullAssign = intermediate.addAssign(op, clipCullSym, internalNode, loc);
else
clipCullAssign = intermediate.addAssign(op, internalNode, clipCullSym, loc);
assignList = intermediate.growAggregate(assignList, clipCullAssign);
assignList->setOperator(EOpSequence);
return assignList;
}
// We are going to copy each component of the internal (per array element if indicated) to sequential
// array elements of the clipCullSym. This tracks the lhs element we're writing to as we go along.
// We may be starting in the middle - e.g, for a non-zero semantic ID calculated above.
int clipCullInnerArrayPos = semanticOffset[semanticId];
int clipCullOuterArrayPos = 0;
// Lambda to add an index to a node, set the type of the result, and return the new node.
const auto addIndex = [this, &loc](TIntermTyped* node, int pos) -> TIntermTyped* {
const TType derefType(node->getType(), 0);
node = intermediate.addIndex(EOpIndexDirect, node, intermediate.addConstantUnion(pos, loc), loc);
node->setType(derefType);
return node;
};
// Loop through every component of every element of the internal, and copy to or from the matching external.
for (int internalOuterArrayPos = 0; internalOuterArrayPos < internalOuterArraySize; ++internalOuterArrayPos) {
for (int internalInnerArrayPos = 0; internalInnerArrayPos < internalInnerArraySize; ++internalInnerArrayPos) {
for (int internalComponent = 0; internalComponent < internalVectorSize; ++internalComponent) {
// clip/cull array member to read from / write to:
TIntermTyped* clipCullMember = clipCullSym;
// If implicitly arrayed, there is an outer array dimension involved
if (isImplicitlyArrayed)
clipCullMember = addIndex(clipCullMember, clipCullOuterArrayPos);
// Index into proper array position for clip cull member
clipCullMember = addIndex(clipCullMember, clipCullInnerArrayPos++);
// if needed, start over with next outer array slice.
if (isImplicitlyArrayed && clipCullInnerArrayPos >= clipCullInnerArraySize) {
clipCullInnerArrayPos = semanticOffset[semanticId];
++clipCullOuterArrayPos;
}
// internal member to read from / write to:
TIntermTyped* internalMember = internalNode;
// If internal node has outer array dimension, index appropriately.
if (internalArrayDims > 1)
internalMember = addIndex(internalMember, internalOuterArrayPos);
// If internal node has inner array dimension, index appropriately.
if (internalArrayDims > 0)
internalMember = addIndex(internalMember, internalInnerArrayPos);
// If internal node is a vector, extract the component of interest.
if (internalNode->getType().isVector())
internalMember = addIndex(internalMember, internalComponent);
// Create an assignment: output from internal to clip cull, or input from clip cull to internal.
if (isOutput)
clipCullAssign = intermediate.addAssign(op, clipCullMember, internalMember, loc);
else
clipCullAssign = intermediate.addAssign(op, internalMember, clipCullMember, loc);
// Track assignment in the sequence.
assignList = intermediate.growAggregate(assignList, clipCullAssign);
}
}
}
assert(assignList != nullptr);
assignList->setOperator(EOpSequence);
return assignList;
}
// Some simple source assignments need to be flattened to a sequence
// of AST assignments. Catch these and flatten, otherwise, pass through
// to intermediate.addAssign().
//
// Also, assignment to matrix swizzles requires multiple component assignments,
// intercept those as well.
TIntermTyped* HlslParseContext::handleAssign(const TSourceLoc& loc, TOperator op, TIntermTyped* left,
TIntermTyped* right)
{
if (left == nullptr || right == nullptr)
return nullptr;
// writing to opaques will require fixing transforms
if (left->getType().containsOpaque())
intermediate.setNeedsLegalization();
if (left->getAsOperator() && left->getAsOperator()->getOp() == EOpMatrixSwizzle)
return handleAssignToMatrixSwizzle(loc, op, left, right);
// Return true if the given node is an index operation into a split variable.
const auto indexesSplit = [this](const TIntermTyped* node) -> bool {
const TIntermBinary* binaryNode = node->getAsBinaryNode();
if (binaryNode == nullptr)
return false;
return (binaryNode->getOp() == EOpIndexDirect || binaryNode->getOp() == EOpIndexIndirect) &&
wasSplit(binaryNode->getLeft());
};
// Return true if this stage assigns clip position with potentially inverted Y
const auto assignsClipPos = [this](const TIntermTyped* node) -> bool {
return node->getType().getQualifier().builtIn == EbvPosition &&
(language == EShLangVertex || language == EShLangGeometry || language == EShLangTessEvaluation);
};
const bool isSplitLeft = wasSplit(left) || indexesSplit(left);
const bool isSplitRight = wasSplit(right) || indexesSplit(right);
const bool isFlattenLeft = wasFlattened(left);
const bool isFlattenRight = wasFlattened(right);
// OK to do a single assign if neither side is split or flattened. Otherwise,
// fall through to a member-wise copy.
if (!isFlattenLeft && !isFlattenRight && !isSplitLeft && !isSplitRight) {
// Clip and cull distance requires more processing. See comment above assignClipCullDistance.
if (isClipOrCullDistance(left->getType()) || isClipOrCullDistance(right->getType())) {
const bool isOutput = isClipOrCullDistance(left->getType());
const int semanticId = (isOutput ? left : right)->getType().getQualifier().layoutLocation;
return assignClipCullDistance(loc, op, semanticId, left, right);
} else if (assignsClipPos(left)) {
// Position can require special handling: see comment above assignPosition
return assignPosition(loc, op, left, right);
} else if (left->getQualifier().builtIn == EbvSampleMask) {
// Certain builtins are required to be arrayed outputs in SPIR-V, but may internally be scalars
// in the shader. Copy the scalar RHS into the LHS array element zero, if that happens.
if (left->isArray() && !right->isArray()) {
const TType derefType(left->getType(), 0);
left = intermediate.addIndex(EOpIndexDirect, left, intermediate.addConstantUnion(0, loc), loc);
left->setType(derefType);
// Fall through to add assign.
}
}
return intermediate.addAssign(op, left, right, loc);
}
TIntermAggregate* assignList = nullptr;
const TVector<TVariable*>* leftVariables = nullptr;
const TVector<TVariable*>* rightVariables = nullptr;
// A temporary to store the right node's value, so we don't keep indirecting into it
// if it's not a simple symbol.
TVariable* rhsTempVar = nullptr;
// If the RHS is a simple symbol node, we'll copy it for each member.
TIntermSymbol* cloneSymNode = nullptr;
int memberCount = 0;
// Track how many items there are to copy.
if (left->getType().isStruct())
memberCount = (int)left->getType().getStruct()->size();
if (left->getType().isArray())
memberCount = left->getType().getCumulativeArraySize();
if (isFlattenLeft)
leftVariables = &flattenMap.find(left->getAsSymbolNode()->getId())->second.members;
if (isFlattenRight) {
rightVariables = &flattenMap.find(right->getAsSymbolNode()->getId())->second.members;
} else {
// The RHS is not flattened. There are several cases:
// 1. 1 item to copy: Use the RHS directly.
// 2. >1 item, simple symbol RHS: we'll create a new TIntermSymbol node for each, but no assign to temp.
// 3. >1 item, complex RHS: assign it to a new temp variable, and create a TIntermSymbol for each member.
if (memberCount <= 1) {
// case 1: we'll use the symbol directly below. Nothing to do.
} else {
if (right->getAsSymbolNode() != nullptr) {
// case 2: we'll copy the symbol per iteration below.
cloneSymNode = right->getAsSymbolNode();
} else {
// case 3: assign to a temp, and indirect into that.
rhsTempVar = makeInternalVariable("flattenTemp", right->getType());
rhsTempVar->getWritableType().getQualifier().makeTemporary();
TIntermTyped* noFlattenRHS = intermediate.addSymbol(*rhsTempVar, loc);
// Add this to the aggregate being built.
assignList = intermediate.growAggregate(assignList,
intermediate.addAssign(op, noFlattenRHS, right, loc), loc);
}
}
}
// When dealing with split arrayed structures of built-ins, the arrayness is moved to the extracted built-in
// variables, which is awkward when copying between split and unsplit structures. This variable tracks
// array indirections so they can be percolated from outer structs to inner variables.
std::vector <int> arrayElement;
TStorageQualifier leftStorage = left->getType().getQualifier().storage;
TStorageQualifier rightStorage = right->getType().getQualifier().storage;
int leftOffset = findSubtreeOffset(*left);
int rightOffset = findSubtreeOffset(*right);
const auto getMember = [&](bool isLeft, const TType& type, int member, TIntermTyped* splitNode, int splitMember,
bool flattened)
-> TIntermTyped * {
const bool split = isLeft ? isSplitLeft : isSplitRight;
TIntermTyped* subTree;
const TType derefType(type, member);
const TVariable* builtInVar = nullptr;
if ((flattened || split) && derefType.isBuiltIn()) {
auto splitPair = splitBuiltIns.find(HlslParseContext::tInterstageIoData(
derefType.getQualifier().builtIn,
isLeft ? leftStorage : rightStorage));
if (splitPair != splitBuiltIns.end())
builtInVar = splitPair->second;
}
if (builtInVar != nullptr) {
// copy from interstage IO built-in if needed
subTree = intermediate.addSymbol(*builtInVar);
if (subTree->getType().isArray()) {
// Arrayness of builtIn symbols isn't handled by the normal recursion:
// it's been extracted and moved to the built-in.
if (!arrayElement.empty()) {
const TType splitDerefType(subTree->getType(), arrayElement.back());
subTree = intermediate.addIndex(EOpIndexDirect, subTree,
intermediate.addConstantUnion(arrayElement.back(), loc), loc);
subTree->setType(splitDerefType);
} else if (splitNode->getAsOperator() != nullptr && (splitNode->getAsOperator()->getOp() == EOpIndexIndirect)) {
// This might also be a stage with arrayed outputs, in which case there's an index
// operation we should transfer to the output builtin.
const TType splitDerefType(subTree->getType(), 0);
subTree = intermediate.addIndex(splitNode->getAsOperator()->getOp(), subTree,
splitNode->getAsBinaryNode()->getRight(), loc);
subTree->setType(splitDerefType);
}
}
} else if (flattened && !shouldFlatten(derefType, isLeft ? leftStorage : rightStorage, false)) {
if (isLeft)
subTree = intermediate.addSymbol(*(*leftVariables)[leftOffset++]);
else
subTree = intermediate.addSymbol(*(*rightVariables)[rightOffset++]);
} else {
// Index operator if it's an aggregate, else EOpNull
const TOperator accessOp = type.isArray() ? EOpIndexDirect
: type.isStruct() ? EOpIndexDirectStruct
: EOpNull;
if (accessOp == EOpNull) {
subTree = splitNode;
} else {
subTree = intermediate.addIndex(accessOp, splitNode, intermediate.addConstantUnion(splitMember, loc),
loc);
const TType splitDerefType(splitNode->getType(), splitMember);
subTree->setType(splitDerefType);
}
}
return subTree;
};
// Use the proper RHS node: a new symbol from a TVariable, copy
// of an TIntermSymbol node, or sometimes the right node directly.
right = rhsTempVar != nullptr ? intermediate.addSymbol(*rhsTempVar, loc) :
cloneSymNode != nullptr ? intermediate.addSymbol(*cloneSymNode) :
right;
// Cannot use auto here, because this is recursive, and auto can't work out the type without seeing the
// whole thing. So, we'll resort to an explicit type via std::function.
const std::function<void(TIntermTyped* left, TIntermTyped* right, TIntermTyped* splitLeft, TIntermTyped* splitRight,
bool topLevel)>
traverse = [&](TIntermTyped* left, TIntermTyped* right, TIntermTyped* splitLeft, TIntermTyped* splitRight,
bool topLevel) -> void {
// If we get here, we are assigning to or from a whole array or struct that must be
// flattened, so have to do member-by-member assignment:
bool shouldFlattenSubsetLeft = isFlattenLeft && shouldFlatten(left->getType(), leftStorage, topLevel);
bool shouldFlattenSubsetRight = isFlattenRight && shouldFlatten(right->getType(), rightStorage, topLevel);
if ((left->getType().isArray() || right->getType().isArray()) &&
(shouldFlattenSubsetLeft || isSplitLeft ||
shouldFlattenSubsetRight || isSplitRight)) {
const int elementsL = left->getType().isArray() ? left->getType().getOuterArraySize() : 1;
const int elementsR = right->getType().isArray() ? right->getType().getOuterArraySize() : 1;
// The arrays might not be the same size,
// e.g., if the size has been forced for EbvTessLevelInner/Outer.
const int elementsToCopy = std::min(elementsL, elementsR);
// array case
for (int element = 0; element < elementsToCopy; ++element) {
arrayElement.push_back(element);
// Add a new AST symbol node if we have a temp variable holding a complex RHS.
TIntermTyped* subLeft = getMember(true, left->getType(), element, left, element,
shouldFlattenSubsetLeft);
TIntermTyped* subRight = getMember(false, right->getType(), element, right, element,
shouldFlattenSubsetRight);
TIntermTyped* subSplitLeft = isSplitLeft ? getMember(true, left->getType(), element, splitLeft,
element, shouldFlattenSubsetLeft)
: subLeft;
TIntermTyped* subSplitRight = isSplitRight ? getMember(false, right->getType(), element, splitRight,
element, shouldFlattenSubsetRight)
: subRight;
traverse(subLeft, subRight, subSplitLeft, subSplitRight, false);
arrayElement.pop_back();
}
} else if (left->getType().isStruct() && (shouldFlattenSubsetLeft || isSplitLeft ||
shouldFlattenSubsetRight || isSplitRight)) {
// struct case
const auto& membersL = *left->getType().getStruct();
const auto& membersR = *right->getType().getStruct();
// These track the members in the split structures corresponding to the same in the unsplit structures,
// which we traverse in parallel.
int memberL = 0;
int memberR = 0;
// Handle empty structure assignment
if (int(membersL.size()) == 0 && int(membersR.size()) == 0)
assignList = intermediate.growAggregate(assignList, intermediate.addAssign(op, left, right, loc), loc);
for (int member = 0; member < int(membersL.size()); ++member) {
const TType& typeL = *membersL[member].type;
const TType& typeR = *membersR[member].type;
TIntermTyped* subLeft = getMember(true, left->getType(), member, left, member,
shouldFlattenSubsetLeft);
TIntermTyped* subRight = getMember(false, right->getType(), member, right, member,
shouldFlattenSubsetRight);
// If there is no splitting, use the same values to avoid inefficiency.
TIntermTyped* subSplitLeft = isSplitLeft ? getMember(true, left->getType(), member, splitLeft,
memberL, shouldFlattenSubsetLeft)
: subLeft;
TIntermTyped* subSplitRight = isSplitRight ? getMember(false, right->getType(), member, splitRight,
memberR, shouldFlattenSubsetRight)
: subRight;
if (isClipOrCullDistance(subSplitLeft->getType()) || isClipOrCullDistance(subSplitRight->getType())) {
// Clip and cull distance built-in assignment is complex in its own right, and is handled in
// a separate function dedicated to that task. See comment above assignClipCullDistance;
const bool isOutput = isClipOrCullDistance(subSplitLeft->getType());
// Since all clip/cull semantics boil down to the same built-in type, we need to get the
// semantic ID from the dereferenced type's layout location, to avoid an N-1 mapping.
const TType derefType((isOutput ? left : right)->getType(), member);
const int semanticId = derefType.getQualifier().layoutLocation;
TIntermAggregate* clipCullAssign = assignClipCullDistance(loc, op, semanticId,
subSplitLeft, subSplitRight);
assignList = intermediate.growAggregate(assignList, clipCullAssign, loc);
} else if (assignsClipPos(subSplitLeft)) {
// Position can require special handling: see comment above assignPosition
TIntermTyped* positionAssign = assignPosition(loc, op, subSplitLeft, subSplitRight);
assignList = intermediate.growAggregate(assignList, positionAssign, loc);
} else if (!shouldFlattenSubsetLeft && !shouldFlattenSubsetRight &&
!typeL.containsBuiltIn() && !typeR.containsBuiltIn()) {
// If this is the final flattening (no nested types below to flatten)
// we'll copy the member, else recurse into the type hierarchy.
// However, if splitting the struct, that means we can copy a whole
// subtree here IFF it does not itself contain any interstage built-in
// IO variables, so we only have to recurse into it if there's something
// for splitting to do. That can save a lot of AST verbosity for
// a bunch of memberwise copies.
assignList = intermediate.growAggregate(assignList,
intermediate.addAssign(op, subSplitLeft, subSplitRight, loc),
loc);
} else {
traverse(subLeft, subRight, subSplitLeft, subSplitRight, false);
}
memberL += (typeL.isBuiltIn() ? 0 : 1);
memberR += (typeR.isBuiltIn() ? 0 : 1);
}
} else {
// Member copy
assignList = intermediate.growAggregate(assignList, intermediate.addAssign(op, left, right, loc), loc);
}
};
TIntermTyped* splitLeft = left;
TIntermTyped* splitRight = right;
// If either left or right was a split structure, we must read or write it, but still have to
// parallel-recurse through the unsplit structure to identify the built-in IO vars.
// The left can be either a symbol, or an index into a symbol (e.g, array reference)
if (isSplitLeft) {
if (indexesSplit(left)) {
// Index case: Refer to the indexed symbol, if the left is an index operator.
const TIntermSymbol* symNode = left->getAsBinaryNode()->getLeft()->getAsSymbolNode();
TIntermTyped* splitLeftNonIo = intermediate.addSymbol(*getSplitNonIoVar(symNode->getId()), loc);
splitLeft = intermediate.addIndex(left->getAsBinaryNode()->getOp(), splitLeftNonIo,
left->getAsBinaryNode()->getRight(), loc);
const TType derefType(splitLeftNonIo->getType(), 0);
splitLeft->setType(derefType);
} else {
// Symbol case: otherwise, if not indexed, we have the symbol directly.
const TIntermSymbol* symNode = left->getAsSymbolNode();
splitLeft = intermediate.addSymbol(*getSplitNonIoVar(symNode->getId()), loc);
}
}
if (isSplitRight)
splitRight = intermediate.addSymbol(*getSplitNonIoVar(right->getAsSymbolNode()->getId()), loc);
// This makes the whole assignment, recursing through subtypes as needed.
traverse(left, right, splitLeft, splitRight, true);
assert(assignList != nullptr);
assignList->setOperator(EOpSequence);
return assignList;
}
// An assignment to matrix swizzle must be decomposed into individual assignments.
// These must be selected component-wise from the RHS and stored component-wise
// into the LHS.
TIntermTyped* HlslParseContext::handleAssignToMatrixSwizzle(const TSourceLoc& loc, TOperator op, TIntermTyped* left,
TIntermTyped* right)
{
assert(left->getAsOperator() && left->getAsOperator()->getOp() == EOpMatrixSwizzle);
if (op != EOpAssign)
error(loc, "only simple assignment to non-simple matrix swizzle is supported", "assign", "");
// isolate the matrix and swizzle nodes
TIntermTyped* matrix = left->getAsBinaryNode()->getLeft()->getAsTyped();
const TIntermSequence& swizzle = left->getAsBinaryNode()->getRight()->getAsAggregate()->getSequence();
// if the RHS isn't already a simple vector, let's store into one
TIntermSymbol* vector = right->getAsSymbolNode();
TIntermTyped* vectorAssign = nullptr;
if (vector == nullptr) {
// create a new intermediate vector variable to assign to
TType vectorType(matrix->getBasicType(), EvqTemporary, matrix->getQualifier().precision, (int)swizzle.size()/2);
vector = intermediate.addSymbol(*makeInternalVariable("intermVec", vectorType), loc);
// assign the right to the new vector
vectorAssign = handleAssign(loc, op, vector, right);
}
// Assign the vector components to the matrix components.
// Store this as a sequence, so a single aggregate node represents this
// entire operation.
TIntermAggregate* result = intermediate.makeAggregate(vectorAssign);
TType columnType(matrix->getType(), 0);
TType componentType(columnType, 0);
TType indexType(EbtInt);
for (int i = 0; i < (int)swizzle.size(); i += 2) {
// the right component, single index into the RHS vector
TIntermTyped* rightComp = intermediate.addIndex(EOpIndexDirect, vector,
intermediate.addConstantUnion(i/2, loc), loc);
// the left component, double index into the LHS matrix
TIntermTyped* leftComp = intermediate.addIndex(EOpIndexDirect, matrix,
intermediate.addConstantUnion(swizzle[i]->getAsConstantUnion()->getConstArray(),
indexType, loc),
loc);
leftComp->setType(columnType);
leftComp = intermediate.addIndex(EOpIndexDirect, leftComp,
intermediate.addConstantUnion(swizzle[i+1]->getAsConstantUnion()->getConstArray(),
indexType, loc),
loc);
leftComp->setType(componentType);
// Add the assignment to the aggregate
result = intermediate.growAggregate(result, intermediate.addAssign(op, leftComp, rightComp, loc));
}
result->setOp(EOpSequence);
return result;
}
//
// HLSL atomic operations have slightly different arguments than
// GLSL/AST/SPIRV. The semantics are converted below in decomposeIntrinsic.
// This provides the post-decomposition equivalent opcode.
//
TOperator HlslParseContext::mapAtomicOp(const TSourceLoc& loc, TOperator op, bool isImage)
{
switch (op) {
case EOpInterlockedAdd: return isImage ? EOpImageAtomicAdd : EOpAtomicAdd;
case EOpInterlockedAnd: return isImage ? EOpImageAtomicAnd : EOpAtomicAnd;
case EOpInterlockedCompareExchange: return isImage ? EOpImageAtomicCompSwap : EOpAtomicCompSwap;
case EOpInterlockedMax: return isImage ? EOpImageAtomicMax : EOpAtomicMax;
case EOpInterlockedMin: return isImage ? EOpImageAtomicMin : EOpAtomicMin;
case EOpInterlockedOr: return isImage ? EOpImageAtomicOr : EOpAtomicOr;
case EOpInterlockedXor: return isImage ? EOpImageAtomicXor : EOpAtomicXor;
case EOpInterlockedExchange: return isImage ? EOpImageAtomicExchange : EOpAtomicExchange;
case EOpInterlockedCompareStore: // TODO: ...
default:
error(loc, "unknown atomic operation", "unknown op", "");
return EOpNull;
}
}
//
// Create a combined sampler/texture from separate sampler and texture.
//
TIntermAggregate* HlslParseContext::handleSamplerTextureCombine(const TSourceLoc& loc, TIntermTyped* argTex,
TIntermTyped* argSampler)
{
TIntermAggregate* txcombine = new TIntermAggregate(EOpConstructTextureSampler);
txcombine->getSequence().push_back(argTex);
txcombine->getSequence().push_back(argSampler);
TSampler samplerType = argTex->getType().getSampler();
samplerType.combined = true;
// TODO:
// This block exists until the spec no longer requires shadow modes on texture objects.
// It can be deleted after that, along with the shadowTextureVariant member.
{
const bool shadowMode = argSampler->getType().getSampler().shadow;
TIntermSymbol* texSymbol = argTex->getAsSymbolNode();
if (texSymbol == nullptr)
texSymbol = argTex->getAsBinaryNode()->getLeft()->getAsSymbolNode();
if (texSymbol == nullptr) {
error(loc, "unable to find texture symbol", "", "");
return nullptr;
}
// This forces the texture's shadow state to be the sampler's
// shadow state. This depends on downstream optimization to
// DCE one variant in [shadow, nonshadow] if both are present,
// or the SPIR-V module would be invalid.
int newId = texSymbol->getId();
// Check to see if this texture has been given a shadow mode already.
// If so, look up the one we already have.
const auto textureShadowEntry = textureShadowVariant.find(texSymbol->getId());
if (textureShadowEntry != textureShadowVariant.end())
newId = textureShadowEntry->second->get(shadowMode);
else
textureShadowVariant[texSymbol->getId()] = NewPoolObject(tShadowTextureSymbols(), 1);
// Sometimes we have to create another symbol (if this texture has been seen before,
// and we haven't created the form for this shadow mode).
if (newId == -1) {
TType texType;
texType.shallowCopy(argTex->getType());
texType.getSampler().shadow = shadowMode; // set appropriate shadow mode.
globalQualifierFix(loc, texType.getQualifier());
TVariable* newTexture = makeInternalVariable(texSymbol->getName(), texType);
trackLinkage(*newTexture);
newId = newTexture->getUniqueId();
}
assert(newId != -1);
if (textureShadowVariant.find(newId) == textureShadowVariant.end())
textureShadowVariant[newId] = textureShadowVariant[texSymbol->getId()];
textureShadowVariant[newId]->set(shadowMode, newId);
// Remember this shadow mode in the texture and the merged type.
argTex->getWritableType().getSampler().shadow = shadowMode;
samplerType.shadow = shadowMode;
texSymbol->switchId(newId);
}
txcombine->setType(TType(samplerType, EvqTemporary));
txcombine->setLoc(loc);
return txcombine;
}
// Return true if this a buffer type that has an associated counter buffer.
bool HlslParseContext::hasStructBuffCounter(const TType& type) const
{
switch (type.getQualifier().declaredBuiltIn) {
case EbvAppendConsume: // fall through...
case EbvRWStructuredBuffer: // ...
return true;
default:
return false; // the other structuredbuffer types do not have a counter.
}
}
void HlslParseContext::counterBufferType(const TSourceLoc& loc, TType& type)
{
// Counter type
TType* counterType = new TType(EbtUint, EvqBuffer);
counterType->setFieldName(intermediate.implicitCounterName);
TTypeList* blockStruct = new TTypeList;
TTypeLoc member = { counterType, loc };
blockStruct->push_back(member);
TType blockType(blockStruct, "", counterType->getQualifier());
blockType.getQualifier().storage = EvqBuffer;
type.shallowCopy(blockType);
shareStructBufferType(type);
}
// declare counter for a structured buffer type
void HlslParseContext::declareStructBufferCounter(const TSourceLoc& loc, const TType& bufferType, const TString& name)
{
// Bail out if not a struct buffer
if (! isStructBufferType(bufferType))
return;
if (! hasStructBuffCounter(bufferType))
return;
TType blockType;
counterBufferType(loc, blockType);
TString* blockName = NewPoolTString(intermediate.addCounterBufferName(name).c_str());
// Counter buffer is not yet in use
structBufferCounter[*blockName] = false;
shareStructBufferType(blockType);
declareBlock(loc, blockType, blockName);
}
// return the counter that goes with a given structuredbuffer
TIntermTyped* HlslParseContext::getStructBufferCounter(const TSourceLoc& loc, TIntermTyped* buffer)
{
// Bail out if not a struct buffer
if (buffer == nullptr || ! isStructBufferType(buffer->getType()))
return nullptr;
const TString counterBlockName(intermediate.addCounterBufferName(buffer->getAsSymbolNode()->getName()));
// Mark the counter as being used
structBufferCounter[counterBlockName] = true;
TIntermTyped* counterVar = handleVariable(loc, &counterBlockName); // find the block structure
TIntermTyped* index = intermediate.addConstantUnion(0, loc); // index to counter inside block struct
TIntermTyped* counterMember = intermediate.addIndex(EOpIndexDirectStruct, counterVar, index, loc);
counterMember->setType(TType(EbtUint));
return counterMember;
}
//
// Decompose structure buffer methods into AST
//
void HlslParseContext::decomposeStructBufferMethods(const TSourceLoc& loc, TIntermTyped*& node, TIntermNode* arguments)
{
if (node == nullptr || node->getAsOperator() == nullptr || arguments == nullptr)
return;
const TOperator op = node->getAsOperator()->getOp();
TIntermAggregate* argAggregate = arguments->getAsAggregate();
// Buffer is the object upon which method is called, so always arg 0
TIntermTyped* bufferObj = nullptr;
// The parameters can be an aggregate, or just a the object as a symbol if there are no fn params.
if (argAggregate) {
if (argAggregate->getSequence().empty())
return;
if (argAggregate->getSequence()[0])
bufferObj = argAggregate->getSequence()[0]->getAsTyped();
} else {
bufferObj = arguments->getAsSymbolNode();
}
if (bufferObj == nullptr || bufferObj->getAsSymbolNode() == nullptr)
return;
// Some methods require a hidden internal counter, obtained via getStructBufferCounter().
// This lambda adds something to it and returns the old value.
const auto incDecCounter = [&](int incval) -> TIntermTyped* {
TIntermTyped* incrementValue = intermediate.addConstantUnion(static_cast<unsigned int>(incval), loc, true);
TIntermTyped* counter = getStructBufferCounter(loc, bufferObj); // obtain the counter member
if (counter == nullptr)
return nullptr;
TIntermAggregate* counterIncrement = new TIntermAggregate(EOpAtomicAdd);
counterIncrement->setType(TType(EbtUint, EvqTemporary));
counterIncrement->setLoc(loc);
counterIncrement->getSequence().push_back(counter);
counterIncrement->getSequence().push_back(incrementValue);
return counterIncrement;
};
// Index to obtain the runtime sized array out of the buffer.
TIntermTyped* argArray = indexStructBufferContent(loc, bufferObj);
if (argArray == nullptr)
return; // It might not be a struct buffer method.
switch (op) {
case EOpMethodLoad:
{
TIntermTyped* argIndex = makeIntegerIndex(argAggregate->getSequence()[1]->getAsTyped()); // index
const TType& bufferType = bufferObj->getType();
const TBuiltInVariable builtInType = bufferType.getQualifier().declaredBuiltIn;
// Byte address buffers index in bytes (only multiples of 4 permitted... not so much a byte address
// buffer then, but that's what it calls itself.
const bool isByteAddressBuffer = (builtInType == EbvByteAddressBuffer ||
builtInType == EbvRWByteAddressBuffer);
if (isByteAddressBuffer)
argIndex = intermediate.addBinaryNode(EOpRightShift, argIndex,
intermediate.addConstantUnion(2, loc, true),
loc, TType(EbtInt));
// Index into the array to find the item being loaded.
const TOperator idxOp = (argIndex->getQualifier().storage == EvqConst) ? EOpIndexDirect : EOpIndexIndirect;
node = intermediate.addIndex(idxOp, argArray, argIndex, loc);
const TType derefType(argArray->getType(), 0);
node->setType(derefType);
}
break;
case EOpMethodLoad2:
case EOpMethodLoad3:
case EOpMethodLoad4:
{
TIntermTyped* argIndex = makeIntegerIndex(argAggregate->getSequence()[1]->getAsTyped()); // index
TOperator constructOp = EOpNull;
int size = 0;
switch (op) {
case EOpMethodLoad2: size = 2; constructOp = EOpConstructVec2; break;
case EOpMethodLoad3: size = 3; constructOp = EOpConstructVec3; break;
case EOpMethodLoad4: size = 4; constructOp = EOpConstructVec4; break;
default: assert(0);
}
TIntermTyped* body = nullptr;
// First, we'll store the address in a variable to avoid multiple shifts
// (we must convert the byte address to an item address)
TIntermTyped* byteAddrIdx = intermediate.addBinaryNode(EOpRightShift, argIndex,
intermediate.addConstantUnion(2, loc, true),
loc, TType(EbtInt));
TVariable* byteAddrSym = makeInternalVariable("byteAddrTemp", TType(EbtInt, EvqTemporary));
TIntermTyped* byteAddrIdxVar = intermediate.addSymbol(*byteAddrSym, loc);
body = intermediate.growAggregate(body, intermediate.addAssign(EOpAssign, byteAddrIdxVar, byteAddrIdx, loc));
TIntermTyped* vec = nullptr;
// These are only valid on (rw)byteaddressbuffers, so we can always perform the >>2
// address conversion.
for (int idx=0; idx<size; ++idx) {
TIntermTyped* offsetIdx = byteAddrIdxVar;
// add index offset
if (idx != 0)
offsetIdx = intermediate.addBinaryNode(EOpAdd, offsetIdx,
intermediate.addConstantUnion(idx, loc, true),
loc, TType(EbtInt));
const TOperator idxOp = (offsetIdx->getQualifier().storage == EvqConst) ? EOpIndexDirect
: EOpIndexIndirect;
TIntermTyped* indexVal = intermediate.addIndex(idxOp, argArray, offsetIdx, loc);
TType derefType(argArray->getType(), 0);
derefType.getQualifier().makeTemporary();
indexVal->setType(derefType);
vec = intermediate.growAggregate(vec, indexVal);
}
vec->setType(TType(argArray->getBasicType(), EvqTemporary, size));
vec->getAsAggregate()->setOperator(constructOp);
body = intermediate.growAggregate(body, vec);
body->setType(vec->getType());
body->getAsAggregate()->setOperator(EOpSequence);
node = body;
}
break;
case EOpMethodStore:
case EOpMethodStore2:
case EOpMethodStore3:
case EOpMethodStore4:
{
TIntermTyped* argIndex = makeIntegerIndex(argAggregate->getSequence()[1]->getAsTyped()); // index
TIntermTyped* argValue = argAggregate->getSequence()[2]->getAsTyped(); // value
// Index into the array to find the item being loaded.
