| // |
| // Copyright (C) 2017-2018 Google, Inc. |
| // Copyright (C) 2017 LunarG, Inc. |
| // |
| // All rights reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions |
| // are met: |
| // |
| // Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // |
| // Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // |
| // Neither the name of 3Dlabs Inc. Ltd. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
| // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
| // COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
| // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
| // BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| // LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
| // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| // LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
| // ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| |
| #include "hlslParseHelper.h" |
| #include "hlslScanContext.h" |
| #include "hlslGrammar.h" |
| #include "hlslAttributes.h" |
| |
| #include "../glslang/Include/Common.h" |
| #include "../glslang/MachineIndependent/Scan.h" |
| #include "../glslang/MachineIndependent/preprocessor/PpContext.h" |
| |
| #include "../glslang/OSDependent/osinclude.h" |
| |
| #include <algorithm> |
| #include <functional> |
| #include <cctype> |
| #include <array> |
| #include <set> |
| |
| namespace glslang { |
| |
| HlslParseContext::HlslParseContext(TSymbolTable& symbolTable, TIntermediate& interm, bool parsingBuiltins, |
| int version, EProfile profile, const SpvVersion& spvVersion, EShLanguage language, |
| TInfoSink& infoSink, |
| const TString sourceEntryPointName, |
| bool forwardCompatible, EShMessages messages) : |
| TParseContextBase(symbolTable, interm, parsingBuiltins, version, profile, spvVersion, language, infoSink, |
| forwardCompatible, messages, &sourceEntryPointName), |
| annotationNestingLevel(0), |
| inputPatch(nullptr), |
| nextInLocation(0), nextOutLocation(0), |
| entryPointFunction(nullptr), |
| entryPointFunctionBody(nullptr), |
| gsStreamOutput(nullptr), |
| clipDistanceOutput(nullptr), |
| cullDistanceOutput(nullptr), |
| clipDistanceInput(nullptr), |
| cullDistanceInput(nullptr) |
| { |
| globalUniformDefaults.clear(); |
| globalUniformDefaults.layoutMatrix = ElmRowMajor; |
| globalUniformDefaults.layoutPacking = ElpStd140; |
| |
| globalBufferDefaults.clear(); |
| globalBufferDefaults.layoutMatrix = ElmRowMajor; |
| globalBufferDefaults.layoutPacking = ElpStd430; |
| |
| globalInputDefaults.clear(); |
| globalOutputDefaults.clear(); |
| |
| clipSemanticNSizeIn.fill(0); |
| cullSemanticNSizeIn.fill(0); |
| clipSemanticNSizeOut.fill(0); |
| cullSemanticNSizeOut.fill(0); |
| |
| // "Shaders in the transform |
| // feedback capturing mode have an initial global default of |
| // layout(xfb_buffer = 0) out;" |
| if (language == EShLangVertex || |
| language == EShLangTessControl || |
| language == EShLangTessEvaluation || |
| language == EShLangGeometry) |
| globalOutputDefaults.layoutXfbBuffer = 0; |
| |
| if (language == EShLangGeometry) |
| globalOutputDefaults.layoutStream = 0; |
| } |
| |
| HlslParseContext::~HlslParseContext() |
| { |
| } |
| |
| void HlslParseContext::initializeExtensionBehavior() |
| { |
| TParseContextBase::initializeExtensionBehavior(); |
| |
| // HLSL allows #line by default. |
| extensionBehavior[E_GL_GOOGLE_cpp_style_line_directive] = EBhEnable; |
| } |
| |
| void HlslParseContext::setLimits(const TBuiltInResource& r) |
| { |
| resources = r; |
| intermediate.setLimits(resources); |
| } |
| |
| // |
| // Parse an array of strings using the parser in HlslRules. |
| // |
| // Returns true for successful acceptance of the shader, false if any errors. |
| // |
| bool HlslParseContext::parseShaderStrings(TPpContext& ppContext, TInputScanner& input, bool versionWillBeError) |
| { |
| currentScanner = &input; |
| ppContext.setInput(input, versionWillBeError); |
| |
| HlslScanContext scanContext(*this, ppContext); |
| HlslGrammar grammar(scanContext, *this); |
| if (!grammar.parse()) { |
| // Print a message formated such that if you click on the message it will take you right to |
| // the line through most UIs. |
| const glslang::TSourceLoc& sourceLoc = input.getSourceLoc(); |
| infoSink.info << sourceLoc.getFilenameStr() << "(" << sourceLoc.line << "): error at column " << sourceLoc.column |
| << ", HLSL parsing failed.\n"; |
| ++numErrors; |
| return false; |
| } |
| |
| finish(); |
| |
| return numErrors == 0; |
| } |
| |
| // |
| // Return true if this l-value node should be converted in some manner. |
| // For instance: turning a load aggregate into a store in an l-value. |
| // |
| bool HlslParseContext::shouldConvertLValue(const TIntermNode* node) const |
| { |
| if (node == nullptr || node->getAsTyped() == nullptr) |
| return false; |
| |
| const TIntermAggregate* lhsAsAggregate = node->getAsAggregate(); |
| const TIntermBinary* lhsAsBinary = node->getAsBinaryNode(); |
| |
| // If it's a swizzled/indexed aggregate, look at the left node instead. |
| if (lhsAsBinary != nullptr && |
| (lhsAsBinary->getOp() == EOpVectorSwizzle || lhsAsBinary->getOp() == EOpIndexDirect)) |
| lhsAsAggregate = lhsAsBinary->getLeft()->getAsAggregate(); |
| if (lhsAsAggregate != nullptr && lhsAsAggregate->getOp() == EOpImageLoad) |
| return true; |
| |
| return false; |
| } |
| |
| void HlslParseContext::growGlobalUniformBlock(const TSourceLoc& loc, TType& memberType, const TString& memberName, |
| TTypeList* newTypeList) |
| { |
| newTypeList = nullptr; |
| correctUniform(memberType.getQualifier()); |
| if (memberType.isStruct()) { |
| auto it = ioTypeMap.find(memberType.getStruct()); |
| if (it != ioTypeMap.end() && it->second.uniform) |
| newTypeList = it->second.uniform; |
| } |
| TParseContextBase::growGlobalUniformBlock(loc, memberType, memberName, newTypeList); |
| } |
| |
| // |
| // Return a TLayoutFormat corresponding to the given texture type. |
| // |
| TLayoutFormat HlslParseContext::getLayoutFromTxType(const TSourceLoc& loc, const TType& txType) |
| { |
| if (txType.isStruct()) { |
| // TODO: implement. |
| error(loc, "unimplemented: structure type in image or buffer", "", ""); |
| return ElfNone; |
| } |
| |
| const int components = txType.getVectorSize(); |
| const TBasicType txBasicType = txType.getBasicType(); |
| |
| const auto selectFormat = [this,&components](TLayoutFormat v1, TLayoutFormat v2, TLayoutFormat v4) -> TLayoutFormat { |
| if (intermediate.getNoStorageFormat()) |
| return ElfNone; |
| |
| return components == 1 ? v1 : |
| components == 2 ? v2 : v4; |
| }; |
| |
| switch (txBasicType) { |
| case EbtFloat: return selectFormat(ElfR32f, ElfRg32f, ElfRgba32f); |
| case EbtInt: return selectFormat(ElfR32i, ElfRg32i, ElfRgba32i); |
| case EbtUint: return selectFormat(ElfR32ui, ElfRg32ui, ElfRgba32ui); |
| default: |
| error(loc, "unknown basic type in image format", "", ""); |
| return ElfNone; |
| } |
| } |
| |
| // |
| // Both test and if necessary, spit out an error, to see if the node is really |
| // an l-value that can be operated on this way. |
| // |
| // Returns true if there was an error. |
| // |
| bool HlslParseContext::lValueErrorCheck(const TSourceLoc& loc, const char* op, TIntermTyped* node) |
| { |
| if (shouldConvertLValue(node)) { |
| // if we're writing to a texture, it must be an RW form. |
| |
| TIntermAggregate* lhsAsAggregate = node->getAsAggregate(); |
| TIntermTyped* object = lhsAsAggregate->getSequence()[0]->getAsTyped(); |
| |
| if (!object->getType().getSampler().isImage()) { |
| error(loc, "operator[] on a non-RW texture must be an r-value", "", ""); |
| return true; |
| } |
| } |
| |
| // We tolerate samplers as l-values, even though they are nominally |
| // illegal, because we expect a later optimization to eliminate them. |
| if (node->getType().getBasicType() == EbtSampler) { |
| intermediate.setNeedsLegalization(); |
| return false; |
| } |
| |
| // Let the base class check errors |
| return TParseContextBase::lValueErrorCheck(loc, op, node); |
| } |
| |
| // |
| // This function handles l-value conversions and verifications. It uses, but is not synonymous |
| // with lValueErrorCheck. That function accepts an l-value directly, while this one must be |
| // given the surrounding tree - e.g, with an assignment, so we can convert the assign into a |
| // series of other image operations. |
| // |
| // Most things are passed through unmodified, except for error checking. |
| // |
| TIntermTyped* HlslParseContext::handleLvalue(const TSourceLoc& loc, const char* op, TIntermTyped*& node) |
| { |
| if (node == nullptr) |
| return nullptr; |
| |
| TIntermBinary* nodeAsBinary = node->getAsBinaryNode(); |
| TIntermUnary* nodeAsUnary = node->getAsUnaryNode(); |
| TIntermAggregate* sequence = nullptr; |
| |
| TIntermTyped* lhs = nodeAsUnary ? nodeAsUnary->getOperand() : |
| nodeAsBinary ? nodeAsBinary->getLeft() : |
| nullptr; |
| |
| // Early bail out if there is no conversion to apply |
| if (!shouldConvertLValue(lhs)) { |
| if (lhs != nullptr) |
| if (lValueErrorCheck(loc, op, lhs)) |
| return nullptr; |
| return node; |
| } |
| |
| // *** If we get here, we're going to apply some conversion to an l-value. |
| |
| // Helper to create a load. |
| const auto makeLoad = [&](TIntermSymbol* rhsTmp, TIntermTyped* object, TIntermTyped* coord, const TType& derefType) { |
| TIntermAggregate* loadOp = new TIntermAggregate(EOpImageLoad); |
| loadOp->setLoc(loc); |
| loadOp->getSequence().push_back(object); |
| loadOp->getSequence().push_back(intermediate.addSymbol(*coord->getAsSymbolNode())); |
| loadOp->setType(derefType); |
| |
| sequence = intermediate.growAggregate(sequence, |
| intermediate.addAssign(EOpAssign, rhsTmp, loadOp, loc), |
| loc); |
| }; |
| |
| // Helper to create a store. |
| const auto makeStore = [&](TIntermTyped* object, TIntermTyped* coord, TIntermSymbol* rhsTmp) { |
| TIntermAggregate* storeOp = new TIntermAggregate(EOpImageStore); |
| storeOp->getSequence().push_back(object); |
| storeOp->getSequence().push_back(coord); |
| storeOp->getSequence().push_back(intermediate.addSymbol(*rhsTmp)); |
| storeOp->setLoc(loc); |
| storeOp->setType(TType(EbtVoid)); |
| |
| sequence = intermediate.growAggregate(sequence, storeOp); |
| }; |
| |
| // Helper to create an assign. |
| const auto makeBinary = [&](TOperator op, TIntermTyped* lhs, TIntermTyped* rhs) { |
| sequence = intermediate.growAggregate(sequence, |
| intermediate.addBinaryNode(op, lhs, rhs, loc, lhs->getType()), |
| loc); |
| }; |
| |
| // Helper to complete sequence by adding trailing variable, so we evaluate to the right value. |
| const auto finishSequence = [&](TIntermSymbol* rhsTmp, const TType& derefType) -> TIntermAggregate* { |
| // Add a trailing use of the temp, so the sequence returns the proper value. |
| sequence = intermediate.growAggregate(sequence, intermediate.addSymbol(*rhsTmp)); |
| sequence->setOperator(EOpSequence); |
| sequence->setLoc(loc); |
| sequence->setType(derefType); |
| |
| return sequence; |
| }; |
| |
| // Helper to add unary op |
| const auto makeUnary = [&](TOperator op, TIntermSymbol* rhsTmp) { |
| sequence = intermediate.growAggregate(sequence, |
| intermediate.addUnaryNode(op, intermediate.addSymbol(*rhsTmp), loc, |
| rhsTmp->getType()), |
| loc); |
| }; |
| |
| // Return true if swizzle or index writes all components of the given variable. |
| const auto writesAllComponents = [&](TIntermSymbol* var, TIntermBinary* swizzle) -> bool { |
| if (swizzle == nullptr) // not a swizzle or index |
| return true; |
| |
| // Track which components are being set. |
| std::array<bool, 4> compIsSet; |
| compIsSet.fill(false); |
| |
| const TIntermConstantUnion* asConst = swizzle->getRight()->getAsConstantUnion(); |
| const TIntermAggregate* asAggregate = swizzle->getRight()->getAsAggregate(); |
| |
| // This could be either a direct index, or a swizzle. |
| if (asConst) { |
| compIsSet[asConst->getConstArray()[0].getIConst()] = true; |
| } else if (asAggregate) { |
| const TIntermSequence& seq = asAggregate->getSequence(); |
| for (int comp=0; comp<int(seq.size()); ++comp) |
| compIsSet[seq[comp]->getAsConstantUnion()->getConstArray()[0].getIConst()] = true; |
| } else { |
| assert(0); |
| } |
| |
| // Return true if all components are being set by the index or swizzle |
| return std::all_of(compIsSet.begin(), compIsSet.begin() + var->getType().getVectorSize(), |
| [](bool isSet) { return isSet; } ); |
| }; |
| |
| // Create swizzle matching input swizzle |
| const auto addSwizzle = [&](TIntermSymbol* var, TIntermBinary* swizzle) -> TIntermTyped* { |
| if (swizzle) |
| return intermediate.addBinaryNode(swizzle->getOp(), var, swizzle->getRight(), loc, swizzle->getType()); |
| else |
| return var; |
| }; |
| |
| TIntermBinary* lhsAsBinary = lhs->getAsBinaryNode(); |
| TIntermAggregate* lhsAsAggregate = lhs->getAsAggregate(); |
| bool lhsIsSwizzle = false; |
| |
| // If it's a swizzled L-value, remember the swizzle, and use the LHS. |
| if (lhsAsBinary != nullptr && (lhsAsBinary->getOp() == EOpVectorSwizzle || lhsAsBinary->getOp() == EOpIndexDirect)) { |
| lhsAsAggregate = lhsAsBinary->getLeft()->getAsAggregate(); |
| lhsIsSwizzle = true; |
| } |
| |
| TIntermTyped* object = lhsAsAggregate->getSequence()[0]->getAsTyped(); |
| TIntermTyped* coord = lhsAsAggregate->getSequence()[1]->getAsTyped(); |
| |
| const TSampler& texSampler = object->getType().getSampler(); |
| |
| TType objDerefType; |
| getTextureReturnType(texSampler, objDerefType); |
| |
| if (nodeAsBinary) { |
| TIntermTyped* rhs = nodeAsBinary->getRight(); |
| const TOperator assignOp = nodeAsBinary->getOp(); |
| |
| bool isModifyOp = false; |
| |
| switch (assignOp) { |
| case EOpAddAssign: |
| case EOpSubAssign: |
| case EOpMulAssign: |
| case EOpVectorTimesMatrixAssign: |
| case EOpVectorTimesScalarAssign: |
| case EOpMatrixTimesScalarAssign: |
| case EOpMatrixTimesMatrixAssign: |
| case EOpDivAssign: |
| case EOpModAssign: |
| case EOpAndAssign: |
| case EOpInclusiveOrAssign: |
| case EOpExclusiveOrAssign: |
| case EOpLeftShiftAssign: |
| case EOpRightShiftAssign: |
| isModifyOp = true; |
| // fall through... |
| case EOpAssign: |
| { |
| // Since this is an lvalue, we'll convert an image load to a sequence like this |
| // (to still provide the value): |
| // OpSequence |
| // OpImageStore(object, lhs, rhs) |
| // rhs |
| // But if it's not a simple symbol RHS (say, a fn call), we don't want to duplicate the RHS, |
| // so we'll convert instead to this: |
| // OpSequence |
| // rhsTmp = rhs |
| // OpImageStore(object, coord, rhsTmp) |
| // rhsTmp |
| // If this is a read-modify-write op, like +=, we issue: |
| // OpSequence |
| // coordtmp = load's param1 |
| // rhsTmp = OpImageLoad(object, coordTmp) |
| // rhsTmp op= rhs |
| // OpImageStore(object, coordTmp, rhsTmp) |
| // rhsTmp |
| // |
| // If the lvalue is swizzled, we apply that when writing the temp variable, like so: |
| // ... |
| // rhsTmp.some_swizzle = ... |
| // For partial writes, an error is generated. |
| |
| TIntermSymbol* rhsTmp = rhs->getAsSymbolNode(); |
| TIntermTyped* coordTmp = coord; |
| |
| if (rhsTmp == nullptr || isModifyOp || lhsIsSwizzle) { |
| rhsTmp = makeInternalVariableNode(loc, "storeTemp", objDerefType); |
| |
| // Partial updates not yet supported |
| if (!writesAllComponents(rhsTmp, lhsAsBinary)) { |
| error(loc, "unimplemented: partial image updates", "", ""); |
| } |
| |
| // Assign storeTemp = rhs |
| if (isModifyOp) { |
| // We have to make a temp var for the coordinate, to avoid evaluating it twice. |
| coordTmp = makeInternalVariableNode(loc, "coordTemp", coord->getType()); |
| makeBinary(EOpAssign, coordTmp, coord); // coordtmp = load[param1] |
| makeLoad(rhsTmp, object, coordTmp, objDerefType); // rhsTmp = OpImageLoad(object, coordTmp) |
| } |
| |
| // rhsTmp op= rhs. |
| makeBinary(assignOp, addSwizzle(intermediate.addSymbol(*rhsTmp), lhsAsBinary), rhs); |
| } |
| |
| makeStore(object, coordTmp, rhsTmp); // add a store |
| return finishSequence(rhsTmp, objDerefType); // return rhsTmp from sequence |
| } |
| |
| default: |
| break; |
| } |
| } |
| |
| if (nodeAsUnary) { |
| const TOperator assignOp = nodeAsUnary->getOp(); |
| |
| switch (assignOp) { |
| case EOpPreIncrement: |
| case EOpPreDecrement: |
| { |
| // We turn this into: |
| // OpSequence |
| // coordtmp = load's param1 |
| // rhsTmp = OpImageLoad(object, coordTmp) |
| // rhsTmp op |
| // OpImageStore(object, coordTmp, rhsTmp) |
| // rhsTmp |
| |
| TIntermSymbol* rhsTmp = makeInternalVariableNode(loc, "storeTemp", objDerefType); |
| TIntermTyped* coordTmp = makeInternalVariableNode(loc, "coordTemp", coord->getType()); |
| |
| makeBinary(EOpAssign, coordTmp, coord); // coordtmp = load[param1] |
| makeLoad(rhsTmp, object, coordTmp, objDerefType); // rhsTmp = OpImageLoad(object, coordTmp) |
| makeUnary(assignOp, rhsTmp); // op rhsTmp |
| makeStore(object, coordTmp, rhsTmp); // OpImageStore(object, coordTmp, rhsTmp) |
| return finishSequence(rhsTmp, objDerefType); // return rhsTmp from sequence |
| } |
| |
| case EOpPostIncrement: |
| case EOpPostDecrement: |
| { |
| // We turn this into: |
| // OpSequence |
| // coordtmp = load's param1 |
| // rhsTmp1 = OpImageLoad(object, coordTmp) |
| // rhsTmp2 = rhsTmp1 |
| // rhsTmp2 op |
| // OpImageStore(object, coordTmp, rhsTmp2) |
| // rhsTmp1 (pre-op value) |
| TIntermSymbol* rhsTmp1 = makeInternalVariableNode(loc, "storeTempPre", objDerefType); |
| TIntermSymbol* rhsTmp2 = makeInternalVariableNode(loc, "storeTempPost", objDerefType); |
| TIntermTyped* coordTmp = makeInternalVariableNode(loc, "coordTemp", coord->getType()); |
| |
| makeBinary(EOpAssign, coordTmp, coord); // coordtmp = load[param1] |
| makeLoad(rhsTmp1, object, coordTmp, objDerefType); // rhsTmp1 = OpImageLoad(object, coordTmp) |
| makeBinary(EOpAssign, rhsTmp2, rhsTmp1); // rhsTmp2 = rhsTmp1 |
| makeUnary(assignOp, rhsTmp2); // rhsTmp op |
| makeStore(object, coordTmp, rhsTmp2); // OpImageStore(object, coordTmp, rhsTmp2) |
| return finishSequence(rhsTmp1, objDerefType); // return rhsTmp from sequence |
| } |
| |
| default: |
| break; |
| } |
| } |
| |
| if (lhs) |
| if (lValueErrorCheck(loc, op, lhs)) |
| return nullptr; |
| |
| return node; |
| } |
| |
| void HlslParseContext::handlePragma(const TSourceLoc& loc, const TVector<TString>& tokens) |
| { |
| if (pragmaCallback) |
| pragmaCallback(loc.line, tokens); |
| |
| if (tokens.size() == 0) |
| return; |
| |
| // These pragmas are case insensitive in HLSL, so we'll compare in lower case. |
| TVector<TString> lowerTokens = tokens; |
| |
| for (auto it = lowerTokens.begin(); it != lowerTokens.end(); ++it) |
| std::transform(it->begin(), it->end(), it->begin(), ::tolower); |
| |
| // Handle pack_matrix |
| if (tokens.size() == 4 && lowerTokens[0] == "pack_matrix" && tokens[1] == "(" && tokens[3] == ")") { |
| // Note that HLSL semantic order is Mrc, not Mcr like SPIR-V, so we reverse the sense. |
| // Row major becomes column major and vice versa. |
| |
| if (lowerTokens[2] == "row_major") { |
| globalUniformDefaults.layoutMatrix = globalBufferDefaults.layoutMatrix = ElmColumnMajor; |
| } else if (lowerTokens[2] == "column_major") { |
| globalUniformDefaults.layoutMatrix = globalBufferDefaults.layoutMatrix = ElmRowMajor; |
| } else { |
| // unknown majorness strings are treated as (HLSL column major)==(SPIR-V row major) |
| warn(loc, "unknown pack_matrix pragma value", tokens[2].c_str(), ""); |
| globalUniformDefaults.layoutMatrix = globalBufferDefaults.layoutMatrix = ElmRowMajor; |
| } |
| return; |
| } |
| |
| // Handle once |
| if (lowerTokens[0] == "once") { |
| warn(loc, "not implemented", "#pragma once", ""); |
| return; |
| } |
| } |
| |
| // |
| // Look at a '.' matrix selector string and change it into components |