// Byte address buffers index in bytes (only multiples of 4 permitted... not so much a byte address
// buffer then, but that's what it calls itself).
int size = 0;
switch (op) {
case EOpMethodStore: size = 1; break;
case EOpMethodStore2: size = 2; break;
case EOpMethodStore3: size = 3; break;
case EOpMethodStore4: size = 4; break;
default: assert(0);
}
TIntermAggregate* body = nullptr;
// First, we'll store the address in a variable to avoid multiple shifts
// (we must convert the byte address to an item address)
TIntermTyped* byteAddrIdx = intermediate.addBinaryNode(EOpRightShift, argIndex,
intermediate.addConstantUnion(2, loc, true), loc, TType(EbtInt));
TVariable* byteAddrSym = makeInternalVariable("byteAddrTemp", TType(EbtInt, EvqTemporary));
TIntermTyped* byteAddrIdxVar = intermediate.addSymbol(*byteAddrSym, loc);
body = intermediate.growAggregate(body, intermediate.addAssign(EOpAssign, byteAddrIdxVar, byteAddrIdx, loc));
for (int idx=0; idx<size; ++idx) {
TIntermTyped* offsetIdx = byteAddrIdxVar;
TIntermTyped* idxConst = intermediate.addConstantUnion(idx, loc, true);
// add index offset
if (idx != 0)
offsetIdx = intermediate.addBinaryNode(EOpAdd, offsetIdx, idxConst, loc, TType(EbtInt));
const TOperator idxOp = (offsetIdx->getQualifier().storage == EvqConst) ? EOpIndexDirect
: EOpIndexIndirect;
TIntermTyped* lValue = intermediate.addIndex(idxOp, argArray, offsetIdx, loc);
const TType derefType(argArray->getType(), 0);
lValue->setType(derefType);
TIntermTyped* rValue;
if (size == 1) {
rValue = argValue;
} else {
rValue = intermediate.addIndex(EOpIndexDirect, argValue, idxConst, loc);
const TType indexType(argValue->getType(), 0);
rValue->setType(indexType);
}
TIntermTyped* assign = intermediate.addAssign(EOpAssign, lValue, rValue, loc);
body = intermediate.growAggregate(body, assign);
}
body->setOperator(EOpSequence);
node = body;
}
break;
case EOpMethodGetDimensions:
{
const int numArgs = (int)argAggregate->getSequence().size();
TIntermTyped* argNumItems = argAggregate->getSequence()[1]->getAsTyped(); // out num items
TIntermTyped* argStride = numArgs > 2 ? argAggregate->getSequence()[2]->getAsTyped() : nullptr; // out stride
TIntermAggregate* body = nullptr;
// Length output:
if (argArray->getType().isSizedArray()) {
const int length = argArray->getType().getOuterArraySize();
TIntermTyped* assign = intermediate.addAssign(EOpAssign, argNumItems,
intermediate.addConstantUnion(length, loc, true), loc);
body = intermediate.growAggregate(body, assign, loc);
} else {
TIntermTyped* lengthCall = intermediate.addBuiltInFunctionCall(loc, EOpArrayLength, true, argArray,
argNumItems->getType());
TIntermTyped* assign = intermediate.addAssign(EOpAssign, argNumItems, lengthCall, loc);
body = intermediate.growAggregate(body, assign, loc);
}
// Stride output:
if (argStride != nullptr) {
int size;
int stride;
intermediate.getMemberAlignment(argArray->getType(), size, stride, argArray->getType().getQualifier().layoutPacking,
argArray->getType().getQualifier().layoutMatrix == ElmRowMajor);
TIntermTyped* assign = intermediate.addAssign(EOpAssign, argStride,
intermediate.addConstantUnion(stride, loc, true), loc);
body = intermediate.growAggregate(body, assign);
}
body->setOperator(EOpSequence);
node = body;
}
break;
case EOpInterlockedAdd:
case EOpInterlockedAnd:
case EOpInterlockedExchange:
case EOpInterlockedMax:
case EOpInterlockedMin:
case EOpInterlockedOr:
case EOpInterlockedXor:
case EOpInterlockedCompareExchange:
case EOpInterlockedCompareStore:
{
// We'll replace the first argument with the block dereference, and let
// downstream decomposition handle the rest.
TIntermSequence& sequence = argAggregate->getSequence();
TIntermTyped* argIndex = makeIntegerIndex(sequence[1]->getAsTyped()); // index
argIndex = intermediate.addBinaryNode(EOpRightShift, argIndex, intermediate.addConstantUnion(2, loc, true),
loc, TType(EbtInt));
const TOperator idxOp = (argIndex->getQualifier().storage == EvqConst) ? EOpIndexDirect : EOpIndexIndirect;
TIntermTyped* element = intermediate.addIndex(idxOp, argArray, argIndex, loc);
const TType derefType(argArray->getType(), 0);
element->setType(derefType);
// Replace the numeric byte offset parameter with array reference.
sequence[1] = element;
sequence.erase(sequence.begin(), sequence.begin()+1);
}
break;
case EOpMethodIncrementCounter:
{
node = incDecCounter(1);
break;
}
case EOpMethodDecrementCounter:
{
TIntermTyped* preIncValue = incDecCounter(-1); // result is original value
node = intermediate.addBinaryNode(EOpAdd, preIncValue, intermediate.addConstantUnion(-1, loc, true), loc,
preIncValue->getType());
break;
}
case EOpMethodAppend:
{
TIntermTyped* oldCounter = incDecCounter(1);
TIntermTyped* lValue = intermediate.addIndex(EOpIndexIndirect, argArray, oldCounter, loc);
TIntermTyped* rValue = argAggregate->getSequence()[1]->getAsTyped();
const TType derefType(argArray->getType(), 0);
lValue->setType(derefType);
node = intermediate.addAssign(EOpAssign, lValue, rValue, loc);
break;
}
case EOpMethodConsume:
{
TIntermTyped* oldCounter = incDecCounter(-1);
TIntermTyped* newCounter = intermediate.addBinaryNode(EOpAdd, oldCounter,
intermediate.addConstantUnion(-1, loc, true), loc,
oldCounter->getType());
node = intermediate.addIndex(EOpIndexIndirect, argArray, newCounter, loc);
const TType derefType(argArray->getType(), 0);
node->setType(derefType);
break;
}
default:
break; // most pass through unchanged
}
}
// Create array of standard sample positions for given sample count.
// TODO: remove when a real method to query sample pos exists in SPIR-V.
TIntermConstantUnion* HlslParseContext::getSamplePosArray(int count)
{
struct tSamplePos { float x, y; };
static const tSamplePos pos1[] = {
{ 0.0/16.0, 0.0/16.0 },
};
// standard sample positions for 2, 4, 8, and 16 samples.
static const tSamplePos pos2[] = {
{ 4.0/16.0, 4.0/16.0 }, {-4.0/16.0, -4.0/16.0 },
};
static const tSamplePos pos4[] = {
{-2.0/16.0, -6.0/16.0 }, { 6.0/16.0, -2.0/16.0 }, {-6.0/16.0, 2.0/16.0 }, { 2.0/16.0, 6.0/16.0 },
};
static const tSamplePos pos8[] = {
{ 1.0/16.0, -3.0/16.0 }, {-1.0/16.0, 3.0/16.0 }, { 5.0/16.0, 1.0/16.0 }, {-3.0/16.0, -5.0/16.0 },
{-5.0/16.0, 5.0/16.0 }, {-7.0/16.0, -1.0/16.0 }, { 3.0/16.0, 7.0/16.0 }, { 7.0/16.0, -7.0/16.0 },
};
static const tSamplePos pos16[] = {
{ 1.0/16.0, 1.0/16.0 }, {-1.0/16.0, -3.0/16.0 }, {-3.0/16.0, 2.0/16.0 }, { 4.0/16.0, -1.0/16.0 },
{-5.0/16.0, -2.0/16.0 }, { 2.0/16.0, 5.0/16.0 }, { 5.0/16.0, 3.0/16.0 }, { 3.0/16.0, -5.0/16.0 },
{-2.0/16.0, 6.0/16.0 }, { 0.0/16.0, -7.0/16.0 }, {-4.0/16.0, -6.0/16.0 }, {-6.0/16.0, 4.0/16.0 },
{-8.0/16.0, 0.0/16.0 }, { 7.0/16.0, -4.0/16.0 }, { 6.0/16.0, 7.0/16.0 }, {-7.0/16.0, -8.0/16.0 },
};
const tSamplePos* sampleLoc = nullptr;
int numSamples = count;
switch (count) {
case 2: sampleLoc = pos2; break;
case 4: sampleLoc = pos4; break;
case 8: sampleLoc = pos8; break;
case 16: sampleLoc = pos16; break;
default:
sampleLoc = pos1;
numSamples = 1;
}
TConstUnionArray* values = new TConstUnionArray(numSamples*2);
for (int pos=0; pos<count; ++pos) {
TConstUnion x, y;
x.setDConst(sampleLoc[pos].x);
y.setDConst(sampleLoc[pos].y);
(*values)[pos*2+0] = x;
(*values)[pos*2+1] = y;
}
TType retType(EbtFloat, EvqConst, 2);
if (numSamples != 1) {
TArraySizes* arraySizes = new TArraySizes;
arraySizes->addInnerSize(numSamples);
retType.transferArraySizes(arraySizes);
}
return new TIntermConstantUnion(*values, retType);
}
//
// Decompose DX9 and DX10 sample intrinsics & object methods into AST
//
void HlslParseContext::decomposeSampleMethods(const TSourceLoc& loc, TIntermTyped*& node, TIntermNode* arguments)
{
if (node == nullptr || !node->getAsOperator())
return;
// Sampler return must always be a vec4, but we can construct a shorter vector or a structure from it.
const auto convertReturn = [&loc, &node, this](TIntermTyped* result, const TSampler& sampler) -> TIntermTyped* {
result->setType(TType(node->getType().getBasicType(), EvqTemporary, node->getVectorSize()));
TIntermTyped* convertedResult = nullptr;
TType retType;
getTextureReturnType(sampler, retType);
if (retType.isStruct()) {
// For type convenience, conversionAggregate points to the convertedResult (we know it's an aggregate here)
TIntermAggregate* conversionAggregate = new TIntermAggregate;
convertedResult = conversionAggregate;
// Convert vector output to return structure. We will need a temp symbol to copy the results to.
TVariable* structVar = makeInternalVariable("@sampleStructTemp", retType);
// We also need a temp symbol to hold the result of the texture. We don't want to re-fetch the
// sample each time we'll index into the result, so we'll copy to this, and index into the copy.
TVariable* sampleShadow = makeInternalVariable("@sampleResultShadow", result->getType());
// Initial copy from texture to our sample result shadow.
TIntermTyped* shadowCopy = intermediate.addAssign(EOpAssign, intermediate.addSymbol(*sampleShadow, loc),
result, loc);
conversionAggregate->getSequence().push_back(shadowCopy);
unsigned vec4Pos = 0;
for (unsigned m = 0; m < unsigned(retType.getStruct()->size()); ++m) {
const TType memberType(retType, m); // dereferenced type of the member we're about to assign.
// Check for bad struct members. This should have been caught upstream. Complain, because
// wwe don't know what to do with it. This algorithm could be generalized to handle
// other things, e.g, sub-structures, but HLSL doesn't allow them.
if (!memberType.isVector() && !memberType.isScalar()) {
error(loc, "expected: scalar or vector type in texture structure", "", "");
return nullptr;
}
// Index into the struct variable to find the member to assign.
TIntermTyped* structMember = intermediate.addIndex(EOpIndexDirectStruct,
intermediate.addSymbol(*structVar, loc),
intermediate.addConstantUnion(m, loc), loc);
structMember->setType(memberType);
// Assign each component of (possible) vector in struct member.
for (int component = 0; component < memberType.getVectorSize(); ++component) {
TIntermTyped* vec4Member = intermediate.addIndex(EOpIndexDirect,
intermediate.addSymbol(*sampleShadow, loc),
intermediate.addConstantUnion(vec4Pos++, loc), loc);
vec4Member->setType(TType(memberType.getBasicType(), EvqTemporary, 1));
TIntermTyped* memberAssign = nullptr;
if (memberType.isVector()) {
// Vector member: we need to create an access chain to the vector component.
TIntermTyped* structVecComponent = intermediate.addIndex(EOpIndexDirect, structMember,
intermediate.addConstantUnion(component, loc), loc);
memberAssign = intermediate.addAssign(EOpAssign, structVecComponent, vec4Member, loc);
} else {
// Scalar member: we can assign to it directly.
memberAssign = intermediate.addAssign(EOpAssign, structMember, vec4Member, loc);
}
conversionAggregate->getSequence().push_back(memberAssign);
}
}
// Add completed variable so the expression results in the whole struct value we just built.
conversionAggregate->getSequence().push_back(intermediate.addSymbol(*structVar, loc));
// Make it a sequence.
intermediate.setAggregateOperator(conversionAggregate, EOpSequence, retType, loc);
} else {
// vector clamp the output if template vector type is smaller than sample result.
if (retType.getVectorSize() < node->getVectorSize()) {
// Too many components. Construct shorter vector from it.
const TOperator op = intermediate.mapTypeToConstructorOp(retType);
convertedResult = constructBuiltIn(retType, op, result, loc, false);
} else {
// Enough components. Use directly.
convertedResult = result;
}
}
convertedResult->setLoc(loc);
return convertedResult;
};
const TOperator op = node->getAsOperator()->getOp();
const TIntermAggregate* argAggregate = arguments ? arguments->getAsAggregate() : nullptr;
// Bail out if not a sampler method.
// Note though this is odd to do before checking the op, because the op
// could be something that takes the arguments, and the function in question
// takes the result of the op. So, this is not the final word.
if (arguments != nullptr) {
if (argAggregate == nullptr) {
if (arguments->getAsTyped()->getBasicType() != EbtSampler)
return;
} else {
if (argAggregate->getSequence().size() == 0 ||
argAggregate->getSequence()[0] == nullptr ||
argAggregate->getSequence()[0]->getAsTyped()->getBasicType() != EbtSampler)
return;
}
}
switch (op) {
// **** DX9 intrinsics: ****
case EOpTexture:
{
// Texture with ddx & ddy is really gradient form in HLSL
if (argAggregate->getSequence().size() == 4)
node->getAsAggregate()->setOperator(EOpTextureGrad);
break;
}
case EOpTextureLod: //is almost EOpTextureBias (only args & operations are different)
{
TIntermTyped *argSamp = argAggregate->getSequence()[0]->getAsTyped(); // sampler
TIntermTyped *argCoord = argAggregate->getSequence()[1]->getAsTyped(); // coord
assert(argCoord->getVectorSize() == 4);
TIntermTyped *w = intermediate.addConstantUnion(3, loc, true);
TIntermTyped *argLod = intermediate.addIndex(EOpIndexDirect, argCoord, w, loc);
TOperator constructOp = EOpNull;
const TSampler &sampler = argSamp->getType().getSampler();
int coordSize = 0;
switch (sampler.dim)
{
case Esd1D: constructOp = EOpConstructFloat; coordSize = 1; break; // 1D
case Esd2D: constructOp = EOpConstructVec2; coordSize = 2; break; // 2D
case Esd3D: constructOp = EOpConstructVec3; coordSize = 3; break; // 3D
case EsdCube: constructOp = EOpConstructVec3; coordSize = 3; break; // also 3D
default:
break;
}
TIntermAggregate *constructCoord = new TIntermAggregate(constructOp);
constructCoord->getSequence().push_back(argCoord);
constructCoord->setLoc(loc);
constructCoord->setType(TType(argCoord->getBasicType(), EvqTemporary, coordSize));
TIntermAggregate *tex = new TIntermAggregate(EOpTextureLod);
tex->getSequence().push_back(argSamp); // sampler
tex->getSequence().push_back(constructCoord); // coordinate
tex->getSequence().push_back(argLod); // lod
node = convertReturn(tex, sampler);
break;
}
case EOpTextureBias:
{
TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped(); // sampler
TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped(); // coord
// HLSL puts bias in W component of coordinate. We extract it and add it to
// the argument list, instead
TIntermTyped* w = intermediate.addConstantUnion(3, loc, true);
TIntermTyped* bias = intermediate.addIndex(EOpIndexDirect, arg1, w, loc);
TOperator constructOp = EOpNull;
const TSampler& sampler = arg0->getType().getSampler();
switch (sampler.dim) {
case Esd1D: constructOp = EOpConstructFloat; break; // 1D
case Esd2D: constructOp = EOpConstructVec2; break; // 2D
case Esd3D: constructOp = EOpConstructVec3; break; // 3D
case EsdCube: constructOp = EOpConstructVec3; break; // also 3D
default: break;
}
TIntermAggregate* constructCoord = new TIntermAggregate(constructOp);
constructCoord->getSequence().push_back(arg1);
constructCoord->setLoc(loc);
// The input vector should never be less than 2, since there's always a bias.
// The max is for safety, and should be a no-op.
constructCoord->setType(TType(arg1->getBasicType(), EvqTemporary, std::max(arg1->getVectorSize() - 1, 0)));
TIntermAggregate* tex = new TIntermAggregate(EOpTexture);
tex->getSequence().push_back(arg0); // sampler
tex->getSequence().push_back(constructCoord); // coordinate
tex->getSequence().push_back(bias); // bias
node = convertReturn(tex, sampler);
break;
}
// **** DX10 methods: ****
case EOpMethodSample: // fall through
case EOpMethodSampleBias: // ...
{
TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped();
TIntermTyped* argSamp = argAggregate->getSequence()[1]->getAsTyped();
TIntermTyped* argCoord = argAggregate->getSequence()[2]->getAsTyped();
TIntermTyped* argBias = nullptr;
TIntermTyped* argOffset = nullptr;
const TSampler& sampler = argTex->getType().getSampler();
int nextArg = 3;
if (op == EOpMethodSampleBias) // SampleBias has a bias arg
argBias = argAggregate->getSequence()[nextArg++]->getAsTyped();
TOperator textureOp = EOpTexture;
if ((int)argAggregate->getSequence().size() == (nextArg+1)) { // last parameter is offset form
textureOp = EOpTextureOffset;
argOffset = argAggregate->getSequence()[nextArg++]->getAsTyped();
}
TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
TIntermAggregate* txsample = new TIntermAggregate(textureOp);
txsample->getSequence().push_back(txcombine);
txsample->getSequence().push_back(argCoord);
if (argBias != nullptr)
txsample->getSequence().push_back(argBias);
if (argOffset != nullptr)
txsample->getSequence().push_back(argOffset);
node = convertReturn(txsample, sampler);
break;
}
case EOpMethodSampleGrad: // ...
{
TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped();
TIntermTyped* argSamp = argAggregate->getSequence()[1]->getAsTyped();
TIntermTyped* argCoord = argAggregate->getSequence()[2]->getAsTyped();
TIntermTyped* argDDX = argAggregate->getSequence()[3]->getAsTyped();
TIntermTyped* argDDY = argAggregate->getSequence()[4]->getAsTyped();
TIntermTyped* argOffset = nullptr;
const TSampler& sampler = argTex->getType().getSampler();
TOperator textureOp = EOpTextureGrad;
if (argAggregate->getSequence().size() == 6) { // last parameter is offset form
textureOp = EOpTextureGradOffset;
argOffset = argAggregate->getSequence()[5]->getAsTyped();
}
TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
TIntermAggregate* txsample = new TIntermAggregate(textureOp);
txsample->getSequence().push_back(txcombine);
txsample->getSequence().push_back(argCoord);
txsample->getSequence().push_back(argDDX);
txsample->getSequence().push_back(argDDY);
if (argOffset != nullptr)
txsample->getSequence().push_back(argOffset);
node = convertReturn(txsample, sampler);
break;
}
case EOpMethodGetDimensions:
{
// AST returns a vector of results, which we break apart component-wise into
// separate values to assign to the HLSL method's outputs, ala:
// tx . GetDimensions(width, height);
// float2 sizeQueryTemp = EOpTextureQuerySize
// width = sizeQueryTemp.X;
// height = sizeQueryTemp.Y;
TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped();
const TType& texType = argTex->getType();
assert(texType.getBasicType() == EbtSampler);
const TSampler& sampler = texType.getSampler();
const TSamplerDim dim = sampler.dim;
const bool isImage = sampler.isImage();
const bool isMs = sampler.isMultiSample();
const int numArgs = (int)argAggregate->getSequence().size();
int numDims = 0;
switch (dim) {
case Esd1D: numDims = 1; break; // W
case Esd2D: numDims = 2; break; // W, H
case Esd3D: numDims = 3; break; // W, H, D
case EsdCube: numDims = 2; break; // W, H (cube)
case EsdBuffer: numDims = 1; break; // W (buffers)
case EsdRect: numDims = 2; break; // W, H (rect)
default:
assert(0 && "unhandled texture dimension");
}
// Arrayed adds another dimension for the number of array elements
if (sampler.isArrayed())
++numDims;
// Establish whether the method itself is querying mip levels. This can be false even
// if the underlying query requires a MIP level, due to the available HLSL method overloads.
const bool mipQuery = (numArgs > (numDims + 1 + (isMs ? 1 : 0)));
// Establish whether we must use the LOD form of query (even if the method did not supply a mip level to query).
// True if:
// 1. 1D/2D/3D/Cube AND multisample==0 AND NOT image (those can be sent to the non-LOD query)
// or,
// 2. There is a LOD (because the non-LOD query cannot be used in that case, per spec)
const bool mipRequired =
((dim == Esd1D || dim == Esd2D || dim == Esd3D || dim == EsdCube) && !isMs && !isImage) || // 1...
mipQuery; // 2...
// AST assumes integer return. Will be converted to float if required.
TIntermAggregate* sizeQuery = new TIntermAggregate(isImage ? EOpImageQuerySize : EOpTextureQuerySize);
sizeQuery->getSequence().push_back(argTex);
// If we're building an LOD query, add the LOD.
if (mipRequired) {
// If the base HLSL query had no MIP level given, use level 0.
TIntermTyped* queryLod = mipQuery ? argAggregate->getSequence()[1]->getAsTyped() :
intermediate.addConstantUnion(0, loc, true);
sizeQuery->getSequence().push_back(queryLod);
}
sizeQuery->setType(TType(EbtUint, EvqTemporary, numDims));
sizeQuery->setLoc(loc);
// Return value from size query
TVariable* tempArg = makeInternalVariable("sizeQueryTemp", sizeQuery->getType());
tempArg->getWritableType().getQualifier().makeTemporary();
TIntermTyped* sizeQueryAssign = intermediate.addAssign(EOpAssign,
intermediate.addSymbol(*tempArg, loc),
sizeQuery, loc);
// Compound statement for assigning outputs
TIntermAggregate* compoundStatement = intermediate.makeAggregate(sizeQueryAssign, loc);
// Index of first output parameter
const int outParamBase = mipQuery ? 2 : 1;
for (int compNum = 0; compNum < numDims; ++compNum) {
TIntermTyped* indexedOut = nullptr;
TIntermSymbol* sizeQueryReturn = intermediate.addSymbol(*tempArg, loc);
if (numDims > 1) {
TIntermTyped* component = intermediate.addConstantUnion(compNum, loc, true);
indexedOut = intermediate.addIndex(EOpIndexDirect, sizeQueryReturn, component, loc);
indexedOut->setType(TType(EbtUint, EvqTemporary, 1));
indexedOut->setLoc(loc);
} else {
indexedOut = sizeQueryReturn;
}
TIntermTyped* outParam = argAggregate->getSequence()[outParamBase + compNum]->getAsTyped();
TIntermTyped* compAssign = intermediate.addAssign(EOpAssign, outParam, indexedOut, loc);
compoundStatement = intermediate.growAggregate(compoundStatement, compAssign);
}
// handle mip level parameter
if (mipQuery) {
TIntermTyped* outParam = argAggregate->getSequence()[outParamBase + numDims]->getAsTyped();
TIntermAggregate* levelsQuery = new TIntermAggregate(EOpTextureQueryLevels);
levelsQuery->getSequence().push_back(argTex);
levelsQuery->setType(TType(EbtUint, EvqTemporary, 1));
levelsQuery->setLoc(loc);
TIntermTyped* compAssign = intermediate.addAssign(EOpAssign, outParam, levelsQuery, loc);
compoundStatement = intermediate.growAggregate(compoundStatement, compAssign);
}
// 2DMS formats query # samples, which needs a different query op
if (sampler.isMultiSample()) {
TIntermTyped* outParam = argAggregate->getSequence()[outParamBase + numDims]->getAsTyped();
TIntermAggregate* samplesQuery = new TIntermAggregate(EOpImageQuerySamples);
samplesQuery->getSequence().push_back(argTex);
samplesQuery->setType(TType(EbtUint, EvqTemporary, 1));
samplesQuery->setLoc(loc);
TIntermTyped* compAssign = intermediate.addAssign(EOpAssign, outParam, samplesQuery, loc);
compoundStatement = intermediate.growAggregate(compoundStatement, compAssign);
}
compoundStatement->setOperator(EOpSequence);
compoundStatement->setLoc(loc);
compoundStatement->setType(TType(EbtVoid));
node = compoundStatement;
break;
}
case EOpMethodSampleCmp: // fall through...
case EOpMethodSampleCmpLevelZero:
{
TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped();
TIntermTyped* argSamp = argAggregate->getSequence()[1]->getAsTyped();
TIntermTyped* argCoord = argAggregate->getSequence()[2]->getAsTyped();
TIntermTyped* argCmpVal = argAggregate->getSequence()[3]->getAsTyped();
TIntermTyped* argOffset = nullptr;
// Sampler argument should be a sampler.
if (argSamp->getType().getBasicType() != EbtSampler) {
error(loc, "expected: sampler type", "", "");
return;
}
// Sampler should be a SamplerComparisonState
if (! argSamp->getType().getSampler().isShadow()) {
error(loc, "expected: SamplerComparisonState", "", "");
return;
}
// optional offset value
if (argAggregate->getSequence().size() > 4)
argOffset = argAggregate->getSequence()[4]->getAsTyped();
const int coordDimWithCmpVal = argCoord->getType().getVectorSize() + 1; // +1 for cmp
// AST wants comparison value as one of the texture coordinates
TOperator constructOp = EOpNull;
switch (coordDimWithCmpVal) {
// 1D can't happen: there's always at least 1 coordinate dimension + 1 cmp val
case 2: constructOp = EOpConstructVec2; break;
case 3: constructOp = EOpConstructVec3; break;
case 4: constructOp = EOpConstructVec4; break;
case 5: constructOp = EOpConstructVec4; break; // cubeArrayShadow, cmp value is separate arg.
default: assert(0); break;
}
TIntermAggregate* coordWithCmp = new TIntermAggregate(constructOp);
coordWithCmp->getSequence().push_back(argCoord);
if (coordDimWithCmpVal != 5) // cube array shadow is special.
coordWithCmp->getSequence().push_back(argCmpVal);
coordWithCmp->setLoc(loc);
coordWithCmp->setType(TType(argCoord->getBasicType(), EvqTemporary, std::min(coordDimWithCmpVal, 4)));
TOperator textureOp = (op == EOpMethodSampleCmpLevelZero ? EOpTextureLod : EOpTexture);
if (argOffset != nullptr)
textureOp = (op == EOpMethodSampleCmpLevelZero ? EOpTextureLodOffset : EOpTextureOffset);
// Create combined sampler & texture op
TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
TIntermAggregate* txsample = new TIntermAggregate(textureOp);
txsample->getSequence().push_back(txcombine);
txsample->getSequence().push_back(coordWithCmp);
if (coordDimWithCmpVal == 5) // cube array shadow is special: cmp val follows coord.
txsample->getSequence().push_back(argCmpVal);
// the LevelZero form uses 0 as an explicit LOD
if (op == EOpMethodSampleCmpLevelZero)
txsample->getSequence().push_back(intermediate.addConstantUnion(0.0, EbtFloat, loc, true));
// Add offset if present
if (argOffset != nullptr)
txsample->getSequence().push_back(argOffset);
txsample->setType(node->getType());
txsample->setLoc(loc);
node = txsample;
break;
}
case EOpMethodLoad:
{
TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped();
TIntermTyped* argCoord = argAggregate->getSequence()[1]->getAsTyped();
TIntermTyped* argOffset = nullptr;
TIntermTyped* lodComponent = nullptr;
TIntermTyped* coordSwizzle = nullptr;
const TSampler& sampler = argTex->getType().getSampler();
const bool isMS = sampler.isMultiSample();
const bool isBuffer = sampler.dim == EsdBuffer;
const bool isImage = sampler.isImage();
const TBasicType coordBaseType = argCoord->getType().getBasicType();
// Last component of coordinate is the mip level, for non-MS. we separate them here:
if (isMS || isBuffer || isImage) {
// MS, Buffer, and Image have no LOD
coordSwizzle = argCoord;
} else {
// Extract coordinate
int swizzleSize = argCoord->getType().getVectorSize() - (isMS ? 0 : 1);
TSwizzleSelectors<TVectorSelector> coordFields;
for (int i = 0; i < swizzleSize; ++i)
coordFields.push_back(i);
TIntermTyped* coordIdx = intermediate.addSwizzle(coordFields, loc);
coordSwizzle = intermediate.addIndex(EOpVectorSwizzle, argCoord, coordIdx, loc);
coordSwizzle->setType(TType(coordBaseType, EvqTemporary, coordFields.size()));
// Extract LOD
TIntermTyped* lodIdx = intermediate.addConstantUnion(coordFields.size(), loc, true);
lodComponent = intermediate.addIndex(EOpIndexDirect, argCoord, lodIdx, loc);
lodComponent->setType(TType(coordBaseType, EvqTemporary, 1));
}
const int numArgs = (int)argAggregate->getSequence().size();
const bool hasOffset = ((!isMS && numArgs == 3) || (isMS && numArgs == 4));
// Create texel fetch
const TOperator fetchOp = (isImage ? EOpImageLoad :
hasOffset ? EOpTextureFetchOffset :
EOpTextureFetch);
TIntermAggregate* txfetch = new TIntermAggregate(fetchOp);
// Build up the fetch
txfetch->getSequence().push_back(argTex);
txfetch->getSequence().push_back(coordSwizzle);
if (isMS) {
// add 2DMS sample index
TIntermTyped* argSampleIdx = argAggregate->getSequence()[2]->getAsTyped();
txfetch->getSequence().push_back(argSampleIdx);
} else if (isBuffer) {
// Nothing else to do for buffers.
} else if (isImage) {
// Nothing else to do for images.
} else {
// 2DMS and buffer have no LOD, but everything else does.
txfetch->getSequence().push_back(lodComponent);
}
// Obtain offset arg, if there is one.
if (hasOffset) {
const int offsetPos = (isMS ? 3 : 2);
argOffset = argAggregate->getSequence()[offsetPos]->getAsTyped();
txfetch->getSequence().push_back(argOffset);
}
node = convertReturn(txfetch, sampler);
break;
}
case EOpMethodSampleLevel:
{
TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped();
TIntermTyped* argSamp = argAggregate->getSequence()[1]->getAsTyped();
TIntermTyped* argCoord = argAggregate->getSequence()[2]->getAsTyped();
TIntermTyped* argLod = argAggregate->getSequence()[3]->getAsTyped();
TIntermTyped* argOffset = nullptr;
const TSampler& sampler = argTex->getType().getSampler();
const int numArgs = (int)argAggregate->getSequence().size();
if (numArgs == 5) // offset, if present
argOffset = argAggregate->getSequence()[4]->getAsTyped();
const TOperator textureOp = (argOffset == nullptr ? EOpTextureLod : EOpTextureLodOffset);
TIntermAggregate* txsample = new TIntermAggregate(textureOp);
TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
txsample->getSequence().push_back(txcombine);
txsample->getSequence().push_back(argCoord);
txsample->getSequence().push_back(argLod);
if (argOffset != nullptr)
txsample->getSequence().push_back(argOffset);
node = convertReturn(txsample, sampler);
break;
}
case EOpMethodGather:
{
TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped();
TIntermTyped* argSamp = argAggregate->getSequence()[1]->getAsTyped();
TIntermTyped* argCoord = argAggregate->getSequence()[2]->getAsTyped();
TIntermTyped* argOffset = nullptr;
// Offset is optional
if (argAggregate->getSequence().size() > 3)
argOffset = argAggregate->getSequence()[3]->getAsTyped();
const TOperator textureOp = (argOffset == nullptr ? EOpTextureGather : EOpTextureGatherOffset);
TIntermAggregate* txgather = new TIntermAggregate(textureOp);
TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
txgather->getSequence().push_back(txcombine);
txgather->getSequence().push_back(argCoord);
// Offset if not given is implicitly channel 0 (red)
if (argOffset != nullptr)
txgather->getSequence().push_back(argOffset);
txgather->setType(node->getType());
txgather->setLoc(loc);
node = txgather;
break;
}
case EOpMethodGatherRed: // fall through...
case EOpMethodGatherGreen: // ...
case EOpMethodGatherBlue: // ...
case EOpMethodGatherAlpha: // ...
case EOpMethodGatherCmpRed: // ...
case EOpMethodGatherCmpGreen: // ...
case EOpMethodGatherCmpBlue: // ...
case EOpMethodGatherCmpAlpha: // ...
{
int channel = 0; // the channel we are gathering
int cmpValues = 0; // 1 if there is a compare value (handier than a bool below)
switch (op) {
case EOpMethodGatherCmpRed: cmpValues = 1; // fall through
case EOpMethodGatherRed: channel = 0; break;
case EOpMethodGatherCmpGreen: cmpValues = 1; // fall through
case EOpMethodGatherGreen: channel = 1; break;
case EOpMethodGatherCmpBlue: cmpValues = 1; // fall through
case EOpMethodGatherBlue: channel = 2; break;
case EOpMethodGatherCmpAlpha: cmpValues = 1; // fall through
case EOpMethodGatherAlpha: channel = 3; break;
default: assert(0); break;
}
// For now, we have nothing to map the component-wise comparison forms
// to, because neither GLSL nor SPIR-V has such an opcode. Issue an
// unimplemented error instead. Most of the machinery is here if that
// should ever become available. However, red can be passed through
// to OpImageDrefGather. G/B/A cannot, because that opcode does not
// accept a component.
if (cmpValues != 0 && op != EOpMethodGatherCmpRed) {
error(loc, "unimplemented: component-level gather compare", "", "");
return;
}
int arg = 0;
TIntermTyped* argTex = argAggregate->getSequence()[arg++]->getAsTyped();
TIntermTyped* argSamp = argAggregate->getSequence()[arg++]->getAsTyped();
TIntermTyped* argCoord = argAggregate->getSequence()[arg++]->getAsTyped();
TIntermTyped* argOffset = nullptr;
TIntermTyped* argOffsets[4] = { nullptr, nullptr, nullptr, nullptr };
// TIntermTyped* argStatus = nullptr; // TODO: residency
TIntermTyped* argCmp = nullptr;
const TSamplerDim dim = argTex->getType().getSampler().dim;
const int argSize = (int)argAggregate->getSequence().size();
bool hasStatus = (argSize == (5+cmpValues) || argSize == (8+cmpValues));
bool hasOffset1 = false;
bool hasOffset4 = false;
// Sampler argument should be a sampler.
if (argSamp->getType().getBasicType() != EbtSampler) {
error(loc, "expected: sampler type", "", "");
return;
}
// Cmp forms require SamplerComparisonState
if (cmpValues > 0 && ! argSamp->getType().getSampler().isShadow()) {
error(loc, "expected: SamplerComparisonState", "", "");
return;
}
// Only 2D forms can have offsets. Discover if we have 0, 1 or 4 offsets.
if (dim == Esd2D) {
hasOffset1 = (argSize == (4+cmpValues) || argSize == (5+cmpValues));
hasOffset4 = (argSize == (7+cmpValues) || argSize == (8+cmpValues));
}
assert(!(hasOffset1 && hasOffset4));
TOperator textureOp = EOpTextureGather;
// Compare forms have compare value
if (cmpValues != 0)
argCmp = argOffset = argAggregate->getSequence()[arg++]->getAsTyped();
// Some forms have single offset
if (hasOffset1) {
textureOp = EOpTextureGatherOffset; // single offset form
argOffset = argAggregate->getSequence()[arg++]->getAsTyped();
}
// Some forms have 4 gather offsets
if (hasOffset4) {
textureOp = EOpTextureGatherOffsets; // note plural, for 4 offset form
for (int offsetNum = 0; offsetNum < 4; ++offsetNum)
argOffsets[offsetNum] = argAggregate->getSequence()[arg++]->getAsTyped();
}
// Residency status
if (hasStatus) {
// argStatus = argAggregate->getSequence()[arg++]->getAsTyped();
error(loc, "unimplemented: residency status", "", "");
return;
}
TIntermAggregate* txgather = new TIntermAggregate(textureOp);
TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
TIntermTyped* argChannel = intermediate.addConstantUnion(channel, loc, true);
txgather->getSequence().push_back(txcombine);
txgather->getSequence().push_back(argCoord);
// AST wants an array of 4 offsets, where HLSL has separate args. Here
// we construct an array from the separate args.
if (hasOffset4) {
TType arrayType(EbtInt, EvqTemporary, 2);
TArraySizes* arraySizes = new TArraySizes;
arraySizes->addInnerSize(4);
arrayType.transferArraySizes(arraySizes);
TIntermAggregate* initList = new TIntermAggregate(EOpNull);
for (int offsetNum = 0; offsetNum < 4; ++offsetNum)
initList->getSequence().push_back(argOffsets[offsetNum]);
argOffset = addConstructor(loc, initList, arrayType);
}
// Add comparison value if we have one
if (argCmp != nullptr)
txgather->getSequence().push_back(argCmp);
// Add offset (either 1, or an array of 4) if we have one
if (argOffset != nullptr)
txgather->getSequence().push_back(argOffset);
// Add channel value if the sampler is not shadow
if (! argSamp->getType().getSampler().isShadow())
txgather->getSequence().push_back(argChannel);
txgather->setType(node->getType());
txgather->setLoc(loc);
node = txgather;
break;
}
case EOpMethodCalculateLevelOfDetail:
case EOpMethodCalculateLevelOfDetailUnclamped:
{
TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped();
TIntermTyped* argSamp = argAggregate->getSequence()[1]->getAsTyped();
TIntermTyped* argCoord = argAggregate->getSequence()[2]->getAsTyped();
TIntermAggregate* txquerylod = new TIntermAggregate(EOpTextureQueryLod);
TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
txquerylod->getSequence().push_back(txcombine);
txquerylod->getSequence().push_back(argCoord);
TIntermTyped* lodComponent = intermediate.addConstantUnion(
op == EOpMethodCalculateLevelOfDetail ? 0 : 1,
loc, true);
TIntermTyped* lodComponentIdx = intermediate.addIndex(EOpIndexDirect, txquerylod, lodComponent, loc);
lodComponentIdx->setType(TType(EbtFloat, EvqTemporary, 1));
node = lodComponentIdx;
break;
}
case EOpMethodGetSamplePosition:
{
// TODO: this entire decomposition exists because there is not yet a way to query
// the sample position directly through SPIR-V. Instead, we return fixed sample
// positions for common cases. *** If the sample positions are set differently,
// this will be wrong. ***
TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped();
TIntermTyped* argSampIdx = argAggregate->getSequence()[1]->getAsTyped();
TIntermAggregate* samplesQuery = new TIntermAggregate(EOpImageQuerySamples);
samplesQuery->getSequence().push_back(argTex);
samplesQuery->setType(TType(EbtUint, EvqTemporary, 1));
samplesQuery->setLoc(loc);
TIntermAggregate* compoundStatement = nullptr;
TVariable* outSampleCount = makeInternalVariable("@sampleCount", TType(EbtUint));
outSampleCount->getWritableType().getQualifier().makeTemporary();
TIntermTyped* compAssign = intermediate.addAssign(EOpAssign, intermediate.addSymbol(*outSampleCount, loc),
samplesQuery, loc);
compoundStatement = intermediate.growAggregate(compoundStatement, compAssign);
TIntermTyped* idxtest[4];
// Create tests against 2, 4, 8, and 16 sample values
int count = 0;
for (int val = 2; val <= 16; val *= 2)
idxtest[count++] =
intermediate.addBinaryNode(EOpEqual,
intermediate.addSymbol(*outSampleCount, loc),
intermediate.addConstantUnion(val, loc),
loc, TType(EbtBool));
const TOperator idxOp = (argSampIdx->getQualifier().storage == EvqConst) ? EOpIndexDirect : EOpIndexIndirect;
// Create index ops into position arrays given sample index.
// TODO: should it be clamped?
TIntermTyped* index[4];
count = 0;
for (int val = 2; val <= 16; val *= 2) {
index[count] = intermediate.addIndex(idxOp, getSamplePosArray(val), argSampIdx, loc);
index[count++]->setType(TType(EbtFloat, EvqTemporary, 2));
}
// Create expression as:
// (sampleCount == 2) ? pos2[idx] :
// (sampleCount == 4) ? pos4[idx] :
// (sampleCount == 8) ? pos8[idx] :
// (sampleCount == 16) ? pos16[idx] : float2(0,0);
TIntermTyped* test =
intermediate.addSelection(idxtest[0], index[0],
intermediate.addSelection(idxtest[1], index[1],
intermediate.addSelection(idxtest[2], index[2],
intermediate.addSelection(idxtest[3], index[3],
getSamplePosArray(1), loc), loc), loc), loc);
compoundStatement = intermediate.growAggregate(compoundStatement, test);
compoundStatement->setOperator(EOpSequence);
compoundStatement->setLoc(loc);
compoundStatement->setType(TType(EbtFloat, EvqTemporary, 2));
node = compoundStatement;
break;
}
case EOpSubpassLoad:
{
const TIntermTyped* argSubpass =
argAggregate ? argAggregate->getSequence()[0]->getAsTyped() :
arguments->getAsTyped();
const TSampler& sampler = argSubpass->getType().getSampler();
// subpass load: the multisample form is overloaded. Here, we convert that to
// the EOpSubpassLoadMS opcode.
if (argAggregate != nullptr && argAggregate->getSequence().size() > 1)
node->getAsOperator()->setOp(EOpSubpassLoadMS);
node = convertReturn(node, sampler);
break;
}
default:
break; // most pass through unchanged
}
}
//
// Decompose geometry shader methods
//
void HlslParseContext::decomposeGeometryMethods(const TSourceLoc& loc, TIntermTyped*& node, TIntermNode* arguments)
{
if (node == nullptr || !node->getAsOperator())
return;
const TOperator op = node->getAsOperator()->getOp();
const TIntermAggregate* argAggregate = arguments ? arguments->getAsAggregate() : nullptr;
switch (op) {
case EOpMethodAppend:
if (argAggregate) {
// Don't emit these for non-GS stage, since we won't have the gsStreamOutput symbol.
if (language != EShLangGeometry) {
node = nullptr;
return;
}
TIntermAggregate* sequence = nullptr;
TIntermAggregate* emit = new TIntermAggregate(EOpEmitVertex);
emit->setLoc(loc);
emit->setType(TType(EbtVoid));
TIntermTyped* data = argAggregate->getSequence()[1]->getAsTyped();
// This will be patched in finalization during finalizeAppendMethods()
sequence = intermediate.growAggregate(sequence, data, loc);
sequence = intermediate.growAggregate(sequence, emit);
sequence->setOperator(EOpSequence);
sequence->setLoc(loc);
sequence->setType(TType(EbtVoid));
gsAppends.push_back({sequence, loc});
node = sequence;
}
break;
case EOpMethodRestartStrip:
{
// Don't emit these for non-GS stage, since we won't have the gsStreamOutput symbol.
if (language != EShLangGeometry) {
node = nullptr;
return;
}
TIntermAggregate* cut = new TIntermAggregate(EOpEndPrimitive);
cut->setLoc(loc);
cut->setType(TType(EbtVoid));
node = cut;
}
break;
default:
break; // most pass through unchanged
}
}
//
// Optionally decompose intrinsics to AST opcodes.
//
void HlslParseContext::decomposeIntrinsic(const TSourceLoc& loc, TIntermTyped*& node, TIntermNode* arguments)
{
// Helper to find image data for image atomics:
// OpImageLoad(image[idx])
// We take the image load apart and add its params to the atomic op aggregate node
const auto imageAtomicParams = [this, &loc, &node](TIntermAggregate* atomic, TIntermTyped* load) {
TIntermAggregate* loadOp = load->getAsAggregate();
if (loadOp == nullptr) {
error(loc, "unknown image type in atomic operation", "", "");
node = nullptr;
return;
}
atomic->getSequence().push_back(loadOp->getSequence()[0]);
atomic->getSequence().push_back(loadOp->getSequence()[1]);
};
// Return true if this is an imageLoad, which we will change to an image atomic.
const auto isImageParam = [](TIntermTyped* image) -> bool {
TIntermAggregate* imageAggregate = image->getAsAggregate();
return imageAggregate != nullptr && imageAggregate->getOp() == EOpImageLoad;
};
const auto lookupBuiltinVariable = [&](const char* name, TBuiltInVariable builtin, TType& type) -> TIntermTyped* {
TSymbol* symbol = symbolTable.find(name);
if (nullptr == symbol) {
type.getQualifier().builtIn = builtin;
TVariable* variable = new TVariable(NewPoolTString(name), type);
symbolTable.insert(*variable);
symbol = symbolTable.find(name);
assert(symbol && "Inserted symbol could not be found!");
}
return intermediate.addSymbol(*(symbol->getAsVariable()), loc);
};
// HLSL intrinsics can be pass through to native AST opcodes, or decomposed here to existing AST
// opcodes for compatibility with existing software stacks.
static const bool decomposeHlslIntrinsics = true;
if (!decomposeHlslIntrinsics || !node || !node->getAsOperator())
return;
const TIntermAggregate* argAggregate = arguments ? arguments->getAsAggregate() : nullptr;
TIntermUnary* fnUnary = node->getAsUnaryNode();
const TOperator op = node->getAsOperator()->getOp();
switch (op) {
case EOpGenMul:
{
// mul(a,b) -> MatrixTimesMatrix, MatrixTimesVector, MatrixTimesScalar, VectorTimesScalar, Dot, Mul
// Since we are treating HLSL rows like GLSL columns (the first matrix indirection),
// we must reverse the operand order here. Hence, arg0 gets sequence[1], etc.
TIntermTyped* arg0 = argAggregate->getSequence()[1]->getAsTyped();
TIntermTyped* arg1 = argAggregate->getSequence()[0]->getAsTyped();
if (arg0->isVector() && arg1->isVector()) { // vec * vec
node->getAsAggregate()->setOperator(EOpDot);
} else {
node = handleBinaryMath(loc, "mul", EOpMul, arg0, arg1);
}
break;
}
case EOpRcp:
{
// rcp(a) -> 1 / a
TIntermTyped* arg0 = fnUnary->getOperand();
TBasicType type0 = arg0->getBasicType();
TIntermTyped* one = intermediate.addConstantUnion(1, type0, loc, true);
node = handleBinaryMath(loc, "rcp", EOpDiv, one, arg0);
break;
}
case EOpAny: // fall through
case EOpAll:
{
TIntermTyped* typedArg = arguments->getAsTyped();
// HLSL allows float/etc types here, and the SPIR-V opcode requires a bool.
// We'll convert here. Note that for efficiency, we could add a smarter
// decomposition for some type cases, e.g, maybe by decomposing a dot product.
if (typedArg->getType().getBasicType() != EbtBool) {
const TType boolType(EbtBool, EvqTemporary,
typedArg->getVectorSize(),
typedArg->getMatrixCols(),
typedArg->getMatrixRows(),
typedArg->isVector());
typedArg = intermediate.addConversion(EOpConstructBool, boolType, typedArg);
node->getAsUnaryNode()->setOperand(typedArg);
}
break;
}
case EOpSaturate:
{
// saturate(a) -> clamp(a,0,1)
TIntermTyped* arg0 = fnUnary->getOperand();
TBasicType type0 = arg0->getBasicType();
TIntermAggregate* clamp = new TIntermAggregate(EOpClamp);
clamp->getSequence().push_back(arg0);
clamp->getSequence().push_back(intermediate.addConstantUnion(0, type0, loc, true));
clamp->getSequence().push_back(intermediate.addConstantUnion(1, type0, loc, true));
clamp->setLoc(loc);
clamp->setType(node->getType());
clamp->getWritableType().getQualifier().makeTemporary();
node = clamp;
break;
}
case EOpSinCos:
{
// sincos(a,b,c) -> b = sin(a), c = cos(a)
TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped();
TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped();
TIntermTyped* arg2 = argAggregate->getSequence()[2]->getAsTyped();
TIntermTyped* sinStatement = handleUnaryMath(loc, "sin", EOpSin, arg0);
TIntermTyped* cosStatement = handleUnaryMath(loc, "cos", EOpCos, arg0);
TIntermTyped* sinAssign = intermediate.addAssign(EOpAssign, arg1, sinStatement, loc);
TIntermTyped* cosAssign = intermediate.addAssign(EOpAssign, arg2, cosStatement, loc);
TIntermAggregate* compoundStatement = intermediate.makeAggregate(sinAssign, loc);
compoundStatement = intermediate.growAggregate(compoundStatement, cosAssign);
compoundStatement->setOperator(EOpSequence);
compoundStatement->setLoc(loc);
compoundStatement->setType(TType(EbtVoid));
node = compoundStatement;
break;
}
case EOpClip:
{
// clip(a) -> if (any(a<0)) discard;
TIntermTyped* arg0 = fnUnary->getOperand();
TBasicType type0 = arg0->getBasicType();
TIntermTyped* compareNode = nullptr;
// For non-scalars: per experiment with FXC compiler, discard if any component < 0.
if (!arg0->isScalar()) {
// component-wise compare: a < 0
TIntermAggregate* less = new TIntermAggregate(EOpLessThan);
less->getSequence().push_back(arg0);
less->setLoc(loc);
// make vec or mat of bool matching dimensions of input
less->setType(TType(EbtBool, EvqTemporary,
arg0->getType().getVectorSize(),
arg0->getType().getMatrixCols(),
arg0->getType().getMatrixRows(),
arg0->getType().isVector()));
// calculate # of components for comparison const
const int constComponentCount =
std::max(arg0->getType().getVectorSize(), 1) *
std::max(arg0->getType().getMatrixCols(), 1) *
std::max(arg0->getType().getMatrixRows(), 1);
TConstUnion zero;
if (arg0->getType().isIntegerDomain())
zero.setDConst(0);
else
zero.setDConst(0.0);
TConstUnionArray zeros(constComponentCount, zero);
less->getSequence().push_back(intermediate.addConstantUnion(zeros, arg0->getType(), loc, true));
compareNode = intermediate.addBuiltInFunctionCall(loc, EOpAny, true, less, TType(EbtBool));
} else {
TIntermTyped* zero;
if (arg0->getType().isIntegerDomain())
zero = intermediate.addConstantUnion(0, loc, true);
else
zero = intermediate.addConstantUnion(0.0, type0, loc, true);
compareNode = handleBinaryMath(loc, "clip", EOpLessThan, arg0, zero);
}
TIntermBranch* killNode = intermediate.addBranch(EOpKill, loc);
node = new TIntermSelection(compareNode, killNode, nullptr);
node->setLoc(loc);
break;
}
case EOpLog10:
{
// log10(a) -> log2(a) * 0.301029995663981 (== 1/log2(10))
TIntermTyped* arg0 = fnUnary->getOperand();
TIntermTyped* log2 = handleUnaryMath(loc, "log2", EOpLog2, arg0);
TIntermTyped* base = intermediate.addConstantUnion(0.301029995663981f, EbtFloat, loc, true);
node = handleBinaryMath(loc, "mul", EOpMul, log2, base);
break;
}
case EOpDst:
{
// dest.x = 1;
// dest.y = src0.y * src1.y;
// dest.z = src0.z;
// dest.w = src1.w;
TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped();
TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped();
TIntermTyped* y = intermediate.addConstantUnion(1, loc, true);
TIntermTyped* z = intermediate.addConstantUnion(2, loc, true);
TIntermTyped* w = intermediate.addConstantUnion(3, loc, true);
TIntermTyped* src0y = intermediate.addIndex(EOpIndexDirect, arg0, y, loc);
TIntermTyped* src1y = intermediate.addIndex(EOpIndexDirect, arg1, y, loc);
TIntermTyped* src0z = intermediate.addIndex(EOpIndexDirect, arg0, z, loc);
TIntermTyped* src1w = intermediate.addIndex(EOpIndexDirect, arg1, w, loc);
TIntermAggregate* dst = new TIntermAggregate(EOpConstructVec4);
dst->getSequence().push_back(intermediate.addConstantUnion(1.0, EbtFloat, loc, true));
dst->getSequence().push_back(handleBinaryMath(loc, "mul", EOpMul, src0y, src1y));
dst->getSequence().push_back(src0z);
dst->getSequence().push_back(src1w);
dst->setType(TType(EbtFloat, EvqTemporary, 4));
dst->setLoc(loc);
node = dst;
break;
}
case EOpInterlockedAdd: // optional last argument (if present) is assigned from return value
case EOpInterlockedMin: // ...
case EOpInterlockedMax: // ...
case EOpInterlockedAnd: // ...
case EOpInterlockedOr: // ...
case EOpInterlockedXor: // ...
case EOpInterlockedExchange: // always has output arg
{
TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped(); // dest
TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped(); // value
TIntermTyped* arg2 = nullptr;
if (argAggregate->getSequence().size() > 2)
arg2 = argAggregate->getSequence()[2]->getAsTyped();
const bool isImage = isImageParam(arg0);
const TOperator atomicOp = mapAtomicOp(loc, op, isImage);
TIntermAggregate* atomic = new TIntermAggregate(atomicOp);
atomic->setType(arg0->getType());
atomic->getWritableType().getQualifier().makeTemporary();
atomic->setLoc(loc);
if (isImage) {
// orig_value = imageAtomicOp(image, loc, data)
imageAtomicParams(atomic, arg0);
atomic->getSequence().push_back(arg1);
if (argAggregate->getSequence().size() > 2) {
node = intermediate.addAssign(EOpAssign, arg2, atomic, loc);
} else {
node = atomic; // no assignment needed, as there was no out var.
}
} else {
// Normal memory variable:
// arg0 = mem, arg1 = data, arg2(optional,out) = orig_value
if (argAggregate->getSequence().size() > 2) {
// optional output param is present. return value goes to arg2.
atomic->getSequence().push_back(arg0);
atomic->getSequence().push_back(arg1);
node = intermediate.addAssign(EOpAssign, arg2, atomic, loc);
} else {
// Set the matching operator. Since output is absent, this is all we need to do.
node->getAsAggregate()->setOperator(atomicOp);
node->setType(atomic->getType());
}
}
break;
}
case EOpInterlockedCompareExchange:
{
TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped(); // dest
TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped(); // cmp
TIntermTyped* arg2 = argAggregate->getSequence()[2]->getAsTyped(); // value
TIntermTyped* arg3 = argAggregate->getSequence()[3]->getAsTyped(); // orig
const bool isImage = isImageParam(arg0);
TIntermAggregate* atomic = new TIntermAggregate(mapAtomicOp(loc, op, isImage));
atomic->setLoc(loc);
atomic->setType(arg2->getType());
atomic->getWritableType().getQualifier().makeTemporary();
if (isImage) {
imageAtomicParams(atomic, arg0);
} else {
atomic->getSequence().push_back(arg0);
}
atomic->getSequence().push_back(arg1);
atomic->getSequence().push_back(arg2);
node = intermediate.addAssign(EOpAssign, arg3, atomic, loc);
break;
}
case EOpEvaluateAttributeSnapped:
{
// SPIR-V InterpolateAtOffset uses float vec2 offset in pixels
// HLSL uses int2 offset on a 16x16 grid in [-8..7] on x & y:
// iU = (iU<<28)>>28
// fU = ((float)iU)/16
// Targets might handle this natively, in which case they can disable
// decompositions.
TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped(); // value
TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped(); // offset
TIntermTyped* i28 = intermediate.addConstantUnion(28, loc, true);
TIntermTyped* iU = handleBinaryMath(loc, ">>", EOpRightShift,
handleBinaryMath(loc, "<<", EOpLeftShift, arg1, i28),
i28);
TIntermTyped* recip16 = intermediate.addConstantUnion((1.0/16.0), EbtFloat, loc, true);
TIntermTyped* floatOffset = handleBinaryMath(loc, "mul", EOpMul,
intermediate.addConversion(EOpConstructFloat,
TType(EbtFloat, EvqTemporary, 2), iU),
recip16);
TIntermAggregate* interp = new TIntermAggregate(EOpInterpolateAtOffset);
interp->getSequence().push_back(arg0);
interp->getSequence().push_back(floatOffset);
interp->setLoc(loc);
interp->setType(arg0->getType());
interp->getWritableType().getQualifier().makeTemporary();
node = interp;
break;
}
case EOpLit:
{
TIntermTyped* n_dot_l = argAggregate->getSequence()[0]->getAsTyped();
TIntermTyped* n_dot_h = argAggregate->getSequence()[1]->getAsTyped();
TIntermTyped* m = argAggregate->getSequence()[2]->getAsTyped();
TIntermAggregate* dst = new TIntermAggregate(EOpConstructVec4);
// Ambient
dst->getSequence().push_back(intermediate.addConstantUnion(1.0, EbtFloat, loc, true));
// Diffuse:
TIntermTyped* zero = intermediate.addConstantUnion(0.0, EbtFloat, loc, true);
TIntermAggregate* diffuse = new TIntermAggregate(EOpMax);
diffuse->getSequence().push_back(n_dot_l);
diffuse->getSequence().push_back(zero);
diffuse->setLoc(loc);
diffuse->setType(TType(EbtFloat));
dst->getSequence().push_back(diffuse);
// Specular:
TIntermAggregate* min_ndot = new TIntermAggregate(EOpMin);
min_ndot->getSequence().push_back(n_dot_l);
min_ndot->getSequence().push_back(n_dot_h);
min_ndot->setLoc(loc);
min_ndot->setType(TType(EbtFloat));
TIntermTyped* compare = handleBinaryMath(loc, "<", EOpLessThan, min_ndot, zero);
TIntermTyped* n_dot_h_m = handleBinaryMath(loc, "mul", EOpMul, n_dot_h, m); // n_dot_h * m
dst->getSequence().push_back(intermediate.addSelection(compare, zero, n_dot_h_m, loc));
// One:
dst->getSequence().push_back(intermediate.addConstantUnion(1.0, EbtFloat, loc, true));
dst->setLoc(loc);
dst->setType(TType(EbtFloat, EvqTemporary, 4));
node = dst;
break;
}
case EOpAsDouble:
{
// asdouble accepts two 32 bit ints. we can use EOpUint64BitsToDouble, but must
// first construct a uint64.
TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped();
TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped();
if (arg0->getType().isVector()) { // TODO: ...
error(loc, "double2 conversion not implemented", "asdouble", "");
break;
}
TIntermAggregate* uint64 = new TIntermAggregate(EOpConstructUVec2);
uint64->getSequence().push_back(arg0);
uint64->getSequence().push_back(arg1);
uint64->setType(TType(EbtUint, EvqTemporary, 2)); // convert 2 uints to a uint2
uint64->setLoc(loc);
// bitcast uint2 to a double
TIntermTyped* convert = new TIntermUnary(EOpUint64BitsToDouble);
convert->getAsUnaryNode()->setOperand(uint64);
convert->setLoc(loc);
convert->setType(TType(EbtDouble, EvqTemporary));
node = convert;
break;
}
case EOpF16tof32:
{
// input uvecN with low 16 bits of each component holding a float16. convert to float32.
TIntermTyped* argValue = node->getAsUnaryNode()->getOperand();
TIntermTyped* zero = intermediate.addConstantUnion(0, loc, true);
const int vecSize = argValue->getType().getVectorSize();
TOperator constructOp = EOpNull;
switch (vecSize) {
case 1: constructOp = EOpNull; break; // direct use, no construct needed
case 2: constructOp = EOpConstructVec2; break;
case 3: constructOp = EOpConstructVec3; break;
case 4: constructOp = EOpConstructVec4; break;
default: assert(0); break;
}
// For scalar case, we don't need to construct another type.
TIntermAggregate* result = (vecSize > 1) ? new TIntermAggregate(constructOp) : nullptr;
if (result) {
result->setType(TType(EbtFloat, EvqTemporary, vecSize));
result->setLoc(loc);
}
for (int idx = 0; idx < vecSize; ++idx) {
TIntermTyped* idxConst = intermediate.addConstantUnion(idx, loc, true);
TIntermTyped* component = argValue->getType().isVector() ?
intermediate.addIndex(EOpIndexDirect, argValue, idxConst, loc) : argValue;
if (component != argValue)
component->setType(TType(argValue->getBasicType(), EvqTemporary));
TIntermTyped* unpackOp = new TIntermUnary(EOpUnpackHalf2x16);
unpackOp->setType(TType(EbtFloat, EvqTemporary, 2));
unpackOp->getAsUnaryNode()->setOperand(component);
unpackOp->setLoc(loc);
TIntermTyped* lowOrder = intermediate.addIndex(EOpIndexDirect, unpackOp, zero, loc);
if (result != nullptr) {
result->getSequence().push_back(lowOrder);
node = result;
} else {
node = lowOrder;
}
}
break;
}
case EOpF32tof16:
{
// input floatN converted to 16 bit float in low order bits of each component of uintN
TIntermTyped* argValue = node->getAsUnaryNode()->getOperand();
TIntermTyped* zero = intermediate.addConstantUnion(0.0, EbtFloat, loc, true);
const int vecSize = argValue->getType().getVectorSize();
TOperator constructOp = EOpNull;
switch (vecSize) {
case 1: constructOp = EOpNull; break; // direct use, no construct needed
case 2: constructOp = EOpConstructUVec2; break;
case 3: constructOp = EOpConstructUVec3; break;
case 4: constructOp = EOpConstructUVec4; break;
default: assert(0); break;
}
// For scalar case, we don't need to construct another type.
TIntermAggregate* result = (vecSize > 1) ? new TIntermAggregate(constructOp) : nullptr;
if (result) {
result->setType(TType(EbtUint, EvqTemporary, vecSize));
result->setLoc(loc);
}
for (int idx = 0; idx < vecSize; ++idx) {
TIntermTyped* idxConst = intermediate.addConstantUnion(idx, loc, true);
TIntermTyped* component = argValue->getType().isVector() ?
intermediate.addIndex(EOpIndexDirect, argValue, idxConst, loc) : argValue;
if (component != argValue)
component->setType(TType(argValue->getBasicType(), EvqTemporary));
TIntermAggregate* vec2ComponentAndZero = new TIntermAggregate(EOpConstructVec2);
vec2ComponentAndZero->getSequence().push_back(component);
vec2ComponentAndZero->getSequence().push_back(zero);
vec2ComponentAndZero->setType(TType(EbtFloat, EvqTemporary, 2));
vec2ComponentAndZero->setLoc(loc);
TIntermTyped* packOp = new TIntermUnary(EOpPackHalf2x16);
packOp->getAsUnaryNode()->setOperand(vec2ComponentAndZero);
packOp->setLoc(loc);
packOp->setType(TType(EbtUint, EvqTemporary));
if (result != nullptr) {
result->getSequence().push_back(packOp);
node = result;
} else {
node = packOp;
}
}
break;
}
case EOpD3DCOLORtoUBYTE4:
{
// ivec4 ( x.zyxw * 255.001953 );
TIntermTyped* arg0 = node->getAsUnaryNode()->getOperand();
TSwizzleSelectors<TVectorSelector> selectors;
selectors.push_back(2);
selectors.push_back(1);
selectors.push_back(0);
selectors.push_back(3);
TIntermTyped* swizzleIdx = intermediate.addSwizzle(selectors, loc);
TIntermTyped* swizzled = intermediate.addIndex(EOpVectorSwizzle, arg0, swizzleIdx, loc);
swizzled->setType(arg0->getType());
swizzled->getWritableType().getQualifier().makeTemporary();
TIntermTyped* conversion = intermediate.addConstantUnion(255.001953f, EbtFloat, loc, true);
TIntermTyped* rangeConverted = handleBinaryMath(loc, "mul", EOpMul, conversion, swizzled);
rangeConverted->setType(arg0->getType());
rangeConverted->getWritableType().getQualifier().makeTemporary();
node = intermediate.addConversion(EOpConstructInt, TType(EbtInt, EvqTemporary, 4), rangeConverted);
node->setLoc(loc);
node->setType(TType(EbtInt, EvqTemporary, 4));
break;
}
case EOpIsFinite:
{
// Since OPIsFinite in SPIR-V is only supported with the Kernel capability, we translate
// it to !isnan && !isinf
TIntermTyped* arg0 = node->getAsUnaryNode()->getOperand();
// We'll make a temporary in case the RHS is cmoplex
TVariable* tempArg = makeInternalVariable("@finitetmp", arg0->getType());
tempArg->getWritableType().getQualifier().makeTemporary();
TIntermTyped* tmpArgAssign = intermediate.addAssign(EOpAssign,
intermediate.addSymbol(*tempArg, loc),
arg0, loc);
TIntermAggregate* compoundStatement = intermediate.makeAggregate(tmpArgAssign, loc);
const TType boolType(EbtBool, EvqTemporary, arg0->getVectorSize(), arg0->getMatrixCols(),
arg0->getMatrixRows());
TIntermTyped* isnan = handleUnaryMath(loc, "isnan", EOpIsNan, intermediate.addSymbol(*tempArg, loc));
isnan->setType(boolType);
TIntermTyped* notnan = handleUnaryMath(loc, "!", EOpLogicalNot, isnan);
notnan->setType(boolType);
TIntermTyped* isinf = handleUnaryMath(loc, "isinf", EOpIsInf, intermediate.addSymbol(*tempArg, loc));
isinf->setType(boolType);
TIntermTyped* notinf = handleUnaryMath(loc, "!", EOpLogicalNot, isinf);
notinf->setType(boolType);
TIntermTyped* andNode = handleBinaryMath(loc, "and", EOpLogicalAnd, notnan, notinf);
andNode->setType(boolType);
compoundStatement = intermediate.growAggregate(compoundStatement, andNode);
compoundStatement->setOperator(EOpSequence);
compoundStatement->setLoc(loc);
compoundStatement->setType(boolType);
node = compoundStatement;
break;
}
case EOpWaveGetLaneCount:
{
// Mapped to gl_SubgroupSize builtin (We preprend @ to the symbol
// so that it inhabits the symbol table, but has a user-invalid name
// in-case some source HLSL defined the symbol also).
TType type(EbtUint, EvqVaryingIn);
node = lookupBuiltinVariable("@gl_SubgroupSize", EbvSubgroupSize2, type);
break;
}
case EOpWaveGetLaneIndex:
{
// Mapped to gl_SubgroupInvocationID builtin (We preprend @ to the
// symbol so that it inhabits the symbol table, but has a
// user-invalid name in-case some source HLSL defined the symbol
// also).
TType type(EbtUint, EvqVaryingIn);
node = lookupBuiltinVariable("@gl_SubgroupInvocationID", EbvSubgroupInvocation2, type);
break;
}
case EOpWaveActiveCountBits:
{
// Mapped to subgroupBallotBitCount(subgroupBallot()) builtin
// uvec4 type.
TType uvec4Type(EbtUint, EvqTemporary, 4);
// Get the uvec4 return from subgroupBallot().
TIntermTyped* res = intermediate.addBuiltInFunctionCall(loc,
EOpSubgroupBallot, true, arguments, uvec4Type);
// uint type.
TType uintType(EbtUint, EvqTemporary);
node = intermediate.addBuiltInFunctionCall(loc,
EOpSubgroupBallotBitCount, true, res, uintType);
break;
}
case EOpWavePrefixCountBits:
{
// Mapped to subgroupBallotInclusiveBitCount(subgroupBallot())
// builtin
// uvec4 type.