| // for a matrix. There are two types: |
| // |
| // _21 second row, first column (one based) |
| // _m21 third row, second column (zero based) |
| // |
| // Returns true if there is no error. |
| // |
| bool HlslParseContext::parseMatrixSwizzleSelector(const TSourceLoc& loc, const TString& fields, int cols, int rows, |
| TSwizzleSelectors<TMatrixSelector>& components) |
| { |
| int startPos[MaxSwizzleSelectors]; |
| int numComps = 0; |
| TString compString = fields; |
| |
| // Find where each component starts, |
| // recording the first character position after the '_'. |
| for (size_t c = 0; c < compString.size(); ++c) { |
| if (compString[c] == '_') { |
| if (numComps >= MaxSwizzleSelectors) { |
| error(loc, "matrix component swizzle has too many components", compString.c_str(), ""); |
| return false; |
| } |
| if (c > compString.size() - 3 || |
| ((compString[c+1] == 'm' || compString[c+1] == 'M') && c > compString.size() - 4)) { |
| error(loc, "matrix component swizzle missing", compString.c_str(), ""); |
| return false; |
| } |
| startPos[numComps++] = (int)c + 1; |
| } |
| } |
| |
| // Process each component |
| for (int i = 0; i < numComps; ++i) { |
| int pos = startPos[i]; |
| int bias = -1; |
| if (compString[pos] == 'm' || compString[pos] == 'M') { |
| bias = 0; |
| ++pos; |
| } |
| TMatrixSelector comp; |
| comp.coord1 = compString[pos+0] - '0' + bias; |
| comp.coord2 = compString[pos+1] - '0' + bias; |
| if (comp.coord1 < 0 || comp.coord1 >= cols) { |
| error(loc, "matrix row component out of range", compString.c_str(), ""); |
| return false; |
| } |
| if (comp.coord2 < 0 || comp.coord2 >= rows) { |
| error(loc, "matrix column component out of range", compString.c_str(), ""); |
| return false; |
| } |
| components.push_back(comp); |
| } |
| |
| return true; |
| } |
| |
| // If the 'comps' express a column of a matrix, |
| // return the column. Column means the first coords all match. |
| // |
| // Otherwise, return -1. |
| // |
| int HlslParseContext::getMatrixComponentsColumn(int rows, const TSwizzleSelectors<TMatrixSelector>& selector) |
| { |
| int col = -1; |
| |
| // right number of comps? |
| if (selector.size() != rows) |
| return -1; |
| |
| // all comps in the same column? |
| // rows in order? |
| col = selector[0].coord1; |
| for (int i = 0; i < rows; ++i) { |
| if (col != selector[i].coord1) |
| return -1; |
| if (i != selector[i].coord2) |
| return -1; |
| } |
| |
| return col; |
| } |
| |
| // |
| // Handle seeing a variable identifier in the grammar. |
| // |
| TIntermTyped* HlslParseContext::handleVariable(const TSourceLoc& loc, const TString* string) |
| { |
| int thisDepth; |
| TSymbol* symbol = symbolTable.find(*string, thisDepth); |
| if (symbol && symbol->getAsVariable() && symbol->getAsVariable()->isUserType()) { |
| error(loc, "expected symbol, not user-defined type", string->c_str(), ""); |
| return nullptr; |
| } |
| |
| const TVariable* variable = nullptr; |
| const TAnonMember* anon = symbol ? symbol->getAsAnonMember() : nullptr; |
| TIntermTyped* node = nullptr; |
| if (anon) { |
| // It was a member of an anonymous container, which could be a 'this' structure. |
| |
| // Create a subtree for its dereference. |
| if (thisDepth > 0) { |
| variable = getImplicitThis(thisDepth); |
| if (variable == nullptr) |
| error(loc, "cannot access member variables (static member function?)", "this", ""); |
| } |
| if (variable == nullptr) |
| variable = anon->getAnonContainer().getAsVariable(); |
| |
| TIntermTyped* container = intermediate.addSymbol(*variable, loc); |
| TIntermTyped* constNode = intermediate.addConstantUnion(anon->getMemberNumber(), loc); |
| node = intermediate.addIndex(EOpIndexDirectStruct, container, constNode, loc); |
| |
| node->setType(*(*variable->getType().getStruct())[anon->getMemberNumber()].type); |
| if (node->getType().hiddenMember()) |
| error(loc, "member of nameless block was not redeclared", string->c_str(), ""); |
| } else { |
| // Not a member of an anonymous container. |
| |
| // The symbol table search was done in the lexical phase. |
| // See if it was a variable. |
| variable = symbol ? symbol->getAsVariable() : nullptr; |
| if (variable) { |
| if ((variable->getType().getBasicType() == EbtBlock || |
| variable->getType().getBasicType() == EbtStruct) && variable->getType().getStruct() == nullptr) { |
| error(loc, "cannot be used (maybe an instance name is needed)", string->c_str(), ""); |
| variable = nullptr; |
| } |
| } else { |
| if (symbol) |
| error(loc, "variable name expected", string->c_str(), ""); |
| } |
| |
| // Recovery, if it wasn't found or was not a variable. |
| if (variable == nullptr) { |
| error(loc, "unknown variable", string->c_str(), ""); |
| variable = new TVariable(string, TType(EbtVoid)); |
| } |
| |
| if (variable->getType().getQualifier().isFrontEndConstant()) |
| node = intermediate.addConstantUnion(variable->getConstArray(), variable->getType(), loc); |
| else |
| node = intermediate.addSymbol(*variable, loc); |
| } |
| |
| if (variable->getType().getQualifier().isIo()) |
| intermediate.addIoAccessed(*string); |
| |
| return node; |
| } |
| |
| // |
| // Handle operator[] on any objects it applies to. Currently: |
| // Textures |
| // Buffers |
| // |
| TIntermTyped* HlslParseContext::handleBracketOperator(const TSourceLoc& loc, TIntermTyped* base, TIntermTyped* index) |
| { |
| // handle r-value operator[] on textures and images. l-values will be processed later. |
| if (base->getType().getBasicType() == EbtSampler && !base->isArray()) { |
| const TSampler& sampler = base->getType().getSampler(); |
| if (sampler.isImage() || sampler.isTexture()) { |
| if (! mipsOperatorMipArg.empty() && mipsOperatorMipArg.back().mipLevel == nullptr) { |
| // The first operator[] to a .mips[] sequence is the mip level. We'll remember it. |
| mipsOperatorMipArg.back().mipLevel = index; |
| return base; // next [] index is to the same base. |
| } else { |
| TIntermAggregate* load = new TIntermAggregate(sampler.isImage() ? EOpImageLoad : EOpTextureFetch); |
| |
| TType sampReturnType; |
| getTextureReturnType(sampler, sampReturnType); |
| |
| load->setType(sampReturnType); |
| load->setLoc(loc); |
| load->getSequence().push_back(base); |
| load->getSequence().push_back(index); |
| |
| // Textures need a MIP. If we saw one go by, use it. Otherwise, use zero. |
| if (sampler.isTexture()) { |
| if (! mipsOperatorMipArg.empty()) { |
| load->getSequence().push_back(mipsOperatorMipArg.back().mipLevel); |
| mipsOperatorMipArg.pop_back(); |
| } else { |
| load->getSequence().push_back(intermediate.addConstantUnion(0, loc, true)); |
| } |
| } |
| |
| return load; |
| } |
| } |
| } |
| |
| // Handle operator[] on structured buffers: this indexes into the array element of the buffer. |
| // indexStructBufferContent returns nullptr if it isn't a structuredbuffer (SSBO). |
| TIntermTyped* sbArray = indexStructBufferContent(loc, base); |
| if (sbArray != nullptr) { |
| if (sbArray == nullptr) |
| return nullptr; |
| |
| // Now we'll apply the [] index to that array |
| const TOperator idxOp = (index->getQualifier().storage == EvqConst) ? EOpIndexDirect : EOpIndexIndirect; |
| |
| TIntermTyped* element = intermediate.addIndex(idxOp, sbArray, index, loc); |
| const TType derefType(sbArray->getType(), 0); |
| element->setType(derefType); |
| return element; |
| } |
| |
| return nullptr; |
| } |
| |
| // |
| // Cast index value to a uint if it isn't already (for operator[], load indexes, etc) |
| TIntermTyped* HlslParseContext::makeIntegerIndex(TIntermTyped* index) |
| { |
| const TBasicType indexBasicType = index->getType().getBasicType(); |
| const int vecSize = index->getType().getVectorSize(); |
| |
| // We can use int types directly as the index |
| if (indexBasicType == EbtInt || indexBasicType == EbtUint || |
| indexBasicType == EbtInt64 || indexBasicType == EbtUint64) |
| return index; |
| |
| // Cast index to unsigned integer if it isn't one. |
| return intermediate.addConversion(EOpConstructUint, TType(EbtUint, EvqTemporary, vecSize), index); |
| } |
| |
| // |
| // Handle seeing a base[index] dereference in the grammar. |
| // |
| TIntermTyped* HlslParseContext::handleBracketDereference(const TSourceLoc& loc, TIntermTyped* base, TIntermTyped* index) |
| { |
| index = makeIntegerIndex(index); |
| |
| if (index == nullptr) { |
| error(loc, " unknown index type ", "", ""); |
| return nullptr; |
| } |
| |
| TIntermTyped* result = handleBracketOperator(loc, base, index); |
| |
| if (result != nullptr) |
| return result; // it was handled as an operator[] |
| |
| bool flattened = false; |
| int indexValue = 0; |
| if (index->getQualifier().isFrontEndConstant()) |
| indexValue = index->getAsConstantUnion()->getConstArray()[0].getIConst(); |
| |
| variableCheck(base); |
| if (! base->isArray() && ! base->isMatrix() && ! base->isVector()) { |
| if (base->getAsSymbolNode()) |
| error(loc, " left of '[' is not of type array, matrix, or vector ", |
| base->getAsSymbolNode()->getName().c_str(), ""); |
| else |
| error(loc, " left of '[' is not of type array, matrix, or vector ", "expression", ""); |
| } else if (base->getType().getQualifier().isFrontEndConstant() && |
| index->getQualifier().isFrontEndConstant()) { |
| // both base and index are front-end constants |
| checkIndex(loc, base->getType(), indexValue); |
| return intermediate.foldDereference(base, indexValue, loc); |
| } else { |
| // at least one of base and index is variable... |
| |
| if (index->getQualifier().isFrontEndConstant()) |
| checkIndex(loc, base->getType(), indexValue); |
| |
| if (base->getType().isScalarOrVec1()) |
| result = base; |
| else if (base->getAsSymbolNode() && wasFlattened(base)) { |
| if (index->getQualifier().storage != EvqConst) |
| error(loc, "Invalid variable index to flattened array", base->getAsSymbolNode()->getName().c_str(), ""); |
| |
| result = flattenAccess(base, indexValue); |
| flattened = (result != base); |
| } else { |
| if (index->getQualifier().isFrontEndConstant()) { |
| if (base->getType().isUnsizedArray()) |
| base->getWritableType().updateImplicitArraySize(indexValue + 1); |
| else |
| checkIndex(loc, base->getType(), indexValue); |
| result = intermediate.addIndex(EOpIndexDirect, base, index, loc); |
| } else |
| result = intermediate.addIndex(EOpIndexIndirect, base, index, loc); |
| } |
| } |
| |
| if (result == nullptr) { |
| // Insert dummy error-recovery result |
| result = intermediate.addConstantUnion(0.0, EbtFloat, loc); |
| } else { |
| // If the array reference was flattened, it has the correct type. E.g, if it was |
| // a uniform array, it was flattened INTO a set of scalar uniforms, not scalar temps. |
| // In that case, we preserve the qualifiers. |
| if (!flattened) { |
| // Insert valid dereferenced result |
| TType newType(base->getType(), 0); // dereferenced type |
| if (base->getType().getQualifier().storage == EvqConst && index->getQualifier().storage == EvqConst) |
| newType.getQualifier().storage = EvqConst; |
| else |
| newType.getQualifier().storage = EvqTemporary; |
| result->setType(newType); |
| } |
| } |
| |
| return result; |
| } |
| |
| // Handle seeing a binary node with a math operation. |
| TIntermTyped* HlslParseContext::handleBinaryMath(const TSourceLoc& loc, const char* str, TOperator op, |
| TIntermTyped* left, TIntermTyped* right) |
| { |
| TIntermTyped* result = intermediate.addBinaryMath(op, left, right, loc); |
| if (result == nullptr) |
| binaryOpError(loc, str, left->getCompleteString(), right->getCompleteString()); |
| |
| return result; |
| } |
| |
| // Handle seeing a unary node with a math operation. |
| TIntermTyped* HlslParseContext::handleUnaryMath(const TSourceLoc& loc, const char* str, TOperator op, |
| TIntermTyped* childNode) |
| { |
| TIntermTyped* result = intermediate.addUnaryMath(op, childNode, loc); |
| |
| if (result) |
| return result; |
| else |
| unaryOpError(loc, str, childNode->getCompleteString()); |
| |
| return childNode; |
| } |
| // |
| // Return true if the name is a struct buffer method |
| // |
| bool HlslParseContext::isStructBufferMethod(const TString& name) const |
| { |
| return |
| name == "GetDimensions" || |
| name == "Load" || |
| name == "Load2" || |
| name == "Load3" || |
| name == "Load4" || |
| name == "Store" || |
| name == "Store2" || |
| name == "Store3" || |
| name == "Store4" || |
| name == "InterlockedAdd" || |
| name == "InterlockedAnd" || |
| name == "InterlockedCompareExchange" || |
| name == "InterlockedCompareStore" || |
| name == "InterlockedExchange" || |
| name == "InterlockedMax" || |
| name == "InterlockedMin" || |
| name == "InterlockedOr" || |
| name == "InterlockedXor" || |
| name == "IncrementCounter" || |
| name == "DecrementCounter" || |
| name == "Append" || |
| name == "Consume"; |
| } |
| |
| // |
| // Handle seeing a base.field dereference in the grammar, where 'field' is a |
| // swizzle or member variable. |
| // |
| TIntermTyped* HlslParseContext::handleDotDereference(const TSourceLoc& loc, TIntermTyped* base, const TString& field) |
| { |
| variableCheck(base); |
| |
| if (base->isArray()) { |
| error(loc, "cannot apply to an array:", ".", field.c_str()); |
| return base; |
| } |
| |
| TIntermTyped* result = base; |
| |
| if (base->getType().getBasicType() == EbtSampler) { |
| // Handle .mips[mipid][pos] operation on textures |
| const TSampler& sampler = base->getType().getSampler(); |
| if (sampler.isTexture() && field == "mips") { |
| // Push a null to signify that we expect a mip level under operator[] next. |
| mipsOperatorMipArg.push_back(tMipsOperatorData(loc, nullptr)); |
| // Keep 'result' pointing to 'base', since we expect an operator[] to go by next. |
| } else { |
| if (field == "mips") |
| error(loc, "unexpected texture type for .mips[][] operator:", |
| base->getType().getCompleteString().c_str(), ""); |
| else |
| error(loc, "unexpected operator on texture type:", field.c_str(), |
| base->getType().getCompleteString().c_str()); |
| } |
| } else if (base->isVector() || base->isScalar()) { |
| TSwizzleSelectors<TVectorSelector> selectors; |
| parseSwizzleSelector(loc, field, base->getVectorSize(), selectors); |
| |
| if (base->isScalar()) { |
| if (selectors.size() == 1) |
| return result; |
| else { |
| TType type(base->getBasicType(), EvqTemporary, selectors.size()); |
| return addConstructor(loc, base, type); |
| } |
| } |
| if (base->getVectorSize() == 1) { |
| TType scalarType(base->getBasicType(), EvqTemporary, 1); |
| if (selectors.size() == 1) |
| return addConstructor(loc, base, scalarType); |
| else { |
| TType vectorType(base->getBasicType(), EvqTemporary, selectors.size()); |
| return addConstructor(loc, addConstructor(loc, base, scalarType), vectorType); |
| } |
| } |
| |
| if (base->getType().getQualifier().isFrontEndConstant()) |
| result = intermediate.foldSwizzle(base, selectors, loc); |
| else { |
| if (selectors.size() == 1) { |
| TIntermTyped* index = intermediate.addConstantUnion(selectors[0], loc); |
| result = intermediate.addIndex(EOpIndexDirect, base, index, loc); |
| result->setType(TType(base->getBasicType(), EvqTemporary)); |
| } else { |
| TIntermTyped* index = intermediate.addSwizzle(selectors, loc); |
| result = intermediate.addIndex(EOpVectorSwizzle, base, index, loc); |
| result->setType(TType(base->getBasicType(), EvqTemporary, base->getType().getQualifier().precision, |
| selectors.size())); |
| } |
| } |
| } else if (base->isMatrix()) { |
| TSwizzleSelectors<TMatrixSelector> selectors; |
| if (! parseMatrixSwizzleSelector(loc, field, base->getMatrixCols(), base->getMatrixRows(), selectors)) |
| return result; |
| |
| if (selectors.size() == 1) { |
| // Representable by m[c][r] |
| if (base->getType().getQualifier().isFrontEndConstant()) { |
| result = intermediate.foldDereference(base, selectors[0].coord1, loc); |
| result = intermediate.foldDereference(result, selectors[0].coord2, loc); |
| } else { |
| result = intermediate.addIndex(EOpIndexDirect, base, |
| intermediate.addConstantUnion(selectors[0].coord1, loc), |
| loc); |
| TType dereferencedCol(base->getType(), 0); |
| result->setType(dereferencedCol); |
| result = intermediate.addIndex(EOpIndexDirect, result, |
| intermediate.addConstantUnion(selectors[0].coord2, loc), |
| loc); |
| TType dereferenced(dereferencedCol, 0); |
| result->setType(dereferenced); |
| } |
| } else { |
| int column = getMatrixComponentsColumn(base->getMatrixRows(), selectors); |
| if (column >= 0) { |
| // Representable by m[c] |
| if (base->getType().getQualifier().isFrontEndConstant()) |
| result = intermediate.foldDereference(base, column, loc); |
| else { |
| result = intermediate.addIndex(EOpIndexDirect, base, intermediate.addConstantUnion(column, loc), |
| loc); |
| TType dereferenced(base->getType(), 0); |
| result->setType(dereferenced); |
| } |
| } else { |
| // general case, not a column, not a single component |
| TIntermTyped* index = intermediate.addSwizzle(selectors, loc); |
| result = intermediate.addIndex(EOpMatrixSwizzle, base, index, loc); |
| result->setType(TType(base->getBasicType(), EvqTemporary, base->getType().getQualifier().precision, |
| selectors.size())); |
| } |
| } |
| } else if (base->getBasicType() == EbtStruct || base->getBasicType() == EbtBlock) { |
| const TTypeList* fields = base->getType().getStruct(); |
| bool fieldFound = false; |
| int member; |
| for (member = 0; member < (int)fields->size(); ++member) { |
| if ((*fields)[member].type->getFieldName() == field) { |
| fieldFound = true; |
| break; |
| } |
| } |
| if (fieldFound) { |
| if (base->getAsSymbolNode() && wasFlattened(base)) { |
| result = flattenAccess(base, member); |
| } else { |
| if (base->getType().getQualifier().storage == EvqConst) |
| result = intermediate.foldDereference(base, member, loc); |
| else { |
| TIntermTyped* index = intermediate.addConstantUnion(member, loc); |
| result = intermediate.addIndex(EOpIndexDirectStruct, base, index, loc); |
| result->setType(*(*fields)[member].type); |
| } |
| } |
| } else |
| error(loc, "no such field in structure", field.c_str(), ""); |
| } else |
| error(loc, "does not apply to this type:", field.c_str(), base->getType().getCompleteString().c_str()); |
| |
| return result; |
| } |
| |
| // |
| // Return true if the field should be treated as a built-in method. |
| // Return false otherwise. |
| // |
| bool HlslParseContext::isBuiltInMethod(const TSourceLoc&, TIntermTyped* base, const TString& field) |
| { |
| if (base == nullptr) |
| return false; |
| |
| variableCheck(base); |
| |
| if (base->getType().getBasicType() == EbtSampler) { |
| return true; |
| } else if (isStructBufferType(base->getType()) && isStructBufferMethod(field)) { |
| return true; |
| } else if (field == "Append" || |
| field == "RestartStrip") { |
| // We cannot check the type here: it may be sanitized if we're not compiling a geometry shader, but |
| // the code is around in the shader source. |
| return true; |
| } else |
| return false; |
| } |
| |
| // Independently establish a built-in that is a member of a structure. |
| // 'arraySizes' are what's desired for the independent built-in, whatever |
| // the higher-level source/expression of them was. |
| void HlslParseContext::splitBuiltIn(const TString& baseName, const TType& memberType, const TArraySizes* arraySizes, |
| const TQualifier& outerQualifier) |
| { |
| // Because of arrays of structs, we might be asked more than once, |
| // but the arraySizes passed in should have captured the whole thing |
| // the first time. |
| // However, clip/cull rely on multiple updates. |
| if (!isClipOrCullDistance(memberType)) |
| if (splitBuiltIns.find(tInterstageIoData(memberType.getQualifier().builtIn, outerQualifier.storage)) != |