TType uvec4Type(EbtUint, EvqTemporary, 4);
// Get the uvec4 return from subgroupBallot().
TIntermTyped* res = intermediate.addBuiltInFunctionCall(loc,
EOpSubgroupBallot, true, arguments, uvec4Type);
// uint type.
TType uintType(EbtUint, EvqTemporary);
node = intermediate.addBuiltInFunctionCall(loc,
EOpSubgroupBallotInclusiveBitCount, true, res, uintType);
break;
}
default:
break; // most pass through unchanged
}
}
//
// Handle seeing function call syntax in the grammar, which could be any of
// - .length() method
// - constructor
// - a call to a built-in function mapped to an operator
// - a call to a built-in function that will remain a function call (e.g., texturing)
// - user function
// - subroutine call (not implemented yet)
//
TIntermTyped* HlslParseContext::handleFunctionCall(const TSourceLoc& loc, TFunction* function, TIntermTyped* arguments)
{
TIntermTyped* result = nullptr;
TOperator op = function->getBuiltInOp();
if (op != EOpNull) {
//
// Then this should be a constructor.
// Don't go through the symbol table for constructors.
// Their parameters will be verified algorithmically.
//
TType type(EbtVoid); // use this to get the type back
if (! constructorError(loc, arguments, *function, op, type)) {
//
// It's a constructor, of type 'type'.
//
result = handleConstructor(loc, arguments, type);
if (result == nullptr) {
error(loc, "cannot construct with these arguments", type.getCompleteString().c_str(), "");
return nullptr;
}
}
} else {
//
// Find it in the symbol table.
//
const TFunction* fnCandidate = nullptr;
bool builtIn = false;
int thisDepth = 0;
// For mat mul, the situation is unusual: we have to compare vector sizes to mat row or col sizes,
// and clamp the opposite arg. Since that's complex, we farm it off to a separate method.
// It doesn't naturally fall out of processing an argument at a time in isolation.
if (function->getName() == "mul")
addGenMulArgumentConversion(loc, *function, arguments);
TIntermAggregate* aggregate = arguments ? arguments->getAsAggregate() : nullptr;
// TODO: this needs improvement: there's no way at present to look up a signature in
// the symbol table for an arbitrary type. This is a temporary hack until that ability exists.
// It will have false positives, since it doesn't check arg counts or types.
if (arguments) {
// Check if first argument is struct buffer type. It may be an aggregate or a symbol, so we
// look for either case.
TIntermTyped* arg0 = nullptr;
if (aggregate && aggregate->getSequence().size() > 0 && aggregate->getSequence()[0])
arg0 = aggregate->getSequence()[0]->getAsTyped();
else if (arguments->getAsSymbolNode())
arg0 = arguments->getAsSymbolNode();
if (arg0 != nullptr && isStructBufferType(arg0->getType())) {
static const int methodPrefixSize = sizeof(BUILTIN_PREFIX)-1;
if (function->getName().length() > methodPrefixSize &&
isStructBufferMethod(function->getName().substr(methodPrefixSize))) {
const TString mangle = function->getName() + "(";
TSymbol* symbol = symbolTable.find(mangle, &builtIn);
if (symbol)
fnCandidate = symbol->getAsFunction();
}
}
}
if (fnCandidate == nullptr)
fnCandidate = findFunction(loc, *function, builtIn, thisDepth, arguments);
if (fnCandidate) {
// This is a declared function that might map to
// - a built-in operator,
// - a built-in function not mapped to an operator, or
// - a user function.
// turn an implicit member-function resolution into an explicit call
TString callerName;
if (thisDepth == 0)
callerName = fnCandidate->getMangledName();
else {
// get the explicit (full) name of the function
callerName = currentTypePrefix[currentTypePrefix.size() - thisDepth];
callerName += fnCandidate->getMangledName();
// insert the implicit calling argument
pushFrontArguments(intermediate.addSymbol(*getImplicitThis(thisDepth)), arguments);
}
// Convert 'in' arguments, so that types match.
// However, skip those that need expansion, that is covered next.
if (arguments)
addInputArgumentConversions(*fnCandidate, arguments);
// Expand arguments. Some arguments must physically expand to a different set
// than what the shader declared and passes.
if (arguments && !builtIn)
expandArguments(loc, *fnCandidate, arguments);
// Expansion may have changed the form of arguments
aggregate = arguments ? arguments->getAsAggregate() : nullptr;
op = fnCandidate->getBuiltInOp();
if (builtIn && op != EOpNull) {
// A function call mapped to a built-in operation.
result = intermediate.addBuiltInFunctionCall(loc, op, fnCandidate->getParamCount() == 1, arguments,
fnCandidate->getType());
if (result == nullptr) {
error(arguments->getLoc(), " wrong operand type", "Internal Error",
"built in unary operator function. Type: %s",
static_cast<TIntermTyped*>(arguments)->getCompleteString().c_str());
} else if (result->getAsOperator()) {
builtInOpCheck(loc, *fnCandidate, *result->getAsOperator());
}
} else {
// This is a function call not mapped to built-in operator.
// It could still be a built-in function, but only if PureOperatorBuiltins == false.
result = intermediate.setAggregateOperator(arguments, EOpFunctionCall, fnCandidate->getType(), loc);
TIntermAggregate* call = result->getAsAggregate();
call->setName(callerName);
// this is how we know whether the given function is a built-in function or a user-defined function
// if builtIn == false, it's a userDefined -> could be an overloaded built-in function also
// if builtIn == true, it's definitely a built-in function with EOpNull
if (! builtIn) {
call->setUserDefined();
intermediate.addToCallGraph(infoSink, currentCaller, callerName);
}
}
// for decompositions, since we want to operate on the function node, not the aggregate holding
// output conversions.
const TIntermTyped* fnNode = result;
decomposeStructBufferMethods(loc, result, arguments); // HLSL->AST struct buffer method decompositions
decomposeIntrinsic(loc, result, arguments); // HLSL->AST intrinsic decompositions
decomposeSampleMethods(loc, result, arguments); // HLSL->AST sample method decompositions
decomposeGeometryMethods(loc, result, arguments); // HLSL->AST geometry method decompositions
// Create the qualifier list, carried in the AST for the call.
// Because some arguments expand to multiple arguments, the qualifier list will
// be longer than the formal parameter list.
if (result == fnNode && result->getAsAggregate()) {
TQualifierList& qualifierList = result->getAsAggregate()->getQualifierList();
for (int i = 0; i < fnCandidate->getParamCount(); ++i) {
TStorageQualifier qual = (*fnCandidate)[i].type->getQualifier().storage;
if (hasStructBuffCounter(*(*fnCandidate)[i].type)) {
// add buffer and counter buffer argument qualifier
qualifierList.push_back(qual);
qualifierList.push_back(qual);
} else if (shouldFlatten(*(*fnCandidate)[i].type, (*fnCandidate)[i].type->getQualifier().storage,
true)) {
// add structure member expansion
for (int memb = 0; memb < (int)(*fnCandidate)[i].type->getStruct()->size(); ++memb)
qualifierList.push_back(qual);
} else {
// Normal 1:1 case
qualifierList.push_back(qual);
}
}
}
// Convert 'out' arguments. If it was a constant folded built-in, it won't be an aggregate anymore.
// Built-ins with a single argument aren't called with an aggregate, but they also don't have an output.
// Also, build the qualifier list for user function calls, which are always called with an aggregate.
// We don't do this is if there has been a decomposition, which will have added its own conversions
// for output parameters.
if (result == fnNode && result->getAsAggregate())
result = addOutputArgumentConversions(*fnCandidate, *result->getAsOperator());
}
}
// generic error recovery
// TODO: simplification: localize all the error recoveries that look like this, and taking type into account to
// reduce cascades
if (result == nullptr)
result = intermediate.addConstantUnion(0.0, EbtFloat, loc);
return result;
}
// An initial argument list is difficult: it can be null, or a single node,
// or an aggregate if more than one argument. Add one to the front, maintaining
// this lack of uniformity.
void HlslParseContext::pushFrontArguments(TIntermTyped* front, TIntermTyped*& arguments)
{
if (arguments == nullptr)
arguments = front;
else if (arguments->getAsAggregate() != nullptr)
arguments->getAsAggregate()->getSequence().insert(arguments->getAsAggregate()->getSequence().begin(), front);
else
arguments = intermediate.growAggregate(front, arguments);
}
//
// HLSL allows mismatched dimensions on vec*mat, mat*vec, vec*vec, and mat*mat. This is a
// situation not well suited to resolution in intrinsic selection, but we can do so here, since we
// can look at both arguments insert explicit shape changes if required.
//
void HlslParseContext::addGenMulArgumentConversion(const TSourceLoc& loc, TFunction& call, TIntermTyped*& args)
{
TIntermAggregate* argAggregate = args ? args->getAsAggregate() : nullptr;
if (argAggregate == nullptr || argAggregate->getSequence().size() != 2) {
// It really ought to have two arguments.
error(loc, "expected: mul arguments", "", "");
return;
}
TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped();
TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped();
if (arg0->isVector() && arg1->isVector()) {
// For:
// vec * vec: it's handled during intrinsic selection, so while we could do it here,
// we can also ignore it, which is easier.
} else if (arg0->isVector() && arg1->isMatrix()) {
// vec * mat: we clamp the vec if the mat col is smaller, else clamp the mat col.
if (arg0->getVectorSize() < arg1->getMatrixCols()) {
// vec is smaller, so truncate larger mat dimension
const TType truncType(arg1->getBasicType(), arg1->getQualifier().storage, arg1->getQualifier().precision,
0, arg0->getVectorSize(), arg1->getMatrixRows());
arg1 = addConstructor(loc, arg1, truncType);
} else if (arg0->getVectorSize() > arg1->getMatrixCols()) {
// vec is larger, so truncate vec to mat size
const TType truncType(arg0->getBasicType(), arg0->getQualifier().storage, arg0->getQualifier().precision,
arg1->getMatrixCols());
arg0 = addConstructor(loc, arg0, truncType);
}
} else if (arg0->isMatrix() && arg1->isVector()) {
// mat * vec: we clamp the vec if the mat col is smaller, else clamp the mat col.
if (arg1->getVectorSize() < arg0->getMatrixRows()) {
// vec is smaller, so truncate larger mat dimension
const TType truncType(arg0->getBasicType(), arg0->getQualifier().storage, arg0->getQualifier().precision,
0, arg0->getMatrixCols(), arg1->getVectorSize());
arg0 = addConstructor(loc, arg0, truncType);
} else if (arg1->getVectorSize() > arg0->getMatrixRows()) {
// vec is larger, so truncate vec to mat size
const TType truncType(arg1->getBasicType(), arg1->getQualifier().storage, arg1->getQualifier().precision,
arg0->getMatrixRows());
arg1 = addConstructor(loc, arg1, truncType);
}
} else if (arg0->isMatrix() && arg1->isMatrix()) {
// mat * mat: we clamp the smaller inner dimension to match the other matrix size.
// Remember, HLSL Mrc = GLSL/SPIRV Mcr.
if (arg0->getMatrixRows() > arg1->getMatrixCols()) {
const TType truncType(arg0->getBasicType(), arg0->getQualifier().storage, arg0->getQualifier().precision,
0, arg0->getMatrixCols(), arg1->getMatrixCols());
arg0 = addConstructor(loc, arg0, truncType);
} else if (arg0->getMatrixRows() < arg1->getMatrixCols()) {
const TType truncType(arg1->getBasicType(), arg1->getQualifier().storage, arg1->getQualifier().precision,
0, arg0->getMatrixRows(), arg1->getMatrixRows());
arg1 = addConstructor(loc, arg1, truncType);
}
} else {
// It's something with scalars: we'll just leave it alone. Function selection will handle it
// downstream.
}
// Warn if we altered one of the arguments
if (arg0 != argAggregate->getSequence()[0] || arg1 != argAggregate->getSequence()[1])
warn(loc, "mul() matrix size mismatch", "", "");
// Put arguments back. (They might be unchanged, in which case this is harmless).
argAggregate->getSequence()[0] = arg0;
argAggregate->getSequence()[1] = arg1;
call[0].type = &arg0->getWritableType();
call[1].type = &arg1->getWritableType();
}
//
// Add any needed implicit conversions for function-call arguments to input parameters.
//
void HlslParseContext::addInputArgumentConversions(const TFunction& function, TIntermTyped*& arguments)
{
TIntermAggregate* aggregate = arguments->getAsAggregate();
// Replace a single argument with a single argument.
const auto setArg = [&](int paramNum, TIntermTyped* arg) {
if (function.getParamCount() == 1)
arguments = arg;
else {
if (aggregate == nullptr)
arguments = arg;
else
aggregate->getSequence()[paramNum] = arg;
}
};
// Process each argument's conversion
for (int param = 0; param < function.getParamCount(); ++param) {
if (! function[param].type->getQualifier().isParamInput())
continue;
// At this early point there is a slight ambiguity between whether an aggregate 'arguments'
// is the single argument itself or its children are the arguments. Only one argument
// means take 'arguments' itself as the one argument.
TIntermTyped* arg = function.getParamCount() == 1
? arguments->getAsTyped()
: (aggregate ?
aggregate->getSequence()[param]->getAsTyped() :
arguments->getAsTyped());
if (*function[param].type != arg->getType()) {
// In-qualified arguments just need an extra node added above the argument to
// convert to the correct type.
TIntermTyped* convArg = intermediate.addConversion(EOpFunctionCall, *function[param].type, arg);
if (convArg != nullptr)
convArg = intermediate.addUniShapeConversion(EOpFunctionCall, *function[param].type, convArg);
if (convArg != nullptr)
setArg(param, convArg);
else
error(arg->getLoc(), "cannot convert input argument, argument", "", "%d", param);
} else {
if (wasFlattened(arg)) {
// If both formal and calling arg are to be flattened, leave that to argument
// expansion, not conversion.
if (!shouldFlatten(*function[param].type, function[param].type->getQualifier().storage, true)) {
// Will make a two-level subtree.
// The deepest will copy member-by-member to build the structure to pass.
// The level above that will be a two-operand EOpComma sequence that follows the copy by the
// object itself.
TVariable* internalAggregate = makeInternalVariable("aggShadow", *function[param].type);
internalAggregate->getWritableType().getQualifier().makeTemporary();
TIntermSymbol* internalSymbolNode = new TIntermSymbol(internalAggregate->getUniqueId(),
internalAggregate->getName(),
internalAggregate->getType());
internalSymbolNode->setLoc(arg->getLoc());
// This makes the deepest level, the member-wise copy
TIntermAggregate* assignAgg = handleAssign(arg->getLoc(), EOpAssign,
internalSymbolNode, arg)->getAsAggregate();
// Now, pair that with the resulting aggregate.
assignAgg = intermediate.growAggregate(assignAgg, internalSymbolNode, arg->getLoc());
assignAgg->setOperator(EOpComma);
assignAgg->setType(internalAggregate->getType());
setArg(param, assignAgg);
}
}
}
}
}
//
// Add any needed implicit expansion of calling arguments from what the shader listed to what's
// internally needed for the AST (given the constraints downstream).
//
void HlslParseContext::expandArguments(const TSourceLoc& loc, const TFunction& function, TIntermTyped*& arguments)
{
TIntermAggregate* aggregate = arguments->getAsAggregate();
int functionParamNumberOffset = 0;
// Replace a single argument with a single argument.
const auto setArg = [&](int paramNum, TIntermTyped* arg) {
if (function.getParamCount() + functionParamNumberOffset == 1)
arguments = arg;
else {
if (aggregate == nullptr)
arguments = arg;
else
aggregate->getSequence()[paramNum] = arg;
}
};
// Replace a single argument with a list of arguments
const auto setArgList = [&](int paramNum, const TVector<TIntermTyped*>& args) {
if (args.size() == 1)
setArg(paramNum, args.front());
else if (args.size() > 1) {
if (function.getParamCount() + functionParamNumberOffset == 1) {
arguments = intermediate.makeAggregate(args.front());
std::for_each(args.begin() + 1, args.end(),
[&](TIntermTyped* arg) {
arguments = intermediate.growAggregate(arguments, arg);
});
} else {
auto it = aggregate->getSequence().erase(aggregate->getSequence().begin() + paramNum);
aggregate->getSequence().insert(it, args.begin(), args.end());
}
functionParamNumberOffset += (int)(args.size() - 1);
}
};
// Process each argument's conversion
for (int param = 0; param < function.getParamCount(); ++param) {
// At this early point there is a slight ambiguity between whether an aggregate 'arguments'
// is the single argument itself or its children are the arguments. Only one argument
// means take 'arguments' itself as the one argument.
TIntermTyped* arg = function.getParamCount() == 1
? arguments->getAsTyped()
: (aggregate ?
aggregate->getSequence()[param + functionParamNumberOffset]->getAsTyped() :
arguments->getAsTyped());
if (wasFlattened(arg) && shouldFlatten(*function[param].type, function[param].type->getQualifier().storage, true)) {
// Need to pass the structure members instead of the structure.
TVector<TIntermTyped*> memberArgs;
for (int memb = 0; memb < (int)arg->getType().getStruct()->size(); ++memb)
memberArgs.push_back(flattenAccess(arg, memb));
setArgList(param + functionParamNumberOffset, memberArgs);
}
}
// TODO: if we need both hidden counter args (below) and struct expansion (above)
// the two algorithms need to be merged: Each assumes the list starts out 1:1 between
// parameters and arguments.
// If any argument is a pass-by-reference struct buffer with an associated counter
// buffer, we have to add another hidden parameter for that counter.
if (aggregate)
addStructBuffArguments(loc, aggregate);
}
//
// Add any needed implicit output conversions for function-call arguments. This
// can require a new tree topology, complicated further by whether the function
// has a return value.
//
// Returns a node of a subtree that evaluates to the return value of the function.
//
TIntermTyped* HlslParseContext::addOutputArgumentConversions(const TFunction& function, TIntermOperator& intermNode)
{
assert (intermNode.getAsAggregate() != nullptr || intermNode.getAsUnaryNode() != nullptr);
const TSourceLoc& loc = intermNode.getLoc();
TIntermSequence argSequence; // temp sequence for unary node args
if (intermNode.getAsUnaryNode())
argSequence.push_back(intermNode.getAsUnaryNode()->getOperand());
TIntermSequence& arguments = argSequence.empty() ? intermNode.getAsAggregate()->getSequence() : argSequence;
const auto needsConversion = [&](int argNum) {
return function[argNum].type->getQualifier().isParamOutput() &&
(*function[argNum].type != arguments[argNum]->getAsTyped()->getType() ||
shouldConvertLValue(arguments[argNum]) ||
wasFlattened(arguments[argNum]->getAsTyped()));
};
// Will there be any output conversions?
bool outputConversions = false;
for (int i = 0; i < function.getParamCount(); ++i) {
if (needsConversion(i)) {
outputConversions = true;
break;
}
}
if (! outputConversions)
return &intermNode;
// Setup for the new tree, if needed:
//
// Output conversions need a different tree topology.
// Out-qualified arguments need a temporary of the correct type, with the call
// followed by an assignment of the temporary to the original argument:
// void: function(arg, ...) -> ( function(tempArg, ...), arg = tempArg, ...)
// ret = function(arg, ...) -> ret = (tempRet = function(tempArg, ...), arg = tempArg, ..., tempRet)
// Where the "tempArg" type needs no conversion as an argument, but will convert on assignment.
TIntermTyped* conversionTree = nullptr;
TVariable* tempRet = nullptr;
if (intermNode.getBasicType() != EbtVoid) {
// do the "tempRet = function(...), " bit from above
tempRet = makeInternalVariable("tempReturn", intermNode.getType());
TIntermSymbol* tempRetNode = intermediate.addSymbol(*tempRet, loc);
conversionTree = intermediate.addAssign(EOpAssign, tempRetNode, &intermNode, loc);
} else
conversionTree = &intermNode;
conversionTree = intermediate.makeAggregate(conversionTree);
// Process each argument's conversion
for (int i = 0; i < function.getParamCount(); ++i) {
if (needsConversion(i)) {
// Out-qualified arguments needing conversion need to use the topology setup above.
// Do the " ...(tempArg, ...), arg = tempArg" bit from above.
// Make a temporary for what the function expects the argument to look like.
TVariable* tempArg = makeInternalVariable("tempArg", *function[i].type);
tempArg->getWritableType().getQualifier().makeTemporary();
TIntermSymbol* tempArgNode = intermediate.addSymbol(*tempArg, loc);
// This makes the deepest level, the member-wise copy
TIntermTyped* tempAssign = handleAssign(arguments[i]->getLoc(), EOpAssign, arguments[i]->getAsTyped(),
tempArgNode);
tempAssign = handleLvalue(arguments[i]->getLoc(), "assign", tempAssign);
conversionTree = intermediate.growAggregate(conversionTree, tempAssign, arguments[i]->getLoc());
// replace the argument with another node for the same tempArg variable
arguments[i] = intermediate.addSymbol(*tempArg, loc);
}
}
// Finalize the tree topology (see bigger comment above).
if (tempRet) {
// do the "..., tempRet" bit from above
TIntermSymbol* tempRetNode = intermediate.addSymbol(*tempRet, loc);
conversionTree = intermediate.growAggregate(conversionTree, tempRetNode, loc);
}
conversionTree = intermediate.setAggregateOperator(conversionTree, EOpComma, intermNode.getType(), loc);
return conversionTree;
}
//
// Add any needed "hidden" counter buffer arguments for function calls.
//
// Modifies the 'aggregate' argument if needed. Otherwise, is no-op.
//
void HlslParseContext::addStructBuffArguments(const TSourceLoc& loc, TIntermAggregate*& aggregate)
{
// See if there are any SB types with counters.
const bool hasStructBuffArg =
std::any_of(aggregate->getSequence().begin(),
aggregate->getSequence().end(),
[this](const TIntermNode* node) {
return (node && node->getAsTyped() != nullptr) && hasStructBuffCounter(node->getAsTyped()->getType());
});
// Nothing to do, if we didn't find one.
if (! hasStructBuffArg)
return;
TIntermSequence argsWithCounterBuffers;
for (int param = 0; param < int(aggregate->getSequence().size()); ++param) {
argsWithCounterBuffers.push_back(aggregate->getSequence()[param]);
if (hasStructBuffCounter(aggregate->getSequence()[param]->getAsTyped()->getType())) {
const TIntermSymbol* blockSym = aggregate->getSequence()[param]->getAsSymbolNode();
if (blockSym != nullptr) {
TType counterType;
counterBufferType(loc, counterType);
const TString counterBlockName(intermediate.addCounterBufferName(blockSym->getName()));
TVariable* variable = makeInternalVariable(counterBlockName, counterType);
// Mark this buffer's counter block as being in use
structBufferCounter[counterBlockName] = true;
TIntermSymbol* sym = intermediate.addSymbol(*variable, loc);
argsWithCounterBuffers.push_back(sym);
}
}
}
// Swap with the temp list we've built up.
aggregate->getSequence().swap(argsWithCounterBuffers);
}
//
// Do additional checking of built-in function calls that is not caught
// by normal semantic checks on argument type, extension tagging, etc.
//
// Assumes there has been a semantically correct match to a built-in function prototype.
//
void HlslParseContext::builtInOpCheck(const TSourceLoc& loc, const TFunction& fnCandidate, TIntermOperator& callNode)
{
// Set up convenience accessors to the argument(s). There is almost always
// multiple arguments for the cases below, but when there might be one,
// check the unaryArg first.
const TIntermSequence* argp = nullptr; // confusing to use [] syntax on a pointer, so this is to help get a reference
const TIntermTyped* unaryArg = nullptr;
const TIntermTyped* arg0 = nullptr;
if (callNode.getAsAggregate()) {
argp = &callNode.getAsAggregate()->getSequence();
if (argp->size() > 0)
arg0 = (*argp)[0]->getAsTyped();
} else {
assert(callNode.getAsUnaryNode());
unaryArg = callNode.getAsUnaryNode()->getOperand();
arg0 = unaryArg;
}
const TIntermSequence& aggArgs = *argp; // only valid when unaryArg is nullptr
switch (callNode.getOp()) {
case EOpTextureGather:
case EOpTextureGatherOffset:
case EOpTextureGatherOffsets:
{
// Figure out which variants are allowed by what extensions,
// and what arguments must be constant for which situations.
TString featureString = fnCandidate.getName() + "(...)";
const char* feature = featureString.c_str();
int compArg = -1; // track which argument, if any, is the constant component argument
switch (callNode.getOp()) {
case EOpTextureGather:
// More than two arguments needs gpu_shader5, and rectangular or shadow needs gpu_shader5,
// otherwise, need GL_ARB_texture_gather.
if (fnCandidate.getParamCount() > 2 || fnCandidate[0].type->getSampler().dim == EsdRect ||
fnCandidate[0].type->getSampler().shadow) {
if (! fnCandidate[0].type->getSampler().shadow)
compArg = 2;
}
break;
case EOpTextureGatherOffset:
// GL_ARB_texture_gather is good enough for 2D non-shadow textures with no component argument
if (! fnCandidate[0].type->getSampler().shadow)
compArg = 3;
break;
case EOpTextureGatherOffsets:
if (! fnCandidate[0].type->getSampler().shadow)
compArg = 3;
break;
default:
break;
}
if (compArg > 0 && compArg < fnCandidate.getParamCount()) {
if (aggArgs[compArg]->getAsConstantUnion()) {
int value = aggArgs[compArg]->getAsConstantUnion()->getConstArray()[0].getIConst();
if (value < 0 || value > 3)
error(loc, "must be 0, 1, 2, or 3:", feature, "component argument");
} else
error(loc, "must be a compile-time constant:", feature, "component argument");
}
break;
}
case EOpTextureOffset:
case EOpTextureFetchOffset:
case EOpTextureProjOffset:
case EOpTextureLodOffset:
case EOpTextureProjLodOffset:
case EOpTextureGradOffset:
case EOpTextureProjGradOffset:
{
// Handle texture-offset limits checking
// Pick which argument has to hold constant offsets
int arg = -1;
switch (callNode.getOp()) {
case EOpTextureOffset: arg = 2; break;
case EOpTextureFetchOffset: arg = (arg0->getType().getSampler().dim != EsdRect) ? 3 : 2; break;
case EOpTextureProjOffset: arg = 2; break;
case EOpTextureLodOffset: arg = 3; break;
case EOpTextureProjLodOffset: arg = 3; break;
case EOpTextureGradOffset: arg = 4; break;
case EOpTextureProjGradOffset: arg = 4; break;
default:
assert(0);
break;
}
if (arg > 0) {
if (aggArgs[arg]->getAsConstantUnion() == nullptr)
error(loc, "argument must be compile-time constant", "texel offset", "");
else {
const TType& type = aggArgs[arg]->getAsTyped()->getType();
for (int c = 0; c < type.getVectorSize(); ++c) {
int offset = aggArgs[arg]->getAsConstantUnion()->getConstArray()[c].getIConst();
if (offset > resources.maxProgramTexelOffset || offset < resources.minProgramTexelOffset)
error(loc, "value is out of range:", "texel offset",
"[gl_MinProgramTexelOffset, gl_MaxProgramTexelOffset]");
}
}
}
break;
}
case EOpTextureQuerySamples:
case EOpImageQuerySamples:
break;
case EOpImageAtomicAdd:
case EOpImageAtomicMin:
case EOpImageAtomicMax:
case EOpImageAtomicAnd:
case EOpImageAtomicOr:
case EOpImageAtomicXor:
case EOpImageAtomicExchange:
case EOpImageAtomicCompSwap:
break;
case EOpInterpolateAtCentroid:
case EOpInterpolateAtSample:
case EOpInterpolateAtOffset:
// Make sure the first argument is an interpolant, or an array element of an interpolant
if (arg0->getType().getQualifier().storage != EvqVaryingIn) {
// It might still be an array element.
//
// We could check more, but the semantics of the first argument are already met; the
// only way to turn an array into a float/vec* is array dereference and swizzle.
//
// ES and desktop 4.3 and earlier: swizzles may not be used
// desktop 4.4 and later: swizzles may be used
const TIntermTyped* base = TIntermediate::findLValueBase(arg0, true);
if (base == nullptr || base->getType().getQualifier().storage != EvqVaryingIn)
error(loc, "first argument must be an interpolant, or interpolant-array element",
fnCandidate.getName().c_str(), "");
}
break;
default:
break;
}
}
//
// Handle seeing something in a grammar production that can be done by calling
// a constructor.
//
// The constructor still must be "handled" by handleFunctionCall(), which will
// then call handleConstructor().
//
TFunction* HlslParseContext::makeConstructorCall(const TSourceLoc& loc, const TType& type)
{
TOperator op = intermediate.mapTypeToConstructorOp(type);
if (op == EOpNull) {
error(loc, "cannot construct this type", type.getBasicString(), "");
return nullptr;
}
TString empty("");
return new TFunction(&empty, type, op);
}
//
// Handle seeing a "COLON semantic" at the end of a type declaration,
// by updating the type according to the semantic.
//
void HlslParseContext::handleSemantic(TSourceLoc loc, TQualifier& qualifier, TBuiltInVariable builtIn,
const TString& upperCase)
{
// Parse and return semantic number. If limit is 0, it will be ignored. Otherwise, if the parsed
// semantic number is >= limit, errorMsg is issued and 0 is returned.
// TODO: it would be nicer if limit and errorMsg had default parameters, but some compilers don't yet
// accept those in lambda functions.
const auto getSemanticNumber = [this, loc](const TString& semantic, unsigned int limit, const char* errorMsg) -> unsigned int {
size_t pos = semantic.find_last_not_of("0123456789");
if (pos == std::string::npos)
return 0u;
unsigned int semanticNum = (unsigned int)atoi(semantic.c_str() + pos + 1);
if (limit != 0 && semanticNum >= limit) {
error(loc, errorMsg, semantic.c_str(), "");
return 0u;
}
return semanticNum;
};
switch(builtIn) {
case EbvNone:
// Get location numbers from fragment outputs, instead of
// auto-assigning them.
if (language == EShLangFragment && upperCase.compare(0, 9, "SV_TARGET") == 0) {
qualifier.layoutLocation = getSemanticNumber(upperCase, 0, nullptr);
nextOutLocation = std::max(nextOutLocation, qualifier.layoutLocation + 1u);
} else if (upperCase.compare(0, 15, "SV_CLIPDISTANCE") == 0) {
builtIn = EbvClipDistance;
qualifier.layoutLocation = getSemanticNumber(upperCase, maxClipCullRegs, "invalid clip semantic");
} else if (upperCase.compare(0, 15, "SV_CULLDISTANCE") == 0) {
builtIn = EbvCullDistance;
qualifier.layoutLocation = getSemanticNumber(upperCase, maxClipCullRegs, "invalid cull semantic");
}
break;
case EbvPosition:
// adjust for stage in/out
if (language == EShLangFragment)
builtIn = EbvFragCoord;
break;
case EbvFragStencilRef:
error(loc, "unimplemented; need ARB_shader_stencil_export", "SV_STENCILREF", "");
break;
case EbvTessLevelInner:
case EbvTessLevelOuter:
qualifier.patch = true;
break;
default:
break;
}
if (qualifier.builtIn == EbvNone)
qualifier.builtIn = builtIn;
qualifier.semanticName = intermediate.addSemanticName(upperCase);
}
//
// Handle seeing something like "PACKOFFSET LEFT_PAREN c[Subcomponent][.component] RIGHT_PAREN"
//
// 'location' has the "c[Subcomponent]" part.
// 'component' points to the "component" part, or nullptr if not present.
//
void HlslParseContext::handlePackOffset(const TSourceLoc& loc, TQualifier& qualifier, const glslang::TString& location,
const glslang::TString* component)
{
if (location.size() == 0 || location[0] != 'c') {
error(loc, "expected 'c'", "packoffset", "");
return;
}
if (location.size() == 1)
return;
if (! isdigit(location[1])) {
error(loc, "expected number after 'c'", "packoffset", "");
return;
}
qualifier.layoutOffset = 16 * atoi(location.substr(1, location.size()).c_str());
if (component != nullptr) {
int componentOffset = 0;
switch ((*component)[0]) {
case 'x': componentOffset = 0; break;
case 'y': componentOffset = 4; break;
case 'z': componentOffset = 8; break;
case 'w': componentOffset = 12; break;
default:
componentOffset = -1;
break;
}
if (componentOffset < 0 || component->size() > 1) {
error(loc, "expected {x, y, z, w} for component", "packoffset", "");
return;
}
qualifier.layoutOffset += componentOffset;
}
}
//
// Handle seeing something like "REGISTER LEFT_PAREN [shader_profile,] Type# RIGHT_PAREN"
//
// 'profile' points to the shader_profile part, or nullptr if not present.
// 'desc' is the type# part.