| splitBuiltIns.end()) |
| return; |
| |
| TVariable* ioVar = makeInternalVariable(baseName + "." + memberType.getFieldName(), memberType); |
| |
| if (arraySizes != nullptr && !memberType.isArray()) |
| ioVar->getWritableType().copyArraySizes(*arraySizes); |
| |
| splitBuiltIns[tInterstageIoData(memberType.getQualifier().builtIn, outerQualifier.storage)] = ioVar; |
| if (!isClipOrCullDistance(ioVar->getType())) |
| trackLinkage(*ioVar); |
| |
| // Merge qualifier from the user structure |
| mergeQualifiers(ioVar->getWritableType().getQualifier(), outerQualifier); |
| |
| // Fix the builtin type if needed (e.g, some types require fixed array sizes, no matter how the |
| // shader declared them). This is done after mergeQualifiers(), in case fixBuiltInIoType looks |
| // at the qualifier to determine e.g, in or out qualifications. |
| fixBuiltInIoType(ioVar->getWritableType()); |
| |
| // But, not location, we're losing that |
| ioVar->getWritableType().getQualifier().layoutLocation = TQualifier::layoutLocationEnd; |
| } |
| |
| // Split a type into |
| // 1. a struct of non-I/O members |
| // 2. a collection of independent I/O variables |
| void HlslParseContext::split(const TVariable& variable) |
| { |
| // Create a new variable: |
| const TType& clonedType = *variable.getType().clone(); |
| const TType& splitType = split(clonedType, variable.getName(), clonedType.getQualifier()); |
| splitNonIoVars[variable.getUniqueId()] = makeInternalVariable(variable.getName(), splitType); |
| } |
| |
| // Recursive implementation of split(). |
| // Returns reference to the modified type. |
| const TType& HlslParseContext::split(const TType& type, const TString& name, const TQualifier& outerQualifier) |
| { |
| if (type.isStruct()) { |
| TTypeList* userStructure = type.getWritableStruct(); |
| for (auto ioType = userStructure->begin(); ioType != userStructure->end(); ) { |
| if (ioType->type->isBuiltIn()) { |
| // move out the built-in |
| splitBuiltIn(name, *ioType->type, type.getArraySizes(), outerQualifier); |
| ioType = userStructure->erase(ioType); |
| } else { |
| split(*ioType->type, name + "." + ioType->type->getFieldName(), outerQualifier); |
| ++ioType; |
| } |
| } |
| } |
| |
| return type; |
| } |
| |
| // Is this an aggregate that should be flattened? |
| // Can be applied to intermediate levels of type in a hierarchy. |
| // Some things like flattening uniform arrays are only about the top level |
| // of the aggregate, triggered on 'topLevel'. |
| bool HlslParseContext::shouldFlatten(const TType& type, TStorageQualifier qualifier, bool topLevel) const |
| { |
| switch (qualifier) { |
| case EvqVaryingIn: |
| case EvqVaryingOut: |
| return type.isStruct() || type.isArray(); |
| case EvqUniform: |
| return (type.isArray() && intermediate.getFlattenUniformArrays() && topLevel) || |
| (type.isStruct() && type.containsOpaque()); |
| default: |
| return false; |
| }; |
| } |
| |
| // Top level variable flattening: construct data |
| void HlslParseContext::flatten(const TVariable& variable, bool linkage) |
| { |
| const TType& type = variable.getType(); |
| |
| // If it's a standalone built-in, there is nothing to flatten |
| if (type.isBuiltIn() && !type.isStruct()) |
| return; |
| |
| auto entry = flattenMap.insert(std::make_pair(variable.getUniqueId(), |
| TFlattenData(type.getQualifier().layoutBinding, |
| type.getQualifier().layoutLocation))); |
| |
| // the item is a map pair, so first->second is the TFlattenData itself. |
| flatten(variable, type, entry.first->second, variable.getName(), linkage, type.getQualifier(), nullptr); |
| } |
| |
| // Recursively flatten the given variable at the provided type, building the flattenData as we go. |
| // |
| // This is mutually recursive with flattenStruct and flattenArray. |
| // We are going to flatten an arbitrarily nested composite structure into a linear sequence of |
| // members, and later on, we want to turn a path through the tree structure into a final |
| // location in this linear sequence. |
| // |
| // If the tree was N-ary, that can be directly calculated. However, we are dealing with |
| // arbitrary numbers - perhaps a struct of 7 members containing an array of 3. Thus, we must |
| // build a data structure to allow the sequence of bracket and dot operators on arrays and |
| // structs to arrive at the proper member. |
| // |
| // To avoid storing a tree with pointers, we are going to flatten the tree into a vector of integers. |
| // The leaves are the indexes into the flattened member array. |
| // Each level will have the next location for the Nth item stored sequentially, so for instance: |
| // |
| // struct { float2 a[2]; int b; float4 c[3] }; |
| // |
| // This will produce the following flattened tree: |
| // Pos: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 |
| // (3, 7, 8, 5, 6, 0, 1, 2, 11, 12, 13, 3, 4, 5} |
| // |
| // Given a reference to mystruct.c[1], the access chain is (2,1), so we traverse: |
| // (0+2) = 8 --> (8+1) = 12 --> 12 = 4 |
| // |
| // so the 4th flattened member in traversal order is ours. |
| // |
| int HlslParseContext::flatten(const TVariable& variable, const TType& type, |
| TFlattenData& flattenData, TString name, bool linkage, |
| const TQualifier& outerQualifier, |
| const TArraySizes* builtInArraySizes) |
| { |
| // If something is an arrayed struct, the array flattener will recursively call flatten() |
| // to then flatten the struct, so this is an "if else": we don't do both. |
| if (type.isArray()) |
| return flattenArray(variable, type, flattenData, name, linkage, outerQualifier); |
| else if (type.isStruct()) |
| return flattenStruct(variable, type, flattenData, name, linkage, outerQualifier, builtInArraySizes); |
| else { |
| assert(0); // should never happen |
| return -1; |
| } |
| } |
| |
| // Add a single flattened member to the flattened data being tracked for the composite |
| // Returns true for the final flattening level. |
| int HlslParseContext::addFlattenedMember(const TVariable& variable, const TType& type, TFlattenData& flattenData, |
| const TString& memberName, bool linkage, |
| const TQualifier& outerQualifier, |
| const TArraySizes* builtInArraySizes) |
| { |
| if (!shouldFlatten(type, outerQualifier.storage, false)) { |
| // This is as far as we flatten. Insert the variable. |
| TVariable* memberVariable = makeInternalVariable(memberName, type); |
| mergeQualifiers(memberVariable->getWritableType().getQualifier(), variable.getType().getQualifier()); |
| |
| if (flattenData.nextBinding != TQualifier::layoutBindingEnd) |
| memberVariable->getWritableType().getQualifier().layoutBinding = flattenData.nextBinding++; |
| |
| if (memberVariable->getType().isBuiltIn()) { |
| // inherited locations are nonsensical for built-ins (TODO: what if semantic had a number) |
| memberVariable->getWritableType().getQualifier().layoutLocation = TQualifier::layoutLocationEnd; |
| } else { |
| // inherited locations must be auto bumped, not replicated |
| if (flattenData.nextLocation != TQualifier::layoutLocationEnd) { |
| memberVariable->getWritableType().getQualifier().layoutLocation = flattenData.nextLocation; |
| flattenData.nextLocation += intermediate.computeTypeLocationSize(memberVariable->getType(), language); |
| nextOutLocation = std::max(nextOutLocation, flattenData.nextLocation); |
| } |
| } |
| |
| flattenData.offsets.push_back(static_cast<int>(flattenData.members.size())); |
| flattenData.members.push_back(memberVariable); |
| |
| if (linkage) |
| trackLinkage(*memberVariable); |
| |
| return static_cast<int>(flattenData.offsets.size()) - 1; // location of the member reference |
| } else { |
| // Further recursion required |
| return flatten(variable, type, flattenData, memberName, linkage, outerQualifier, builtInArraySizes); |
| } |
| } |
| |
| // Figure out the mapping between an aggregate's top members and an |
| // equivalent set of individual variables. |
| // |
| // Assumes shouldFlatten() or equivalent was called first. |
| int HlslParseContext::flattenStruct(const TVariable& variable, const TType& type, |
| TFlattenData& flattenData, TString name, bool linkage, |
| const TQualifier& outerQualifier, |
| const TArraySizes* builtInArraySizes) |
| { |
| assert(type.isStruct()); |
| |
| auto members = *type.getStruct(); |
| |
| // Reserve space for this tree level. |
| int start = static_cast<int>(flattenData.offsets.size()); |
| int pos = start; |
| flattenData.offsets.resize(int(pos + members.size()), -1); |
| |
| for (int member = 0; member < (int)members.size(); ++member) { |
| TType& dereferencedType = *members[member].type; |
| if (dereferencedType.isBuiltIn()) |
| splitBuiltIn(variable.getName(), dereferencedType, builtInArraySizes, outerQualifier); |
| else { |
| const int mpos = addFlattenedMember(variable, dereferencedType, flattenData, |
| name + "." + dereferencedType.getFieldName(), |
| linkage, outerQualifier, |
| builtInArraySizes == nullptr && dereferencedType.isArray() |
| ? dereferencedType.getArraySizes() |
| : builtInArraySizes); |
| flattenData.offsets[pos++] = mpos; |
| } |
| } |
| |
| return start; |
| } |
| |
| // Figure out mapping between an array's members and an |
| // equivalent set of individual variables. |
| // |
| // Assumes shouldFlatten() or equivalent was called first. |
| int HlslParseContext::flattenArray(const TVariable& variable, const TType& type, |
| TFlattenData& flattenData, TString name, bool linkage, |
| const TQualifier& outerQualifier) |
| { |
| assert(type.isSizedArray()); |
| |
| const int size = type.getOuterArraySize(); |
| const TType dereferencedType(type, 0); |
| |
| if (name.empty()) |
| name = variable.getName(); |
| |
| // Reserve space for this tree level. |
| int start = static_cast<int>(flattenData.offsets.size()); |
| int pos = start; |
| flattenData.offsets.resize(int(pos + size), -1); |
| |
| for (int element=0; element < size; ++element) { |
| char elementNumBuf[20]; // sufficient for MAXINT |
| snprintf(elementNumBuf, sizeof(elementNumBuf)-1, "[%d]", element); |
| const int mpos = addFlattenedMember(variable, dereferencedType, flattenData, |
| name + elementNumBuf, linkage, outerQualifier, |
| type.getArraySizes()); |
| |
| flattenData.offsets[pos++] = mpos; |
| } |
| |
| return start; |
| } |
| |
| // Return true if we have flattened this node. |
| bool HlslParseContext::wasFlattened(const TIntermTyped* node) const |
| { |
| return node != nullptr && node->getAsSymbolNode() != nullptr && |
| wasFlattened(node->getAsSymbolNode()->getId()); |
| } |
| |
| // Return true if we have split this structure |
| bool HlslParseContext::wasSplit(const TIntermTyped* node) const |
| { |
| return node != nullptr && node->getAsSymbolNode() != nullptr && |
| wasSplit(node->getAsSymbolNode()->getId()); |
| } |
| |
| // Turn an access into an aggregate that was flattened to instead be |
| // an access to the individual variable the member was flattened to. |
| // Assumes wasFlattened() or equivalent was called first. |
| TIntermTyped* HlslParseContext::flattenAccess(TIntermTyped* base, int member) |
| { |
| const TType dereferencedType(base->getType(), member); // dereferenced type |
| const TIntermSymbol& symbolNode = *base->getAsSymbolNode(); |
| TIntermTyped* flattened = flattenAccess(symbolNode.getId(), member, base->getQualifier().storage, |
| dereferencedType, symbolNode.getFlattenSubset()); |
| |
| return flattened ? flattened : base; |
| } |
| TIntermTyped* HlslParseContext::flattenAccess(int uniqueId, int member, TStorageQualifier outerStorage, |
| const TType& dereferencedType, int subset) |
| { |
| const auto flattenData = flattenMap.find(uniqueId); |
| |
| if (flattenData == flattenMap.end()) |
| return nullptr; |
| |
| // Calculate new cumulative offset from the packed tree |
| int newSubset = flattenData->second.offsets[subset >= 0 ? subset + member : member]; |
| |
| TIntermSymbol* subsetSymbol; |
| if (!shouldFlatten(dereferencedType, outerStorage, false)) { |
| // Finished flattening: create symbol for variable |
| member = flattenData->second.offsets[newSubset]; |
| const TVariable* memberVariable = flattenData->second.members[member]; |
| subsetSymbol = intermediate.addSymbol(*memberVariable); |
| subsetSymbol->setFlattenSubset(-1); |
| } else { |
| |
| // If this is not the final flattening, accumulate the position and return |
| // an object of the partially dereferenced type. |
| subsetSymbol = new TIntermSymbol(uniqueId, "flattenShadow", dereferencedType); |
| subsetSymbol->setFlattenSubset(newSubset); |
| } |
| |
| return subsetSymbol; |
| } |
| |
| // For finding where the first leaf is in a subtree of a multi-level aggregate |
| // that is just getting a subset assigned. Follows the same logic as flattenAccess, |
| // but logically going down the "left-most" tree branch each step of the way. |
| // |
| // Returns the offset into the first leaf of the subset. |
| int HlslParseContext::findSubtreeOffset(const TIntermNode& node) const |
| { |
| const TIntermSymbol* sym = node.getAsSymbolNode(); |
| if (sym == nullptr) |
| return 0; |
| if (!sym->isArray() && !sym->isStruct()) |
| return 0; |
| int subset = sym->getFlattenSubset(); |
| if (subset == -1) |
| return 0; |
| |
| // Getting this far means a partial aggregate is identified by the flatten subset. |
| // Find the first leaf of the subset. |
| |
| const auto flattenData = flattenMap.find(sym->getId()); |
| if (flattenData == flattenMap.end()) |
| return 0; |
| |
| return findSubtreeOffset(sym->getType(), subset, flattenData->second.offsets); |
| |
| do { |
| subset = flattenData->second.offsets[subset]; |
| } while (true); |
| } |
| // Recursively do the desent |
| int HlslParseContext::findSubtreeOffset(const TType& type, int subset, const TVector<int>& offsets) const |
| { |
| if (!type.isArray() && !type.isStruct()) |
| return offsets[subset]; |
| TType derefType(type, 0); |
| return findSubtreeOffset(derefType, offsets[subset], offsets); |
| }; |
| |
| // Find and return the split IO TVariable for id, or nullptr if none. |
| TVariable* HlslParseContext::getSplitNonIoVar(int id) const |
| { |
| const auto splitNonIoVar = splitNonIoVars.find(id); |
| if (splitNonIoVar == splitNonIoVars.end()) |
| return nullptr; |
| |
| return splitNonIoVar->second; |
| } |
| |
| // Pass through to base class after remembering built-in mappings. |
| void HlslParseContext::trackLinkage(TSymbol& symbol) |
| { |
| TBuiltInVariable biType = symbol.getType().getQualifier().builtIn; |
| |
| if (biType != EbvNone) |
| builtInTessLinkageSymbols[biType] = symbol.clone(); |
| |
| TParseContextBase::trackLinkage(symbol); |
| } |
| |
| |
| // Returns true if the built-in is a clip or cull distance variable. |
| bool HlslParseContext::isClipOrCullDistance(TBuiltInVariable builtIn) |
| { |
| return builtIn == EbvClipDistance || builtIn == EbvCullDistance; |
| } |
| |
| // Some types require fixed array sizes in SPIR-V, but can be scalars or |
| // arrays of sizes SPIR-V doesn't allow. For example, tessellation factors. |
| // This creates the right size. A conversion is performed when the internal |
| // type is copied to or from the external type. This corrects the externally |
| // facing input or output type to abide downstream semantics. |
| void HlslParseContext::fixBuiltInIoType(TType& type) |
| { |
| int requiredArraySize = 0; |
| int requiredVectorSize = 0; |
| |
| switch (type.getQualifier().builtIn) { |
| case EbvTessLevelOuter: requiredArraySize = 4; break; |
| case EbvTessLevelInner: requiredArraySize = 2; break; |
| |
| case EbvSampleMask: |
| { |
| // Promote scalar to array of size 1. Leave existing arrays alone. |
| if (!type.isArray()) |
| requiredArraySize = 1; |
| break; |
| } |
| |
| case EbvWorkGroupId: requiredVectorSize = 3; break; |
| case EbvGlobalInvocationId: requiredVectorSize = 3; break; |
| case EbvLocalInvocationId: requiredVectorSize = 3; break; |
| case EbvTessCoord: requiredVectorSize = 3; break; |
| |
| default: |
| if (isClipOrCullDistance(type)) { |
| const int loc = type.getQualifier().layoutLocation; |
| |
| if (type.getQualifier().builtIn == EbvClipDistance) { |
| if (type.getQualifier().storage == EvqVaryingIn) |
| clipSemanticNSizeIn[loc] = type.getVectorSize(); |
| else |
| clipSemanticNSizeOut[loc] = type.getVectorSize(); |
| } else { |
| if (type.getQualifier().storage == EvqVaryingIn) |
| cullSemanticNSizeIn[loc] = type.getVectorSize(); |
| else |
| cullSemanticNSizeOut[loc] = type.getVectorSize(); |
| } |
| } |
| |
| return; |
| } |
| |
| // Alter or set vector size as needed. |
| if (requiredVectorSize > 0) { |
| TType newType(type.getBasicType(), type.getQualifier().storage, requiredVectorSize); |
| newType.getQualifier() = type.getQualifier(); |
| |
| type.shallowCopy(newType); |
| } |
| |
| // Alter or set array size as needed. |
| if (requiredArraySize > 0) { |
| if (!type.isArray() || type.getOuterArraySize() != requiredArraySize) { |
| TArraySizes* arraySizes = new TArraySizes; |
| arraySizes->addInnerSize(requiredArraySize); |
| type.transferArraySizes(arraySizes); |
| } |
| } |
| } |
| |
| // Variables that correspond to the user-interface in and out of a stage |
| // (not the built-in interface) are |
| // - assigned locations |
| // - registered as a linkage node (part of the stage's external interface). |
| // Assumes it is called in the order in which locations should be assigned. |
| void HlslParseContext::assignToInterface(TVariable& variable) |
| { |
| const auto assignLocation = [&](TVariable& variable) { |
| TType& type = variable.getWritableType(); |
| if (!type.isStruct() || type.getStruct()->size() > 0) { |
| TQualifier& qualifier = type.getQualifier(); |
| if (qualifier.storage == EvqVaryingIn || qualifier.storage == EvqVaryingOut) { |
| if (qualifier.builtIn == EbvNone && !qualifier.hasLocation()) { |
| // Strip off the outer array dimension for those having an extra one. |
| int size; |
| if (type.isArray() && qualifier.isArrayedIo(language)) { |
| TType elementType(type, 0); |
| size = intermediate.computeTypeLocationSize(elementType, language); |
| } else |
| size = intermediate.computeTypeLocationSize(type, language); |
| |
| if (qualifier.storage == EvqVaryingIn) { |
| variable.getWritableType().getQualifier().layoutLocation = nextInLocation; |
| nextInLocation += size; |
| } else { |
| variable.getWritableType().getQualifier().layoutLocation = nextOutLocation; |
| nextOutLocation += size; |
| } |
| } |
| trackLinkage(variable); |
| } |
| } |
| }; |
| |
| if (wasFlattened(variable.getUniqueId())) { |
| auto& memberList = flattenMap[variable.getUniqueId()].members; |
| for (auto member = memberList.begin(); member != memberList.end(); ++member) |
| assignLocation(**member); |
| } else if (wasSplit(variable.getUniqueId())) { |
| TVariable* splitIoVar = getSplitNonIoVar(variable.getUniqueId()); |
| assignLocation(*splitIoVar); |
| } else { |
| assignLocation(variable); |
| } |
| } |
| |
| // |
| // Handle seeing a function declarator in the grammar. This is the precursor |
| // to recognizing a function prototype or function definition. |
| // |
| void HlslParseContext::handleFunctionDeclarator(const TSourceLoc& loc, TFunction& function, bool prototype) |
| { |
| // |
| // Multiple declarations of the same function name are allowed. |
| // |
| // If this is a definition, the definition production code will check for redefinitions |
| // (we don't know at this point if it's a definition or not). |
| // |
| bool builtIn; |
| TSymbol* symbol = symbolTable.find(function.getMangledName(), &builtIn); |
| const TFunction* prevDec = symbol ? symbol->getAsFunction() : 0; |
| |
| if (prototype) { |
| // All built-in functions are defined, even though they don't have a body. |
| // Count their prototype as a definition instead. |
| if (symbolTable.atBuiltInLevel()) |
| function.setDefined(); |
| else { |
| if (prevDec && ! builtIn) |
| symbol->getAsFunction()->setPrototyped(); // need a writable one, but like having prevDec as a const |
| function.setPrototyped(); |
| } |
| } |
| |
| // This insert won't actually insert it if it's a duplicate signature, but it will still check for |
| // other forms of name collisions. |
| if (! symbolTable.insert(function)) |
| error(loc, "function name is redeclaration of existing name", function.getName().c_str(), ""); |
| } |
| |
| // For struct buffers with counters, we must pass the counter buffer as hidden parameter. |
| // This adds the hidden parameter to the parameter list in 'paramNodes' if needed. |
| // Otherwise, it's a no-op |
| void HlslParseContext::addStructBufferHiddenCounterParam(const TSourceLoc& loc, TParameter& param, |
| TIntermAggregate*& paramNodes) |
| { |
| if (! hasStructBuffCounter(*param.type)) |
| return; |
| |
| const TString counterBlockName(intermediate.addCounterBufferName(*param.name)); |
| |
| TType counterType; |
| counterBufferType(loc, counterType); |
| TVariable *variable = makeInternalVariable(counterBlockName, counterType); |
| |
| if (! symbolTable.insert(*variable)) |
| error(loc, "redefinition", variable->getName().c_str(), ""); |
| |
| paramNodes = intermediate.growAggregate(paramNodes, |
| intermediate.addSymbol(*variable, loc), |
| loc); |
| } |
| |
| // |
| // Handle seeing the function prototype in front of a function definition in the grammar. |
| // The body is handled after this function returns. |
| // |
| // Returns an aggregate of parameter-symbol nodes. |
| // |
| TIntermAggregate* HlslParseContext::handleFunctionDefinition(const TSourceLoc& loc, TFunction& function, |
| const TAttributes& attributes, |
| TIntermNode*& entryPointTree) |
| { |
| currentCaller = function.getMangledName(); |
| TSymbol* symbol = symbolTable.find(function.getMangledName()); |
| TFunction* prevDec = symbol ? symbol->getAsFunction() : nullptr; |
| |
| if (prevDec == nullptr) |
| error(loc, "can't find function", function.getName().c_str(), ""); |
| // Note: 'prevDec' could be 'function' if this is the first time we've seen function |
| // as it would have just been put in the symbol table. Otherwise, we're looking up |
| // an earlier occurrence. |
| |
| if (prevDec && prevDec->isDefined()) { |
| // Then this function already has a body. |
| error(loc, "function already has a body", function.getName().c_str(), ""); |
| } |
| if (prevDec && ! prevDec->isDefined()) { |
| prevDec->setDefined(); |
| |
| // Remember the return type for later checking for RETURN statements. |
| currentFunctionType = &(prevDec->getType()); |
| } else |
| currentFunctionType = new TType(EbtVoid); |
| functionReturnsValue = false; |
| |
| // Entry points need different I/O and other handling, transform it so the |
| // rest of this function doesn't care. |
| entryPointTree = transformEntryPoint(loc, function, attributes); |
| |
| // |
| // New symbol table scope for body of function plus its arguments |
| // |
| pushScope(); |
| |
| // |
| // Insert parameters into the symbol table. |
| // If the parameter has no name, it's not an error, just don't insert it |
| // (could be used for unused args). |
| // |
| // Also, accumulate the list of parameters into the AST, so lower level code |
| // knows where to find parameters. |
| // |
| TIntermAggregate* paramNodes = new TIntermAggregate; |
| for (int i = 0; i < function.getParamCount(); i++) { |
| TParameter& param = function[i]; |
| if (param.name != nullptr) { |
| TVariable *variable = new TVariable(param.name, *param.type); |
| |
| if (i == 0 && function.hasImplicitThis()) { |
| // Anonymous 'this' members are already in a symbol-table level, |
| // and we need to know what function parameter to map them to. |
| symbolTable.makeInternalVariable(*variable); |
| pushImplicitThis(variable); |
| } |
| |
| // Insert the parameters with name in the symbol table. |
| if (! symbolTable.insert(*variable)) |
| error(loc, "redefinition", variable->getName().c_str(), ""); |
| |
| // Add parameters to the AST list. |
| if (shouldFlatten(variable->getType(), variable->getType().getQualifier().storage, true)) { |
| // Expand the AST parameter nodes (but not the name mangling or symbol table view) |
| // for structures that need to be flattened. |
| flatten(*variable, false); |
| const TTypeList* structure = variable->getType().getStruct(); |
| for (int mem = 0; mem < (int)structure->size(); ++mem) { |
| paramNodes = intermediate.growAggregate(paramNodes, |
| flattenAccess(variable->getUniqueId(), mem, |
| variable->getType().getQualifier().storage, |
| *(*structure)[mem].type), |
| loc); |
| } |
| } else { |
| // Add the parameter to the AST |
| paramNodes = intermediate.growAggregate(paramNodes, |
| intermediate.addSymbol(*variable, loc), |
| loc); |
| } |
| |
| // Add hidden AST parameter for struct buffer counters, if needed. |
| addStructBufferHiddenCounterParam(loc, param, paramNodes); |
| } else |
| paramNodes = intermediate.growAggregate(paramNodes, intermediate.addSymbol(*param.type, loc), loc); |
| } |
| if (function.hasIllegalImplicitThis()) |
| pushImplicitThis(nullptr); |
| |
| intermediate.setAggregateOperator(paramNodes, EOpParameters, TType(EbtVoid), loc); |
| loopNestingLevel = 0; |
| controlFlowNestingLevel = 0; |
| postEntryPointReturn = false; |
| |
| return paramNodes; |
| } |
| |
| // Handle all [attrib] attribute for the shader entry point |
| void HlslParseContext::handleEntryPointAttributes(const TSourceLoc& loc, const TAttributes& attributes) |
| { |
| for (auto it = attributes.begin(); it != attributes.end(); ++it) { |
| switch (it->name) { |
| case EatNumThreads: |
| { |
| const TIntermSequence& sequence = it->args->getSequence(); |
| for (int lid = 0; lid < int(sequence.size()); ++lid) |
| intermediate.setLocalSize(lid, sequence[lid]->getAsConstantUnion()->getConstArray()[0].getIConst()); |
| break; |
| } |
| case EatMaxVertexCount: |
| { |
| int maxVertexCount; |
| |
| if (! it->getInt(maxVertexCount)) { |
| error(loc, "invalid maxvertexcount", "", ""); |
| } else { |
| if (! intermediate.setVertices(maxVertexCount)) |
| error(loc, "cannot change previously set maxvertexcount attribute", "", ""); |
| } |
| break; |
| } |
| case EatPatchConstantFunc: |
| { |
| TString pcfName; |
| if (! it->getString(pcfName, 0, false)) { |
| error(loc, "invalid patch constant function", "", ""); |
| } else { |
| patchConstantFunctionName = pcfName; |
| } |
| break; |
| } |
| case EatDomain: |
| { |
| // Handle [domain("...")] |
| TString domainStr; |
| if (! it->getString(domainStr)) { |
| error(loc, "invalid domain", "", ""); |
| } else { |
| TLayoutGeometry domain = ElgNone; |
| |
| if (domainStr == "tri") { |
| domain = ElgTriangles; |
| } else if (domainStr == "quad") { |
| domain = ElgQuads; |
| } else if (domainStr == "isoline") { |
| domain = ElgIsolines; |
| } else { |
| error(loc, "unsupported domain type", domainStr.c_str(), ""); |
| } |
| |
| if (language == EShLangTessEvaluation) { |
| if (! intermediate.setInputPrimitive(domain)) |
| error(loc, "cannot change previously set domain", TQualifier::getGeometryString(domain), ""); |
| } else { |
| if (! intermediate.setOutputPrimitive(domain)) |
| error(loc, "cannot change previously set domain", TQualifier::getGeometryString(domain), ""); |
| } |
| } |
| break; |
| } |
| case EatOutputTopology: |
| { |
| // Handle [outputtopology("...")] |
| TString topologyStr; |
| if (! it->getString(topologyStr)) { |
| error(loc, "invalid outputtopology", "", ""); |
| } else { |
| TVertexOrder vertexOrder = EvoNone; |
| TLayoutGeometry primitive = ElgNone; |
| |
| if (topologyStr == "point") { |
| intermediate.setPointMode(); |
| } else if (topologyStr == "line") { |
| primitive = ElgIsolines; |
| } else if (topologyStr == "triangle_cw") { |
| vertexOrder = EvoCw; |
| primitive = ElgTriangles; |
| } else if (topologyStr == "triangle_ccw") { |
| vertexOrder = EvoCcw; |
| primitive = ElgTriangles; |
| } else { |
| error(loc, "unsupported outputtopology type", topologyStr.c_str(), ""); |
| } |
| |
| if (vertexOrder != EvoNone) { |
| if (! intermediate.setVertexOrder(vertexOrder)) { |
| error(loc, "cannot change previously set outputtopology", |
| TQualifier::getVertexOrderString(vertexOrder), ""); |
| } |
| } |
| if (primitive != ElgNone) |
| intermediate.setOutputPrimitive(primitive); |
| } |
| break; |
| } |
| case EatPartitioning: |
| { |
| // Handle [partitioning("...")] |
| TString partitionStr; |
| if (! it->getString(partitionStr)) { |
| error(loc, "invalid partitioning", "", ""); |
| } else { |
| TVertexSpacing partitioning = EvsNone; |
| |
| if (partitionStr == "integer") { |
| partitioning = EvsEqual; |
| } else if (partitionStr == "fractional_even") { |
| partitioning = EvsFractionalEven; |
| } else if (partitionStr == "fractional_odd") { |
| partitioning = EvsFractionalOdd; |
| //} else if (partition == "pow2") { // TODO: currently nothing to map this to. |
| } else { |
| error(loc, "unsupported partitioning type", partitionStr.c_str(), ""); |
| } |
| |
| if (! intermediate.setVertexSpacing(partitioning)) |
| error(loc, "cannot change previously set partitioning", |
| TQualifier::getVertexSpacingString(partitioning), ""); |
| } |
| break; |
| } |
| case EatOutputControlPoints: |
| { |
| // Handle [outputcontrolpoints("...")] |
| int ctrlPoints; |
| if (! it->getInt(ctrlPoints)) { |
| error(loc, "invalid outputcontrolpoints", "", ""); |
| } else { |
| if (! intermediate.setVertices(ctrlPoints)) { |
| error(loc, "cannot change previously set outputcontrolpoints attribute", "", ""); |
| } |
| } |
| break; |
| } |
| case EatEarlyDepthStencil: |
| intermediate.setEarlyFragmentTests(); |
| break; |
| case EatBuiltIn: |
| case EatLocation: |
| // tolerate these because of dual use of entrypoint and type attributes |
| break; |
| default: |
| warn(loc, "attribute does not apply to entry point", "", ""); |
| break; |
| } |
| } |
| } |
| |
| // Update the given type with any type-like attribute information in the |
| // attributes. |
| void HlslParseContext::transferTypeAttributes(const TSourceLoc& loc, const TAttributes& attributes, TType& type, |
| bool allowEntry) |
| { |
| if (attributes.size() == 0) |
| return; |
| |
| int value; |
| TString builtInString; |
| for (auto it = attributes.begin(); it != attributes.end(); ++it) { |
| switch (it->name) { |
| case EatLocation: |
| // location |
| if (it->getInt(value)) |
| type.getQualifier().layoutLocation = value; |
| else |
| error(loc, "needs a literal integer", "location", ""); |
| break; |
| case EatBinding: |
| // binding |
| if (it->getInt(value)) { |
| type.getQualifier().layoutBinding = value; |
| type.getQualifier().layoutSet = 0; |
| } else |
| error(loc, "needs a literal integer", "binding", ""); |
| // set |
| if (it->getInt(value, 1)) |
| type.getQualifier().layoutSet = value; |
| break; |
| case EatGlobalBinding: |
| // global cbuffer binding |
| if (it->getInt(value)) |
| globalUniformBinding = value; |
| else |
| error(loc, "needs a literal integer", "global binding", ""); |
| // global cbuffer set |
| if (it->getInt(value, 1)) |
| globalUniformSet = value; |
| break; |
| case EatInputAttachment: |
| // input attachment |
| if (it->getInt(value)) |
| type.getQualifier().layoutAttachment = value; |
| else |
| error(loc, "needs a literal integer", "input attachment", ""); |
| break; |
| case EatBuiltIn: |
| // PointSize built-in |
| if (it->getString(builtInString, 0, false)) { |
| if (builtInString == "PointSize") |
| type.getQualifier().builtIn = EbvPointSize; |
| } |
| break; |
| case EatPushConstant: |
| // push_constant |
| type.getQualifier().layoutPushConstant = true; |
| break; |
| case EatConstantId: |
| // specialization constant |
| if (it->getInt(value)) { |
| TSourceLoc loc; |
| loc.init(); |
| setSpecConstantId(loc, type.getQualifier(), value); |
| } |
| break; |
| |
| // image formats |
| case EatFormatRgba32f: type.getQualifier().layoutFormat = ElfRgba32f; break; |
| case EatFormatRgba16f: type.getQualifier().layoutFormat = ElfRgba16f; break; |
| case EatFormatR32f: type.getQualifier().layoutFormat = ElfR32f; break; |
| case EatFormatRgba8: type.getQualifier().layoutFormat = ElfRgba8; break; |
| case EatFormatRgba8Snorm: type.getQualifier().layoutFormat = ElfRgba8Snorm; break; |
| case EatFormatRg32f: type.getQualifier().layoutFormat = ElfRg32f; break; |
| case EatFormatRg16f: type.getQualifier().layoutFormat = ElfRg16f; break; |
| case EatFormatR11fG11fB10f: type.getQualifier().layoutFormat = ElfR11fG11fB10f; break; |
| case EatFormatR16f: type.getQualifier().layoutFormat = ElfR16f; break; |
| case EatFormatRgba16: type.getQualifier().layoutFormat = ElfRgba16; break; |
| case EatFormatRgb10A2: type.getQualifier().layoutFormat = ElfRgb10A2; break; |
| case EatFormatRg16: type.getQualifier().layoutFormat = ElfRg16; break; |
| case EatFormatRg8: type.getQualifier().layoutFormat = ElfRg8; break; |
| case EatFormatR16: type.getQualifier().layoutFormat = ElfR16; break; |
| case EatFormatR8: type.getQualifier().layoutFormat = ElfR8; break; |
| case EatFormatRgba16Snorm: type.getQualifier().layoutFormat = ElfRgba16Snorm; break; |
| case EatFormatRg16Snorm: type.getQualifier().layoutFormat = ElfRg16Snorm; break; |
| case EatFormatRg8Snorm: type.getQualifier().layoutFormat = ElfRg8Snorm; break; |
| case EatFormatR16Snorm: type.getQualifier().layoutFormat = ElfR16Snorm; break; |
| case EatFormatR8Snorm: type.getQualifier().layoutFormat = ElfR8Snorm; break; |
| case EatFormatRgba32i: type.getQualifier().layoutFormat = ElfRgba32i; break; |
| case EatFormatRgba16i: type.getQualifier().layoutFormat = ElfRgba16i; break; |
| case EatFormatRgba8i: type.getQualifier().layoutFormat = ElfRgba8i; break; |
| case EatFormatR32i: type.getQualifier().layoutFormat = ElfR32i; break; |
| case EatFormatRg32i: type.getQualifier().layoutFormat = ElfRg32i; break; |
| case EatFormatRg16i: type.getQualifier().layoutFormat = ElfRg16i; break; |
| case EatFormatRg8i: type.getQualifier().layoutFormat = ElfRg8i; break; |
| case EatFormatR16i: type.getQualifier().layoutFormat = ElfR16i; break; |
| case EatFormatR8i: type.getQualifier().layoutFormat = ElfR8i; break; |
| case EatFormatRgba32ui: type.getQualifier().layoutFormat = ElfRgba32ui; break; |
| case EatFormatRgba16ui: type.getQualifier().layoutFormat = ElfRgba16ui; break; |
| case EatFormatRgba8ui: type.getQualifier().layoutFormat = ElfRgba8ui; break; |
| case EatFormatR32ui: type.getQualifier().layoutFormat = ElfR32ui; break; |
| case EatFormatRgb10a2ui: type.getQualifier().layoutFormat = ElfRgb10a2ui; break; |
| case EatFormatRg32ui: type.getQualifier().layoutFormat = ElfRg32ui; break; |
| case EatFormatRg16ui: type.getQualifier().layoutFormat = ElfRg16ui; break; |
| case EatFormatRg8ui: type.getQualifier().layoutFormat = ElfRg8ui; break; |
| case EatFormatR16ui: type.getQualifier().layoutFormat = ElfR16ui; break; |
| case EatFormatR8ui: type.getQualifier().layoutFormat = ElfR8ui; break; |
| case EatFormatUnknown: type.getQualifier().layoutFormat = ElfNone; break; |
| |
| case EatNonWritable: type.getQualifier().readonly = true; break; |
| case EatNonReadable: type.getQualifier().writeonly = true; break; |
| |
| default: |
| if (! allowEntry) |
| warn(loc, "attribute does not apply to a type", "", ""); |
| break; |
| } |
| } |
| } |
| |
| // |
| // Do all special handling for the entry point, including wrapping |
| // the shader's entry point with the official entry point that will call it. |
| // |
| // The following: |
| // |
| // retType shaderEntryPoint(args...) // shader declared entry point |
| // { body } |
| // |
| // Becomes |
| // |
| // out retType ret; |
| // in iargs<that are input>...; |
| // out oargs<that are output> ...; |
| // |
| // void shaderEntryPoint() // synthesized, but official, entry point |
| // { |
| // args<that are input> = iargs...; |
| // ret = @shaderEntryPoint(args...); |
| // oargs = args<that are output>...; |
| // } |
| // retType @shaderEntryPoint(args...) |
| // { body } |
| // |
| // The symbol table will still map the original entry point name to the |
| // the modified function and its new name: |
| // |
| // symbol table: shaderEntryPoint -> @shaderEntryPoint |
| // |
| // Returns nullptr if no entry-point tree was built, otherwise, returns |
| // a subtree that creates the entry point. |
| // |
| TIntermNode* HlslParseContext::transformEntryPoint(const TSourceLoc& loc, TFunction& userFunction, |
| const TAttributes& attributes) |
| { |
| // Return true if this is a tessellation patch constant function input to a domain shader. |
| const auto isDsPcfInput = [this](const TType& type) { |
| return language == EShLangTessEvaluation && |
| type.contains([](const TType* t) { |
| return t->getQualifier().builtIn == EbvTessLevelOuter || |
| t->getQualifier().builtIn == EbvTessLevelInner; |
| }); |
| }; |
| |
| // if we aren't in the entry point, fix the IO as such and exit |
| if (userFunction.getName().compare(intermediate.getEntryPointName().c_str()) != 0) { |
| remapNonEntryPointIO(userFunction); |
| return nullptr; |
| } |
| |
| entryPointFunction = &userFunction; // needed in finish() |
| |
| // Handle entry point attributes |
| handleEntryPointAttributes(loc, attributes); |
| |
| // entry point logic... |
| |
| // Move parameters and return value to shader in/out |
| TVariable* entryPointOutput; // gets created in remapEntryPointIO |
| TVector<TVariable*> inputs; |
| TVector<TVariable*> outputs; |
| remapEntryPointIO(userFunction, entryPointOutput, inputs, outputs); |
| |
| // Further this return/in/out transform by flattening, splitting, and assigning locations |
| const auto makeVariableInOut = [&](TVariable& variable) { |
| if (variable.getType().isStruct()) { |
| if (variable.getType().getQualifier().isArrayedIo(language)) { |
| if (variable.getType().containsBuiltIn()) |
| split(variable); |
| } else if (shouldFlatten(variable.getType(), EvqVaryingIn /* not assigned yet, but close enough */, true)) |
| flatten(variable, false /* don't track linkage here, it will be tracked in assignToInterface() */); |
| } |
| // TODO: flatten arrays too |
| // TODO: flatten everything in I/O |
| // TODO: replace all split with flatten, make all paths can create flattened I/O, then split code can be removed |
| |
| // For clip and cull distance, multiple output variables potentially get merged |
| // into one in assignClipCullDistance. That code in assignClipCullDistance |
| // handles the interface logic, so we avoid it here in that case. |
| if (!isClipOrCullDistance(variable.getType())) |
| assignToInterface(variable); |
| }; |
| if (entryPointOutput != nullptr) |
| makeVariableInOut(*entryPointOutput); |
| for (auto it = inputs.begin(); it != inputs.end(); ++it) |
| if (!isDsPcfInput((*it)->getType())) // wait until the end for PCF input (see comment below) |
| makeVariableInOut(*(*it)); |
| for (auto it = outputs.begin(); it != outputs.end(); ++it) |
| makeVariableInOut(*(*it)); |
| |
| // In the domain shader, PCF input must be at the end of the linkage. That's because in the |
| // hull shader there is no ordering: the output comes from the separate PCF, which does not |
| // participate in the argument list. That is always put at the end of the HS linkage, so the |
| // input side of the DS must match. The argument may be in any position in the DS argument list |
| // however, so this ensures the linkage is built in the correct order regardless of argument order. |
| if (language == EShLangTessEvaluation) { |
| for (auto it = inputs.begin(); it != inputs.end(); ++it) |
| if (isDsPcfInput((*it)->getType())) |