//
void HlslParseContext::handleRegister(const TSourceLoc& loc, TQualifier& qualifier, const glslang::TString* profile,
const glslang::TString& desc, int subComponent, const glslang::TString* spaceDesc)
{
if (profile != nullptr)
warn(loc, "ignoring shader_profile", "register", "");
if (desc.size() < 1) {
error(loc, "expected register type", "register", "");
return;
}
int regNumber = 0;
if (desc.size() > 1) {
if (isdigit(desc[1]))
regNumber = atoi(desc.substr(1, desc.size()).c_str());
else {
error(loc, "expected register number after register type", "register", "");
return;
}
}
// more information about register types see
// https://docs.microsoft.com/en-us/windows/desktop/direct3dhlsl/dx-graphics-hlsl-variable-register
const std::vector<std::string>& resourceInfo = intermediate.getResourceSetBinding();
switch (std::tolower(desc[0])) {
case 'c':
// c register is the register slot in the global const buffer
// each slot is a vector of 4 32 bit components
qualifier.layoutOffset = regNumber * 4 * 4;
break;
// const buffer register slot
case 'b':
// textrues and structured buffers
case 't':
// samplers
case 's':
// uav resources
case 'u':
// if nothing else has set the binding, do so now
// (other mechanisms override this one)
if (!qualifier.hasBinding())
qualifier.layoutBinding = regNumber + subComponent;
// This handles per-register layout sets numbers. For the global mode which sets
// every symbol to the same value, see setLinkageLayoutSets().
if ((resourceInfo.size() % 3) == 0) {
// Apply per-symbol resource set and binding.
for (auto it = resourceInfo.cbegin(); it != resourceInfo.cend(); it = it + 3) {
if (strcmp(desc.c_str(), it[0].c_str()) == 0) {
qualifier.layoutSet = atoi(it[1].c_str());
qualifier.layoutBinding = atoi(it[2].c_str()) + subComponent;
break;
}
}
}
break;
default:
warn(loc, "ignoring unrecognized register type", "register", "%c", desc[0]);
break;
}
// space
unsigned int setNumber;
const auto crackSpace = [&]() -> bool {
const int spaceLen = 5;
if (spaceDesc->size() < spaceLen + 1)
return false;
if (spaceDesc->compare(0, spaceLen, "space") != 0)
return false;
if (! isdigit((*spaceDesc)[spaceLen]))
return false;
setNumber = atoi(spaceDesc->substr(spaceLen, spaceDesc->size()).c_str());
return true;
};
// if nothing else has set the set, do so now
// (other mechanisms override this one)
if (spaceDesc && !qualifier.hasSet()) {
if (! crackSpace()) {
error(loc, "expected spaceN", "register", "");
return;
}
qualifier.layoutSet = setNumber;
}
}
// Convert to a scalar boolean, or if not allowed by HLSL semantics,
// report an error and return nullptr.
TIntermTyped* HlslParseContext::convertConditionalExpression(const TSourceLoc& loc, TIntermTyped* condition,
bool mustBeScalar)
{
if (mustBeScalar && !condition->getType().isScalarOrVec1()) {
error(loc, "requires a scalar", "conditional expression", "");
return nullptr;
}
return intermediate.addConversion(EOpConstructBool, TType(EbtBool, EvqTemporary, condition->getVectorSize()),
condition);
}
//
// Same error message for all places assignments don't work.
//
void HlslParseContext::assignError(const TSourceLoc& loc, const char* op, TString left, TString right)
{
error(loc, "", op, "cannot convert from '%s' to '%s'",
right.c_str(), left.c_str());
}
//
// Same error message for all places unary operations don't work.
//
void HlslParseContext::unaryOpError(const TSourceLoc& loc, const char* op, TString operand)
{
error(loc, " wrong operand type", op,
"no operation '%s' exists that takes an operand of type %s (or there is no acceptable conversion)",
op, operand.c_str());
}
//
// Same error message for all binary operations don't work.
//
void HlslParseContext::binaryOpError(const TSourceLoc& loc, const char* op, TString left, TString right)
{
error(loc, " wrong operand types:", op,
"no operation '%s' exists that takes a left-hand operand of type '%s' and "
"a right operand of type '%s' (or there is no acceptable conversion)",
op, left.c_str(), right.c_str());
}
//
// A basic type of EbtVoid is a key that the name string was seen in the source, but
// it was not found as a variable in the symbol table. If so, give the error
// message and insert a dummy variable in the symbol table to prevent future errors.
//
void HlslParseContext::variableCheck(TIntermTyped*& nodePtr)
{
TIntermSymbol* symbol = nodePtr->getAsSymbolNode();
if (! symbol)
return;
if (symbol->getType().getBasicType() == EbtVoid) {
error(symbol->getLoc(), "undeclared identifier", symbol->getName().c_str(), "");
// Add to symbol table to prevent future error messages on the same name
if (symbol->getName().size() > 0) {
TVariable* fakeVariable = new TVariable(&symbol->getName(), TType(EbtFloat));
symbolTable.insert(*fakeVariable);
// substitute a symbol node for this new variable
nodePtr = intermediate.addSymbol(*fakeVariable, symbol->getLoc());
}
}
}
//
// Both test, and if necessary spit out an error, to see if the node is really
// a constant.
//
void HlslParseContext::constantValueCheck(TIntermTyped* node, const char* token)
{
if (node->getQualifier().storage != EvqConst)
error(node->getLoc(), "constant expression required", token, "");
}
//
// Both test, and if necessary spit out an error, to see if the node is really
// an integer.
//
void HlslParseContext::integerCheck(const TIntermTyped* node, const char* token)
{
if ((node->getBasicType() == EbtInt || node->getBasicType() == EbtUint) && node->isScalar())
return;
error(node->getLoc(), "scalar integer expression required", token, "");
}
//
// Both test, and if necessary spit out an error, to see if we are currently
// globally scoped.
//
void HlslParseContext::globalCheck(const TSourceLoc& loc, const char* token)
{
if (! symbolTable.atGlobalLevel())
error(loc, "not allowed in nested scope", token, "");
}
bool HlslParseContext::builtInName(const TString& /*identifier*/)
{
return false;
}
//
// Make sure there is enough data and not too many arguments provided to the
// constructor to build something of the type of the constructor. Also returns
// the type of the constructor.
//
// Returns true if there was an error in construction.
//
bool HlslParseContext::constructorError(const TSourceLoc& loc, TIntermNode* node, TFunction& function,
TOperator op, TType& type)
{
type.shallowCopy(function.getType());
bool constructingMatrix = false;
switch (op) {
case EOpConstructTextureSampler:
error(loc, "unhandled texture constructor", "constructor", "");
return true;
case EOpConstructMat2x2:
case EOpConstructMat2x3:
case EOpConstructMat2x4:
case EOpConstructMat3x2:
case EOpConstructMat3x3:
case EOpConstructMat3x4:
case EOpConstructMat4x2:
case EOpConstructMat4x3:
case EOpConstructMat4x4:
case EOpConstructDMat2x2:
case EOpConstructDMat2x3:
case EOpConstructDMat2x4:
case EOpConstructDMat3x2:
case EOpConstructDMat3x3:
case EOpConstructDMat3x4:
case EOpConstructDMat4x2:
case EOpConstructDMat4x3:
case EOpConstructDMat4x4:
case EOpConstructIMat2x2:
case EOpConstructIMat2x3:
case EOpConstructIMat2x4:
case EOpConstructIMat3x2:
case EOpConstructIMat3x3:
case EOpConstructIMat3x4:
case EOpConstructIMat4x2:
case EOpConstructIMat4x3:
case EOpConstructIMat4x4:
case EOpConstructUMat2x2:
case EOpConstructUMat2x3:
case EOpConstructUMat2x4:
case EOpConstructUMat3x2:
case EOpConstructUMat3x3:
case EOpConstructUMat3x4:
case EOpConstructUMat4x2:
case EOpConstructUMat4x3:
case EOpConstructUMat4x4:
case EOpConstructBMat2x2:
case EOpConstructBMat2x3:
case EOpConstructBMat2x4:
case EOpConstructBMat3x2:
case EOpConstructBMat3x3:
case EOpConstructBMat3x4:
case EOpConstructBMat4x2:
case EOpConstructBMat4x3:
case EOpConstructBMat4x4:
constructingMatrix = true;
break;
default:
break;
}
//
// Walk the arguments for first-pass checks and collection of information.
//
int size = 0;
bool constType = true;
bool full = false;
bool overFull = false;
bool matrixInMatrix = false;
bool arrayArg = false;
for (int arg = 0; arg < function.getParamCount(); ++arg) {
if (function[arg].type->isArray()) {
if (function[arg].type->isUnsizedArray()) {
// Can't construct from an unsized array.
error(loc, "array argument must be sized", "constructor", "");
return true;
}
arrayArg = true;
}
if (constructingMatrix && function[arg].type->isMatrix())
matrixInMatrix = true;
// 'full' will go to true when enough args have been seen. If we loop
// again, there is an extra argument.
if (full) {
// For vectors and matrices, it's okay to have too many components
// available, but not okay to have unused arguments.
overFull = true;
}
size += function[arg].type->computeNumComponents();
if (op != EOpConstructStruct && ! type.isArray() && size >= type.computeNumComponents())
full = true;
if (function[arg].type->getQualifier().storage != EvqConst)
constType = false;
}
if (constType)
type.getQualifier().storage = EvqConst;
if (type.isArray()) {
if (function.getParamCount() == 0) {
error(loc, "array constructor must have at least one argument", "constructor", "");
return true;
}
if (type.isUnsizedArray()) {
// auto adapt the constructor type to the number of arguments
type.changeOuterArraySize(function.getParamCount());
} else if (type.getOuterArraySize() != function.getParamCount() && type.computeNumComponents() > size) {
error(loc, "array constructor needs one argument per array element", "constructor", "");
return true;
}
if (type.isArrayOfArrays()) {
// Types have to match, but we're still making the type.
// Finish making the type, and the comparison is done later
// when checking for conversion.
TArraySizes& arraySizes = *type.getArraySizes();
// At least the dimensionalities have to match.
if (! function[0].type->isArray() ||
arraySizes.getNumDims() != function[0].type->getArraySizes()->getNumDims() + 1) {
error(loc, "array constructor argument not correct type to construct array element", "constructor", "");
return true;
}
if (arraySizes.isInnerUnsized()) {
// "Arrays of arrays ..., and the size for any dimension is optional"
// That means we need to adopt (from the first argument) the other array sizes into the type.
for (int d = 1; d < arraySizes.getNumDims(); ++d) {
if (arraySizes.getDimSize(d) == UnsizedArraySize) {
arraySizes.setDimSize(d, function[0].type->getArraySizes()->getDimSize(d - 1));
}
}
}
}
}
// Some array -> array type casts are okay
if (arrayArg && function.getParamCount() == 1 && op != EOpConstructStruct && type.isArray() &&
!type.isArrayOfArrays() && !function[0].type->isArrayOfArrays() &&
type.getVectorSize() >= 1 && function[0].type->getVectorSize() >= 1)
return false;
if (arrayArg && op != EOpConstructStruct && ! type.isArrayOfArrays()) {
error(loc, "constructing non-array constituent from array argument", "constructor", "");
return true;
}
if (matrixInMatrix && ! type.isArray()) {
return false;
}
if (overFull) {
error(loc, "too many arguments", "constructor", "");
return true;
}
if (op == EOpConstructStruct && ! type.isArray()) {
if (isScalarConstructor(node))
return false;
// Self-type construction: e.g, we can construct a struct from a single identically typed object.
if (function.getParamCount() == 1 && type == *function[0].type)
return false;
if ((int)type.getStruct()->size() != function.getParamCount()) {
error(loc, "Number of constructor parameters does not match the number of structure fields", "constructor", "");
return true;
}
}
if ((op != EOpConstructStruct && size != 1 && size < type.computeNumComponents()) ||
(op == EOpConstructStruct && size < type.computeNumComponents())) {
error(loc, "not enough data provided for construction", "constructor", "");
return true;
}
return false;
}
// See if 'node', in the context of constructing aggregates, is a scalar argument
// to a constructor.
//
bool HlslParseContext::isScalarConstructor(const TIntermNode* node)
{
// Obviously, it must be a scalar, but an aggregate node might not be fully
// completed yet: holding a sequence of initializers under an aggregate
// would not yet be typed, so don't check it's type. This corresponds to
// the aggregate operator also not being set yet. (An aggregate operation
// that legitimately yields a scalar will have a getOp() of that operator,
// not EOpNull.)
return node->getAsTyped() != nullptr &&
node->getAsTyped()->isScalar() &&
(node->getAsAggregate() == nullptr || node->getAsAggregate()->getOp() != EOpNull);
}
// Checks to see if a void variable has been declared and raise an error message for such a case
//
// returns true in case of an error
//
bool HlslParseContext::voidErrorCheck(const TSourceLoc& loc, const TString& identifier, const TBasicType basicType)
{
if (basicType == EbtVoid) {
error(loc, "illegal use of type 'void'", identifier.c_str(), "");
return true;
}
return false;
}
//
// Fix just a full qualifier (no variables or types yet, but qualifier is complete) at global level.
//
void HlslParseContext::globalQualifierFix(const TSourceLoc&, TQualifier& qualifier)
{
// move from parameter/unknown qualifiers to pipeline in/out qualifiers
switch (qualifier.storage) {
case EvqIn:
qualifier.storage = EvqVaryingIn;
break;
case EvqOut:
qualifier.storage = EvqVaryingOut;
break;
default:
break;
}
}
//
// Merge characteristics of the 'src' qualifier into the 'dst'.
// If there is duplication, issue error messages, unless 'force'
// is specified, which means to just override default settings.
//
// Also, when force is false, it will be assumed that 'src' follows
// 'dst', for the purpose of error checking order for versions
// that require specific orderings of qualifiers.
//
void HlslParseContext::mergeQualifiers(TQualifier& dst, const TQualifier& src)
{
// Storage qualification
if (dst.storage == EvqTemporary || dst.storage == EvqGlobal)
dst.storage = src.storage;
else if ((dst.storage == EvqIn && src.storage == EvqOut) ||
(dst.storage == EvqOut && src.storage == EvqIn))
dst.storage = EvqInOut;
else if ((dst.storage == EvqIn && src.storage == EvqConst) ||
(dst.storage == EvqConst && src.storage == EvqIn))
dst.storage = EvqConstReadOnly;
// Layout qualifiers
mergeObjectLayoutQualifiers(dst, src, false);
// individual qualifiers
bool repeated = false;
#define MERGE_SINGLETON(field) repeated |= dst.field && src.field; dst.field |= src.field;
MERGE_SINGLETON(invariant);
MERGE_SINGLETON(noContraction);
MERGE_SINGLETON(centroid);
MERGE_SINGLETON(smooth);
MERGE_SINGLETON(flat);
MERGE_SINGLETON(nopersp);
MERGE_SINGLETON(patch);
MERGE_SINGLETON(sample);
MERGE_SINGLETON(coherent);
MERGE_SINGLETON(volatil);
MERGE_SINGLETON(restrict);
MERGE_SINGLETON(readonly);
MERGE_SINGLETON(writeonly);
MERGE_SINGLETON(specConstant);
MERGE_SINGLETON(nonUniform);
}
// used to flatten the sampler type space into a single dimension
// correlates with the declaration of defaultSamplerPrecision[]
int HlslParseContext::computeSamplerTypeIndex(TSampler& sampler)
{
int arrayIndex = sampler.arrayed ? 1 : 0;
int shadowIndex = sampler.shadow ? 1 : 0;
int externalIndex = sampler.external ? 1 : 0;
return EsdNumDims *
(EbtNumTypes * (2 * (2 * arrayIndex + shadowIndex) + externalIndex) + sampler.type) + sampler.dim;
}
//
// Do size checking for an array type's size.
//
void HlslParseContext::arraySizeCheck(const TSourceLoc& loc, TIntermTyped* expr, TArraySize& sizePair)
{
bool isConst = false;
sizePair.size = 1;
sizePair.node = nullptr;
TIntermConstantUnion* constant = expr->getAsConstantUnion();
if (constant) {
// handle true (non-specialization) constant
sizePair.size = constant->getConstArray()[0].getIConst();
isConst = true;
} else {
// see if it's a specialization constant instead
if (expr->getQualifier().isSpecConstant()) {
isConst = true;
sizePair.node = expr;
TIntermSymbol* symbol = expr->getAsSymbolNode();
if (symbol && symbol->getConstArray().size() > 0)
sizePair.size = symbol->getConstArray()[0].getIConst();
}
}
if (! isConst || (expr->getBasicType() != EbtInt && expr->getBasicType() != EbtUint)) {
error(loc, "array size must be a constant integer expression", "", "");
return;
}
if (sizePair.size <= 0) {
error(loc, "array size must be a positive integer", "", "");
return;
}
}
//
// Require array to be completely sized
//
void HlslParseContext::arraySizeRequiredCheck(const TSourceLoc& loc, const TArraySizes& arraySizes)
{
if (arraySizes.hasUnsized())
error(loc, "array size required", "", "");
}
void HlslParseContext::structArrayCheck(const TSourceLoc& /*loc*/, const TType& type)
{
const TTypeList& structure = *type.getStruct();
for (int m = 0; m < (int)structure.size(); ++m) {
const TType& member = *structure[m].type;
if (member.isArray())
arraySizeRequiredCheck(structure[m].loc, *member.getArraySizes());
}
}
//
// Do all the semantic checking for declaring or redeclaring an array, with and
// without a size, and make the right changes to the symbol table.
//
void HlslParseContext::declareArray(const TSourceLoc& loc, const TString& identifier, const TType& type,
TSymbol*& symbol, bool track)
{
if (symbol == nullptr) {
bool currentScope;
symbol = symbolTable.find(identifier, nullptr, &currentScope);
if (symbol && builtInName(identifier) && ! symbolTable.atBuiltInLevel()) {
// bad shader (errors already reported) trying to redeclare a built-in name as an array
return;
}
if (symbol == nullptr || ! currentScope) {
//
// Successfully process a new definition.
// (Redeclarations have to take place at the same scope; otherwise they are hiding declarations)
//
symbol = new TVariable(&identifier, type);
symbolTable.insert(*symbol);
if (track && symbolTable.atGlobalLevel())
trackLinkage(*symbol);
return;
}
if (symbol->getAsAnonMember()) {
error(loc, "cannot redeclare a user-block member array", identifier.c_str(), "");
symbol = nullptr;
return;
}
}
//
// Process a redeclaration.
//
if (symbol == nullptr) {
error(loc, "array variable name expected", identifier.c_str(), "");
return;
}
// redeclareBuiltinVariable() should have already done the copyUp()
TType& existingType = symbol->getWritableType();
if (existingType.isSizedArray()) {
// be more lenient for input arrays to geometry shaders and tessellation control outputs,
// where the redeclaration is the same size
return;
}
existingType.updateArraySizes(type);
}
//
// Enforce non-initializer type/qualifier rules.
//
void HlslParseContext::fixConstInit(const TSourceLoc& loc, const TString& identifier, TType& type,
TIntermTyped*& initializer)
{
//
// Make the qualifier make sense, given that there is an initializer.
//
if (initializer == nullptr) {
if (type.getQualifier().storage == EvqConst ||
type.getQualifier().storage == EvqConstReadOnly) {
initializer = intermediate.makeAggregate(loc);
warn(loc, "variable with qualifier 'const' not initialized; zero initializing", identifier.c_str(), "");
}
}
}
//
// See if the identifier is a built-in symbol that can be redeclared, and if so,
// copy the symbol table's read-only built-in variable to the current
// global level, where it can be modified based on the passed in type.
//
// Returns nullptr if no redeclaration took place; meaning a normal declaration still
// needs to occur for it, not necessarily an error.
//
// Returns a redeclared and type-modified variable if a redeclared occurred.
//
TSymbol* HlslParseContext::redeclareBuiltinVariable(const TSourceLoc& /*loc*/, const TString& identifier,
const TQualifier& /*qualifier*/,
const TShaderQualifiers& /*publicType*/)
{
if (! builtInName(identifier) || symbolTable.atBuiltInLevel() || ! symbolTable.atGlobalLevel())
return nullptr;
return nullptr;
}
//
// Generate index to the array element in a structure buffer (SSBO)
//
TIntermTyped* HlslParseContext::indexStructBufferContent(const TSourceLoc& loc, TIntermTyped* buffer) const
{
// Bail out if not a struct buffer
if (buffer == nullptr || ! isStructBufferType(buffer->getType()))
return nullptr;
// Runtime sized array is always the last element.
const TTypeList* bufferStruct = buffer->getType().getStruct();
TIntermTyped* arrayPosition = intermediate.addConstantUnion(unsigned(bufferStruct->size()-1), loc);
TIntermTyped* argArray = intermediate.addIndex(EOpIndexDirectStruct, buffer, arrayPosition, loc);
argArray->setType(*(*bufferStruct)[bufferStruct->size()-1].type);
return argArray;
}
//
// IFF type is a structuredbuffer/byteaddressbuffer type, return the content
// (template) type. E.g, StructuredBuffer<MyType> -> MyType. Else return nullptr.
//
TType* HlslParseContext::getStructBufferContentType(const TType& type) const
{
if (type.getBasicType() != EbtBlock || type.getQualifier().storage != EvqBuffer)
return nullptr;
const int memberCount = (int)type.getStruct()->size();
assert(memberCount > 0);
TType* contentType = (*type.getStruct())[memberCount-1].type;
return contentType->isUnsizedArray() ? contentType : nullptr;
}
//
// If an existing struct buffer has a sharable type, then share it.
//
void HlslParseContext::shareStructBufferType(TType& type)
{
// PackOffset must be equivalent to share types on a per-member basis.
// Note: cannot use auto type due to recursion. Thus, this is a std::function.
const std::function<bool(TType& lhs, TType& rhs)>
compareQualifiers = [&](TType& lhs, TType& rhs) -> bool {
if (lhs.getQualifier().layoutOffset != rhs.getQualifier().layoutOffset)
return false;
if (lhs.isStruct() != rhs.isStruct())
return false;
if (lhs.isStruct() && rhs.isStruct()) {
if (lhs.getStruct()->size() != rhs.getStruct()->size())
return false;
for (int i = 0; i < int(lhs.getStruct()->size()); ++i)
if (!compareQualifiers(*(*lhs.getStruct())[i].type, *(*rhs.getStruct())[i].type))
return false;
}
return true;
};
// We need to compare certain qualifiers in addition to the type.
const auto typeEqual = [compareQualifiers](TType& lhs, TType& rhs) -> bool {
if (lhs.getQualifier().readonly != rhs.getQualifier().readonly)
return false;
// If both are structures, recursively look for packOffset equality
// as well as type equality.
return compareQualifiers(lhs, rhs) && lhs == rhs;
};
// This is an exhaustive O(N) search, but real world shaders have
// only a small number of these.
for (int idx = 0; idx < int(structBufferTypes.size()); ++idx) {
// If the deep structure matches, modulo qualifiers, use it
if (typeEqual(*structBufferTypes[idx], type)) {
type.shallowCopy(*structBufferTypes[idx]);
return;
}
}
// Otherwise, remember it:
TType* typeCopy = new TType;
typeCopy->shallowCopy(type);
structBufferTypes.push_back(typeCopy);
}
void HlslParseContext::paramFix(TType& type)
{
switch (type.getQualifier().storage) {
case EvqConst:
type.getQualifier().storage = EvqConstReadOnly;
break;
case EvqGlobal:
case EvqUniform:
case EvqTemporary:
type.getQualifier().storage = EvqIn;
break;
case EvqBuffer:
{
// SSBO parameter. These do not go through the declareBlock path since they are fn parameters.
correctUniform(type.getQualifier());
TQualifier bufferQualifier = globalBufferDefaults;
mergeObjectLayoutQualifiers(bufferQualifier, type.getQualifier(), true);
bufferQualifier.storage = type.getQualifier().storage;
bufferQualifier.readonly = type.getQualifier().readonly;
bufferQualifier.coherent = type.getQualifier().coherent;
bufferQualifier.declaredBuiltIn = type.getQualifier().declaredBuiltIn;
type.getQualifier() = bufferQualifier;
break;
}
default:
break;
}
}
void HlslParseContext::specializationCheck(const TSourceLoc& loc, const TType& type, const char* op)
{
if (type.containsSpecializationSize())
error(loc, "can't use with types containing arrays sized with a specialization constant", op, "");
}
//
// Layout qualifier stuff.
//
// Put the id's layout qualification into the public type, for qualifiers not having a number set.
// This is before we know any type information for error checking.
void HlslParseContext::setLayoutQualifier(const TSourceLoc& loc, TQualifier& qualifier, TString& id)
{
std::transform(id.begin(), id.end(), id.begin(), ::tolower);
if (id == TQualifier::getLayoutMatrixString(ElmColumnMajor)) {
qualifier.layoutMatrix = ElmRowMajor;
return;
}
if (id == TQualifier::getLayoutMatrixString(ElmRowMajor)) {
qualifier.layoutMatrix = ElmColumnMajor;
return;
}
if (id == "push_constant") {
requireVulkan(loc, "push_constant");
qualifier.layoutPushConstant = true;
return;
}
if (language == EShLangGeometry || language == EShLangTessEvaluation) {
if (id == TQualifier::getGeometryString(ElgTriangles)) {
// publicType.shaderQualifiers.geometry = ElgTriangles;
warn(loc, "ignored", id.c_str(), "");
return;
}
if (language == EShLangGeometry) {
if (id == TQualifier::getGeometryString(ElgPoints)) {
// publicType.shaderQualifiers.geometry = ElgPoints;
warn(loc, "ignored", id.c_str(), "");
return;
}
if (id == TQualifier::getGeometryString(ElgLineStrip)) {
// publicType.shaderQualifiers.geometry = ElgLineStrip;
warn(loc, "ignored", id.c_str(), "");
return;
}
if (id == TQualifier::getGeometryString(ElgLines)) {
// publicType.shaderQualifiers.geometry = ElgLines;
warn(loc, "ignored", id.c_str(), "");
return;
}
if (id == TQualifier::getGeometryString(ElgLinesAdjacency)) {
// publicType.shaderQualifiers.geometry = ElgLinesAdjacency;
warn(loc, "ignored", id.c_str(), "");
return;
}
if (id == TQualifier::getGeometryString(ElgTrianglesAdjacency)) {
// publicType.shaderQualifiers.geometry = ElgTrianglesAdjacency;
warn(loc, "ignored", id.c_str(), "");
return;
}
if (id == TQualifier::getGeometryString(ElgTriangleStrip)) {
// publicType.shaderQualifiers.geometry = ElgTriangleStrip;
warn(loc, "ignored", id.c_str(), "");
return;
}
} else {
assert(language == EShLangTessEvaluation);
// input primitive
if (id == TQualifier::getGeometryString(ElgTriangles)) {
// publicType.shaderQualifiers.geometry = ElgTriangles;
warn(loc, "ignored", id.c_str(), "");
return;
}
if (id == TQualifier::getGeometryString(ElgQuads)) {
// publicType.shaderQualifiers.geometry = ElgQuads;
warn(loc, "ignored", id.c_str(), "");
return;
}
if (id == TQualifier::getGeometryString(ElgIsolines)) {
// publicType.shaderQualifiers.geometry = ElgIsolines;
warn(loc, "ignored", id.c_str(), "");
return;
}
// vertex spacing
if (id == TQualifier::getVertexSpacingString(EvsEqual)) {
// publicType.shaderQualifiers.spacing = EvsEqual;
warn(loc, "ignored", id.c_str(), "");
return;
}
if (id == TQualifier::getVertexSpacingString(EvsFractionalEven)) {
// publicType.shaderQualifiers.spacing = EvsFractionalEven;
warn(loc, "ignored", id.c_str(), "");
return;
}
if (id == TQualifier::getVertexSpacingString(EvsFractionalOdd)) {
// publicType.shaderQualifiers.spacing = EvsFractionalOdd;
warn(loc, "ignored", id.c_str(), "");
return;
}
// triangle order
if (id == TQualifier::getVertexOrderString(EvoCw)) {
// publicType.shaderQualifiers.order = EvoCw;
warn(loc, "ignored", id.c_str(), "");
return;
}
if (id == TQualifier::getVertexOrderString(EvoCcw)) {
// publicType.shaderQualifiers.order = EvoCcw;
warn(loc, "ignored", id.c_str(), "");
return;
}
// point mode
if (id == "point_mode") {
// publicType.shaderQualifiers.pointMode = true;
warn(loc, "ignored", id.c_str(), "");
return;
}
}
}
if (language == EShLangFragment) {
if (id == "origin_upper_left") {
// publicType.shaderQualifiers.originUpperLeft = true;
warn(loc, "ignored", id.c_str(), "");
return;
}
if (id == "pixel_center_integer") {
// publicType.shaderQualifiers.pixelCenterInteger = true;
warn(loc, "ignored", id.c_str(), "");
return;
}
if (id == "early_fragment_tests") {
// publicType.shaderQualifiers.earlyFragmentTests = true;
warn(loc, "ignored", id.c_str(), "");
return;
}
for (TLayoutDepth depth = (TLayoutDepth)(EldNone + 1); depth < EldCount; depth = (TLayoutDepth)(depth + 1)) {
if (id == TQualifier::getLayoutDepthString(depth)) {
// publicType.shaderQualifiers.layoutDepth = depth;
warn(loc, "ignored", id.c_str(), "");
return;
}
}
if (id.compare(0, 13, "blend_support") == 0) {
bool found = false;
for (TBlendEquationShift be = (TBlendEquationShift)0; be < EBlendCount; be = (TBlendEquationShift)(be + 1)) {
if (id == TQualifier::getBlendEquationString(be)) {
requireExtensions(loc, 1, &E_GL_KHR_blend_equation_advanced, "blend equation");
intermediate.addBlendEquation(be);
// publicType.shaderQualifiers.blendEquation = true;
warn(loc, "ignored", id.c_str(), "");
found = true;
break;
}
}
if (! found)
error(loc, "unknown blend equation", "blend_support", "");
return;
}
}
error(loc, "unrecognized layout identifier, or qualifier requires assignment (e.g., binding = 4)", id.c_str(), "");
}
// Put the id's layout qualifier value into the public type, for qualifiers having a number set.
// This is before we know any type information for error checking.
void HlslParseContext::setLayoutQualifier(const TSourceLoc& loc, TQualifier& qualifier, TString& id,
const TIntermTyped* node)
{
const char* feature = "layout-id value";
// const char* nonLiteralFeature = "non-literal layout-id value";
integerCheck(node, feature);
const TIntermConstantUnion* constUnion = node->getAsConstantUnion();
int value = 0;
if (constUnion) {
value = constUnion->getConstArray()[0].getIConst();
}
std::transform(id.begin(), id.end(), id.begin(), ::tolower);
if (id == "offset") {
qualifier.layoutOffset = value;
return;
} else if (id == "align") {
// "The specified alignment must be a power of 2, or a compile-time error results."
if (! IsPow2(value))
error(loc, "must be a power of 2", "align", "");
else
qualifier.layoutAlign = value;
return;
} else if (id == "location") {
if ((unsigned int)value >= TQualifier::layoutLocationEnd)
error(loc, "location is too large", id.c_str(), "");
else
qualifier.layoutLocation = value;
return;
} else if (id == "set") {
if ((unsigned int)value >= TQualifier::layoutSetEnd)
error(loc, "set is too large", id.c_str(), "");
else
qualifier.layoutSet = value;
return;
} else if (id == "binding") {
if ((unsigned int)value >= TQualifier::layoutBindingEnd)
error(loc, "binding is too large", id.c_str(), "");
else
qualifier.layoutBinding = value;
return;
} else if (id == "component") {
if ((unsigned)value >= TQualifier::layoutComponentEnd)
error(loc, "component is too large", id.c_str(), "");
else
qualifier.layoutComponent = value;
return;
} else if (id.compare(0, 4, "xfb_") == 0) {
// "Any shader making any static use (after preprocessing) of any of these
// *xfb_* qualifiers will cause the shader to be in a transform feedback
// capturing mode and hence responsible for describing the transform feedback
// setup."
intermediate.setXfbMode();
if (id == "xfb_buffer") {
// "It is a compile-time error to specify an *xfb_buffer* that is greater than
// the implementation-dependent constant gl_MaxTransformFeedbackBuffers."
if (value >= resources.maxTransformFeedbackBuffers)
error(loc, "buffer is too large:", id.c_str(), "gl_MaxTransformFeedbackBuffers is %d",
resources.maxTransformFeedbackBuffers);
if (value >= (int)TQualifier::layoutXfbBufferEnd)
error(loc, "buffer is too large:", id.c_str(), "internal max is %d", TQualifier::layoutXfbBufferEnd - 1);
else
qualifier.layoutXfbBuffer = value;
return;
} else if (id == "xfb_offset") {
if (value >= (int)TQualifier::layoutXfbOffsetEnd)
error(loc, "offset is too large:", id.c_str(), "internal max is %d", TQualifier::layoutXfbOffsetEnd - 1);
else
qualifier.layoutXfbOffset = value;
return;
} else if (id == "xfb_stride") {
// "The resulting stride (implicit or explicit), when divided by 4, must be less than or equal to the
// implementation-dependent constant gl_MaxTransformFeedbackInterleavedComponents."
if (value > 4 * resources.maxTransformFeedbackInterleavedComponents)
error(loc, "1/4 stride is too large:", id.c_str(), "gl_MaxTransformFeedbackInterleavedComponents is %d",
resources.maxTransformFeedbackInterleavedComponents);
else if (value >= (int)TQualifier::layoutXfbStrideEnd)
error(loc, "stride is too large:", id.c_str(), "internal max is %d", TQualifier::layoutXfbStrideEnd - 1);
if (value < (int)TQualifier::layoutXfbStrideEnd)
qualifier.layoutXfbStride = value;
return;
}
}
if (id == "input_attachment_index") {
requireVulkan(loc, "input_attachment_index");
if (value >= (int)TQualifier::layoutAttachmentEnd)
error(loc, "attachment index is too large", id.c_str(), "");
else
qualifier.layoutAttachment = value;
return;
}
if (id == "constant_id") {
setSpecConstantId(loc, qualifier, value);
return;
}
switch (language) {
case EShLangVertex:
break;
case EShLangTessControl:
if (id == "vertices") {
if (value == 0)
error(loc, "must be greater than 0", "vertices", "");
else
// publicType.shaderQualifiers.vertices = value;
warn(loc, "ignored", id.c_str(), "");
return;
}
break;
case EShLangTessEvaluation:
break;
case EShLangGeometry:
if (id == "invocations") {
if (value == 0)
error(loc, "must be at least 1", "invocations", "");
else
// publicType.shaderQualifiers.invocations = value;
warn(loc, "ignored", id.c_str(), "");
return;
}
if (id == "max_vertices") {
// publicType.shaderQualifiers.vertices = value;
warn(loc, "ignored", id.c_str(), "");
if (value > resources.maxGeometryOutputVertices)
error(loc, "too large, must be less than gl_MaxGeometryOutputVertices", "max_vertices", "");
return;
}
if (id == "stream") {
qualifier.layoutStream = value;
return;
}
break;
case EShLangFragment:
if (id == "index") {
qualifier.layoutIndex = value;
return;
}
break;
case EShLangCompute:
if (id.compare(0, 11, "local_size_") == 0) {
if (id == "local_size_x") {
// publicType.shaderQualifiers.localSize[0] = value;
warn(loc, "ignored", id.c_str(), "");
return;
}
if (id == "local_size_y") {
// publicType.shaderQualifiers.localSize[1] = value;
warn(loc, "ignored", id.c_str(), "");
return;
}
if (id == "local_size_z") {
// publicType.shaderQualifiers.localSize[2] = value;
warn(loc, "ignored", id.c_str(), "");
return;
}
if (spvVersion.spv != 0) {
if (id == "local_size_x_id") {
// publicType.shaderQualifiers.localSizeSpecId[0] = value;
warn(loc, "ignored", id.c_str(), "");
return;
}
if (id == "local_size_y_id") {
// publicType.shaderQualifiers.localSizeSpecId[1] = value;
warn(loc, "ignored", id.c_str(), "");
return;
}
if (id == "local_size_z_id") {
// publicType.shaderQualifiers.localSizeSpecId[2] = value;
warn(loc, "ignored", id.c_str(), "");
return;
}
}
}
break;
default:
break;
}
error(loc, "there is no such layout identifier for this stage taking an assigned value", id.c_str(), "");
}
void HlslParseContext::setSpecConstantId(const TSourceLoc& loc, TQualifier& qualifier, int value)
{
if (value >= (int)TQualifier::layoutSpecConstantIdEnd) {
error(loc, "specialization-constant id is too large", "constant_id", "");
} else {
qualifier.layoutSpecConstantId = value;
qualifier.specConstant = true;
if (! intermediate.addUsedConstantId(value))
error(loc, "specialization-constant id already used", "constant_id", "");
}
return;
}
// Merge any layout qualifier information from src into dst, leaving everything else in dst alone
//
// "More than one layout qualifier may appear in a single declaration.