| makeVariableInOut(*(*it)); |
| } |
| |
| // Synthesize the call |
| |
| pushScope(); // matches the one in handleFunctionBody() |
| |
| // new signature |
| TType voidType(EbtVoid); |
| TFunction synthEntryPoint(&userFunction.getName(), voidType); |
| TIntermAggregate* synthParams = new TIntermAggregate(); |
| intermediate.setAggregateOperator(synthParams, EOpParameters, voidType, loc); |
| intermediate.setEntryPointMangledName(synthEntryPoint.getMangledName().c_str()); |
| intermediate.incrementEntryPointCount(); |
| TFunction callee(&userFunction.getName(), voidType); // call based on old name, which is still in the symbol table |
| |
| // change original name |
| userFunction.addPrefix("@"); // change the name in the function, but not in the symbol table |
| |
| // Copy inputs (shader-in -> calling arg), while building up the call node |
| TVector<TVariable*> argVars; |
| TIntermAggregate* synthBody = new TIntermAggregate(); |
| auto inputIt = inputs.begin(); |
| TIntermTyped* callingArgs = nullptr; |
| |
| for (int i = 0; i < userFunction.getParamCount(); i++) { |
| TParameter& param = userFunction[i]; |
| argVars.push_back(makeInternalVariable(*param.name, *param.type)); |
| argVars.back()->getWritableType().getQualifier().makeTemporary(); |
| |
| // Track the input patch, which is the only non-builtin supported by hull shader PCF. |
| if (param.getDeclaredBuiltIn() == EbvInputPatch) |
| inputPatch = argVars.back(); |
| |
| TIntermSymbol* arg = intermediate.addSymbol(*argVars.back()); |
| handleFunctionArgument(&callee, callingArgs, arg); |
| if (param.type->getQualifier().isParamInput()) { |
| intermediate.growAggregate(synthBody, handleAssign(loc, EOpAssign, arg, |
| intermediate.addSymbol(**inputIt))); |
| inputIt++; |
| } |
| } |
| |
| // Call |
| currentCaller = synthEntryPoint.getMangledName(); |
| TIntermTyped* callReturn = handleFunctionCall(loc, &callee, callingArgs); |
| currentCaller = userFunction.getMangledName(); |
| |
| // Return value |
| if (entryPointOutput) { |
| TIntermTyped* returnAssign; |
| |
| // For hull shaders, the wrapped entry point return value is written to |
| // an array element as indexed by invocation ID, which we might have to make up. |
| // This is required to match SPIR-V semantics. |
| if (language == EShLangTessControl) { |
| TIntermSymbol* invocationIdSym = findTessLinkageSymbol(EbvInvocationId); |
| |
| // If there is no user declared invocation ID, we must make one. |
| if (invocationIdSym == nullptr) { |
| TType invocationIdType(EbtUint, EvqIn, 1); |
| TString* invocationIdName = NewPoolTString("InvocationId"); |
| invocationIdType.getQualifier().builtIn = EbvInvocationId; |
| |
| TVariable* variable = makeInternalVariable(*invocationIdName, invocationIdType); |
| |
| globalQualifierFix(loc, variable->getWritableType().getQualifier()); |
| trackLinkage(*variable); |
| |
| invocationIdSym = intermediate.addSymbol(*variable); |
| } |
| |
| TIntermTyped* element = intermediate.addIndex(EOpIndexIndirect, intermediate.addSymbol(*entryPointOutput), |
| invocationIdSym, loc); |
| |
| // Set the type of the array element being dereferenced |
| const TType derefElementType(entryPointOutput->getType(), 0); |
| element->setType(derefElementType); |
| |
| returnAssign = handleAssign(loc, EOpAssign, element, callReturn); |
| } else { |
| returnAssign = handleAssign(loc, EOpAssign, intermediate.addSymbol(*entryPointOutput), callReturn); |
| } |
| intermediate.growAggregate(synthBody, returnAssign); |
| } else |
| intermediate.growAggregate(synthBody, callReturn); |
| |
| // Output copies |
| auto outputIt = outputs.begin(); |
| for (int i = 0; i < userFunction.getParamCount(); i++) { |
| TParameter& param = userFunction[i]; |
| |
| // GS outputs are via emit, so we do not copy them here. |
| if (param.type->getQualifier().isParamOutput()) { |
| if (param.getDeclaredBuiltIn() == EbvGsOutputStream) { |
| // GS output stream does not assign outputs here: it's the Append() method |
| // which writes to the output, probably multiple times separated by Emit. |
| // We merely remember the output to use, here. |
| gsStreamOutput = *outputIt; |
| } else { |
| intermediate.growAggregate(synthBody, handleAssign(loc, EOpAssign, |
| intermediate.addSymbol(**outputIt), |
| intermediate.addSymbol(*argVars[i]))); |
| } |
| |
| outputIt++; |
| } |
| } |
| |
| // Put the pieces together to form a full function subtree |
| // for the synthesized entry point. |
| synthBody->setOperator(EOpSequence); |
| TIntermNode* synthFunctionDef = synthParams; |
| handleFunctionBody(loc, synthEntryPoint, synthBody, synthFunctionDef); |
| |
| entryPointFunctionBody = synthBody; |
| |
| return synthFunctionDef; |
| } |
| |
| void HlslParseContext::handleFunctionBody(const TSourceLoc& loc, TFunction& function, TIntermNode* functionBody, |
| TIntermNode*& node) |
| { |
| node = intermediate.growAggregate(node, functionBody); |
| intermediate.setAggregateOperator(node, EOpFunction, function.getType(), loc); |
| node->getAsAggregate()->setName(function.getMangledName().c_str()); |
| |
| popScope(); |
| if (function.hasImplicitThis()) |
| popImplicitThis(); |
| |
| if (function.getType().getBasicType() != EbtVoid && ! functionReturnsValue) |
| error(loc, "function does not return a value:", "", function.getName().c_str()); |
| } |
| |
| // AST I/O is done through shader globals declared in the 'in' or 'out' |
| // storage class. An HLSL entry point has a return value, input parameters |
| // and output parameters. These need to get remapped to the AST I/O. |
| void HlslParseContext::remapEntryPointIO(TFunction& function, TVariable*& returnValue, |
| TVector<TVariable*>& inputs, TVector<TVariable*>& outputs) |
| { |
| // We might have in input structure type with no decorations that caused it |
| // to look like an input type, yet it has (e.g.) interpolation types that |
| // must be modified that turn it into an input type. |
| // Hence, a missing ioTypeMap for 'input' might need to be synthesized. |
| const auto synthesizeEditedInput = [this](TType& type) { |
| // True if a type needs to be 'flat' |
| const auto needsFlat = [](const TType& type) { |
| return type.containsBasicType(EbtInt) || |
| type.containsBasicType(EbtUint) || |
| type.containsBasicType(EbtInt64) || |
| type.containsBasicType(EbtUint64) || |
| type.containsBasicType(EbtBool) || |
| type.containsBasicType(EbtDouble); |
| }; |
| |
| if (language == EShLangFragment && needsFlat(type)) { |
| if (type.isStruct()) { |
| TTypeList* finalList = nullptr; |
| auto it = ioTypeMap.find(type.getStruct()); |
| if (it == ioTypeMap.end() || it->second.input == nullptr) { |
| // Getting here means we have no input struct, but we need one. |
| auto list = new TTypeList; |
| for (auto member = type.getStruct()->begin(); member != type.getStruct()->end(); ++member) { |
| TType* newType = new TType; |
| newType->shallowCopy(*member->type); |
| TTypeLoc typeLoc = { newType, member->loc }; |
| list->push_back(typeLoc); |
| } |
| // install the new input type |
| if (it == ioTypeMap.end()) { |
| tIoKinds newLists = { list, nullptr, nullptr }; |
| ioTypeMap[type.getStruct()] = newLists; |
| } else |
| it->second.input = list; |
| finalList = list; |
| } else |
| finalList = it->second.input; |
| // edit for 'flat' |
| for (auto member = finalList->begin(); member != finalList->end(); ++member) { |
| if (needsFlat(*member->type)) { |
| member->type->getQualifier().clearInterpolation(); |
| member->type->getQualifier().flat = true; |
| } |
| } |
| } else { |
| type.getQualifier().clearInterpolation(); |
| type.getQualifier().flat = true; |
| } |
| } |
| }; |
| |
| // Do the actual work to make a type be a shader input or output variable, |
| // and clear the original to be non-IO (for use as a normal function parameter/return). |
| const auto makeIoVariable = [this](const char* name, TType& type, TStorageQualifier storage) -> TVariable* { |
| TVariable* ioVariable = makeInternalVariable(name, type); |
| clearUniformInputOutput(type.getQualifier()); |
| if (type.isStruct()) { |
| auto newLists = ioTypeMap.find(ioVariable->getType().getStruct()); |
| if (newLists != ioTypeMap.end()) { |
| if (storage == EvqVaryingIn && newLists->second.input) |
| ioVariable->getWritableType().setStruct(newLists->second.input); |
| else if (storage == EvqVaryingOut && newLists->second.output) |
| ioVariable->getWritableType().setStruct(newLists->second.output); |
| } |
| } |
| if (storage == EvqVaryingIn) { |
| correctInput(ioVariable->getWritableType().getQualifier()); |
| if (language == EShLangTessEvaluation) |
| if (!ioVariable->getType().isArray()) |
| ioVariable->getWritableType().getQualifier().patch = true; |
| } else { |
| correctOutput(ioVariable->getWritableType().getQualifier()); |
| } |
| ioVariable->getWritableType().getQualifier().storage = storage; |
| |
| fixBuiltInIoType(ioVariable->getWritableType()); |
| |
| return ioVariable; |
| }; |
| |
| // return value is actually a shader-scoped output (out) |
| if (function.getType().getBasicType() == EbtVoid) { |
| returnValue = nullptr; |
| } else { |
| if (language == EShLangTessControl) { |
| // tessellation evaluation in HLSL writes a per-ctrl-pt value, but it needs to be an |
| // array in SPIR-V semantics. We'll write to it indexed by invocation ID. |
| |
| returnValue = makeIoVariable("@entryPointOutput", function.getWritableType(), EvqVaryingOut); |
| |
| TType outputType; |
| outputType.shallowCopy(function.getType()); |
| |
| // vertices has necessarily already been set when handling entry point attributes. |
| TArraySizes* arraySizes = new TArraySizes; |
| arraySizes->addInnerSize(intermediate.getVertices()); |
| outputType.transferArraySizes(arraySizes); |
| |
| clearUniformInputOutput(function.getWritableType().getQualifier()); |
| returnValue = makeIoVariable("@entryPointOutput", outputType, EvqVaryingOut); |
| } else { |
| returnValue = makeIoVariable("@entryPointOutput", function.getWritableType(), EvqVaryingOut); |
| } |
| } |
| |
| // parameters are actually shader-scoped inputs and outputs (in or out) |
| for (int i = 0; i < function.getParamCount(); i++) { |
| TType& paramType = *function[i].type; |
| if (paramType.getQualifier().isParamInput()) { |
| synthesizeEditedInput(paramType); |
| TVariable* argAsGlobal = makeIoVariable(function[i].name->c_str(), paramType, EvqVaryingIn); |
| inputs.push_back(argAsGlobal); |
| } |
| if (paramType.getQualifier().isParamOutput()) { |
| TVariable* argAsGlobal = makeIoVariable(function[i].name->c_str(), paramType, EvqVaryingOut); |
| outputs.push_back(argAsGlobal); |
| } |
| } |
| } |
| |
| // An HLSL function that looks like an entry point, but is not, |
| // declares entry point IO built-ins, but these have to be undone. |
| void HlslParseContext::remapNonEntryPointIO(TFunction& function) |
| { |
| // return value |
| if (function.getType().getBasicType() != EbtVoid) |
| clearUniformInputOutput(function.getWritableType().getQualifier()); |
| |
| // parameters. |
| // References to structuredbuffer types are left unmodified |
| for (int i = 0; i < function.getParamCount(); i++) |
| if (!isReference(*function[i].type)) |
| clearUniformInputOutput(function[i].type->getQualifier()); |
| } |
| |
| // Handle function returns, including type conversions to the function return type |
| // if necessary. |
| TIntermNode* HlslParseContext::handleReturnValue(const TSourceLoc& loc, TIntermTyped* value) |
| { |
| functionReturnsValue = true; |
| |
| if (currentFunctionType->getBasicType() == EbtVoid) { |
| error(loc, "void function cannot return a value", "return", ""); |
| return intermediate.addBranch(EOpReturn, loc); |
| } else if (*currentFunctionType != value->getType()) { |
| value = intermediate.addConversion(EOpReturn, *currentFunctionType, value); |
| if (value && *currentFunctionType != value->getType()) |
| value = intermediate.addUniShapeConversion(EOpReturn, *currentFunctionType, value); |
| if (value == nullptr || *currentFunctionType != value->getType()) { |
| error(loc, "type does not match, or is not convertible to, the function's return type", "return", ""); |
| return value; |
| } |
| } |
| |
| return intermediate.addBranch(EOpReturn, value, loc); |
| } |
| |
| void HlslParseContext::handleFunctionArgument(TFunction* function, |
| TIntermTyped*& arguments, TIntermTyped* newArg) |
| { |
| TParameter param = { 0, new TType, nullptr }; |
| param.type->shallowCopy(newArg->getType()); |
| |
| function->addParameter(param); |
| if (arguments) |
| arguments = intermediate.growAggregate(arguments, newArg); |
| else |
| arguments = newArg; |
| } |
| |
| // Position may require special handling: we can optionally invert Y. |
| // See: https://github.com/KhronosGroup/glslang/issues/1173 |
| // https://github.com/KhronosGroup/glslang/issues/494 |
| TIntermTyped* HlslParseContext::assignPosition(const TSourceLoc& loc, TOperator op, |
| TIntermTyped* left, TIntermTyped* right) |
| { |
| // If we are not asked for Y inversion, use a plain old assign. |
| if (!intermediate.getInvertY()) |
| return intermediate.addAssign(op, left, right, loc); |
| |
| // If we get here, we should invert Y. |
| TIntermAggregate* assignList = nullptr; |
| |
| // If this is a complex rvalue, we don't want to dereference it many times. Create a temporary. |
| TVariable* rhsTempVar = nullptr; |
| rhsTempVar = makeInternalVariable("@position", right->getType()); |
| rhsTempVar->getWritableType().getQualifier().makeTemporary(); |
| |
| { |
| TIntermTyped* rhsTempSym = intermediate.addSymbol(*rhsTempVar, loc); |
| assignList = intermediate.growAggregate(assignList, |
| intermediate.addAssign(EOpAssign, rhsTempSym, right, loc), loc); |
| } |
| |
| // pos.y = -pos.y |
| { |
| const int Y = 1; |
| |
| TIntermTyped* tempSymL = intermediate.addSymbol(*rhsTempVar, loc); |
| TIntermTyped* tempSymR = intermediate.addSymbol(*rhsTempVar, loc); |
| TIntermTyped* index = intermediate.addConstantUnion(Y, loc); |
| |
| TIntermTyped* lhsElement = intermediate.addIndex(EOpIndexDirect, tempSymL, index, loc); |
| TIntermTyped* rhsElement = intermediate.addIndex(EOpIndexDirect, tempSymR, index, loc); |
| |
| const TType derefType(right->getType(), 0); |
| |
| lhsElement->setType(derefType); |
| rhsElement->setType(derefType); |
| |
| TIntermTyped* yNeg = intermediate.addUnaryMath(EOpNegative, rhsElement, loc); |
| |
| assignList = intermediate.growAggregate(assignList, intermediate.addAssign(EOpAssign, lhsElement, yNeg, loc)); |
| } |
| |
| // Assign the rhs temp (now with Y inversion) to the final output |
| { |
| TIntermTyped* rhsTempSym = intermediate.addSymbol(*rhsTempVar, loc); |
| assignList = intermediate.growAggregate(assignList, intermediate.addAssign(op, left, rhsTempSym, loc)); |
| } |
| |
| assert(assignList != nullptr); |
| assignList->setOperator(EOpSequence); |
| |
| return assignList; |
| } |
| |
| // Clip and cull distance require special handling due to a semantic mismatch. In HLSL, |
| // these can be float scalar, float vector, or arrays of float scalar or float vector. |
| // In SPIR-V, they are arrays of scalar floats in all cases. We must copy individual components |
| // (e.g, both x and y components of a float2) out into the destination float array. |
| // |
| // The values are assigned to sequential members of the output array. The inner dimension |
| // is vector components. The outer dimension is array elements. |
| TIntermAggregate* HlslParseContext::assignClipCullDistance(const TSourceLoc& loc, TOperator op, int semanticId, |
| TIntermTyped* left, TIntermTyped* right) |
| { |
| switch (language) { |
| case EShLangFragment: |
| case EShLangVertex: |
| case EShLangGeometry: |
| break; |
| default: |
| error(loc, "unimplemented: clip/cull not currently implemented for this stage", "", ""); |
| return nullptr; |
| } |
| |
| TVariable** clipCullVar = nullptr; |
| |
| // Figure out if we are assigning to, or from, clip or cull distance. |
| const bool isOutput = isClipOrCullDistance(left->getType()); |
| |
| // This is the rvalue or lvalue holding the clip or cull distance. |
| TIntermTyped* clipCullNode = isOutput ? left : right; |
| // This is the value going into or out of the clip or cull distance. |
| TIntermTyped* internalNode = isOutput ? right : left; |
| |
| const TBuiltInVariable builtInType = clipCullNode->getQualifier().builtIn; |
| |
| decltype(clipSemanticNSizeIn)* semanticNSize = nullptr; |
| |
| // Refer to either the clip or the cull distance, depending on semantic. |
| switch (builtInType) { |
| case EbvClipDistance: |
| clipCullVar = isOutput ? &clipDistanceOutput : &clipDistanceInput; |
| semanticNSize = isOutput ? &clipSemanticNSizeOut : &clipSemanticNSizeIn; |
| break; |
| case EbvCullDistance: |
| clipCullVar = isOutput ? &cullDistanceOutput : &cullDistanceInput; |
| semanticNSize = isOutput ? &cullSemanticNSizeOut : &cullSemanticNSizeIn; |
| break; |
| |
| // called invalidly: we expected a clip or a cull distance. |
| // static compile time problem: should not happen. |
| default: assert(0); return nullptr; |
| } |
| |
| // This is the offset in the destination array of a given semantic's data |
| std::array<int, maxClipCullRegs> semanticOffset; |
| |
| // Calculate offset of variable of semantic N in destination array |
| int arrayLoc = 0; |
| int vecItems = 0; |
| |
| for (int x = 0; x < maxClipCullRegs; ++x) { |
| // See if we overflowed the vec4 packing |
| if ((vecItems + (*semanticNSize)[x]) > 4) { |
| arrayLoc = (arrayLoc + 3) & (~0x3); // round up to next multiple of 4 |
| vecItems = 0; |
| } |
| |
| semanticOffset[x] = arrayLoc; |
| vecItems += (*semanticNSize)[x]; |
| arrayLoc += (*semanticNSize)[x]; |
| } |
| |
| |
| // It can have up to 2 array dimensions (in the case of geometry shader inputs) |
| const TArraySizes* const internalArraySizes = internalNode->getType().getArraySizes(); |
| const int internalArrayDims = internalNode->getType().isArray() ? internalArraySizes->getNumDims() : 0; |
| // vector sizes: |
| const int internalVectorSize = internalNode->getType().getVectorSize(); |
| // array sizes, or 1 if it's not an array: |
| const int internalInnerArraySize = (internalArrayDims > 0 ? internalArraySizes->getDimSize(internalArrayDims-1) : 1); |
| const int internalOuterArraySize = (internalArrayDims > 1 ? internalArraySizes->getDimSize(0) : 1); |
| |
| // The created type may be an array of arrays, e.g, for geometry shader inputs. |
| const bool isImplicitlyArrayed = (language == EShLangGeometry && !isOutput); |
| |
| // If we haven't created the output already, create it now. |
| if (*clipCullVar == nullptr) { |
| // ClipDistance and CullDistance are handled specially in the entry point input/output copy |
| // algorithm, because they may need to be unpacked from components of vectors (or a scalar) |
| // into a float array, or vice versa. Here, we make the array the right size and type, |
| // which depends on the incoming data, which has several potential dimensions: |
| // * Semantic ID |
| // * vector size |
| // * array size |
| // Of those, semantic ID and array size cannot appear simultaneously. |
| // |
| // Also to note: for implicitly arrayed forms (e.g, geometry shader inputs), we need to create two |
| // array dimensions. The shader's declaration may have one or two array dimensions. One is always |
| // the geometry's dimension. |
| |
| const bool useInnerSize = internalArrayDims > 1 || !isImplicitlyArrayed; |
| |
| const int requiredInnerArraySize = arrayLoc * (useInnerSize ? internalInnerArraySize : 1); |
| const int requiredOuterArraySize = (internalArrayDims > 0) ? internalArraySizes->getDimSize(0) : 1; |
| |
| TType clipCullType(EbtFloat, clipCullNode->getType().getQualifier().storage, 1); |
| clipCullType.getQualifier() = clipCullNode->getType().getQualifier(); |
| |
| // Create required array dimension |
| TArraySizes* arraySizes = new TArraySizes; |
| if (isImplicitlyArrayed) |
| arraySizes->addInnerSize(requiredOuterArraySize); |
| arraySizes->addInnerSize(requiredInnerArraySize); |
| clipCullType.transferArraySizes(arraySizes); |
| |
| // Obtain symbol name: we'll use that for the symbol we introduce. |
| TIntermSymbol* sym = clipCullNode->getAsSymbolNode(); |
| assert(sym != nullptr); |
| |
| // We are moving the semantic ID from the layout location, so it is no longer needed or |
| // desired there. |
| clipCullType.getQualifier().layoutLocation = TQualifier::layoutLocationEnd; |
| |
| // Create variable and track its linkage |
| *clipCullVar = makeInternalVariable(sym->getName().c_str(), clipCullType); |
| |
| trackLinkage(**clipCullVar); |
| } |
| |
| // Create symbol for the clip or cull variable. |
| TIntermSymbol* clipCullSym = intermediate.addSymbol(**clipCullVar); |
| |
| // vector sizes: |
| const int clipCullVectorSize = clipCullSym->getType().getVectorSize(); |
| |
| // array sizes, or 1 if it's not an array: |
| const TArraySizes* const clipCullArraySizes = clipCullSym->getType().getArraySizes(); |
| const int clipCullOuterArraySize = isImplicitlyArrayed ? clipCullArraySizes->getDimSize(0) : 1; |
| const int clipCullInnerArraySize = clipCullArraySizes->getDimSize(isImplicitlyArrayed ? 1 : 0); |
| |
| // clipCullSym has got to be an array of scalar floats, per SPIR-V semantics. |
| // fixBuiltInIoType() should have handled that upstream. |
| assert(clipCullSym->getType().isArray()); |
| assert(clipCullSym->getType().getVectorSize() == 1); |
| assert(clipCullSym->getType().getBasicType() == EbtFloat); |
| |
| // We may be creating multiple sub-assignments. This is an aggregate to hold them. |
| // TODO: it would be possible to be clever sometimes and avoid the sequence node if not needed. |
| TIntermAggregate* assignList = nullptr; |
| |
| // Holds individual component assignments as we make them. |
| TIntermTyped* clipCullAssign = nullptr; |
| |
| // If the types are homomorphic, use a simple assign. No need to mess about with |
| // individual components. |
| if (clipCullSym->getType().isArray() == internalNode->getType().isArray() && |
| clipCullInnerArraySize == internalInnerArraySize && |
| clipCullOuterArraySize == internalOuterArraySize && |
| clipCullVectorSize == internalVectorSize) { |
| |
| if (isOutput) |
| clipCullAssign = intermediate.addAssign(op, clipCullSym, internalNode, loc); |
| else |
| clipCullAssign = intermediate.addAssign(op, internalNode, clipCullSym, loc); |
| |
| assignList = intermediate.growAggregate(assignList, clipCullAssign); |
| assignList->setOperator(EOpSequence); |
| |
| return assignList; |
| } |
| |
| // We are going to copy each component of the internal (per array element if indicated) to sequential |
| // array elements of the clipCullSym. This tracks the lhs element we're writing to as we go along. |
| // We may be starting in the middle - e.g, for a non-zero semantic ID calculated above. |
| int clipCullInnerArrayPos = semanticOffset[semanticId]; |
| int clipCullOuterArrayPos = 0; |
| |
| // Lambda to add an index to a node, set the type of the result, and return the new node. |
| const auto addIndex = [this, &loc](TIntermTyped* node, int pos) -> TIntermTyped* { |
| const TType derefType(node->getType(), 0); |
| node = intermediate.addIndex(EOpIndexDirect, node, intermediate.addConstantUnion(pos, loc), loc); |
| node->setType(derefType); |
| return node; |
| }; |
| |
| // Loop through every component of every element of the internal, and copy to or from the matching external. |
| for (int internalOuterArrayPos = 0; internalOuterArrayPos < internalOuterArraySize; ++internalOuterArrayPos) { |
| for (int internalInnerArrayPos = 0; internalInnerArrayPos < internalInnerArraySize; ++internalInnerArrayPos) { |
| for (int internalComponent = 0; internalComponent < internalVectorSize; ++internalComponent) { |
| // clip/cull array member to read from / write to: |
| TIntermTyped* clipCullMember = clipCullSym; |
| |
| // If implicitly arrayed, there is an outer array dimension involved |
| if (isImplicitlyArrayed) |
| clipCullMember = addIndex(clipCullMember, clipCullOuterArrayPos); |
| |
| // Index into proper array position for clip cull member |
| clipCullMember = addIndex(clipCullMember, clipCullInnerArrayPos++); |
| |
| // if needed, start over with next outer array slice. |
| if (isImplicitlyArrayed && clipCullInnerArrayPos >= clipCullInnerArraySize) { |
| clipCullInnerArrayPos = semanticOffset[semanticId]; |
| ++clipCullOuterArrayPos; |
| } |
| |
| // internal member to read from / write to: |
| TIntermTyped* internalMember = internalNode; |
| |
| // If internal node has outer array dimension, index appropriately. |
| if (internalArrayDims > 1) |
| internalMember = addIndex(internalMember, internalOuterArrayPos); |
| |
| // If internal node has inner array dimension, index appropriately. |
| if (internalArrayDims > 0) |
| internalMember = addIndex(internalMember, internalInnerArrayPos); |
| |
| // If internal node is a vector, extract the component of interest. |
| if (internalNode->getType().isVector()) |
| internalMember = addIndex(internalMember, internalComponent); |
| |
| // Create an assignment: output from internal to clip cull, or input from clip cull to internal. |
| if (isOutput) |
| clipCullAssign = intermediate.addAssign(op, clipCullMember, internalMember, loc); |
| else |
| clipCullAssign = intermediate.addAssign(op, internalMember, clipCullMember, loc); |
| |
| // Track assignment in the sequence. |
| assignList = intermediate.growAggregate(assignList, clipCullAssign); |
| } |
| } |
| } |
| |
| assert(assignList != nullptr); |
| assignList->setOperator(EOpSequence); |
| |
| return assignList; |
| } |
| |
| // Some simple source assignments need to be flattened to a sequence |
| // of AST assignments. Catch these and flatten, otherwise, pass through |
| // to intermediate.addAssign(). |
| // |
| // Also, assignment to matrix swizzles requires multiple component assignments, |
| // intercept those as well. |
| TIntermTyped* HlslParseContext::handleAssign(const TSourceLoc& loc, TOperator op, TIntermTyped* left, |
| TIntermTyped* right) |
| { |
| if (left == nullptr || right == nullptr) |
| return nullptr; |
| |
| // writing to opaques will require fixing transforms |
| if (left->getType().containsOpaque()) |
| intermediate.setNeedsLegalization(); |
| |
| if (left->getAsOperator() && left->getAsOperator()->getOp() == EOpMatrixSwizzle) |
| return handleAssignToMatrixSwizzle(loc, op, left, right); |
| |
| // Return true if the given node is an index operation into a split variable. |
| const auto indexesSplit = [this](const TIntermTyped* node) -> bool { |
| const TIntermBinary* binaryNode = node->getAsBinaryNode(); |
| |
| if (binaryNode == nullptr) |
| return false; |
| |
| return (binaryNode->getOp() == EOpIndexDirect || binaryNode->getOp() == EOpIndexIndirect) && |
| wasSplit(binaryNode->getLeft()); |
| }; |
| |
| // Return true if this stage assigns clip position with potentially inverted Y |
| const auto assignsClipPos = [this](const TIntermTyped* node) -> bool { |
| return node->getType().getQualifier().builtIn == EbvPosition && |
| (language == EShLangVertex || language == EShLangGeometry || language == EShLangTessEvaluation); |
| }; |
| |
| const bool isSplitLeft = wasSplit(left) || indexesSplit(left); |
| const bool isSplitRight = wasSplit(right) || indexesSplit(right); |
| |
| const bool isFlattenLeft = wasFlattened(left); |
| const bool isFlattenRight = wasFlattened(right); |
| |
| // OK to do a single assign if neither side is split or flattened. Otherwise, |
| // fall through to a member-wise copy. |
| if (!isFlattenLeft && !isFlattenRight && !isSplitLeft && !isSplitRight) { |
| // Clip and cull distance requires more processing. See comment above assignClipCullDistance. |
| if (isClipOrCullDistance(left->getType()) || isClipOrCullDistance(right->getType())) { |
| const bool isOutput = isClipOrCullDistance(left->getType()); |
| |
| const int semanticId = (isOutput ? left : right)->getType().getQualifier().layoutLocation; |
| return assignClipCullDistance(loc, op, semanticId, left, right); |
| } else if (assignsClipPos(left)) { |
| // Position can require special handling: see comment above assignPosition |
| return assignPosition(loc, op, left, right); |
| } else if (left->getQualifier().builtIn == EbvSampleMask) { |
| // Certain builtins are required to be arrayed outputs in SPIR-V, but may internally be scalars |
| // in the shader. Copy the scalar RHS into the LHS array element zero, if that happens. |
| if (left->isArray() && !right->isArray()) { |
| const TType derefType(left->getType(), 0); |
| left = intermediate.addIndex(EOpIndexDirect, left, intermediate.addConstantUnion(0, loc), loc); |
| left->setType(derefType); |
| // Fall through to add assign. |
| } |
| } |
| |
| return intermediate.addAssign(op, left, right, loc); |
| } |
| |
| TIntermAggregate* assignList = nullptr; |
| const TVector<TVariable*>* leftVariables = nullptr; |
| const TVector<TVariable*>* rightVariables = nullptr; |
| |
| // A temporary to store the right node's value, so we don't keep indirecting into it |
| // if it's not a simple symbol. |
| TVariable* rhsTempVar = nullptr; |
| |
| // If the RHS is a simple symbol node, we'll copy it for each member. |
| TIntermSymbol* cloneSymNode = nullptr; |
| |
| int memberCount = 0; |
| |
| // Track how many items there are to copy. |
| if (left->getType().isStruct()) |
| memberCount = (int)left->getType().getStruct()->size(); |
| if (left->getType().isArray()) |
| memberCount = left->getType().getCumulativeArraySize(); |
| |
| if (isFlattenLeft) |
| leftVariables = &flattenMap.find(left->getAsSymbolNode()->getId())->second.members; |
| |
| if (isFlattenRight) { |
| rightVariables = &flattenMap.find(right->getAsSymbolNode()->getId())->second.members; |
| } else { |
| // The RHS is not flattened. There are several cases: |
| // 1. 1 item to copy: Use the RHS directly. |
| // 2. >1 item, simple symbol RHS: we'll create a new TIntermSymbol node for each, but no assign to temp. |
| // 3. >1 item, complex RHS: assign it to a new temp variable, and create a TIntermSymbol for each member. |
| |
| if (memberCount <= 1) { |
| // case 1: we'll use the symbol directly below. Nothing to do. |
| } else { |
| if (right->getAsSymbolNode() != nullptr) { |
| // case 2: we'll copy the symbol per iteration below. |
| cloneSymNode = right->getAsSymbolNode(); |
| } else { |
| // case 3: assign to a temp, and indirect into that. |
| rhsTempVar = makeInternalVariable("flattenTemp", right->getType()); |
| rhsTempVar->getWritableType().getQualifier().makeTemporary(); |
| TIntermTyped* noFlattenRHS = intermediate.addSymbol(*rhsTempVar, loc); |
| |
| // Add this to the aggregate being built. |
| assignList = intermediate.growAggregate(assignList, |
| intermediate.addAssign(op, noFlattenRHS, right, loc), loc); |
| } |
| } |
| } |
| |
| // When dealing with split arrayed structures of built-ins, the arrayness is moved to the extracted built-in |
| // variables, which is awkward when copying between split and unsplit structures. This variable tracks |
| // array indirections so they can be percolated from outer structs to inner variables. |
| std::vector <int> arrayElement; |
| |
| TStorageQualifier leftStorage = left->getType().getQualifier().storage; |
| TStorageQualifier rightStorage = right->getType().getQualifier().storage; |
| |
| int leftOffset = findSubtreeOffset(*left); |
| int rightOffset = findSubtreeOffset(*right); |
| |
| const auto getMember = [&](bool isLeft, const TType& type, int member, TIntermTyped* splitNode, int splitMember, |
| bool flattened) |
| -> TIntermTyped * { |
| const bool split = isLeft ? isSplitLeft : isSplitRight; |
| |
| TIntermTyped* subTree; |
| const TType derefType(type, member); |
| const TVariable* builtInVar = nullptr; |
| if ((flattened || split) && derefType.isBuiltIn()) { |
| auto splitPair = splitBuiltIns.find(HlslParseContext::tInterstageIoData( |
| derefType.getQualifier().builtIn, |
| isLeft ? leftStorage : rightStorage)); |
| if (splitPair != splitBuiltIns.end()) |
| builtInVar = splitPair->second; |
| } |
| if (builtInVar != nullptr) { |
| // copy from interstage IO built-in if needed |
| subTree = intermediate.addSymbol(*builtInVar); |
| |
| if (subTree->getType().isArray()) { |
| // Arrayness of builtIn symbols isn't handled by the normal recursion: |
| // it's been extracted and moved to the built-in. |
| if (!arrayElement.empty()) { |
| const TType splitDerefType(subTree->getType(), arrayElement.back()); |
| subTree = intermediate.addIndex(EOpIndexDirect, subTree, |
| intermediate.addConstantUnion(arrayElement.back(), loc), loc); |
| subTree->setType(splitDerefType); |
| } else if (splitNode->getAsOperator() != nullptr && (splitNode->getAsOperator()->getOp() == EOpIndexIndirect)) { |
| // This might also be a stage with arrayed outputs, in which case there's an index |
| // operation we should transfer to the output builtin. |
| |
| const TType splitDerefType(subTree->getType(), 0); |
| subTree = intermediate.addIndex(splitNode->getAsOperator()->getOp(), subTree, |
| splitNode->getAsBinaryNode()->getRight(), loc); |
| subTree->setType(splitDerefType); |
| } |
| } |
| } else if (flattened && !shouldFlatten(derefType, isLeft ? leftStorage : rightStorage, false)) { |
| if (isLeft) |
| subTree = intermediate.addSymbol(*(*leftVariables)[leftOffset++]); |
| else |
| subTree = intermediate.addSymbol(*(*rightVariables)[rightOffset++]); |
| } else { |
| // Index operator if it's an aggregate, else EOpNull |
| const TOperator accessOp = type.isArray() ? EOpIndexDirect |
| : type.isStruct() ? EOpIndexDirectStruct |
| : EOpNull; |
| if (accessOp == EOpNull) { |
| subTree = splitNode; |
| } else { |
| subTree = intermediate.addIndex(accessOp, splitNode, intermediate.addConstantUnion(splitMember, loc), |
| loc); |
| const TType splitDerefType(splitNode->getType(), splitMember); |
| subTree->setType(splitDerefType); |
| } |
| } |
| |
| return subTree; |
| }; |
| |
| // Use the proper RHS node: a new symbol from a TVariable, copy |
| // of an TIntermSymbol node, or sometimes the right node directly. |
| right = rhsTempVar != nullptr ? intermediate.addSymbol(*rhsTempVar, loc) : |
| cloneSymNode != nullptr ? intermediate.addSymbol(*cloneSymNode) : |
| right; |
| |
| // Cannot use auto here, because this is recursive, and auto can't work out the type without seeing the |
| // whole thing. So, we'll resort to an explicit type via std::function. |
| const std::function<void(TIntermTyped* left, TIntermTyped* right, TIntermTyped* splitLeft, TIntermTyped* splitRight, |
| bool topLevel)> |
| traverse = [&](TIntermTyped* left, TIntermTyped* right, TIntermTyped* splitLeft, TIntermTyped* splitRight, |
| bool topLevel) -> void { |
| // If we get here, we are assigning to or from a whole array or struct that must be |
| // flattened, so have to do member-by-member assignment: |
| |
| bool shouldFlattenSubsetLeft = isFlattenLeft && shouldFlatten(left->getType(), leftStorage, topLevel); |
| bool shouldFlattenSubsetRight = isFlattenRight && shouldFlatten(right->getType(), rightStorage, topLevel); |
| |
| if ((left->getType().isArray() || right->getType().isArray()) && |
| (shouldFlattenSubsetLeft || isSplitLeft || |
| shouldFlattenSubsetRight || isSplitRight)) { |
| const int elementsL = left->getType().isArray() ? left->getType().getOuterArraySize() : 1; |
| const int elementsR = right->getType().isArray() ? right->getType().getOuterArraySize() : 1; |
| |
| // The arrays might not be the same size, |
| // e.g., if the size has been forced for EbvTessLevelInner/Outer. |
| const int elementsToCopy = std::min(elementsL, elementsR); |
| |
| // array case |
| for (int element = 0; element < elementsToCopy; ++element) { |
| arrayElement.push_back(element); |
| |
| // Add a new AST symbol node if we have a temp variable holding a complex RHS. |
| TIntermTyped* subLeft = getMember(true, left->getType(), element, left, element, |
| shouldFlattenSubsetLeft); |
| TIntermTyped* subRight = getMember(false, right->getType(), element, right, element, |
| shouldFlattenSubsetRight); |
| |
| TIntermTyped* subSplitLeft = isSplitLeft ? getMember(true, left->getType(), element, splitLeft, |
| element, shouldFlattenSubsetLeft) |
| : subLeft; |
| TIntermTyped* subSplitRight = isSplitRight ? getMember(false, right->getType(), element, splitRight, |
| element, shouldFlattenSubsetRight) |
| : subRight; |
| |
| traverse(subLeft, subRight, subSplitLeft, subSplitRight, false); |
| |
| arrayElement.pop_back(); |
| } |
| } else if (left->getType().isStruct() && (shouldFlattenSubsetLeft || isSplitLeft || |
| shouldFlattenSubsetRight || isSplitRight)) { |
| // struct case |
| const auto& membersL = *left->getType().getStruct(); |
| const auto& membersR = *right->getType().getStruct(); |
| |
| // These track the members in the split structures corresponding to the same in the unsplit structures, |
| // which we traverse in parallel. |
| int memberL = 0; |
| int memberR = 0; |
| |
| // Handle empty structure assignment |
| if (int(membersL.size()) == 0 && int(membersR.size()) == 0) |
| assignList = intermediate.growAggregate(assignList, intermediate.addAssign(op, left, right, loc), loc); |
| |
| for (int member = 0; member < int(membersL.size()); ++member) { |
| const TType& typeL = *membersL[member].type; |
| const TType& typeR = *membersR[member].type; |
| |
| TIntermTyped* subLeft = getMember(true, left->getType(), member, left, member, |
| shouldFlattenSubsetLeft); |
| TIntermTyped* subRight = getMember(false, right->getType(), member, right, member, |
| shouldFlattenSubsetRight); |
| |
| // If there is no splitting, use the same values to avoid inefficiency. |
| TIntermTyped* subSplitLeft = isSplitLeft ? getMember(true, left->getType(), member, splitLeft, |
| memberL, shouldFlattenSubsetLeft) |
| : subLeft; |
| TIntermTyped* subSplitRight = isSplitRight ? getMember(false, right->getType(), member, splitRight, |
| memberR, shouldFlattenSubsetRight) |
| : subRight; |
| |
| if (isClipOrCullDistance(subSplitLeft->getType()) || isClipOrCullDistance(subSplitRight->getType())) { |
| // Clip and cull distance built-in assignment is complex in its own right, and is handled in |
| // a separate function dedicated to that task. See comment above assignClipCullDistance; |
| |
| const bool isOutput = isClipOrCullDistance(subSplitLeft->getType()); |
| |
| // Since all clip/cull semantics boil down to the same built-in type, we need to get the |
| // semantic ID from the dereferenced type's layout location, to avoid an N-1 mapping. |
| const TType derefType((isOutput ? left : right)->getType(), member); |
| const int semanticId = derefType.getQualifier().layoutLocation; |
| |
| TIntermAggregate* clipCullAssign = assignClipCullDistance(loc, op, semanticId, |
| subSplitLeft, subSplitRight); |
| |
| assignList = intermediate.growAggregate(assignList, clipCullAssign, loc); |
| } else if (assignsClipPos(subSplitLeft)) { |
| // Position can require special handling: see comment above assignPosition |
| TIntermTyped* positionAssign = assignPosition(loc, op, subSplitLeft, subSplitRight); |
| assignList = intermediate.growAggregate(assignList, positionAssign, loc); |
| } else if (!shouldFlattenSubsetLeft && !shouldFlattenSubsetRight && |
| !typeL.containsBuiltIn() && !typeR.containsBuiltIn()) { |
| // If this is the final flattening (no nested types below to flatten) |
| // we'll copy the member, else recurse into the type hierarchy. |