// Additionally, the same layout-qualifier-name can occur multiple times
// within a layout qualifier or across multiple layout qualifiers in the
// same declaration. When the same layout-qualifier-name occurs
// multiple times, in a single declaration, the last occurrence overrides
// the former occurrence(s). Further, if such a layout-qualifier-name
// will effect subsequent declarations or other observable behavior, it
// is only the last occurrence that will have any effect, behaving as if
// the earlier occurrence(s) within the declaration are not present.
// This is also true for overriding layout-qualifier-names, where one
// overrides the other (e.g., row_major vs. column_major); only the last
// occurrence has any effect."
//
void HlslParseContext::mergeObjectLayoutQualifiers(TQualifier& dst, const TQualifier& src, bool inheritOnly)
{
if (src.hasMatrix())
dst.layoutMatrix = src.layoutMatrix;
if (src.hasPacking())
dst.layoutPacking = src.layoutPacking;
if (src.hasStream())
dst.layoutStream = src.layoutStream;
if (src.hasFormat())
dst.layoutFormat = src.layoutFormat;
if (src.hasXfbBuffer())
dst.layoutXfbBuffer = src.layoutXfbBuffer;
if (src.hasAlign())
dst.layoutAlign = src.layoutAlign;
if (! inheritOnly) {
if (src.hasLocation())
dst.layoutLocation = src.layoutLocation;
if (src.hasComponent())
dst.layoutComponent = src.layoutComponent;
if (src.hasIndex())
dst.layoutIndex = src.layoutIndex;
if (src.hasOffset())
dst.layoutOffset = src.layoutOffset;
if (src.hasSet())
dst.layoutSet = src.layoutSet;
if (src.layoutBinding != TQualifier::layoutBindingEnd)
dst.layoutBinding = src.layoutBinding;
if (src.hasXfbStride())
dst.layoutXfbStride = src.layoutXfbStride;
if (src.hasXfbOffset())
dst.layoutXfbOffset = src.layoutXfbOffset;
if (src.hasAttachment())
dst.layoutAttachment = src.layoutAttachment;
if (src.hasSpecConstantId())
dst.layoutSpecConstantId = src.layoutSpecConstantId;
if (src.layoutPushConstant)
dst.layoutPushConstant = true;
}
}
//
// Look up a function name in the symbol table, and make sure it is a function.
//
// First, look for an exact match. If there is none, use the generic selector
// TParseContextBase::selectFunction() to find one, parameterized by the
// convertible() and better() predicates defined below.
//
// Return the function symbol if found, otherwise nullptr.
//
const TFunction* HlslParseContext::findFunction(const TSourceLoc& loc, TFunction& call, bool& builtIn, int& thisDepth,
TIntermTyped*& args)
{
if (symbolTable.isFunctionNameVariable(call.getName())) {
error(loc, "can't use function syntax on variable", call.getName().c_str(), "");
return nullptr;
}
// first, look for an exact match
bool dummyScope;
TSymbol* symbol = symbolTable.find(call.getMangledName(), &builtIn, &dummyScope, &thisDepth);
if (symbol)
return symbol->getAsFunction();
// no exact match, use the generic selector, parameterized by the GLSL rules
// create list of candidates to send
TVector<const TFunction*> candidateList;
symbolTable.findFunctionNameList(call.getMangledName(), candidateList, builtIn);
// These built-in ops can accept any type, so we bypass the argument selection
if (candidateList.size() == 1 && builtIn &&
(candidateList[0]->getBuiltInOp() == EOpMethodAppend ||
candidateList[0]->getBuiltInOp() == EOpMethodRestartStrip ||
candidateList[0]->getBuiltInOp() == EOpMethodIncrementCounter ||
candidateList[0]->getBuiltInOp() == EOpMethodDecrementCounter ||
candidateList[0]->getBuiltInOp() == EOpMethodAppend ||
candidateList[0]->getBuiltInOp() == EOpMethodConsume)) {
return candidateList[0];
}
bool allowOnlyUpConversions = true;
// can 'from' convert to 'to'?
const auto convertible = [&](const TType& from, const TType& to, TOperator op, int arg) -> bool {
if (from == to)
return true;
// no aggregate conversions
if (from.isArray() || to.isArray() ||
from.isStruct() || to.isStruct())
return false;
switch (op) {
case EOpInterlockedAdd:
case EOpInterlockedAnd:
case EOpInterlockedCompareExchange:
case EOpInterlockedCompareStore:
case EOpInterlockedExchange:
case EOpInterlockedMax:
case EOpInterlockedMin:
case EOpInterlockedOr:
case EOpInterlockedXor:
// We do not promote the texture or image type for these ocodes. Normally that would not
// be an issue because it's a buffer, but we haven't decomposed the opcode yet, and at this
// stage it's merely e.g, a basic integer type.
//
// Instead, we want to promote other arguments, but stay within the same family. In other
// words, InterlockedAdd(RWBuffer<int>, ...) will always use the int flavor, never the uint flavor,
// but it is allowed to promote its other arguments.
if (arg == 0)
return false;
break;
case EOpMethodSample:
case EOpMethodSampleBias:
case EOpMethodSampleCmp:
case EOpMethodSampleCmpLevelZero:
case EOpMethodSampleGrad:
case EOpMethodSampleLevel:
case EOpMethodLoad:
case EOpMethodGetDimensions:
case EOpMethodGetSamplePosition:
case EOpMethodGather:
case EOpMethodCalculateLevelOfDetail:
case EOpMethodCalculateLevelOfDetailUnclamped:
case EOpMethodGatherRed:
case EOpMethodGatherGreen:
case EOpMethodGatherBlue:
case EOpMethodGatherAlpha:
case EOpMethodGatherCmp:
case EOpMethodGatherCmpRed:
case EOpMethodGatherCmpGreen:
case EOpMethodGatherCmpBlue:
case EOpMethodGatherCmpAlpha:
case EOpMethodAppend:
case EOpMethodRestartStrip:
// those are method calls, the object type can not be changed
// they are equal if the dim and type match (is dim sufficient?)
if (arg == 0)
return from.getSampler().type == to.getSampler().type &&
from.getSampler().arrayed == to.getSampler().arrayed &&
from.getSampler().shadow == to.getSampler().shadow &&
from.getSampler().ms == to.getSampler().ms &&
from.getSampler().dim == to.getSampler().dim;
break;
default:
break;
}
// basic types have to be convertible
if (allowOnlyUpConversions)
if (! intermediate.canImplicitlyPromote(from.getBasicType(), to.getBasicType(), EOpFunctionCall))
return false;
// shapes have to be convertible
if ((from.isScalarOrVec1() && to.isScalarOrVec1()) ||
(from.isScalarOrVec1() && to.isVector()) ||
(from.isScalarOrVec1() && to.isMatrix()) ||
(from.isVector() && to.isVector() && from.getVectorSize() >= to.getVectorSize()))
return true;
// TODO: what are the matrix rules? they go here
return false;
};
// Is 'to2' a better conversion than 'to1'?
// Ties should not be considered as better.
// Assumes 'convertible' already said true.
const auto better = [](const TType& from, const TType& to1, const TType& to2) -> bool {
// exact match is always better than mismatch
if (from == to2)
return from != to1;
if (from == to1)
return false;
// shape changes are always worse
if (from.isScalar() || from.isVector()) {
if (from.getVectorSize() == to2.getVectorSize() &&
from.getVectorSize() != to1.getVectorSize())
return true;
if (from.getVectorSize() == to1.getVectorSize() &&
from.getVectorSize() != to2.getVectorSize())
return false;
}
// Handle sampler betterness: An exact sampler match beats a non-exact match.
// (If we just looked at basic type, all EbtSamplers would look the same).
// If any type is not a sampler, just use the linearize function below.
if (from.getBasicType() == EbtSampler && to1.getBasicType() == EbtSampler && to2.getBasicType() == EbtSampler) {
// We can ignore the vector size in the comparison.
TSampler to1Sampler = to1.getSampler();
TSampler to2Sampler = to2.getSampler();
to1Sampler.vectorSize = to2Sampler.vectorSize = from.getSampler().vectorSize;
if (from.getSampler() == to2Sampler)
return from.getSampler() != to1Sampler;
if (from.getSampler() == to1Sampler)
return false;
}
// Might or might not be changing shape, which means basic type might
// or might not match, so within that, the question is how big a
// basic-type conversion is being done.
//
// Use a hierarchy of domains, translated to order of magnitude
// in a linearized view:
// - floating-point vs. integer
// - 32 vs. 64 bit (or width in general)
// - bool vs. non bool
// - signed vs. not signed
const auto linearize = [](const TBasicType& basicType) -> int {
switch (basicType) {
case EbtBool: return 1;
case EbtInt: return 10;
case EbtUint: return 11;
case EbtInt64: return 20;
case EbtUint64: return 21;
case EbtFloat: return 100;
case EbtDouble: return 110;
default: return 0;
}
};
return abs(linearize(to2.getBasicType()) - linearize(from.getBasicType())) <
abs(linearize(to1.getBasicType()) - linearize(from.getBasicType()));
};
// for ambiguity reporting
bool tie = false;
// send to the generic selector
const TFunction* bestMatch = selectFunction(candidateList, call, convertible, better, tie);
if (bestMatch == nullptr) {
// If there is nothing selected by allowing only up-conversions (to a larger linearize() value),
// we instead try down-conversions, which are valid in HLSL, but not preferred if there are any
// upconversions possible.
allowOnlyUpConversions = false;
bestMatch = selectFunction(candidateList, call, convertible, better, tie);
}
if (bestMatch == nullptr) {
error(loc, "no matching overloaded function found", call.getName().c_str(), "");
return nullptr;
}
// For built-ins, we can convert across the arguments. This will happen in several steps:
// Step 1: If there's an exact match, use it.
// Step 2a: Otherwise, get the operator from the best match and promote arguments:
// Step 2b: reconstruct the TFunction based on the new arg types
// Step 3: Re-select after type promotion is applied, to find proper candidate.
if (builtIn) {
// Step 1: If there's an exact match, use it.
if (call.getMangledName() == bestMatch->getMangledName())
return bestMatch;
// Step 2a: Otherwise, get the operator from the best match and promote arguments as if we
// are that kind of operator.
if (args != nullptr) {
// The arg list can be a unary node, or an aggregate. We have to handle both.
// We will use the normal promote() facilities, which require an interm node.
TIntermOperator* promote = nullptr;
if (call.getParamCount() == 1) {
promote = new TIntermUnary(bestMatch->getBuiltInOp());
promote->getAsUnaryNode()->setOperand(args->getAsTyped());
} else {
promote = new TIntermAggregate(bestMatch->getBuiltInOp());
promote->getAsAggregate()->getSequence().swap(args->getAsAggregate()->getSequence());
}
if (! intermediate.promote(promote))
return nullptr;
// Obtain the promoted arg list.
if (call.getParamCount() == 1) {
args = promote->getAsUnaryNode()->getOperand();
} else {
promote->getAsAggregate()->getSequence().swap(args->getAsAggregate()->getSequence());
}
}
// Step 2b: reconstruct the TFunction based on the new arg types
TFunction convertedCall(&call.getName(), call.getType(), call.getBuiltInOp());
if (args->getAsAggregate()) {
// Handle aggregates: put all args into the new function call
for (int arg=0; arg<int(args->getAsAggregate()->getSequence().size()); ++arg) {
// TODO: But for constness, we could avoid the new & shallowCopy, and use the pointer directly.
TParameter param = { 0, new TType, nullptr };
param.type->shallowCopy(args->getAsAggregate()->getSequence()[arg]->getAsTyped()->getType());
convertedCall.addParameter(param);
}
} else if (args->getAsUnaryNode()) {
// Handle unaries: put all args into the new function call
TParameter param = { 0, new TType, nullptr };
param.type->shallowCopy(args->getAsUnaryNode()->getOperand()->getAsTyped()->getType());
convertedCall.addParameter(param);
} else if (args->getAsTyped()) {
// Handle bare e.g, floats, not in an aggregate.
TParameter param = { 0, new TType, nullptr };
param.type->shallowCopy(args->getAsTyped()->getType());
convertedCall.addParameter(param);
} else {
assert(0); // unknown argument list.
return nullptr;
}
// Step 3: Re-select after type promotion, to find proper candidate
// send to the generic selector
bestMatch = selectFunction(candidateList, convertedCall, convertible, better, tie);
// At this point, there should be no tie.
}
if (tie)
error(loc, "ambiguous best function under implicit type conversion", call.getName().c_str(), "");
// Append default parameter values if needed
if (!tie && bestMatch != nullptr) {
for (int defParam = call.getParamCount(); defParam < bestMatch->getParamCount(); ++defParam) {
handleFunctionArgument(&call, args, (*bestMatch)[defParam].defaultValue);
}
}
return bestMatch;
}
//
// Do everything necessary to handle a typedef declaration, for a single symbol.
//
// 'parseType' is the type part of the declaration (to the left)
// 'arraySizes' is the arrayness tagged on the identifier (to the right)
//
void HlslParseContext::declareTypedef(const TSourceLoc& loc, const TString& identifier, const TType& parseType)
{
TVariable* typeSymbol = new TVariable(&identifier, parseType, true);
if (! symbolTable.insert(*typeSymbol))
error(loc, "name already defined", "typedef", identifier.c_str());
}
// Do everything necessary to handle a struct declaration, including
// making IO aliases because HLSL allows mixed IO in a struct that specializes
// based on the usage (input, output, uniform, none).
void HlslParseContext::declareStruct(const TSourceLoc& loc, TString& structName, TType& type)
{
// If it was named, which means the type can be reused later, add
// it to the symbol table. (Unless it's a block, in which
// case the name is not a type.)
if (type.getBasicType() == EbtBlock || structName.size() == 0)
return;
TVariable* userTypeDef = new TVariable(&structName, type, true);
if (! symbolTable.insert(*userTypeDef)) {
error(loc, "redefinition", structName.c_str(), "struct");
return;
}
// See if we need IO aliases for the structure typeList
const auto condAlloc = [](bool pred, TTypeList*& list) {
if (pred && list == nullptr)
list = new TTypeList;
};
tIoKinds newLists = { nullptr, nullptr, nullptr }; // allocate for each kind found
for (auto member = type.getStruct()->begin(); member != type.getStruct()->end(); ++member) {
condAlloc(hasUniform(member->type->getQualifier()), newLists.uniform);
condAlloc( hasInput(member->type->getQualifier()), newLists.input);
condAlloc( hasOutput(member->type->getQualifier()), newLists.output);
if (member->type->isStruct()) {
auto it = ioTypeMap.find(member->type->getStruct());
if (it != ioTypeMap.end()) {
condAlloc(it->second.uniform != nullptr, newLists.uniform);
condAlloc(it->second.input != nullptr, newLists.input);
condAlloc(it->second.output != nullptr, newLists.output);
}
}
}
if (newLists.uniform == nullptr &&
newLists.input == nullptr &&
newLists.output == nullptr) {
// Won't do any IO caching, clear up the type and get out now.
for (auto member = type.getStruct()->begin(); member != type.getStruct()->end(); ++member)
clearUniformInputOutput(member->type->getQualifier());
return;
}
// We have IO involved.
// Make a pure typeList for the symbol table, and cache side copies of IO versions.
for (auto member = type.getStruct()->begin(); member != type.getStruct()->end(); ++member) {
const auto inheritStruct = [&](TTypeList* s, TTypeLoc& ioMember) {
if (s != nullptr) {
ioMember.type = new TType;
ioMember.type->shallowCopy(*member->type);
ioMember.type->setStruct(s);
}
};
const auto newMember = [&](TTypeLoc& m) {
if (m.type == nullptr) {
m.type = new TType;
m.type->shallowCopy(*member->type);
}
};
TTypeLoc newUniformMember = { nullptr, member->loc };
TTypeLoc newInputMember = { nullptr, member->loc };
TTypeLoc newOutputMember = { nullptr, member->loc };
if (member->type->isStruct()) {
// swap in an IO child if there is one
auto it = ioTypeMap.find(member->type->getStruct());
if (it != ioTypeMap.end()) {
inheritStruct(it->second.uniform, newUniformMember);
inheritStruct(it->second.input, newInputMember);
inheritStruct(it->second.output, newOutputMember);
}
}
if (newLists.uniform) {
newMember(newUniformMember);
// inherit default matrix layout (changeable via #pragma pack_matrix), if none given.
if (member->type->isMatrix() && member->type->getQualifier().layoutMatrix == ElmNone)
newUniformMember.type->getQualifier().layoutMatrix = globalUniformDefaults.layoutMatrix;
correctUniform(newUniformMember.type->getQualifier());
newLists.uniform->push_back(newUniformMember);
}
if (newLists.input) {
newMember(newInputMember);
correctInput(newInputMember.type->getQualifier());
newLists.input->push_back(newInputMember);
}
if (newLists.output) {
newMember(newOutputMember);
correctOutput(newOutputMember.type->getQualifier());
newLists.output->push_back(newOutputMember);
}
// make original pure
clearUniformInputOutput(member->type->getQualifier());
}
ioTypeMap[type.getStruct()] = newLists;
}
// Lookup a user-type by name.
// If found, fill in the type and return the defining symbol.
// If not found, return nullptr.
TSymbol* HlslParseContext::lookupUserType(const TString& typeName, TType& type)
{
TSymbol* symbol = symbolTable.find(typeName);
if (symbol && symbol->getAsVariable() && symbol->getAsVariable()->isUserType()) {
type.shallowCopy(symbol->getType());
return symbol;
} else
return nullptr;
}
//
// Do everything necessary to handle a variable (non-block) declaration.
// Either redeclaring a variable, or making a new one, updating the symbol
// table, and all error checking.
//
// Returns a subtree node that computes an initializer, if needed.
// Returns nullptr if there is no code to execute for initialization.
//
// 'parseType' is the type part of the declaration (to the left)
// 'arraySizes' is the arrayness tagged on the identifier (to the right)
//
TIntermNode* HlslParseContext::declareVariable(const TSourceLoc& loc, const TString& identifier, TType& type,
TIntermTyped* initializer)
{
if (voidErrorCheck(loc, identifier, type.getBasicType()))
return nullptr;
// Global consts with initializers that are non-const act like EvqGlobal in HLSL.
// This test is implicitly recursive, because initializers propagate constness
// up the aggregate node tree during creation. E.g, for:
// { { 1, 2 }, { 3, 4 } }
// the initializer list is marked EvqConst at the top node, and remains so here. However:
// { 1, { myvar, 2 }, 3 }
// is not a const intializer, and still becomes EvqGlobal here.
const bool nonConstInitializer = (initializer != nullptr && initializer->getQualifier().storage != EvqConst);
if (type.getQualifier().storage == EvqConst && symbolTable.atGlobalLevel() && nonConstInitializer) {
// Force to global
type.getQualifier().storage = EvqGlobal;
}
// make const and initialization consistent
fixConstInit(loc, identifier, type, initializer);
// Check for redeclaration of built-ins and/or attempting to declare a reserved name
TSymbol* symbol = nullptr;
inheritGlobalDefaults(type.getQualifier());
const bool flattenVar = shouldFlatten(type, type.getQualifier().storage, true);
// correct IO in the type
switch (type.getQualifier().storage) {
case EvqGlobal:
case EvqTemporary:
clearUniformInputOutput(type.getQualifier());
break;
case EvqUniform:
case EvqBuffer:
correctUniform(type.getQualifier());
if (type.isStruct()) {
auto it = ioTypeMap.find(type.getStruct());
if (it != ioTypeMap.end())
type.setStruct(it->second.uniform);
}
break;
default:
break;
}
// Declare the variable
if (type.isArray()) {
// array case
declareArray(loc, identifier, type, symbol, !flattenVar);
} else {
// non-array case
if (symbol == nullptr)
symbol = declareNonArray(loc, identifier, type, !flattenVar);
else if (type != symbol->getType())
error(loc, "cannot change the type of", "redeclaration", symbol->getName().c_str());
}
if (symbol == nullptr)
return nullptr;
if (flattenVar)
flatten(*symbol->getAsVariable(), symbolTable.atGlobalLevel());
if (initializer == nullptr)
return nullptr;
// Deal with initializer
TVariable* variable = symbol->getAsVariable();
if (variable == nullptr) {
error(loc, "initializer requires a variable, not a member", identifier.c_str(), "");
return nullptr;
}
return executeInitializer(loc, initializer, variable);
}
// Pick up global defaults from the provide global defaults into dst.
void HlslParseContext::inheritGlobalDefaults(TQualifier& dst) const
{
if (dst.storage == EvqVaryingOut) {
if (! dst.hasStream() && language == EShLangGeometry)
dst.layoutStream = globalOutputDefaults.layoutStream;
if (! dst.hasXfbBuffer())
dst.layoutXfbBuffer = globalOutputDefaults.layoutXfbBuffer;
}
}
//
// Make an internal-only variable whose name is for debug purposes only
// and won't be searched for. Callers will only use the return value to use
// the variable, not the name to look it up. It is okay if the name
// is the same as other names; there won't be any conflict.
//
TVariable* HlslParseContext::makeInternalVariable(const char* name, const TType& type) const
{
TString* nameString = NewPoolTString(name);
TVariable* variable = new TVariable(nameString, type);
symbolTable.makeInternalVariable(*variable);
return variable;
}
// Make a symbol node holding a new internal temporary variable.
TIntermSymbol* HlslParseContext::makeInternalVariableNode(const TSourceLoc& loc, const char* name,
const TType& type) const
{
TVariable* tmpVar = makeInternalVariable(name, type);
tmpVar->getWritableType().getQualifier().makeTemporary();
return intermediate.addSymbol(*tmpVar, loc);
}
//
// Declare a non-array variable, the main point being there is no redeclaration
// for resizing allowed.
//
// Return the successfully declared variable.
//
TVariable* HlslParseContext::declareNonArray(const TSourceLoc& loc, const TString& identifier, const TType& type,
bool track)
{
// make a new variable
TVariable* variable = new TVariable(&identifier, type);
// add variable to symbol table
if (symbolTable.insert(*variable)) {
if (track && symbolTable.atGlobalLevel())
trackLinkage(*variable);
return variable;
}
error(loc, "redefinition", variable->getName().c_str(), "");
return nullptr;
}
//
// Handle all types of initializers from the grammar.
//
// Returning nullptr just means there is no code to execute to handle the
// initializer, which will, for example, be the case for constant initializers.
//
// Returns a subtree that accomplished the initialization.
//
TIntermNode* HlslParseContext::executeInitializer(const TSourceLoc& loc, TIntermTyped* initializer, TVariable* variable)
{
//
// Identifier must be of type constant, a global, or a temporary, and
// starting at version 120, desktop allows uniforms to have initializers.
//
TStorageQualifier qualifier = variable->getType().getQualifier().storage;
//
// If the initializer was from braces { ... }, we convert the whole subtree to a
// constructor-style subtree, allowing the rest of the code to operate
// identically for both kinds of initializers.
//
//
// Type can't be deduced from the initializer list, so a skeletal type to
// follow has to be passed in. Constness and specialization-constness
// should be deduced bottom up, not dictated by the skeletal type.
//
TType skeletalType;
skeletalType.shallowCopy(variable->getType());
skeletalType.getQualifier().makeTemporary();
if (initializer->getAsAggregate() && initializer->getAsAggregate()->getOp() == EOpNull)
initializer = convertInitializerList(loc, skeletalType, initializer, nullptr);
if (initializer == nullptr) {
// error recovery; don't leave const without constant values
if (qualifier == EvqConst)
variable->getWritableType().getQualifier().storage = EvqTemporary;
return nullptr;
}
// Fix outer arrayness if variable is unsized, getting size from the initializer
if (initializer->getType().isSizedArray() && variable->getType().isUnsizedArray())
variable->getWritableType().changeOuterArraySize(initializer->getType().getOuterArraySize());
// Inner arrayness can also get set by an initializer
if (initializer->getType().isArrayOfArrays() && variable->getType().isArrayOfArrays() &&
initializer->getType().getArraySizes()->getNumDims() ==
variable->getType().getArraySizes()->getNumDims()) {
// adopt unsized sizes from the initializer's sizes
for (int d = 1; d < variable->getType().getArraySizes()->getNumDims(); ++d) {
if (variable->getType().getArraySizes()->getDimSize(d) == UnsizedArraySize) {
variable->getWritableType().getArraySizes()->setDimSize(d,
initializer->getType().getArraySizes()->getDimSize(d));
}
}
}
// Uniform and global consts require a constant initializer
if (qualifier == EvqUniform && initializer->getType().getQualifier().storage != EvqConst) {
error(loc, "uniform initializers must be constant", "=", "'%s'", variable->getType().getCompleteString().c_str());
variable->getWritableType().getQualifier().storage = EvqTemporary;
return nullptr;
}
// Const variables require a constant initializer
if (qualifier == EvqConst) {
if (initializer->getType().getQualifier().storage != EvqConst) {
variable->getWritableType().getQualifier().storage = EvqConstReadOnly;
qualifier = EvqConstReadOnly;
}
}
if (qualifier == EvqConst || qualifier == EvqUniform) {
// Compile-time tagging of the variable with its constant value...
initializer = intermediate.addConversion(EOpAssign, variable->getType(), initializer);
if (initializer != nullptr && variable->getType() != initializer->getType())
initializer = intermediate.addUniShapeConversion(EOpAssign, variable->getType(), initializer);
if (initializer == nullptr || !initializer->getAsConstantUnion() ||
variable->getType() != initializer->getType()) {
error(loc, "non-matching or non-convertible constant type for const initializer",
variable->getType().getStorageQualifierString(), "");
variable->getWritableType().getQualifier().storage = EvqTemporary;
return nullptr;
}
variable->setConstArray(initializer->getAsConstantUnion()->getConstArray());
} else {
// normal assigning of a value to a variable...
specializationCheck(loc, initializer->getType(), "initializer");
TIntermSymbol* intermSymbol = intermediate.addSymbol(*variable, loc);
TIntermNode* initNode = handleAssign(loc, EOpAssign, intermSymbol, initializer);
if (initNode == nullptr)
assignError(loc, "=", intermSymbol->getCompleteString(), initializer->getCompleteString());
return initNode;
}
return nullptr;
}
//
// Reprocess any initializer-list { ... } parts of the initializer.
// Need to hierarchically assign correct types and implicit
// conversions. Will do this mimicking the same process used for
// creating a constructor-style initializer, ensuring we get the
// same form.
//
// Returns a node representing an expression for the initializer list expressed
// as the correct type.
//
// Returns nullptr if there is an error.
//
TIntermTyped* HlslParseContext::convertInitializerList(const TSourceLoc& loc, const TType& type,
TIntermTyped* initializer, TIntermTyped* scalarInit)
{
// Will operate recursively. Once a subtree is found that is constructor style,
// everything below it is already good: Only the "top part" of the initializer
// can be an initializer list, where "top part" can extend for several (or all) levels.
// see if we have bottomed out in the tree within the initializer-list part
TIntermAggregate* initList = initializer->getAsAggregate();
if (initList == nullptr || initList->getOp() != EOpNull) {
// We don't have a list, but if it's a scalar and the 'type' is a
// composite, we need to lengthen below to make it useful.
// Otherwise, this is an already formed object to initialize with.
if (type.isScalar() || !initializer->getType().isScalar())
return initializer;
else
initList = intermediate.makeAggregate(initializer);
}
// Of the initializer-list set of nodes, need to process bottom up,
// so recurse deep, then process on the way up.
// Go down the tree here...
if (type.isArray()) {
// The type's array might be unsized, which could be okay, so base sizes on the size of the aggregate.
// Later on, initializer execution code will deal with array size logic.
TType arrayType;
arrayType.shallowCopy(type); // sharing struct stuff is fine
arrayType.copyArraySizes(*type.getArraySizes()); // but get a fresh copy of the array information, to edit below
// edit array sizes to fill in unsized dimensions
if (type.isUnsizedArray())
arrayType.changeOuterArraySize((int)initList->getSequence().size());
// set unsized array dimensions that can be derived from the initializer's first element
if (arrayType.isArrayOfArrays() && initList->getSequence().size() > 0) {
TIntermTyped* firstInit = initList->getSequence()[0]->getAsTyped();
if (firstInit->getType().isArray() &&
arrayType.getArraySizes()->getNumDims() == firstInit->getType().getArraySizes()->getNumDims() + 1) {
for (int d = 1; d < arrayType.getArraySizes()->getNumDims(); ++d) {
if (arrayType.getArraySizes()->getDimSize(d) == UnsizedArraySize)
arrayType.getArraySizes()->setDimSize(d, firstInit->getType().getArraySizes()->getDimSize(d - 1));
}
}
}
// lengthen list to be long enough
lengthenList(loc, initList->getSequence(), arrayType.getOuterArraySize(), scalarInit);
// recursively process each element
TType elementType(arrayType, 0); // dereferenced type
for (int i = 0; i < arrayType.getOuterArraySize(); ++i) {
initList->getSequence()[i] = convertInitializerList(loc, elementType,
initList->getSequence()[i]->getAsTyped(), scalarInit);
if (initList->getSequence()[i] == nullptr)
return nullptr;
}
return addConstructor(loc, initList, arrayType);
} else if (type.isStruct()) {
// do we have implicit assignments to opaques?
for (size_t i = initList->getSequence().size(); i < type.getStruct()->size(); ++i) {
if ((*type.getStruct())[i].type->containsOpaque()) {
error(loc, "cannot implicitly initialize opaque members", "initializer list", "");
return nullptr;
}
}
// lengthen list to be long enough
lengthenList(loc, initList->getSequence(), static_cast<int>(type.getStruct()->size()), scalarInit);
if (type.getStruct()->size() != initList->getSequence().size()) {
error(loc, "wrong number of structure members", "initializer list", "");
return nullptr;
}
for (size_t i = 0; i < type.getStruct()->size(); ++i) {
initList->getSequence()[i] = convertInitializerList(loc, *(*type.getStruct())[i].type,
initList->getSequence()[i]->getAsTyped(), scalarInit);
if (initList->getSequence()[i] == nullptr)
return nullptr;
}
} else if (type.isMatrix()) {
if (type.computeNumComponents() == (int)initList->getSequence().size()) {
// This means the matrix is initialized component-wise, rather than as
// a series of rows and columns. We can just use the list directly as
// a constructor; no further processing needed.
} else {
// lengthen list to be long enough
lengthenList(loc, initList->getSequence(), type.getMatrixCols(), scalarInit);
if (type.getMatrixCols() != (int)initList->getSequence().size()) {
error(loc, "wrong number of matrix columns:", "initializer list", type.getCompleteString().c_str());
return nullptr;
}
TType vectorType(type, 0); // dereferenced type
for (int i = 0; i < type.getMatrixCols(); ++i) {
initList->getSequence()[i] = convertInitializerList(loc, vectorType,
initList->getSequence()[i]->getAsTyped(), scalarInit);
if (initList->getSequence()[i] == nullptr)
return nullptr;
}
}
} else if (type.isVector()) {
// lengthen list to be long enough
lengthenList(loc, initList->getSequence(), type.getVectorSize(), scalarInit);
// error check; we're at bottom, so work is finished below
if (type.getVectorSize() != (int)initList->getSequence().size()) {
error(loc, "wrong vector size (or rows in a matrix column):", "initializer list",
type.getCompleteString().c_str());
return nullptr;
}
} else if (type.isScalar()) {
// lengthen list to be long enough
lengthenList(loc, initList->getSequence(), 1, scalarInit);
if ((int)initList->getSequence().size() != 1) {
error(loc, "scalar expected one element:", "initializer list", type.getCompleteString().c_str());
return nullptr;
}
} else {
error(loc, "unexpected initializer-list type:", "initializer list", type.getCompleteString().c_str());
return nullptr;
}
// Now that the subtree is processed, process this node as if the
// initializer list is a set of arguments to a constructor.