| // However, if splitting the struct, that means we can copy a whole |
| // subtree here IFF it does not itself contain any interstage built-in |
| // IO variables, so we only have to recurse into it if there's something |
| // for splitting to do. That can save a lot of AST verbosity for |
| // a bunch of memberwise copies. |
| |
| assignList = intermediate.growAggregate(assignList, |
| intermediate.addAssign(op, subSplitLeft, subSplitRight, loc), |
| loc); |
| } else { |
| traverse(subLeft, subRight, subSplitLeft, subSplitRight, false); |
| } |
| |
| memberL += (typeL.isBuiltIn() ? 0 : 1); |
| memberR += (typeR.isBuiltIn() ? 0 : 1); |
| } |
| } else { |
| // Member copy |
| assignList = intermediate.growAggregate(assignList, intermediate.addAssign(op, left, right, loc), loc); |
| } |
| |
| }; |
| |
| TIntermTyped* splitLeft = left; |
| TIntermTyped* splitRight = right; |
| |
| // If either left or right was a split structure, we must read or write it, but still have to |
| // parallel-recurse through the unsplit structure to identify the built-in IO vars. |
| // The left can be either a symbol, or an index into a symbol (e.g, array reference) |
| if (isSplitLeft) { |
| if (indexesSplit(left)) { |
| // Index case: Refer to the indexed symbol, if the left is an index operator. |
| const TIntermSymbol* symNode = left->getAsBinaryNode()->getLeft()->getAsSymbolNode(); |
| |
| TIntermTyped* splitLeftNonIo = intermediate.addSymbol(*getSplitNonIoVar(symNode->getId()), loc); |
| |
| splitLeft = intermediate.addIndex(left->getAsBinaryNode()->getOp(), splitLeftNonIo, |
| left->getAsBinaryNode()->getRight(), loc); |
| |
| const TType derefType(splitLeftNonIo->getType(), 0); |
| splitLeft->setType(derefType); |
| } else { |
| // Symbol case: otherwise, if not indexed, we have the symbol directly. |
| const TIntermSymbol* symNode = left->getAsSymbolNode(); |
| splitLeft = intermediate.addSymbol(*getSplitNonIoVar(symNode->getId()), loc); |
| } |
| } |
| |
| if (isSplitRight) |
| splitRight = intermediate.addSymbol(*getSplitNonIoVar(right->getAsSymbolNode()->getId()), loc); |
| |
| // This makes the whole assignment, recursing through subtypes as needed. |
| traverse(left, right, splitLeft, splitRight, true); |
| |
| assert(assignList != nullptr); |
| assignList->setOperator(EOpSequence); |
| |
| return assignList; |
| } |
| |
| // An assignment to matrix swizzle must be decomposed into individual assignments. |
| // These must be selected component-wise from the RHS and stored component-wise |
| // into the LHS. |
| TIntermTyped* HlslParseContext::handleAssignToMatrixSwizzle(const TSourceLoc& loc, TOperator op, TIntermTyped* left, |
| TIntermTyped* right) |
| { |
| assert(left->getAsOperator() && left->getAsOperator()->getOp() == EOpMatrixSwizzle); |
| |
| if (op != EOpAssign) |
| error(loc, "only simple assignment to non-simple matrix swizzle is supported", "assign", ""); |
| |
| // isolate the matrix and swizzle nodes |
| TIntermTyped* matrix = left->getAsBinaryNode()->getLeft()->getAsTyped(); |
| const TIntermSequence& swizzle = left->getAsBinaryNode()->getRight()->getAsAggregate()->getSequence(); |
| |
| // if the RHS isn't already a simple vector, let's store into one |
| TIntermSymbol* vector = right->getAsSymbolNode(); |
| TIntermTyped* vectorAssign = nullptr; |
| if (vector == nullptr) { |
| // create a new intermediate vector variable to assign to |
| TType vectorType(matrix->getBasicType(), EvqTemporary, matrix->getQualifier().precision, (int)swizzle.size()/2); |
| vector = intermediate.addSymbol(*makeInternalVariable("intermVec", vectorType), loc); |
| |
| // assign the right to the new vector |
| vectorAssign = handleAssign(loc, op, vector, right); |
| } |
| |
| // Assign the vector components to the matrix components. |
| // Store this as a sequence, so a single aggregate node represents this |
| // entire operation. |
| TIntermAggregate* result = intermediate.makeAggregate(vectorAssign); |
| TType columnType(matrix->getType(), 0); |
| TType componentType(columnType, 0); |
| TType indexType(EbtInt); |
| for (int i = 0; i < (int)swizzle.size(); i += 2) { |
| // the right component, single index into the RHS vector |
| TIntermTyped* rightComp = intermediate.addIndex(EOpIndexDirect, vector, |
| intermediate.addConstantUnion(i/2, loc), loc); |
| |
| // the left component, double index into the LHS matrix |
| TIntermTyped* leftComp = intermediate.addIndex(EOpIndexDirect, matrix, |
| intermediate.addConstantUnion(swizzle[i]->getAsConstantUnion()->getConstArray(), |
| indexType, loc), |
| loc); |
| leftComp->setType(columnType); |
| leftComp = intermediate.addIndex(EOpIndexDirect, leftComp, |
| intermediate.addConstantUnion(swizzle[i+1]->getAsConstantUnion()->getConstArray(), |
| indexType, loc), |
| loc); |
| leftComp->setType(componentType); |
| |
| // Add the assignment to the aggregate |
| result = intermediate.growAggregate(result, intermediate.addAssign(op, leftComp, rightComp, loc)); |
| } |
| |
| result->setOp(EOpSequence); |
| |
| return result; |
| } |
| |
| // |
| // HLSL atomic operations have slightly different arguments than |
| // GLSL/AST/SPIRV. The semantics are converted below in decomposeIntrinsic. |
| // This provides the post-decomposition equivalent opcode. |
| // |
| TOperator HlslParseContext::mapAtomicOp(const TSourceLoc& loc, TOperator op, bool isImage) |
| { |
| switch (op) { |
| case EOpInterlockedAdd: return isImage ? EOpImageAtomicAdd : EOpAtomicAdd; |
| case EOpInterlockedAnd: return isImage ? EOpImageAtomicAnd : EOpAtomicAnd; |
| case EOpInterlockedCompareExchange: return isImage ? EOpImageAtomicCompSwap : EOpAtomicCompSwap; |
| case EOpInterlockedMax: return isImage ? EOpImageAtomicMax : EOpAtomicMax; |
| case EOpInterlockedMin: return isImage ? EOpImageAtomicMin : EOpAtomicMin; |
| case EOpInterlockedOr: return isImage ? EOpImageAtomicOr : EOpAtomicOr; |
| case EOpInterlockedXor: return isImage ? EOpImageAtomicXor : EOpAtomicXor; |
| case EOpInterlockedExchange: return isImage ? EOpImageAtomicExchange : EOpAtomicExchange; |
| case EOpInterlockedCompareStore: // TODO: ... |
| default: |
| error(loc, "unknown atomic operation", "unknown op", ""); |
| return EOpNull; |
| } |
| } |
| |
| // |
| // Create a combined sampler/texture from separate sampler and texture. |
| // |
| TIntermAggregate* HlslParseContext::handleSamplerTextureCombine(const TSourceLoc& loc, TIntermTyped* argTex, |
| TIntermTyped* argSampler) |
| { |
| TIntermAggregate* txcombine = new TIntermAggregate(EOpConstructTextureSampler); |
| |
| txcombine->getSequence().push_back(argTex); |
| txcombine->getSequence().push_back(argSampler); |
| |
| TSampler samplerType = argTex->getType().getSampler(); |
| samplerType.combined = true; |
| |
| // TODO: |
| // This block exists until the spec no longer requires shadow modes on texture objects. |
| // It can be deleted after that, along with the shadowTextureVariant member. |
| { |
| const bool shadowMode = argSampler->getType().getSampler().shadow; |
| |
| TIntermSymbol* texSymbol = argTex->getAsSymbolNode(); |
| |
| if (texSymbol == nullptr) |
| texSymbol = argTex->getAsBinaryNode()->getLeft()->getAsSymbolNode(); |
| |
| if (texSymbol == nullptr) { |
| error(loc, "unable to find texture symbol", "", ""); |
| return nullptr; |
| } |
| |
| // This forces the texture's shadow state to be the sampler's |
| // shadow state. This depends on downstream optimization to |
| // DCE one variant in [shadow, nonshadow] if both are present, |
| // or the SPIR-V module would be invalid. |
| int newId = texSymbol->getId(); |
| |
| // Check to see if this texture has been given a shadow mode already. |
| // If so, look up the one we already have. |
| const auto textureShadowEntry = textureShadowVariant.find(texSymbol->getId()); |
| |
| if (textureShadowEntry != textureShadowVariant.end()) |
| newId = textureShadowEntry->second->get(shadowMode); |
| else |
| textureShadowVariant[texSymbol->getId()] = NewPoolObject(tShadowTextureSymbols(), 1); |
| |
| // Sometimes we have to create another symbol (if this texture has been seen before, |
| // and we haven't created the form for this shadow mode). |
| if (newId == -1) { |
| TType texType; |
| texType.shallowCopy(argTex->getType()); |
| texType.getSampler().shadow = shadowMode; // set appropriate shadow mode. |
| globalQualifierFix(loc, texType.getQualifier()); |
| |
| TVariable* newTexture = makeInternalVariable(texSymbol->getName(), texType); |
| |
| trackLinkage(*newTexture); |
| |
| newId = newTexture->getUniqueId(); |
| } |
| |
| assert(newId != -1); |
| |
| if (textureShadowVariant.find(newId) == textureShadowVariant.end()) |
| textureShadowVariant[newId] = textureShadowVariant[texSymbol->getId()]; |
| |
| textureShadowVariant[newId]->set(shadowMode, newId); |
| |
| // Remember this shadow mode in the texture and the merged type. |
| argTex->getWritableType().getSampler().shadow = shadowMode; |
| samplerType.shadow = shadowMode; |
| |
| texSymbol->switchId(newId); |
| } |
| |
| txcombine->setType(TType(samplerType, EvqTemporary)); |
| txcombine->setLoc(loc); |
| |
| return txcombine; |
| } |
| |
| // Return true if this a buffer type that has an associated counter buffer. |
| bool HlslParseContext::hasStructBuffCounter(const TType& type) const |
| { |
| switch (type.getQualifier().declaredBuiltIn) { |
| case EbvAppendConsume: // fall through... |
| case EbvRWStructuredBuffer: // ... |
| return true; |
| default: |
| return false; // the other structuredbuffer types do not have a counter. |
| } |
| } |
| |
| void HlslParseContext::counterBufferType(const TSourceLoc& loc, TType& type) |
| { |
| // Counter type |
| TType* counterType = new TType(EbtUint, EvqBuffer); |
| counterType->setFieldName(intermediate.implicitCounterName); |
| |
| TTypeList* blockStruct = new TTypeList; |
| TTypeLoc member = { counterType, loc }; |
| blockStruct->push_back(member); |
| |
| TType blockType(blockStruct, "", counterType->getQualifier()); |
| blockType.getQualifier().storage = EvqBuffer; |
| |
| type.shallowCopy(blockType); |
| shareStructBufferType(type); |
| } |
| |
| // declare counter for a structured buffer type |
| void HlslParseContext::declareStructBufferCounter(const TSourceLoc& loc, const TType& bufferType, const TString& name) |
| { |
| // Bail out if not a struct buffer |
| if (! isStructBufferType(bufferType)) |
| return; |
| |
| if (! hasStructBuffCounter(bufferType)) |
| return; |
| |
| TType blockType; |
| counterBufferType(loc, blockType); |
| |
| TString* blockName = NewPoolTString(intermediate.addCounterBufferName(name).c_str()); |
| |
| // Counter buffer is not yet in use |
| structBufferCounter[*blockName] = false; |
| |
| shareStructBufferType(blockType); |
| declareBlock(loc, blockType, blockName); |
| } |
| |
| // return the counter that goes with a given structuredbuffer |
| TIntermTyped* HlslParseContext::getStructBufferCounter(const TSourceLoc& loc, TIntermTyped* buffer) |
| { |
| // Bail out if not a struct buffer |
| if (buffer == nullptr || ! isStructBufferType(buffer->getType())) |
| return nullptr; |
| |
| const TString counterBlockName(intermediate.addCounterBufferName(buffer->getAsSymbolNode()->getName())); |
| |
| // Mark the counter as being used |
| structBufferCounter[counterBlockName] = true; |
| |
| TIntermTyped* counterVar = handleVariable(loc, &counterBlockName); // find the block structure |
| TIntermTyped* index = intermediate.addConstantUnion(0, loc); // index to counter inside block struct |
| |
| TIntermTyped* counterMember = intermediate.addIndex(EOpIndexDirectStruct, counterVar, index, loc); |
| counterMember->setType(TType(EbtUint)); |
| return counterMember; |
| } |
| |
| // |
| // Decompose structure buffer methods into AST |
| // |
| void HlslParseContext::decomposeStructBufferMethods(const TSourceLoc& loc, TIntermTyped*& node, TIntermNode* arguments) |
| { |
| if (node == nullptr || node->getAsOperator() == nullptr || arguments == nullptr) |
| return; |
| |
| const TOperator op = node->getAsOperator()->getOp(); |
| TIntermAggregate* argAggregate = arguments->getAsAggregate(); |
| |
| // Buffer is the object upon which method is called, so always arg 0 |
| TIntermTyped* bufferObj = nullptr; |
| |
| // The parameters can be an aggregate, or just a the object as a symbol if there are no fn params. |
| if (argAggregate) { |
| if (argAggregate->getSequence().empty()) |
| return; |
| if (argAggregate->getSequence()[0]) |
| bufferObj = argAggregate->getSequence()[0]->getAsTyped(); |
| } else { |
| bufferObj = arguments->getAsSymbolNode(); |
| } |
| |
| if (bufferObj == nullptr || bufferObj->getAsSymbolNode() == nullptr) |
| return; |
| |
| // Some methods require a hidden internal counter, obtained via getStructBufferCounter(). |
| // This lambda adds something to it and returns the old value. |
| const auto incDecCounter = [&](int incval) -> TIntermTyped* { |
| TIntermTyped* incrementValue = intermediate.addConstantUnion(static_cast<unsigned int>(incval), loc, true); |
| TIntermTyped* counter = getStructBufferCounter(loc, bufferObj); // obtain the counter member |
| |
| if (counter == nullptr) |
| return nullptr; |
| |
| TIntermAggregate* counterIncrement = new TIntermAggregate(EOpAtomicAdd); |
| counterIncrement->setType(TType(EbtUint, EvqTemporary)); |
| counterIncrement->setLoc(loc); |
| counterIncrement->getSequence().push_back(counter); |
| counterIncrement->getSequence().push_back(incrementValue); |
| |
| return counterIncrement; |
| }; |
| |
| // Index to obtain the runtime sized array out of the buffer. |
| TIntermTyped* argArray = indexStructBufferContent(loc, bufferObj); |
| if (argArray == nullptr) |
| return; // It might not be a struct buffer method. |
| |
| switch (op) { |
| case EOpMethodLoad: |
| { |
| TIntermTyped* argIndex = makeIntegerIndex(argAggregate->getSequence()[1]->getAsTyped()); // index |
| |
| const TType& bufferType = bufferObj->getType(); |
| |
| const TBuiltInVariable builtInType = bufferType.getQualifier().declaredBuiltIn; |
| |
| // Byte address buffers index in bytes (only multiples of 4 permitted... not so much a byte address |
| // buffer then, but that's what it calls itself. |
| const bool isByteAddressBuffer = (builtInType == EbvByteAddressBuffer || |
| builtInType == EbvRWByteAddressBuffer); |
| |
| |
| if (isByteAddressBuffer) |
| argIndex = intermediate.addBinaryNode(EOpRightShift, argIndex, |
| intermediate.addConstantUnion(2, loc, true), |
| loc, TType(EbtInt)); |
| |
| // Index into the array to find the item being loaded. |
| const TOperator idxOp = (argIndex->getQualifier().storage == EvqConst) ? EOpIndexDirect : EOpIndexIndirect; |
| |
| node = intermediate.addIndex(idxOp, argArray, argIndex, loc); |
| |
| const TType derefType(argArray->getType(), 0); |
| node->setType(derefType); |
| } |
| |
| break; |
| |
| case EOpMethodLoad2: |
| case EOpMethodLoad3: |
| case EOpMethodLoad4: |
| { |
| TIntermTyped* argIndex = makeIntegerIndex(argAggregate->getSequence()[1]->getAsTyped()); // index |
| |
| TOperator constructOp = EOpNull; |
| int size = 0; |
| |
| switch (op) { |
| case EOpMethodLoad2: size = 2; constructOp = EOpConstructVec2; break; |
| case EOpMethodLoad3: size = 3; constructOp = EOpConstructVec3; break; |
| case EOpMethodLoad4: size = 4; constructOp = EOpConstructVec4; break; |
| default: assert(0); |
| } |
| |
| TIntermTyped* body = nullptr; |
| |
| // First, we'll store the address in a variable to avoid multiple shifts |
| // (we must convert the byte address to an item address) |
| TIntermTyped* byteAddrIdx = intermediate.addBinaryNode(EOpRightShift, argIndex, |
| intermediate.addConstantUnion(2, loc, true), |
| loc, TType(EbtInt)); |
| |
| TVariable* byteAddrSym = makeInternalVariable("byteAddrTemp", TType(EbtInt, EvqTemporary)); |
| TIntermTyped* byteAddrIdxVar = intermediate.addSymbol(*byteAddrSym, loc); |
| |
| body = intermediate.growAggregate(body, intermediate.addAssign(EOpAssign, byteAddrIdxVar, byteAddrIdx, loc)); |
| |
| TIntermTyped* vec = nullptr; |
| |
| // These are only valid on (rw)byteaddressbuffers, so we can always perform the >>2 |
| // address conversion. |
| for (int idx=0; idx<size; ++idx) { |
| TIntermTyped* offsetIdx = byteAddrIdxVar; |
| |
| // add index offset |
| if (idx != 0) |
| offsetIdx = intermediate.addBinaryNode(EOpAdd, offsetIdx, |
| intermediate.addConstantUnion(idx, loc, true), |
| loc, TType(EbtInt)); |
| |
| const TOperator idxOp = (offsetIdx->getQualifier().storage == EvqConst) ? EOpIndexDirect |
| : EOpIndexIndirect; |
| |
| TIntermTyped* indexVal = intermediate.addIndex(idxOp, argArray, offsetIdx, loc); |
| |
| TType derefType(argArray->getType(), 0); |
| derefType.getQualifier().makeTemporary(); |
| indexVal->setType(derefType); |
| |
| vec = intermediate.growAggregate(vec, indexVal); |
| } |
| |
| vec->setType(TType(argArray->getBasicType(), EvqTemporary, size)); |
| vec->getAsAggregate()->setOperator(constructOp); |
| |
| body = intermediate.growAggregate(body, vec); |
| body->setType(vec->getType()); |
| body->getAsAggregate()->setOperator(EOpSequence); |
| |
| node = body; |
| } |
| |
| break; |
| |
| case EOpMethodStore: |
| case EOpMethodStore2: |
| case EOpMethodStore3: |
| case EOpMethodStore4: |
| { |
| TIntermTyped* argIndex = makeIntegerIndex(argAggregate->getSequence()[1]->getAsTyped()); // index |
| TIntermTyped* argValue = argAggregate->getSequence()[2]->getAsTyped(); // value |
| |
| // Index into the array to find the item being loaded. |
| // Byte address buffers index in bytes (only multiples of 4 permitted... not so much a byte address |
| // buffer then, but that's what it calls itself). |
| |
| int size = 0; |
| |
| switch (op) { |
| case EOpMethodStore: size = 1; break; |
| case EOpMethodStore2: size = 2; break; |
| case EOpMethodStore3: size = 3; break; |
| case EOpMethodStore4: size = 4; break; |
| default: assert(0); |
| } |
| |
| TIntermAggregate* body = nullptr; |
| |
| // First, we'll store the address in a variable to avoid multiple shifts |
| // (we must convert the byte address to an item address) |
| TIntermTyped* byteAddrIdx = intermediate.addBinaryNode(EOpRightShift, argIndex, |
| intermediate.addConstantUnion(2, loc, true), loc, TType(EbtInt)); |
| |
| TVariable* byteAddrSym = makeInternalVariable("byteAddrTemp", TType(EbtInt, EvqTemporary)); |
| TIntermTyped* byteAddrIdxVar = intermediate.addSymbol(*byteAddrSym, loc); |
| |
| body = intermediate.growAggregate(body, intermediate.addAssign(EOpAssign, byteAddrIdxVar, byteAddrIdx, loc)); |
| |
| for (int idx=0; idx<size; ++idx) { |
| TIntermTyped* offsetIdx = byteAddrIdxVar; |
| TIntermTyped* idxConst = intermediate.addConstantUnion(idx, loc, true); |
| |
| // add index offset |
| if (idx != 0) |
| offsetIdx = intermediate.addBinaryNode(EOpAdd, offsetIdx, idxConst, loc, TType(EbtInt)); |
| |
| const TOperator idxOp = (offsetIdx->getQualifier().storage == EvqConst) ? EOpIndexDirect |
| : EOpIndexIndirect; |
| |
| TIntermTyped* lValue = intermediate.addIndex(idxOp, argArray, offsetIdx, loc); |
| const TType derefType(argArray->getType(), 0); |
| lValue->setType(derefType); |
| |
| TIntermTyped* rValue; |
| if (size == 1) { |
| rValue = argValue; |
| } else { |
| rValue = intermediate.addIndex(EOpIndexDirect, argValue, idxConst, loc); |
| const TType indexType(argValue->getType(), 0); |
| rValue->setType(indexType); |
| } |
| |
| TIntermTyped* assign = intermediate.addAssign(EOpAssign, lValue, rValue, loc); |
| |
| body = intermediate.growAggregate(body, assign); |
| } |
| |
| body->setOperator(EOpSequence); |
| node = body; |
| } |
| |
| break; |
| |
| case EOpMethodGetDimensions: |
| { |
| const int numArgs = (int)argAggregate->getSequence().size(); |
| TIntermTyped* argNumItems = argAggregate->getSequence()[1]->getAsTyped(); // out num items |