TIntermTyped* emulatedConstructorArguments;
if (initList->getSequence().size() == 1)
emulatedConstructorArguments = initList->getSequence()[0]->getAsTyped();
else
emulatedConstructorArguments = initList;
return addConstructor(loc, emulatedConstructorArguments, type);
}
// Lengthen list to be long enough to cover any gap from the current list size
// to 'size'. If the list is longer, do nothing.
// The value to lengthen with is the default for short lists.
//
// By default, lists that are too short due to lack of initializers initialize to zero.
// Alternatively, it could be a scalar initializer for a structure. Both cases are handled,
// based on whether something is passed in as 'scalarInit'.
//
// 'scalarInit' must be safe to use each time this is called (no side effects replication).
//
void HlslParseContext::lengthenList(const TSourceLoc& loc, TIntermSequence& list, int size, TIntermTyped* scalarInit)
{
for (int c = (int)list.size(); c < size; ++c) {
if (scalarInit == nullptr)
list.push_back(intermediate.addConstantUnion(0, loc));
else
list.push_back(scalarInit);
}
}
//
// Test for the correctness of the parameters passed to various constructor functions
// and also convert them to the right data type, if allowed and required.
//
// Returns nullptr for an error or the constructed node (aggregate or typed) for no error.
//
TIntermTyped* HlslParseContext::handleConstructor(const TSourceLoc& loc, TIntermTyped* node, const TType& type)
{
if (node == nullptr)
return nullptr;
// Construct identical type
if (type == node->getType())
return node;
// Handle the idiom "(struct type)<scalar value>"
if (type.isStruct() && isScalarConstructor(node)) {
// 'node' will almost always get used multiple times, so should not be used directly,
// it would create a DAG instead of a tree, which might be okay (would
// like to formalize that for constants and symbols), but if it has
// side effects, they would get executed multiple times, which is not okay.
if (node->getAsConstantUnion() == nullptr && node->getAsSymbolNode() == nullptr) {
TIntermAggregate* seq = intermediate.makeAggregate(loc);
TIntermSymbol* copy = makeInternalVariableNode(loc, "scalarCopy", node->getType());
seq = intermediate.growAggregate(seq, intermediate.addBinaryNode(EOpAssign, copy, node, loc));
seq = intermediate.growAggregate(seq, convertInitializerList(loc, type, intermediate.makeAggregate(loc), copy));
seq->setOp(EOpComma);
seq->setType(type);
return seq;
} else
return convertInitializerList(loc, type, intermediate.makeAggregate(loc), node);
}
return addConstructor(loc, node, type);
}
// Add a constructor, either from the grammar, or other programmatic reasons.
//
// 'node' is what to construct from.
// 'type' is what type to construct.
//
// Returns the constructed object.
// Return nullptr if it can't be done.
//
TIntermTyped* HlslParseContext::addConstructor(const TSourceLoc& loc, TIntermTyped* node, const TType& type)
{
TIntermAggregate* aggrNode = node->getAsAggregate();
TOperator op = intermediate.mapTypeToConstructorOp(type);
if (op == EOpConstructTextureSampler)
return intermediate.setAggregateOperator(aggrNode, op, type, loc);
TTypeList::const_iterator memberTypes;
if (op == EOpConstructStruct)
memberTypes = type.getStruct()->begin();
TType elementType;
if (type.isArray()) {
TType dereferenced(type, 0);
elementType.shallowCopy(dereferenced);
} else
elementType.shallowCopy(type);
bool singleArg;
if (aggrNode != nullptr) {
if (aggrNode->getOp() != EOpNull)
singleArg = true;
else
singleArg = false;
} else
singleArg = true;
TIntermTyped *newNode;
if (singleArg) {
// Handle array -> array conversion
// Constructing an array of one type from an array of another type is allowed,
// assuming there are enough components available (semantic-checked earlier).
if (type.isArray() && node->isArray())
newNode = convertArray(node, type);
// If structure constructor or array constructor is being called
// for only one parameter inside the aggregate, we need to call constructAggregate function once.
else if (type.isArray())
newNode = constructAggregate(node, elementType, 1, node->getLoc());
else if (op == EOpConstructStruct)
newNode = constructAggregate(node, *(*memberTypes).type, 1, node->getLoc());
else {
// shape conversion for matrix constructor from scalar. HLSL semantics are: scalar
// is replicated into every element of the matrix (not just the diagnonal), so
// that is handled specially here.
if (type.isMatrix() && node->getType().isScalarOrVec1())
node = intermediate.addShapeConversion(type, node);
newNode = constructBuiltIn(type, op, node, node->getLoc(), false);
}
if (newNode && (type.isArray() || op == EOpConstructStruct))
newNode = intermediate.setAggregateOperator(newNode, EOpConstructStruct, type, loc);
return newNode;
}
//
// Handle list of arguments.
//
TIntermSequence& sequenceVector = aggrNode->getSequence(); // Stores the information about the parameter to the constructor
// if the structure constructor contains more than one parameter, then construct
// each parameter
int paramCount = 0; // keeps a track of the constructor parameter number being checked
// for each parameter to the constructor call, check to see if the right type is passed or convert them
// to the right type if possible (and allowed).
// for structure constructors, just check if the right type is passed, no conversion is allowed.
for (TIntermSequence::iterator p = sequenceVector.begin();
p != sequenceVector.end(); p++, paramCount++) {
if (type.isArray())
newNode = constructAggregate(*p, elementType, paramCount + 1, node->getLoc());
else if (op == EOpConstructStruct)
newNode = constructAggregate(*p, *(memberTypes[paramCount]).type, paramCount + 1, node->getLoc());
else
newNode = constructBuiltIn(type, op, (*p)->getAsTyped(), node->getLoc(), true);
if (newNode)
*p = newNode;
else
return nullptr;
}
TIntermTyped* constructor = intermediate.setAggregateOperator(aggrNode, op, type, loc);
return constructor;
}
// Function for constructor implementation. Calls addUnaryMath with appropriate EOp value
// for the parameter to the constructor (passed to this function). Essentially, it converts
// the parameter types correctly. If a constructor expects an int (like ivec2) and is passed a
// float, then float is converted to int.
//
// Returns nullptr for an error or the constructed node.
//
TIntermTyped* HlslParseContext::constructBuiltIn(const TType& type, TOperator op, TIntermTyped* node,
const TSourceLoc& loc, bool subset)
{
TIntermTyped* newNode;
TOperator basicOp;
//
// First, convert types as needed.
//
switch (op) {
case EOpConstructF16Vec2:
case EOpConstructF16Vec3:
case EOpConstructF16Vec4:
case EOpConstructF16Mat2x2:
case EOpConstructF16Mat2x3:
case EOpConstructF16Mat2x4:
case EOpConstructF16Mat3x2:
case EOpConstructF16Mat3x3:
case EOpConstructF16Mat3x4:
case EOpConstructF16Mat4x2:
case EOpConstructF16Mat4x3:
case EOpConstructF16Mat4x4:
case EOpConstructFloat16:
basicOp = EOpConstructFloat16;
break;
case EOpConstructVec2:
case EOpConstructVec3:
case EOpConstructVec4:
case EOpConstructMat2x2:
case EOpConstructMat2x3:
case EOpConstructMat2x4:
case EOpConstructMat3x2:
case EOpConstructMat3x3:
case EOpConstructMat3x4:
case EOpConstructMat4x2:
case EOpConstructMat4x3:
case EOpConstructMat4x4:
case EOpConstructFloat:
basicOp = EOpConstructFloat;
break;
case EOpConstructDVec2:
case EOpConstructDVec3:
case EOpConstructDVec4:
case EOpConstructDMat2x2:
case EOpConstructDMat2x3:
case EOpConstructDMat2x4:
case EOpConstructDMat3x2:
case EOpConstructDMat3x3:
case EOpConstructDMat3x4:
case EOpConstructDMat4x2:
case EOpConstructDMat4x3:
case EOpConstructDMat4x4:
case EOpConstructDouble:
basicOp = EOpConstructDouble;
break;
case EOpConstructI16Vec2:
case EOpConstructI16Vec3:
case EOpConstructI16Vec4:
case EOpConstructInt16:
basicOp = EOpConstructInt16;
break;
case EOpConstructIVec2:
case EOpConstructIVec3:
case EOpConstructIVec4:
case EOpConstructIMat2x2:
case EOpConstructIMat2x3:
case EOpConstructIMat2x4:
case EOpConstructIMat3x2:
case EOpConstructIMat3x3:
case EOpConstructIMat3x4:
case EOpConstructIMat4x2:
case EOpConstructIMat4x3:
case EOpConstructIMat4x4:
case EOpConstructInt:
basicOp = EOpConstructInt;
break;
case EOpConstructU16Vec2:
case EOpConstructU16Vec3:
case EOpConstructU16Vec4:
case EOpConstructUint16:
basicOp = EOpConstructUint16;
break;
case EOpConstructUVec2:
case EOpConstructUVec3:
case EOpConstructUVec4:
case EOpConstructUMat2x2:
case EOpConstructUMat2x3:
case EOpConstructUMat2x4:
case EOpConstructUMat3x2:
case EOpConstructUMat3x3:
case EOpConstructUMat3x4:
case EOpConstructUMat4x2:
case EOpConstructUMat4x3:
case EOpConstructUMat4x4:
case EOpConstructUint:
basicOp = EOpConstructUint;
break;
case EOpConstructBVec2:
case EOpConstructBVec3:
case EOpConstructBVec4:
case EOpConstructBMat2x2:
case EOpConstructBMat2x3:
case EOpConstructBMat2x4:
case EOpConstructBMat3x2:
case EOpConstructBMat3x3:
case EOpConstructBMat3x4:
case EOpConstructBMat4x2:
case EOpConstructBMat4x3:
case EOpConstructBMat4x4:
case EOpConstructBool:
basicOp = EOpConstructBool;
break;
default:
error(loc, "unsupported construction", "", "");
return nullptr;
}
newNode = intermediate.addUnaryMath(basicOp, node, node->getLoc());
if (newNode == nullptr) {
error(loc, "can't convert", "constructor", "");
return nullptr;
}
//
// Now, if there still isn't an operation to do the construction, and we need one, add one.
//
// Otherwise, skip out early.
if (subset || (newNode != node && newNode->getType() == type))
return newNode;
// setAggregateOperator will insert a new node for the constructor, as needed.
return intermediate.setAggregateOperator(newNode, op, type, loc);
}
// Convert the array in node to the requested type, which is also an array.
// Returns nullptr on failure, otherwise returns aggregate holding the list of
// elements needed to construct the array.
TIntermTyped* HlslParseContext::convertArray(TIntermTyped* node, const TType& type)
{
assert(node->isArray() && type.isArray());
if (node->getType().computeNumComponents() < type.computeNumComponents())
return nullptr;
// TODO: write an argument replicator, for the case the argument should not be
// executed multiple times, yet multiple copies are needed.
TIntermTyped* constructee = node->getAsTyped();
// track where we are in consuming the argument
int constructeeElement = 0;
int constructeeComponent = 0;
// bump up to the next component to consume
const auto getNextComponent = [&]() {
TIntermTyped* component;
component = handleBracketDereference(node->getLoc(), constructee,
intermediate.addConstantUnion(constructeeElement, node->getLoc()));
if (component->isVector())
component = handleBracketDereference(node->getLoc(), component,
intermediate.addConstantUnion(constructeeComponent, node->getLoc()));
// bump component pointer up
++constructeeComponent;
if (constructeeComponent == constructee->getVectorSize()) {
constructeeComponent = 0;
++constructeeElement;
}
return component;
};
// make one subnode per constructed array element
TIntermAggregate* constructor = nullptr;
TType derefType(type, 0);
TType speculativeComponentType(derefType, 0);
TType* componentType = derefType.isVector() ? &speculativeComponentType : &derefType;
TOperator componentOp = intermediate.mapTypeToConstructorOp(*componentType);
TType crossType(node->getBasicType(), EvqTemporary, type.getVectorSize());
for (int e = 0; e < type.getOuterArraySize(); ++e) {
// construct an element
TIntermTyped* elementArg;
if (type.getVectorSize() == constructee->getVectorSize()) {
// same element shape
elementArg = handleBracketDereference(node->getLoc(), constructee,
intermediate.addConstantUnion(e, node->getLoc()));
} else {
// mismatched element shapes
if (type.getVectorSize() == 1)
elementArg = getNextComponent();
else {
// make a vector
TIntermAggregate* elementConstructee = nullptr;
for (int c = 0; c < type.getVectorSize(); ++c)
elementConstructee = intermediate.growAggregate(elementConstructee, getNextComponent());
elementArg = addConstructor(node->getLoc(), elementConstructee, crossType);
}
}
// convert basic types
elementArg = intermediate.addConversion(componentOp, derefType, elementArg);
if (elementArg == nullptr)
return nullptr;
// combine with top-level constructor
constructor = intermediate.growAggregate(constructor, elementArg);
}
return constructor;
}
// This function tests for the type of the parameters to the structure or array constructor. Raises
// an error message if the expected type does not match the parameter passed to the constructor.
//
// Returns nullptr for an error or the input node itself if the expected and the given parameter types match.
//
TIntermTyped* HlslParseContext::constructAggregate(TIntermNode* node, const TType& type, int paramCount,
const TSourceLoc& loc)
{
// Handle cases that map more 1:1 between constructor arguments and constructed.
TIntermTyped* converted = intermediate.addConversion(EOpConstructStruct, type, node->getAsTyped());
if (converted == nullptr || converted->getType() != type) {
error(loc, "", "constructor", "cannot convert parameter %d from '%s' to '%s'", paramCount,
node->getAsTyped()->getType().getCompleteString().c_str(), type.getCompleteString().c_str());
return nullptr;
}
return converted;
}
//
// Do everything needed to add an interface block.
//
void HlslParseContext::declareBlock(const TSourceLoc& loc, TType& type, const TString* instanceName)
{
assert(type.getWritableStruct() != nullptr);
// Clean up top-level decorations that don't belong.
switch (type.getQualifier().storage) {
case EvqUniform:
case EvqBuffer:
correctUniform(type.getQualifier());
break;
case EvqVaryingIn:
correctInput(type.getQualifier());
break;
case EvqVaryingOut:
correctOutput(type.getQualifier());
break;
default:
break;
}
TTypeList& typeList = *type.getWritableStruct();
// fix and check for member storage qualifiers and types that don't belong within a block
for (unsigned int member = 0; member < typeList.size(); ++member) {
TType& memberType = *typeList[member].type;
TQualifier& memberQualifier = memberType.getQualifier();
const TSourceLoc& memberLoc = typeList[member].loc;
globalQualifierFix(memberLoc, memberQualifier);
memberQualifier.storage = type.getQualifier().storage;
if (memberType.isStruct()) {
// clean up and pick up the right set of decorations
auto it = ioTypeMap.find(memberType.getStruct());
switch (type.getQualifier().storage) {
case EvqUniform:
case EvqBuffer:
correctUniform(type.getQualifier());
if (it != ioTypeMap.end() && it->second.uniform)
memberType.setStruct(it->second.uniform);
break;
case EvqVaryingIn:
correctInput(type.getQualifier());
if (it != ioTypeMap.end() && it->second.input)
memberType.setStruct(it->second.input);
break;
case EvqVaryingOut:
correctOutput(type.getQualifier());
if (it != ioTypeMap.end() && it->second.output)
memberType.setStruct(it->second.output);
break;
default:
break;
}
}
}
// Make default block qualification, and adjust the member qualifications
TQualifier defaultQualification;
switch (type.getQualifier().storage) {
case EvqUniform: defaultQualification = globalUniformDefaults; break;
case EvqBuffer: defaultQualification = globalBufferDefaults; break;
case EvqVaryingIn: defaultQualification = globalInputDefaults; break;
case EvqVaryingOut: defaultQualification = globalOutputDefaults; break;
default: defaultQualification.clear(); break;
}
// Special case for "push_constant uniform", which has a default of std430,
// contrary to normal uniform defaults, and can't have a default tracked for it.
if (type.getQualifier().layoutPushConstant && ! type.getQualifier().hasPacking())
type.getQualifier().layoutPacking = ElpStd430;
// fix and check for member layout qualifiers
mergeObjectLayoutQualifiers(defaultQualification, type.getQualifier(), true);
bool memberWithLocation = false;
bool memberWithoutLocation = false;
for (unsigned int member = 0; member < typeList.size(); ++member) {
TQualifier& memberQualifier = typeList[member].type->getQualifier();
const TSourceLoc& memberLoc = typeList[member].loc;
if (memberQualifier.hasStream()) {
if (defaultQualification.layoutStream != memberQualifier.layoutStream)
error(memberLoc, "member cannot contradict block", "stream", "");
}
// "This includes a block's inheritance of the
// current global default buffer, a block member's inheritance of the block's
// buffer, and the requirement that any *xfb_buffer* declared on a block
// member must match the buffer inherited from the block."
if (memberQualifier.hasXfbBuffer()) {
if (defaultQualification.layoutXfbBuffer != memberQualifier.layoutXfbBuffer)
error(memberLoc, "member cannot contradict block (or what block inherited from global)", "xfb_buffer", "");
}
if (memberQualifier.hasLocation()) {
switch (type.getQualifier().storage) {
case EvqVaryingIn:
case EvqVaryingOut:
memberWithLocation = true;
break;
default:
break;
}
} else
memberWithoutLocation = true;
TQualifier newMemberQualification = defaultQualification;
mergeQualifiers(newMemberQualification, memberQualifier);
memberQualifier = newMemberQualification;
}
// Process the members
fixBlockLocations(loc, type.getQualifier(), typeList, memberWithLocation, memberWithoutLocation);
fixXfbOffsets(type.getQualifier(), typeList);
fixBlockUniformOffsets(type.getQualifier(), typeList);
// reverse merge, so that currentBlockQualifier now has all layout information
// (can't use defaultQualification directly, it's missing other non-layout-default-class qualifiers)
mergeObjectLayoutQualifiers(type.getQualifier(), defaultQualification, true);
//
// Build and add the interface block as a new type named 'blockName'
//
// Use the instance name as the interface name if one exists, else the block name.
const TString& interfaceName = (instanceName && !instanceName->empty()) ? *instanceName : type.getTypeName();
TType blockType(&typeList, interfaceName, type.getQualifier());
if (type.isArray())
blockType.transferArraySizes(type.getArraySizes());
// Add the variable, as anonymous or named instanceName.
// Make an anonymous variable if no name was provided.
if (instanceName == nullptr)
instanceName = NewPoolTString("");
TVariable& variable = *new TVariable(instanceName, blockType);
if (! symbolTable.insert(variable)) {
if (*instanceName == "")
error(loc, "nameless block contains a member that already has a name at global scope",
"" /* blockName->c_str() */, "");
else
error(loc, "block instance name redefinition", variable.getName().c_str(), "");
return;
}
// Save it in the AST for linker use.
if (symbolTable.atGlobalLevel())
trackLinkage(variable);
}
//
// "For a block, this process applies to the entire block, or until the first member
// is reached that has a location layout qualifier. When a block member is declared with a location
// qualifier, its location comes from that qualifier: The member's location qualifier overrides the block-level
// declaration. Subsequent members are again assigned consecutive locations, based on the newest location,
// until the next member declared with a location qualifier. The values used for locations do not have to be
// declared in increasing order."
void HlslParseContext::fixBlockLocations(const TSourceLoc& loc, TQualifier& qualifier, TTypeList& typeList, bool memberWithLocation, bool memberWithoutLocation)
{
// "If a block has no block-level location layout qualifier, it is required that either all or none of its members
// have a location layout qualifier, or a compile-time error results."
if (! qualifier.hasLocation() && memberWithLocation && memberWithoutLocation)
error(loc, "either the block needs a location, or all members need a location, or no members have a location", "location", "");
else {
if (memberWithLocation) {
// remove any block-level location and make it per *every* member
int nextLocation = 0; // by the rule above, initial value is not relevant
if (qualifier.hasAnyLocation()) {
nextLocation = qualifier.layoutLocation;
qualifier.layoutLocation = TQualifier::layoutLocationEnd;
if (qualifier.hasComponent()) {
// "It is a compile-time error to apply the *component* qualifier to a ... block"
error(loc, "cannot apply to a block", "component", "");
}
if (qualifier.hasIndex()) {
error(loc, "cannot apply to a block", "index", "");
}
}
for (unsigned int member = 0; member < typeList.size(); ++member) {
TQualifier& memberQualifier = typeList[member].type->getQualifier();
const TSourceLoc& memberLoc = typeList[member].loc;
if (! memberQualifier.hasLocation()) {
if (nextLocation >= (int)TQualifier::layoutLocationEnd)
error(memberLoc, "location is too large", "location", "");
memberQualifier.layoutLocation = nextLocation;
memberQualifier.layoutComponent = 0;
}
nextLocation = memberQualifier.layoutLocation +
intermediate.computeTypeLocationSize(*typeList[member].type, language);
}
}
}
}
void HlslParseContext::fixXfbOffsets(TQualifier& qualifier, TTypeList& typeList)
{
// "If a block is qualified with xfb_offset, all its
// members are assigned transform feedback buffer offsets. If a block is not qualified with xfb_offset, any
// members of that block not qualified with an xfb_offset will not be assigned transform feedback buffer
// offsets."
if (! qualifier.hasXfbBuffer() || ! qualifier.hasXfbOffset())
return;
int nextOffset = qualifier.layoutXfbOffset;
for (unsigned int member = 0; member < typeList.size(); ++member) {
TQualifier& memberQualifier = typeList[member].type->getQualifier();
bool contains64BitType = false;
bool contains32BitType = false;
bool contains16BitType = false;
int memberSize = intermediate.computeTypeXfbSize(*typeList[member].type, contains64BitType, contains32BitType, contains16BitType);
// see if we need to auto-assign an offset to this member
if (! memberQualifier.hasXfbOffset()) {
// "if applied to an aggregate containing a double or 64-bit integer, the offset must also be a multiple of 8"
if (contains64BitType)
RoundToPow2(nextOffset, 8);
else if (contains32BitType)
RoundToPow2(nextOffset, 4);
// "if applied to an aggregate containing a half float or 16-bit integer, the offset must also be a multiple of 2"
else if (contains16BitType)
RoundToPow2(nextOffset, 2);
memberQualifier.layoutXfbOffset = nextOffset;
} else
nextOffset = memberQualifier.layoutXfbOffset;
nextOffset += memberSize;
}
// The above gave all block members an offset, so we can take it off the block now,
// which will avoid double counting the offset usage.
qualifier.layoutXfbOffset = TQualifier::layoutXfbOffsetEnd;
}
// Calculate and save the offset of each block member, using the recursively
// defined block offset rules and the user-provided offset and align.
//
// Also, compute and save the total size of the block. For the block's size, arrayness
// is not taken into account, as each element is backed by a separate buffer.
//
void HlslParseContext::fixBlockUniformOffsets(const TQualifier& qualifier, TTypeList& typeList)
{
if (! qualifier.isUniformOrBuffer())
return;
if (qualifier.layoutPacking != ElpStd140 && qualifier.layoutPacking != ElpStd430 && qualifier.layoutPacking != ElpScalar)
return;
int offset = 0;
int memberSize;
for (unsigned int member = 0; member < typeList.size(); ++member) {
TQualifier& memberQualifier = typeList[member].type->getQualifier();
const TSourceLoc& memberLoc = typeList[member].loc;
// "When align is applied to an array, it effects only the start of the array, not the array's internal stride."
// modify just the children's view of matrix layout, if there is one for this member
TLayoutMatrix subMatrixLayout = typeList[member].type->getQualifier().layoutMatrix;
int dummyStride;
int memberAlignment = intermediate.getMemberAlignment(*typeList[member].type, memberSize, dummyStride,
qualifier.layoutPacking,
subMatrixLayout != ElmNone
? subMatrixLayout == ElmRowMajor
: qualifier.layoutMatrix == ElmRowMajor);
if (memberQualifier.hasOffset()) {
// "The specified offset must be a multiple
// of the base alignment of the type of the block member it qualifies, or a compile-time error results."
if (! IsMultipleOfPow2(memberQualifier.layoutOffset, memberAlignment))
error(memberLoc, "must be a multiple of the member's alignment", "offset", "");
// "The offset qualifier forces the qualified member to start at or after the specified
// integral-constant expression, which will be its byte offset from the beginning of the buffer.
// "The actual offset of a member is computed as
// follows: If offset was declared, start with that offset, otherwise start with the next available offset."
offset = std::max(offset, memberQualifier.layoutOffset);
}
// "The actual alignment of a member will be the greater of the specified align alignment and the standard
// (e.g., std140) base alignment for the member's type."
if (memberQualifier.hasAlign())
memberAlignment = std::max(memberAlignment, memberQualifier.layoutAlign);
// "If the resulting offset is not a multiple of the actual alignment,
// increase it to the first offset that is a multiple of
// the actual alignment."
RoundToPow2(offset, memberAlignment);
typeList[member].type->getQualifier().layoutOffset = offset;
offset += memberSize;
}
}
// For an identifier that is already declared, add more qualification to it.
void HlslParseContext::addQualifierToExisting(const TSourceLoc& loc, TQualifier qualifier, const TString& identifier)
{
TSymbol* symbol = symbolTable.find(identifier);
if (symbol == nullptr) {
error(loc, "identifier not previously declared", identifier.c_str(), "");
return;
}
if (symbol->getAsFunction()) {
error(loc, "cannot re-qualify a function name", identifier.c_str(), "");
return;
}
if (qualifier.isAuxiliary() ||
qualifier.isMemory() ||
qualifier.isInterpolation() ||
qualifier.hasLayout() ||
qualifier.storage != EvqTemporary ||
qualifier.precision != EpqNone) {
error(loc, "cannot add storage, auxiliary, memory, interpolation, layout, or precision qualifier to an existing variable", identifier.c_str(), "");
return;
}
// For read-only built-ins, add a new symbol for holding the modified qualifier.
// This will bring up an entire block, if a block type has to be modified (e.g., gl_Position inside a block)
if (symbol->isReadOnly())
symbol = symbolTable.copyUp(symbol);
if (qualifier.invariant) {
if (intermediate.inIoAccessed(identifier))
error(loc, "cannot change qualification after use", "invariant", "");
symbol->getWritableType().getQualifier().invariant = true;
} else if (qualifier.noContraction) {
if (intermediate.inIoAccessed(identifier))
error(loc, "cannot change qualification after use", "precise", "");
symbol->getWritableType().getQualifier().noContraction = true;
} else if (qualifier.specConstant) {
symbol->getWritableType().getQualifier().makeSpecConstant();
if (qualifier.hasSpecConstantId())
symbol->getWritableType().getQualifier().layoutSpecConstantId = qualifier.layoutSpecConstantId;
} else
warn(loc, "unknown requalification", "", "");
}
void HlslParseContext::addQualifierToExisting(const TSourceLoc& loc, TQualifier qualifier, TIdentifierList& identifiers)
{
for (unsigned int i = 0; i < identifiers.size(); ++i)
addQualifierToExisting(loc, qualifier, *identifiers[i]);
}
//
// Update the intermediate for the given input geometry
//
bool HlslParseContext::handleInputGeometry(const TSourceLoc& loc, const TLayoutGeometry& geometry)
{
switch (geometry) {
case ElgPoints: // fall through
case ElgLines: // ...
case ElgTriangles: // ...
case ElgLinesAdjacency: // ...
case ElgTrianglesAdjacency: // ...
if (! intermediate.setInputPrimitive(geometry)) {
error(loc, "input primitive geometry redefinition", TQualifier::getGeometryString(geometry), "");
return false;
}
break;
default:
error(loc, "cannot apply to 'in'", TQualifier::getGeometryString(geometry), "");
return false;
}
return true;
}
//
// Update the intermediate for the given output geometry
//
bool HlslParseContext::handleOutputGeometry(const TSourceLoc& loc, const TLayoutGeometry& geometry)
{
// If this is not a geometry shader, ignore. It might be a mixed shader including several stages.
// Since that's an OK situation, return true for success.
if (language != EShLangGeometry)
return true;
switch (geometry) {
case ElgPoints:
case ElgLineStrip:
case ElgTriangleStrip:
if (! intermediate.setOutputPrimitive(geometry)) {
error(loc, "output primitive geometry redefinition", TQualifier::getGeometryString(geometry), "");
return false;
}
break;
default:
error(loc, "cannot apply to 'out'", TQualifier::getGeometryString(geometry), "");
return false;
}
return true;
}
//
// Selection attributes
//
void HlslParseContext::handleSelectionAttributes(const TSourceLoc& loc, TIntermSelection* selection,
const TAttributes& attributes)
{
if (selection == nullptr)
return;
for (auto it = attributes.begin(); it != attributes.end(); ++it) {
switch (it->name) {
case EatFlatten:
selection->setFlatten();
break;
case EatBranch:
selection->setDontFlatten();
break;
default:
warn(loc, "attribute does not apply to a selection", "", "");
break;
}
}
}
//
// Switch attributes
//
void HlslParseContext::handleSwitchAttributes(const TSourceLoc& loc, TIntermSwitch* selection,
const TAttributes& attributes)
{
if (selection == nullptr)
return;
for (auto it = attributes.begin(); it != attributes.end(); ++it) {
switch (it->name) {
case EatFlatten:
selection->setFlatten();
break;
case EatBranch:
selection->setDontFlatten();
break;
default:
warn(loc, "attribute does not apply to a switch", "", "");
break;
}
}
}
//
// Loop attributes
//
void HlslParseContext::handleLoopAttributes(const TSourceLoc& loc, TIntermLoop* loop,
const TAttributes& attributes)
{
if (loop == nullptr)
return;
for (auto it = attributes.begin(); it != attributes.end(); ++it) {
switch (it->name) {
case EatUnroll:
loop->setUnroll();
break;
case EatLoop:
loop->setDontUnroll();
break;
default:
warn(loc, "attribute does not apply to a loop", "", "");
break;
}
}
}
//
// Updating default qualifier for the case of a declaration with just a qualifier,
// no type, block, or identifier.
//
void HlslParseContext::updateStandaloneQualifierDefaults(const TSourceLoc& loc, const TPublicType& publicType)
{
if (publicType.shaderQualifiers.vertices != TQualifier::layoutNotSet) {
assert(language == EShLangTessControl || language == EShLangGeometry);
// const char* id = (language == EShLangTessControl) ? "vertices" : "max_vertices";
}
if (publicType.shaderQualifiers.invocations != TQualifier::layoutNotSet) {
if (! intermediate.setInvocations(publicType.shaderQualifiers.invocations))
error(loc, "cannot change previously set layout value", "invocations", "");
}
if (publicType.shaderQualifiers.geometry != ElgNone) {
if (publicType.qualifier.storage == EvqVaryingIn) {
switch (publicType.shaderQualifiers.geometry) {
case ElgPoints:
case ElgLines:
case ElgLinesAdjacency:
case ElgTriangles:
case ElgTrianglesAdjacency:
case ElgQuads:
case ElgIsolines:
break;
default:
error(loc, "cannot apply to input", TQualifier::getGeometryString(publicType.shaderQualifiers.geometry),
"");
}
} else if (publicType.qualifier.storage == EvqVaryingOut) {
handleOutputGeometry(loc, publicType.shaderQualifiers.geometry);
} else
error(loc, "cannot apply to:", TQualifier::getGeometryString(publicType.shaderQualifiers.geometry),
GetStorageQualifierString(publicType.qualifier.storage));
}
if (publicType.shaderQualifiers.spacing != EvsNone)
intermediate.setVertexSpacing(publicType.shaderQualifiers.spacing);
if (publicType.shaderQualifiers.order != EvoNone)
intermediate.setVertexOrder(publicType.shaderQualifiers.order);
if (publicType.shaderQualifiers.pointMode)
intermediate.setPointMode();
for (int i = 0; i < 3; ++i) {
if (publicType.shaderQualifiers.localSize[i] > 1) {
int max = 0;
switch (i) {
case 0: max = resources.maxComputeWorkGroupSizeX; break;
case 1: max = resources.maxComputeWorkGroupSizeY; break;
case 2: max = resources.maxComputeWorkGroupSizeZ; break;
default: break;
}
if (intermediate.getLocalSize(i) > (unsigned int)max)
error(loc, "too large; see gl_MaxComputeWorkGroupSize", "local_size", "");
// Fix the existing constant gl_WorkGroupSize with this new information.
TVariable* workGroupSize = getEditableVariable("gl_WorkGroupSize");
workGroupSize->getWritableConstArray()[i].setUConst(intermediate.getLocalSize(i));
}
if (publicType.shaderQualifiers.localSizeSpecId[i] != TQualifier::layoutNotSet) {
intermediate.setLocalSizeSpecId(i, publicType.shaderQualifiers.localSizeSpecId[i]);
// Set the workgroup built-in variable as a specialization constant
TVariable* workGroupSize = getEditableVariable("gl_WorkGroupSize");
workGroupSize->getWritableType().getQualifier().specConstant = true;
}
}
if (publicType.shaderQualifiers.earlyFragmentTests)
intermediate.setEarlyFragmentTests();
const TQualifier& qualifier = publicType.qualifier;
switch (qualifier.storage) {
case EvqUniform:
if (qualifier.hasMatrix())
globalUniformDefaults.layoutMatrix = qualifier.layoutMatrix;
if (qualifier.hasPacking())
globalUniformDefaults.layoutPacking = qualifier.layoutPacking;
break;
case EvqBuffer:
if (qualifier.hasMatrix())
globalBufferDefaults.layoutMatrix = qualifier.layoutMatrix;
if (qualifier.hasPacking())
globalBufferDefaults.layoutPacking = qualifier.layoutPacking;
break;
case EvqVaryingIn:
break;
case EvqVaryingOut:
if (qualifier.hasStream())
globalOutputDefaults.layoutStream = qualifier.layoutStream;
if (qualifier.hasXfbBuffer())
globalOutputDefaults.layoutXfbBuffer = qualifier.layoutXfbBuffer;
if (globalOutputDefaults.hasXfbBuffer() && qualifier.hasXfbStride()) {
if (! intermediate.setXfbBufferStride(globalOutputDefaults.layoutXfbBuffer, qualifier.layoutXfbStride))
error(loc, "all stride settings must match for xfb buffer", "xfb_stride", "%d",
qualifier.layoutXfbBuffer);
}
break;
default:
error(loc, "default qualifier requires 'uniform', 'buffer', 'in', or 'out' storage qualification", "", "");
return;
}
}
//
// Take the sequence of statements that has been built up since the last case/default,
// put it on the list of top-level nodes for the current (inner-most) switch statement,
// and follow that by the case/default we are on now. (See switch topology comment on
// TIntermSwitch.)
//
void HlslParseContext::wrapupSwitchSubsequence(TIntermAggregate* statements, TIntermNode* branchNode)
{
TIntermSequence* switchSequence = switchSequenceStack.back();
if (statements) {
statements->setOperator(EOpSequence);
switchSequence->push_back(statements);
}
if (branchNode) {
// check all previous cases for the same label (or both are 'default')
for (unsigned int s = 0; s < switchSequence->size(); ++s) {
TIntermBranch* prevBranch = (*switchSequence)[s]->getAsBranchNode();
if (prevBranch) {
TIntermTyped* prevExpression = prevBranch->getExpression();
TIntermTyped* newExpression = branchNode->getAsBranchNode()->getExpression();
if (prevExpression == nullptr && newExpression == nullptr)
error(branchNode->getLoc(), "duplicate label", "default", "");
else if (prevExpression != nullptr &&
newExpression != nullptr &&
prevExpression->getAsConstantUnion() &&
newExpression->getAsConstantUnion() &&
prevExpression->getAsConstantUnion()->getConstArray()[0].getIConst() ==
newExpression->getAsConstantUnion()->getConstArray()[0].getIConst())
error(branchNode->getLoc(), "duplicated value", "case", "");
}
}
switchSequence->push_back(branchNode);
}
}
//
// Turn the top-level node sequence built up of wrapupSwitchSubsequence
// into a switch node.
//
TIntermNode* HlslParseContext::addSwitch(const TSourceLoc& loc, TIntermTyped* expression,
TIntermAggregate* lastStatements, const TAttributes& attributes)
{
wrapupSwitchSubsequence(lastStatements, nullptr);
if (expression == nullptr ||
(expression->getBasicType() != EbtInt && expression->getBasicType() != EbtUint) ||
expression->getType().isArray() || expression->getType().isMatrix() || expression->getType().isVector())
error(loc, "condition must be a scalar integer expression", "switch", "");
// If there is nothing to do, drop the switch but still execute the expression
TIntermSequence* switchSequence = switchSequenceStack.back();
if (switchSequence->size() == 0)
return expression;
if (lastStatements == nullptr) {
// emulate a break for error recovery
lastStatements = intermediate.makeAggregate(intermediate.addBranch(EOpBreak, loc));
lastStatements->setOperator(EOpSequence);
switchSequence->push_back(lastStatements);
}
TIntermAggregate* body = new TIntermAggregate(EOpSequence);
body->getSequence() = *switchSequenceStack.back();
body->setLoc(loc);
TIntermSwitch* switchNode = new TIntermSwitch(expression, body);
switchNode->setLoc(loc);
handleSwitchAttributes(loc, switchNode, attributes);
return switchNode;
}
// Make a new symbol-table level that is made out of the members of a structure.
// This should be done as an anonymous struct (name is "") so that the symbol table
// finds the members with no explicit reference to a 'this' variable.
void HlslParseContext::pushThisScope(const TType& thisStruct, const TVector<TFunctionDeclarator>& functionDeclarators)
{
// member variables
TVariable& thisVariable = *new TVariable(NewPoolTString(""), thisStruct);
symbolTable.pushThis(thisVariable);
// member functions
for (auto it = functionDeclarators.begin(); it != functionDeclarators.end(); ++it) {
// member should have a prefix matching currentTypePrefix.back()
// but, symbol lookup within the class scope will just use the
// unprefixed name. Hence, there are two: one fully prefixed and
// one with no prefix.
TFunction& member = *it->function->clone();
member.removePrefix(currentTypePrefix.back());
symbolTable.insert(member);
}
}
// Track levels of class/struct/namespace nesting with a prefix string using
// the type names separated by the scoping operator. E.g., two levels
// would look like:
//
// outer::inner
//
// The string is empty when at normal global level.
//
void HlslParseContext::pushNamespace(const TString& typeName)
{
// make new type prefix
TString newPrefix;
if (currentTypePrefix.size() > 0)
newPrefix = currentTypePrefix.back();
newPrefix.append(typeName);
newPrefix.append(scopeMangler);
currentTypePrefix.push_back(newPrefix);
}
// Opposite of pushNamespace(), see above
void HlslParseContext::popNamespace()
{
currentTypePrefix.pop_back();
}
// Use the class/struct nesting string to create a global name for
// a member of a class/struct.
void HlslParseContext::getFullNamespaceName(TString*& name) const
{
if (currentTypePrefix.size() == 0)
return;
TString* fullName = NewPoolTString(currentTypePrefix.back().c_str());
fullName->append(*name);
name = fullName;
}
// Helper function to add the namespace scope mangling syntax to a string.
void HlslParseContext::addScopeMangler(TString& name)
{
name.append(scopeMangler);
}
// Return true if this has uniform-interface like decorations.
bool HlslParseContext::hasUniform(const TQualifier& qualifier) const
{
return qualifier.hasUniformLayout() ||
qualifier.layoutPushConstant;
}
// Potentially not the opposite of hasUniform(), as if some characteristic is
// ever used for more than one thing (e.g., uniform or input), hasUniform() should
// say it exists, but clearUniform() should leave it in place.
void HlslParseContext::clearUniform(TQualifier& qualifier)
{
qualifier.clearUniformLayout();
qualifier.layoutPushConstant = false;
}
// Return false if builtIn by itself doesn't force this qualifier to be an input qualifier.
bool HlslParseContext::isInputBuiltIn(const TQualifier& qualifier) const
{
switch (qualifier.builtIn) {
case EbvPosition:
case EbvPointSize:
return language != EShLangVertex && language != EShLangCompute && language != EShLangFragment;
case EbvClipDistance:
case EbvCullDistance:
return language != EShLangVertex && language != EShLangCompute;
case EbvFragCoord:
case EbvFace:
case EbvHelperInvocation:
case EbvLayer:
case EbvPointCoord:
case EbvSampleId:
case EbvSampleMask:
case EbvSamplePosition:
case EbvViewportIndex:
return language == EShLangFragment;
case EbvGlobalInvocationId:
case EbvLocalInvocationIndex:
case EbvLocalInvocationId:
case EbvNumWorkGroups:
case EbvWorkGroupId:
case EbvWorkGroupSize:
return language == EShLangCompute;
case EbvInvocationId:
return language == EShLangTessControl || language == EShLangTessEvaluation || language == EShLangGeometry;
case EbvPatchVertices:
return language == EShLangTessControl || language == EShLangTessEvaluation;
case EbvInstanceId:
case EbvInstanceIndex:
case EbvVertexId:
case EbvVertexIndex:
return language == EShLangVertex;
case EbvPrimitiveId:
return language == EShLangGeometry || language == EShLangFragment || language == EShLangTessControl;
case EbvTessLevelInner:
case EbvTessLevelOuter:
return language == EShLangTessEvaluation;
case EbvTessCoord:
return language == EShLangTessEvaluation;
default:
return false;
}
}
// Return true if there are decorations to preserve for input-like storage.
bool HlslParseContext::hasInput(const TQualifier& qualifier) const
{
if (qualifier.hasAnyLocation())
return true;
if (language == EShLangFragment && (qualifier.isInterpolation() || qualifier.centroid || qualifier.sample))
return true;
if (language == EShLangTessEvaluation && qualifier.patch)
return true;
if (isInputBuiltIn(qualifier))
return true;
return false;
}
// Return false if builtIn by itself doesn't force this qualifier to be an output qualifier.
bool HlslParseContext::isOutputBuiltIn(const TQualifier& qualifier) const
{
switch (qualifier.builtIn) {
case EbvPosition:
case EbvPointSize:
case EbvClipVertex:
case EbvClipDistance:
case EbvCullDistance:
return language != EShLangFragment && language != EShLangCompute;
case EbvFragDepth:
case EbvFragDepthGreater:
case EbvFragDepthLesser:
case EbvSampleMask:
return language == EShLangFragment;
case EbvLayer:
case EbvViewportIndex:
return language == EShLangGeometry || language == EShLangVertex;
case EbvPrimitiveId:
return language == EShLangGeometry;
case EbvTessLevelInner:
case EbvTessLevelOuter:
return language == EShLangTessControl;
default:
return false;
}
}
// Return true if there are decorations to preserve for output-like storage.
bool HlslParseContext::hasOutput(const TQualifier& qualifier) const
{
if (qualifier.hasAnyLocation())
return true;
if (language != EShLangFragment && language != EShLangCompute && qualifier.hasXfb())
return true;
if (language == EShLangTessControl && qualifier.patch)
return true;
if (language == EShLangGeometry && qualifier.hasStream())
return true;
if (isOutputBuiltIn(qualifier))
return true;
return false;
}
// Make the IO decorations etc. be appropriate only for an input interface.
void HlslParseContext::correctInput(TQualifier& qualifier)
{
clearUniform(qualifier);
if (language == EShLangVertex)
qualifier.clearInterstage();
if (language != EShLangTessEvaluation)
qualifier.patch = false;
if (language != EShLangFragment) {
qualifier.clearInterpolation();
qualifier.sample = false;
}
qualifier.clearStreamLayout();
qualifier.clearXfbLayout();
if (! isInputBuiltIn(qualifier))
qualifier.builtIn = EbvNone;
}
// Make the IO decorations etc. be appropriate only for an output interface.
void HlslParseContext::correctOutput(TQualifier& qualifier)
{
clearUniform(qualifier);
if (language == EShLangFragment)
qualifier.clearInterstage();
if (language != EShLangGeometry)
qualifier.clearStreamLayout();
if (language == EShLangFragment)
qualifier.clearXfbLayout();
if (language != EShLangTessControl)
qualifier.patch = false;
switch (qualifier.builtIn) {
case EbvFragDepth:
intermediate.setDepthReplacing();
intermediate.setDepth(EldAny);
break;
case EbvFragDepthGreater:
intermediate.setDepthReplacing();
intermediate.setDepth(EldGreater);
qualifier.builtIn = EbvFragDepth;
break;
case EbvFragDepthLesser:
intermediate.setDepthReplacing();
intermediate.setDepth(EldLess);
qualifier.builtIn = EbvFragDepth;
break;
default:
break;
}
if (! isOutputBuiltIn(qualifier))
qualifier.builtIn = EbvNone;
}
// Make the IO decorations etc. be appropriate only for uniform type interfaces.
void HlslParseContext::correctUniform(TQualifier& qualifier)
{
if (qualifier.declaredBuiltIn == EbvNone)
qualifier.declaredBuiltIn = qualifier.builtIn;
qualifier.builtIn = EbvNone;
qualifier.clearInterstage();
qualifier.clearInterstageLayout();
}
// Clear out all IO/Uniform stuff, so this has nothing to do with being an IO interface.
void HlslParseContext::clearUniformInputOutput(TQualifier& qualifier)
{
clearUniform(qualifier);
correctUniform(qualifier);
}
// Set texture return type. Returns success (not all types are valid).
bool HlslParseContext::setTextureReturnType(TSampler& sampler, const TType& retType, const TSourceLoc& loc)
{
// Seed the output with an invalid index. We will set it to a valid one if we can.
sampler.structReturnIndex = TSampler::noReturnStruct;
// Arrays aren't supported.
if (retType.isArray()) {
error(loc, "Arrays not supported in texture template types", "", "");
return false;
}
// If return type is a vector, remember the vector size in the sampler, and return.
if (retType.isVector() || retType.isScalar()) {
sampler.vectorSize = retType.getVectorSize();
return true;
}
// If it wasn't a vector, it must be a struct meeting certain requirements. The requirements
// are checked below: just check for struct-ness here.
if (!retType.isStruct()) {
error(loc, "Invalid texture template type", "", "");
return false;
}
// TODO: Subpass doesn't handle struct returns, due to some oddities with fn overloading.
if (sampler.isSubpass()) {
error(loc, "Unimplemented: structure template type in subpass input", "", "");
return false;
}
TTypeList* members = retType.getWritableStruct();
// Check for too many or not enough structure members.
if (members->size() > 4 || members->size() == 0) {
error(loc, "Invalid member count in texture template structure", "", "");
return false;
}
// Error checking: We must have <= 4 total components, all of the same basic type.
unsigned totalComponents = 0;
for (unsigned m = 0; m < members->size(); ++m) {
// Check for bad member types
if (!(*members)[m].type->isScalar() && !(*members)[m].type->isVector()) {
error(loc, "Invalid texture template struct member type", "", "");
return false;
}
const unsigned memberVectorSize = (*members)[m].type->getVectorSize();
totalComponents += memberVectorSize;
// too many total member components
if (totalComponents > 4) {
error(loc, "Too many components in texture template structure type", "", "");
return false;
}
// All members must be of a common basic type
if ((*members)[m].type->getBasicType() != (*members)[0].type->getBasicType()) {
error(loc, "Texture template structure members must same basic type", "", "");
return false;
}
}
// If the structure in the return type already exists in the table, we'll use it. Otherwise, we'll make
// a new entry. This is a linear search, but it hardly ever happens, and the list cannot be very large.
for (unsigned int idx = 0; idx < textureReturnStruct.size(); ++idx) {
if (textureReturnStruct[idx] == members) {
sampler.structReturnIndex = idx;
return true;
}
}
// It wasn't found as an existing entry. See if we have room for a new one.
if (textureReturnStruct.size() >= TSampler::structReturnSlots) {
error(loc, "Texture template struct return slots exceeded", "", "");
return false;
}
// Insert it in the vector that tracks struct return types.
sampler.structReturnIndex = unsigned(textureReturnStruct.size());
textureReturnStruct.push_back(members);
// Success!
return true;
}
// Return the sampler return type in retType.
void HlslParseContext::getTextureReturnType(const TSampler& sampler, TType& retType) const
{
if (sampler.hasReturnStruct()) {
assert(textureReturnStruct.size() >= sampler.structReturnIndex);
// We land here if the texture return is a structure.
TTypeList* blockStruct = textureReturnStruct[sampler.structReturnIndex];
const TType resultType(blockStruct, "");
retType.shallowCopy(resultType);
} else {
// We land here if the texture return is a vector or scalar.
const TType resultType(sampler.type, EvqTemporary, sampler.getVectorSize());
retType.shallowCopy(resultType);
}
}
// Return a symbol for the tessellation linkage variable of the given TBuiltInVariable type
TIntermSymbol* HlslParseContext::findTessLinkageSymbol(TBuiltInVariable biType) const
{
const auto it = builtInTessLinkageSymbols.find(biType);
if (it == builtInTessLinkageSymbols.end()) // if it wasn't declared by the user, return nullptr
return nullptr;
return intermediate.addSymbol(*it->second->getAsVariable());
}
// Find the patch constant function (issues error, returns nullptr if not found)
const TFunction* HlslParseContext::findPatchConstantFunction(const TSourceLoc& loc)
{
if (symbolTable.isFunctionNameVariable(patchConstantFunctionName)) {
error(loc, "can't use variable in patch constant function", patchConstantFunctionName.c_str(), "");
return nullptr;
}
const TString mangledName = patchConstantFunctionName + "(";
// create list of PCF candidates
TVector<const TFunction*> candidateList;
bool builtIn;
symbolTable.findFunctionNameList(mangledName, candidateList, builtIn);
// We have to have one and only one, or we don't know which to pick: the patchconstantfunc does not
// allow any disambiguation of overloads.
if (candidateList.empty()) {
error(loc, "patch constant function not found", patchConstantFunctionName.c_str(), "");
return nullptr;
}
// Based on directed experiments, it appears that if there are overloaded patchconstantfunctions,
// HLSL picks the last one in shader source order. Since that isn't yet implemented here, error
// out if there is more than one candidate.
if (candidateList.size() > 1) {
error(loc, "ambiguous patch constant function", patchConstantFunctionName.c_str(), "");
return nullptr;
}
return candidateList[0];
}
// Finalization step: Add patch constant function invocation
void HlslParseContext::addPatchConstantInvocation()
{
TSourceLoc loc;
loc.init();
// If there's no patch constant function, or we're not a HS, do nothing.
if (patchConstantFunctionName.empty() || language != EShLangTessControl)
return;
// Look for built-in variables in a function's parameter list.
const auto findBuiltIns = [&](const TFunction& function, std::set<tInterstageIoData>& builtIns) {
for (int p=0; p<function.getParamCount(); ++p) {
TStorageQualifier storage = function[p].type->getQualifier().storage;
if (storage == EvqConstReadOnly) // treated identically to input
storage = EvqIn;
if (function[p].getDeclaredBuiltIn() != EbvNone)
builtIns.insert(HlslParseContext::tInterstageIoData(function[p].getDeclaredBuiltIn(), storage));
else
builtIns.insert(HlslParseContext::tInterstageIoData(function[p].type->getQualifier().builtIn, storage));
}
};
// If we synthesize a built-in interface variable, we must add it to the linkage.
const auto addToLinkage = [&](const TType& type, const TString* name, TIntermSymbol** symbolNode) {
if (name == nullptr) {
error(loc, "unable to locate patch function parameter name", "", "");
return;
} else {
TVariable& variable = *new TVariable(name, type);
if (! symbolTable.insert(variable)) {
error(loc, "unable to declare patch constant function interface variable", name->c_str(), "");
return;
}
globalQualifierFix(loc, variable.getWritableType().getQualifier());
if (symbolNode != nullptr)
*symbolNode = intermediate.addSymbol(variable);
trackLinkage(variable);
}
};
const auto isOutputPatch = [](TFunction& patchConstantFunction, int param) {
const TType& type = *patchConstantFunction[param].type;
const TBuiltInVariable biType = patchConstantFunction[param].getDeclaredBuiltIn();
return type.isSizedArray() && biType == EbvOutputPatch;
};
// We will perform these steps. Each is in a scoped block for separation: they could
// become separate functions to make addPatchConstantInvocation shorter.
//
// 1. Union the interfaces, and create built-ins for anything present in the PCF and
// declared as a built-in variable that isn't present in the entry point's signature.
//
// 2. Synthesizes a call to the patchconstfunction using built-in variables from either main,
// or the ones we created. Matching is based on built-in type. We may use synthesized
// variables from (1) above.
//
// 2B: Synthesize per control point invocations of wrapped entry point if the PCF requires them.
//
// 3. Create a return sequence: copy the return value (if any) from the PCF to a
// (non-sanitized) output variable. In case this may involve multiple copies, such as for
// an arrayed variable, a temporary copy of the PCF output is created to avoid multiple
// indirections into a complex R-value coming from the call to the PCF.
//
// 4. Create a barrier.
//
// 5/5B. Call the PCF inside an if test for (invocation id == 0).
TFunction* patchConstantFunctionPtr = const_cast<TFunction*>(findPatchConstantFunction(loc));
if (patchConstantFunctionPtr == nullptr)
return;
TFunction& patchConstantFunction = *patchConstantFunctionPtr;
const int pcfParamCount = patchConstantFunction.getParamCount();
TIntermSymbol* invocationIdSym = findTessLinkageSymbol(EbvInvocationId);
TIntermSequence& epBodySeq = entryPointFunctionBody->getAsAggregate()->getSequence();
int outPatchParam = -1; // -1 means there isn't one.
// ================ Step 1A: Union Interfaces ================
// Our patch constant function.
{
std::set<tInterstageIoData> pcfBuiltIns; // patch constant function built-ins
std::set<tInterstageIoData> epfBuiltIns; // entry point function built-ins
assert(entryPointFunction);
assert(entryPointFunctionBody);
findBuiltIns(patchConstantFunction, pcfBuiltIns);
findBuiltIns(*entryPointFunction, epfBuiltIns);
// Find the set of built-ins in the PCF that are not present in the entry point.
std::set<tInterstageIoData> notInEntryPoint;
notInEntryPoint = pcfBuiltIns;
// std::set_difference not usable on unordered containers
for (auto bi = epfBuiltIns.begin(); bi != epfBuiltIns.end(); ++bi)
notInEntryPoint.erase(*bi);
// Now we'll add those to the entry and to the linkage.
for (int p=0; p<pcfParamCount; ++p) {
const TBuiltInVariable biType = patchConstantFunction[p].getDeclaredBuiltIn();
TStorageQualifier storage = patchConstantFunction[p].type->getQualifier().storage;
// Track whether there is an output patch param
if (isOutputPatch(patchConstantFunction, p)) {
if (outPatchParam >= 0) {
// Presently we only support one per ctrl pt input.
error(loc, "unimplemented: multiple output patches in patch constant function", "", "");
return;
}
outPatchParam = p;
}
if (biType != EbvNone) {
TType* paramType = patchConstantFunction[p].type->clone();
if (storage == EvqConstReadOnly) // treated identically to input
storage = EvqIn;
// Presently, the only non-built-in we support is InputPatch, which is treated as
// a pseudo-built-in.
if (biType == EbvInputPatch) {
builtInTessLinkageSymbols[biType] = inputPatch;
} else if (biType == EbvOutputPatch) {
// Nothing...
} else {
// Use the original declaration type for the linkage
paramType->getQualifier().builtIn = biType;
if (notInEntryPoint.count(tInterstageIoData(biType, storage)) == 1)
addToLinkage(*paramType, patchConstantFunction[p].name, nullptr);
}
}
}
// If we didn't find it because the shader made one, add our own.
if (invocationIdSym == nullptr) {
TType invocationIdType(EbtUint, EvqIn, 1);
TString* invocationIdName = NewPoolTString("InvocationId");
invocationIdType.getQualifier().builtIn = EbvInvocationId;
addToLinkage(invocationIdType, invocationIdName, &invocationIdSym);
}
assert(invocationIdSym);
}
TIntermTyped* pcfArguments = nullptr;
TVariable* perCtrlPtVar = nullptr;
// ================ Step 1B: Argument synthesis ================
// Create pcfArguments for synthesis of patchconstantfunction invocation
{
for (int p=0; p<pcfParamCount; ++p) {
TIntermTyped* inputArg = nullptr;
if (p == outPatchParam) {
if (perCtrlPtVar == nullptr) {
perCtrlPtVar = makeInternalVariable(*patchConstantFunction[outPatchParam].name,
*patchConstantFunction[outPatchParam].type);
perCtrlPtVar->getWritableType().getQualifier().makeTemporary();
}
inputArg = intermediate.addSymbol(*perCtrlPtVar, loc);
} else {
// find which built-in it is
const TBuiltInVariable biType = patchConstantFunction[p].getDeclaredBuiltIn();
if (biType == EbvInputPatch && inputPatch == nullptr) {
error(loc, "unimplemented: PCF input patch without entry point input patch parameter", "", "");
return;
}
inputArg = findTessLinkageSymbol(biType);
if (inputArg == nullptr) {
error(loc, "unable to find patch constant function built-in variable", "", "");
return;
}
}
if (pcfParamCount == 1)
pcfArguments = inputArg;
else
pcfArguments = intermediate.growAggregate(pcfArguments, inputArg);
}
}
// ================ Step 2: Synthesize call to PCF ================
TIntermAggregate* pcfCallSequence = nullptr;
TIntermTyped* pcfCall = nullptr;
{
// Create a function call to the patchconstantfunction
if (pcfArguments)
addInputArgumentConversions(patchConstantFunction, pcfArguments);
// Synthetic call.
pcfCall = intermediate.setAggregateOperator(pcfArguments, EOpFunctionCall, patchConstantFunction.getType(), loc);
pcfCall->getAsAggregate()->setUserDefined();
pcfCall->getAsAggregate()->setName(patchConstantFunction.getMangledName());
intermediate.addToCallGraph(infoSink, intermediate.getEntryPointMangledName().c_str(),
patchConstantFunction.getMangledName());
if (pcfCall->getAsAggregate()) {
TQualifierList& qualifierList = pcfCall->getAsAggregate()->getQualifierList();
for (int i = 0; i < patchConstantFunction.getParamCount(); ++i) {
TStorageQualifier qual = patchConstantFunction[i].type->getQualifier().storage;
qualifierList.push_back(qual);
}
pcfCall = addOutputArgumentConversions(patchConstantFunction, *pcfCall->getAsOperator());
}
}
// ================ Step 2B: Per Control Point synthesis ================
// If there is per control point data, we must either emulate that with multiple
// invocations of the entry point to build up an array, or (TODO:) use a yet
// unavailable extension to look across the SIMD lanes. This is the former
// as a placeholder for the latter.
if (outPatchParam >= 0) {
// We must introduce a local temp variable of the type wanted by the PCF input.
const int arraySize = patchConstantFunction[outPatchParam].type->getOuterArraySize();
if (entryPointFunction->getType().getBasicType() == EbtVoid) {
error(loc, "entry point must return a value for use with patch constant function", "", "");
return;
}
// Create calls to wrapped main to fill in the array. We will substitute fixed values
// of invocation ID when calling the wrapped main.
// This is the type of the each member of the per ctrl point array.
const TType derefType(perCtrlPtVar->getType(), 0);
for (int cpt = 0; cpt < arraySize; ++cpt) {
// TODO: improve. substr(1) here is to avoid the '@' that was grafted on but isn't in the symtab
// for this function.
const TString origName = entryPointFunction->getName().substr(1);
TFunction callee(&origName, TType(EbtVoid));
TIntermTyped* callingArgs = nullptr;
for (int i = 0; i < entryPointFunction->getParamCount(); i++) {
TParameter& param = (*entryPointFunction)[i];
TType& paramType = *param.type;
if (paramType.getQualifier().isParamOutput()) {
error(loc, "unimplemented: entry point outputs in patch constant function invocation", "", "");
return;
}
if (paramType.getQualifier().isParamInput()) {
TIntermTyped* arg = nullptr;
if ((*entryPointFunction)[i].getDeclaredBuiltIn() == EbvInvocationId) {
// substitute invocation ID with the array element ID
arg = intermediate.addConstantUnion(cpt, loc);
} else {
TVariable* argVar = makeInternalVariable(*param.name, *param.type);
argVar->getWritableType().getQualifier().makeTemporary();
arg = intermediate.addSymbol(*argVar);
}
handleFunctionArgument(&callee, callingArgs, arg);
}
}
// Call and assign to per ctrl point variable
currentCaller = intermediate.getEntryPointMangledName().c_str();
TIntermTyped* callReturn = handleFunctionCall(loc, &callee, callingArgs);
TIntermTyped* index = intermediate.addConstantUnion(cpt, loc);
TIntermSymbol* perCtrlPtSym = intermediate.addSymbol(*perCtrlPtVar, loc);
TIntermTyped* element = intermediate.addIndex(EOpIndexDirect, perCtrlPtSym, index, loc);
element->setType(derefType);
element->setLoc(loc);
pcfCallSequence = intermediate.growAggregate(pcfCallSequence,
handleAssign(loc, EOpAssign, element, callReturn));
}
}
// ================ Step 3: Create return Sequence ================
// Return sequence: copy PCF result to a temporary, then to shader output variable.
if (pcfCall->getBasicType() != EbtVoid) {
const TType* retType = &patchConstantFunction.getType(); // return type from the PCF
TType outType; // output type that goes with the return type.
outType.shallowCopy(*retType);
// substitute the output type
const auto newLists = ioTypeMap.find(retType->getStruct());
if (newLists != ioTypeMap.end())
outType.setStruct(newLists->second.output);
// Substitute the top level type's built-in type
if (patchConstantFunction.getDeclaredBuiltInType() != EbvNone)
outType.getQualifier().builtIn = patchConstantFunction.getDeclaredBuiltInType();
outType.getQualifier().patch = true; // make it a per-patch variable
TVariable* pcfOutput = makeInternalVariable("@patchConstantOutput", outType);
pcfOutput->getWritableType().getQualifier().storage = EvqVaryingOut;
if (pcfOutput->getType().containsBuiltIn())
split(*pcfOutput);
assignToInterface(*pcfOutput);
TIntermSymbol* pcfOutputSym = intermediate.addSymbol(*pcfOutput, loc);
// The call to the PCF is a complex R-value: we want to store it in a temp to avoid
// repeated calls to the PCF:
TVariable* pcfCallResult = makeInternalVariable("@patchConstantResult", *retType);
pcfCallResult->getWritableType().getQualifier().makeTemporary();
TIntermSymbol* pcfResultVar = intermediate.addSymbol(*pcfCallResult, loc);
TIntermNode* pcfResultAssign = handleAssign(loc, EOpAssign, pcfResultVar, pcfCall);
TIntermNode* pcfResultToOut = handleAssign(loc, EOpAssign, pcfOutputSym,
intermediate.addSymbol(*pcfCallResult, loc));
pcfCallSequence = intermediate.growAggregate(pcfCallSequence, pcfResultAssign);
pcfCallSequence = intermediate.growAggregate(pcfCallSequence, pcfResultToOut);
} else {
pcfCallSequence = intermediate.growAggregate(pcfCallSequence, pcfCall);
}
// ================ Step 4: Barrier ================
TIntermTyped* barrier = new TIntermAggregate(EOpBarrier);
barrier->setLoc(loc);
barrier->setType(TType(EbtVoid));
epBodySeq.insert(epBodySeq.end(), barrier);
// ================ Step 5: Test on invocation ID ================
TIntermTyped* zero = intermediate.addConstantUnion(0, loc, true);
TIntermTyped* cmp = intermediate.addBinaryNode(EOpEqual, invocationIdSym, zero, loc, TType(EbtBool));
// ================ Step 5B: Create if statement on Invocation ID == 0 ================
intermediate.setAggregateOperator(pcfCallSequence, EOpSequence, TType(EbtVoid), loc);
TIntermTyped* invocationIdTest = new TIntermSelection(cmp, pcfCallSequence, nullptr);
invocationIdTest->setLoc(loc);
// add our test sequence before the return.
epBodySeq.insert(epBodySeq.end(), invocationIdTest);
}
// Finalization step: remove unused buffer blocks from linkage (we don't know until the
// shader is entirely compiled).
// Preserve order of remaining symbols.
void HlslParseContext::removeUnusedStructBufferCounters()
{
const auto endIt = std::remove_if(linkageSymbols.begin(), linkageSymbols.end(),
[this](const TSymbol* sym) {
const auto sbcIt = structBufferCounter.find(sym->getName());
return sbcIt != structBufferCounter.end() && !sbcIt->second;
});
linkageSymbols.erase(endIt, linkageSymbols.end());
}
// Finalization step: patch texture shadow modes to match samplers they were combined with
void HlslParseContext::fixTextureShadowModes()
{
for (auto symbol = linkageSymbols.begin(); symbol != linkageSymbols.end(); ++symbol) {
TSampler& sampler = (*symbol)->getWritableType().getSampler();
if (sampler.isTexture()) {
const auto shadowMode = textureShadowVariant.find((*symbol)->getUniqueId());
if (shadowMode != textureShadowVariant.end()) {
if (shadowMode->second->overloaded())
// Texture needs legalization if it's been seen with both shadow and non-shadow modes.
intermediate.setNeedsLegalization();
sampler.shadow = shadowMode->second->isShadowId((*symbol)->getUniqueId());
}
}
}
}
// Finalization step: patch append methods to use proper stream output, which isn't known until
// main is parsed, which could happen after the append method is parsed.
void HlslParseContext::finalizeAppendMethods()
{
TSourceLoc loc;
loc.init();
// Nothing to do: bypass test for valid stream output.
if (gsAppends.empty())
return;
if (gsStreamOutput == nullptr) {
error(loc, "unable to find output symbol for Append()", "", "");
return;
}
// Patch append sequences, now that we know the stream output symbol.
for (auto append = gsAppends.begin(); append != gsAppends.end(); ++append) {
append->node->getSequence()[0] =
handleAssign(append->loc, EOpAssign,
intermediate.addSymbol(*gsStreamOutput, append->loc),
append->node->getSequence()[0]->getAsTyped());
}
}
// post-processing
void HlslParseContext::finish()
{
// Error check: There was a dangling .mips operator. These are not nested constructs in the grammar, so
// cannot be detected there. This is not strictly needed in a non-validating parser; it's just helpful.
if (! mipsOperatorMipArg.empty()) {
error(mipsOperatorMipArg.back().loc, "unterminated mips operator:", "", "");
}
removeUnusedStructBufferCounters();
addPatchConstantInvocation();
fixTextureShadowModes();
finalizeAppendMethods();
// Communicate out (esp. for command line) that we formed AST that will make
// illegal AST SPIR-V and it needs transforms to legalize it.
if (intermediate.needsLegalization() && (messages & EShMsgHlslLegalization))
infoSink.info << "WARNING: AST will form illegal SPIR-V; need to transform to legalize";
TParseContextBase::finish();
}
} // end namespace glslang