| TIntermTyped* argStride = numArgs > 2 ? argAggregate->getSequence()[2]->getAsTyped() : nullptr; // out stride |
| |
| TIntermAggregate* body = nullptr; |
| |
| // Length output: |
| if (argArray->getType().isSizedArray()) { |
| const int length = argArray->getType().getOuterArraySize(); |
| TIntermTyped* assign = intermediate.addAssign(EOpAssign, argNumItems, |
| intermediate.addConstantUnion(length, loc, true), loc); |
| body = intermediate.growAggregate(body, assign, loc); |
| } else { |
| TIntermTyped* lengthCall = intermediate.addBuiltInFunctionCall(loc, EOpArrayLength, true, argArray, |
| argNumItems->getType()); |
| TIntermTyped* assign = intermediate.addAssign(EOpAssign, argNumItems, lengthCall, loc); |
| body = intermediate.growAggregate(body, assign, loc); |
| } |
| |
| // Stride output: |
| if (argStride != nullptr) { |
| int size; |
| int stride; |
| intermediate.getMemberAlignment(argArray->getType(), size, stride, argArray->getType().getQualifier().layoutPacking, |
| argArray->getType().getQualifier().layoutMatrix == ElmRowMajor); |
| |
| TIntermTyped* assign = intermediate.addAssign(EOpAssign, argStride, |
| intermediate.addConstantUnion(stride, loc, true), loc); |
| |
| body = intermediate.growAggregate(body, assign); |
| } |
| |
| body->setOperator(EOpSequence); |
| node = body; |
| } |
| |
| break; |
| |
| case EOpInterlockedAdd: |
| case EOpInterlockedAnd: |
| case EOpInterlockedExchange: |
| case EOpInterlockedMax: |
| case EOpInterlockedMin: |
| case EOpInterlockedOr: |
| case EOpInterlockedXor: |
| case EOpInterlockedCompareExchange: |
| case EOpInterlockedCompareStore: |
| { |
| // We'll replace the first argument with the block dereference, and let |
| // downstream decomposition handle the rest. |
| |
| TIntermSequence& sequence = argAggregate->getSequence(); |
| |
| TIntermTyped* argIndex = makeIntegerIndex(sequence[1]->getAsTyped()); // index |
| argIndex = intermediate.addBinaryNode(EOpRightShift, argIndex, intermediate.addConstantUnion(2, loc, true), |
| loc, TType(EbtInt)); |
| |
| const TOperator idxOp = (argIndex->getQualifier().storage == EvqConst) ? EOpIndexDirect : EOpIndexIndirect; |
| TIntermTyped* element = intermediate.addIndex(idxOp, argArray, argIndex, loc); |
| |
| const TType derefType(argArray->getType(), 0); |
| element->setType(derefType); |
| |
| // Replace the numeric byte offset parameter with array reference. |
| sequence[1] = element; |
| sequence.erase(sequence.begin(), sequence.begin()+1); |
| } |
| break; |
| |
| case EOpMethodIncrementCounter: |
| { |
| node = incDecCounter(1); |
| break; |
| } |
| |
| case EOpMethodDecrementCounter: |
| { |
| TIntermTyped* preIncValue = incDecCounter(-1); // result is original value |
| node = intermediate.addBinaryNode(EOpAdd, preIncValue, intermediate.addConstantUnion(-1, loc, true), loc, |
| preIncValue->getType()); |
| break; |
| } |
| |
| case EOpMethodAppend: |
| { |
| TIntermTyped* oldCounter = incDecCounter(1); |
| |
| TIntermTyped* lValue = intermediate.addIndex(EOpIndexIndirect, argArray, oldCounter, loc); |
| TIntermTyped* rValue = argAggregate->getSequence()[1]->getAsTyped(); |
| |
| const TType derefType(argArray->getType(), 0); |
| lValue->setType(derefType); |
| |
| node = intermediate.addAssign(EOpAssign, lValue, rValue, loc); |
| |
| break; |
| } |
| |
| case EOpMethodConsume: |
| { |
| TIntermTyped* oldCounter = incDecCounter(-1); |
| |
| TIntermTyped* newCounter = intermediate.addBinaryNode(EOpAdd, oldCounter, |
| intermediate.addConstantUnion(-1, loc, true), loc, |
| oldCounter->getType()); |
| |
| node = intermediate.addIndex(EOpIndexIndirect, argArray, newCounter, loc); |
| |
| const TType derefType(argArray->getType(), 0); |
| node->setType(derefType); |
| |
| break; |
| } |
| |
| default: |
| break; // most pass through unchanged |
| } |
| } |
| |
| // Create array of standard sample positions for given sample count. |
| // TODO: remove when a real method to query sample pos exists in SPIR-V. |
| TIntermConstantUnion* HlslParseContext::getSamplePosArray(int count) |
| { |
| struct tSamplePos { float x, y; }; |
| |
| static const tSamplePos pos1[] = { |
| { 0.0/16.0, 0.0/16.0 }, |
| }; |
| |
| // standard sample positions for 2, 4, 8, and 16 samples. |
| static const tSamplePos pos2[] = { |
| { 4.0/16.0, 4.0/16.0 }, {-4.0/16.0, -4.0/16.0 }, |
| }; |
| |
| static const tSamplePos pos4[] = { |
| {-2.0/16.0, -6.0/16.0 }, { 6.0/16.0, -2.0/16.0 }, {-6.0/16.0, 2.0/16.0 }, { 2.0/16.0, 6.0/16.0 }, |
| }; |
| |
| static const tSamplePos pos8[] = { |
| { 1.0/16.0, -3.0/16.0 }, {-1.0/16.0, 3.0/16.0 }, { 5.0/16.0, 1.0/16.0 }, {-3.0/16.0, -5.0/16.0 }, |
| {-5.0/16.0, 5.0/16.0 }, {-7.0/16.0, -1.0/16.0 }, { 3.0/16.0, 7.0/16.0 }, { 7.0/16.0, -7.0/16.0 }, |
| }; |
| |
| static const tSamplePos pos16[] = { |
| { 1.0/16.0, 1.0/16.0 }, {-1.0/16.0, -3.0/16.0 }, {-3.0/16.0, 2.0/16.0 }, { 4.0/16.0, -1.0/16.0 }, |
| {-5.0/16.0, -2.0/16.0 }, { 2.0/16.0, 5.0/16.0 }, { 5.0/16.0, 3.0/16.0 }, { 3.0/16.0, -5.0/16.0 }, |
| {-2.0/16.0, 6.0/16.0 }, { 0.0/16.0, -7.0/16.0 }, {-4.0/16.0, -6.0/16.0 }, {-6.0/16.0, 4.0/16.0 }, |
| {-8.0/16.0, 0.0/16.0 }, { 7.0/16.0, -4.0/16.0 }, { 6.0/16.0, 7.0/16.0 }, {-7.0/16.0, -8.0/16.0 }, |
| }; |
| |
| const tSamplePos* sampleLoc = nullptr; |
| int numSamples = count; |
| |
| switch (count) { |
| case 2: sampleLoc = pos2; break; |
| case 4: sampleLoc = pos4; break; |
| case 8: sampleLoc = pos8; break; |
| case 16: sampleLoc = pos16; break; |
| default: |
| sampleLoc = pos1; |
| numSamples = 1; |
| } |
| |
| TConstUnionArray* values = new TConstUnionArray(numSamples*2); |
| |
| for (int pos=0; pos<count; ++pos) { |
| TConstUnion x, y; |
| x.setDConst(sampleLoc[pos].x); |
| y.setDConst(sampleLoc[pos].y); |
| |
| (*values)[pos*2+0] = x; |
| (*values)[pos*2+1] = y; |
| } |
| |
| TType retType(EbtFloat, EvqConst, 2); |
| |
| if (numSamples != 1) { |
| TArraySizes* arraySizes = new TArraySizes; |
| arraySizes->addInnerSize(numSamples); |
| retType.transferArraySizes(arraySizes); |
| } |
| |
| return new TIntermConstantUnion(*values, retType); |
| } |
| |
| // |
| // Decompose DX9 and DX10 sample intrinsics & object methods into AST |
| // |
| void HlslParseContext::decomposeSampleMethods(const TSourceLoc& loc, TIntermTyped*& node, TIntermNode* arguments) |
| { |
| if (node == nullptr || !node->getAsOperator()) |
| return; |
| |
| // Sampler return must always be a vec4, but we can construct a shorter vector or a structure from it. |
| const auto convertReturn = [&loc, &node, this](TIntermTyped* result, const TSampler& sampler) -> TIntermTyped* { |
| result->setType(TType(node->getType().getBasicType(), EvqTemporary, node->getVectorSize())); |
| |
| TIntermTyped* convertedResult = nullptr; |
| |
| TType retType; |
| getTextureReturnType(sampler, retType); |
| |
| if (retType.isStruct()) { |
| // For type convenience, conversionAggregate points to the convertedResult (we know it's an aggregate here) |
| TIntermAggregate* conversionAggregate = new TIntermAggregate; |
| convertedResult = conversionAggregate; |
| |
| // Convert vector output to return structure. We will need a temp symbol to copy the results to. |
| TVariable* structVar = makeInternalVariable("@sampleStructTemp", retType); |
| |
| // We also need a temp symbol to hold the result of the texture. We don't want to re-fetch the |
| // sample each time we'll index into the result, so we'll copy to this, and index into the copy. |
| TVariable* sampleShadow = makeInternalVariable("@sampleResultShadow", result->getType()); |
| |
| // Initial copy from texture to our sample result shadow. |
| TIntermTyped* shadowCopy = intermediate.addAssign(EOpAssign, intermediate.addSymbol(*sampleShadow, loc), |
| result, loc); |
| |
| conversionAggregate->getSequence().push_back(shadowCopy); |
| |
| unsigned vec4Pos = 0; |
| |
| for (unsigned m = 0; m < unsigned(retType.getStruct()->size()); ++m) { |
| const TType memberType(retType, m); // dereferenced type of the member we're about to assign. |
| |
| // Check for bad struct members. This should have been caught upstream. Complain, because |
| // wwe don't know what to do with it. This algorithm could be generalized to handle |
| // other things, e.g, sub-structures, but HLSL doesn't allow them. |
| if (!memberType.isVector() && !memberType.isScalar()) { |
| error(loc, "expected: scalar or vector type in texture structure", "", ""); |
| return nullptr; |
| } |
| |
| // Index into the struct variable to find the member to assign. |
| TIntermTyped* structMember = intermediate.addIndex(EOpIndexDirectStruct, |
| intermediate.addSymbol(*structVar, loc), |
| intermediate.addConstantUnion(m, loc), loc); |
| |
| structMember->setType(memberType); |
| |
| // Assign each component of (possible) vector in struct member. |
| for (int component = 0; component < memberType.getVectorSize(); ++component) { |
| TIntermTyped* vec4Member = intermediate.addIndex(EOpIndexDirect, |
| intermediate.addSymbol(*sampleShadow, loc), |
| intermediate.addConstantUnion(vec4Pos++, loc), loc); |
| vec4Member->setType(TType(memberType.getBasicType(), EvqTemporary, 1)); |
| |
| TIntermTyped* memberAssign = nullptr; |
| |
| if (memberType.isVector()) { |
| // Vector member: we need to create an access chain to the vector component. |
| |
| TIntermTyped* structVecComponent = intermediate.addIndex(EOpIndexDirect, structMember, |
| intermediate.addConstantUnion(component, loc), loc); |
| |
| memberAssign = intermediate.addAssign(EOpAssign, structVecComponent, vec4Member, loc); |
| } else { |
| // Scalar member: we can assign to it directly. |
| memberAssign = intermediate.addAssign(EOpAssign, structMember, vec4Member, loc); |
| } |
| |
| |
| conversionAggregate->getSequence().push_back(memberAssign); |
| } |
| } |
| |
| // Add completed variable so the expression results in the whole struct value we just built. |
| conversionAggregate->getSequence().push_back(intermediate.addSymbol(*structVar, loc)); |
| |
| // Make it a sequence. |
| intermediate.setAggregateOperator(conversionAggregate, EOpSequence, retType, loc); |
| } else { |
| // vector clamp the output if template vector type is smaller than sample result. |
| if (retType.getVectorSize() < node->getVectorSize()) { |
| // Too many components. Construct shorter vector from it. |
| const TOperator op = intermediate.mapTypeToConstructorOp(retType); |
| |
| convertedResult = constructBuiltIn(retType, op, result, loc, false); |
| } else { |
| // Enough components. Use directly. |
| convertedResult = result; |
| } |
| } |
| |
| convertedResult->setLoc(loc); |
| return convertedResult; |
| }; |
| |
| const TOperator op = node->getAsOperator()->getOp(); |
| const TIntermAggregate* argAggregate = arguments ? arguments->getAsAggregate() : nullptr; |
| |
| // Bail out if not a sampler method. |
| // Note though this is odd to do before checking the op, because the op |
| // could be something that takes the arguments, and the function in question |
| // takes the result of the op. So, this is not the final word. |
| if (arguments != nullptr) { |
| if (argAggregate == nullptr) { |
| if (arguments->getAsTyped()->getBasicType() != EbtSampler) |
| return; |
| } else { |
| if (argAggregate->getSequence().size() == 0 || |
| argAggregate->getSequence()[0] == nullptr || |
| argAggregate->getSequence()[0]->getAsTyped()->getBasicType() != EbtSampler) |
| return; |
| } |
| } |
| |
| switch (op) { |
| // **** DX9 intrinsics: **** |
| case EOpTexture: |
| { |
| // Texture with ddx & ddy is really gradient form in HLSL |
| if (argAggregate->getSequence().size() == 4) |
| node->getAsAggregate()->setOperator(EOpTextureGrad); |
| |
| break; |
| } |
| case EOpTextureLod: //is almost EOpTextureBias (only args & operations are different) |
| { |
| TIntermTyped *argSamp = argAggregate->getSequence()[0]->getAsTyped(); // sampler |
| TIntermTyped *argCoord = argAggregate->getSequence()[1]->getAsTyped(); // coord |
| |
| assert(argCoord->getVectorSize() == 4); |
| TIntermTyped *w = intermediate.addConstantUnion(3, loc, true); |
| TIntermTyped *argLod = intermediate.addIndex(EOpIndexDirect, argCoord, w, loc); |
| |
| TOperator constructOp = EOpNull; |
| const TSampler &sampler = argSamp->getType().getSampler(); |
| int coordSize = 0; |
| |
| switch (sampler.dim) |
| { |
| case Esd1D: constructOp = EOpConstructFloat; coordSize = 1; break; // 1D |
| case Esd2D: constructOp = EOpConstructVec2; coordSize = 2; break; // 2D |
| case Esd3D: constructOp = EOpConstructVec3; coordSize = 3; break; // 3D |
| case EsdCube: constructOp = EOpConstructVec3; coordSize = 3; break; // also 3D |
| default: |
| break; |
| } |
| |
| TIntermAggregate *constructCoord = new TIntermAggregate(constructOp); |
| constructCoord->getSequence().push_back(argCoord); |
| constructCoord->setLoc(loc); |
| constructCoord->setType(TType(argCoord->getBasicType(), EvqTemporary, coordSize)); |
| |
| TIntermAggregate *tex = new TIntermAggregate(EOpTextureLod); |
| tex->getSequence().push_back(argSamp); // sampler |
| tex->getSequence().push_back(constructCoord); // coordinate |
| tex->getSequence().push_back(argLod); // lod |
| |
| node = convertReturn(tex, sampler); |
| |
| break; |
| } |
| |
| case EOpTextureBias: |
| { |
| TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped(); // sampler |
| TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped(); // coord |
| |
| // HLSL puts bias in W component of coordinate. We extract it and add it to |
| // the argument list, instead |
| TIntermTyped* w = intermediate.addConstantUnion(3, loc, true); |
| TIntermTyped* bias = intermediate.addIndex(EOpIndexDirect, arg1, w, loc); |
| |
| TOperator constructOp = EOpNull; |
| const TSampler& sampler = arg0->getType().getSampler(); |
| |
| switch (sampler.dim) { |
| case Esd1D: constructOp = EOpConstructFloat; break; // 1D |
| case Esd2D: constructOp = EOpConstructVec2; break; // 2D |
| case Esd3D: constructOp = EOpConstructVec3; break; // 3D |
| case EsdCube: constructOp = EOpConstructVec3; break; // also 3D |
| default: break; |
| } |
| |
| TIntermAggregate* constructCoord = new TIntermAggregate(constructOp); |
| constructCoord->getSequence().push_back(arg1); |
| constructCoord->setLoc(loc); |
| |
| // The input vector should never be less than 2, since there's always a bias. |
| // The max is for safety, and should be a no-op. |
| constructCoord->setType(TType(arg1->getBasicType(), EvqTemporary, std::max(arg1->getVectorSize() - 1, 0))); |
| |
| TIntermAggregate* tex = new TIntermAggregate(EOpTexture); |
| tex->getSequence().push_back(arg0); // sampler |
| tex->getSequence().push_back(constructCoord); // coordinate |
| tex->getSequence().push_back(bias); // bias |
| |
| node = convertReturn(tex, sampler); |
| |
| break; |
| } |
| |
| // **** DX10 methods: **** |
| case EOpMethodSample: // fall through |
| case EOpMethodSampleBias: // ... |
| { |
| TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped(); |
| TIntermTyped* argSamp = argAggregate->getSequence()[1]->getAsTyped(); |
| TIntermTyped* argCoord = argAggregate->getSequence()[2]->getAsTyped(); |
| TIntermTyped* argBias = nullptr; |
| TIntermTyped* argOffset = nullptr; |
| const TSampler& sampler = argTex->getType().getSampler(); |
| |
| int nextArg = 3; |
| |
| if (op == EOpMethodSampleBias) // SampleBias has a bias arg |
| argBias = argAggregate->getSequence()[nextArg++]->getAsTyped(); |
| |
| TOperator textureOp = EOpTexture; |
| |
| if ((int)argAggregate->getSequence().size() == (nextArg+1)) { // last parameter is offset form |
| textureOp = EOpTextureOffset; |
| argOffset = argAggregate->getSequence()[nextArg++]->getAsTyped(); |
| } |
| |
| TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp); |
| |
| TIntermAggregate* txsample = new TIntermAggregate(textureOp); |
| txsample->getSequence().push_back(txcombine); |
| txsample->getSequence().push_back(argCoord); |
| |
| if (argBias != nullptr) |
| txsample->getSequence().push_back(argBias); |
| |
| if (argOffset != nullptr) |
| txsample->getSequence().push_back(argOffset); |
| |
| node = convertReturn(txsample, sampler); |
| |
| break; |
| } |
| |
| case EOpMethodSampleGrad: // ... |
| { |
| TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped(); |
| TIntermTyped* argSamp = argAggregate->getSequence()[1]->getAsTyped(); |
| TIntermTyped* argCoord = argAggregate->getSequence()[2]->getAsTyped(); |
| TIntermTyped* argDDX = argAggregate->getSequence()[3]->getAsTyped(); |
| TIntermTyped* argDDY = argAggregate->getSequence()[4]->getAsTyped(); |
| TIntermTyped* argOffset = nullptr; |
| const TSampler& sampler = argTex->getType().getSampler(); |
| |
| TOperator textureOp = EOpTextureGrad; |
| |
| if (argAggregate->getSequence().size() == 6) { // last parameter is offset form |
| textureOp = EOpTextureGradOffset; |
| argOffset = argAggregate->getSequence()[5]->getAsTyped(); |
| } |
| |
| TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp); |
| |
| TIntermAggregate* txsample = new TIntermAggregate(textureOp); |
| txsample->getSequence().push_back(txcombine); |
| txsample->getSequence().push_back(argCoord); |
| txsample->getSequence().push_back(argDDX); |
| txsample->getSequence().push_back(argDDY); |
| |
| if (argOffset != nullptr) |
| txsample->getSequence().push_back(argOffset); |
| |
| node = convertReturn(txsample, sampler); |
| |
| break; |
| } |
| |
| case EOpMethodGetDimensions: |
| { |
| // AST returns a vector of results, which we break apart component-wise into |
| // separate values to assign to the HLSL method's outputs, ala: |
| // tx . GetDimensions(width, height); |
| // float2 sizeQueryTemp = EOpTextureQuerySize |
| // width = sizeQueryTemp.X; |
| // height = sizeQueryTemp.Y; |
| |
| TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped(); |
| const TType& texType = argTex->getType(); |
| |
| assert(texType.getBasicType() == EbtSampler); |
| |
| const TSampler& sampler = texType.getSampler(); |
| const TSamplerDim dim = sampler.dim; |
| const bool isImage = sampler.isImage(); |
| const bool isMs = sampler.isMultiSample(); |
| const int numArgs = (int)argAggregate->getSequence().size(); |
| |
| int numDims = 0; |
| |
| switch (dim) { |
| case Esd1D: numDims = 1; break; // W |
| case Esd2D: numDims = 2; break; // W, H |
| case Esd3D: numDims = 3; break; // W, H, D |
| case EsdCube: numDims = 2; break; // W, H (cube) |
| case EsdBuffer: numDims = 1; break; // W (buffers) |
| case EsdRect: numDims = 2; break; // W, H (rect) |
| default: |
| assert(0 && "unhandled texture dimension"); |
| } |
| |
| // Arrayed adds another dimension for the number of array elements |
| if (sampler.isArrayed()) |
| ++numDims; |
| |
| // Establish whether the method itself is querying mip levels. This can be false even |
| // if the underlying query requires a MIP level, due to the available HLSL method overloads. |
| const bool mipQuery = (numArgs > (numDims + 1 + (isMs ? 1 : 0))); |
| |
| // Establish whether we must use the LOD form of query (even if the method did not supply a mip level to query). |
| // True if: |
| // 1. 1D/2D/3D/Cube AND multisample==0 AND NOT image (those can be sent to the non-LOD query) |
| // or, |
| // 2. There is a LOD (because the non-LOD query cannot be used in that case, per spec) |
| const bool mipRequired = |
| ((dim == Esd1D || dim == Esd2D || dim == Esd3D || dim == EsdCube) && !isMs && !isImage) || // 1... |
| mipQuery; // 2... |
| |
| // AST assumes integer return. Will be converted to float if required. |
| TIntermAggregate* sizeQuery = new TIntermAggregate(isImage ? EOpImageQuerySize : EOpTextureQuerySize); |
| sizeQuery->getSequence().push_back(argTex); |
| |
| // If we're building an LOD query, add the LOD. |
| if (mipRequired) { |
| // If the base HLSL query had no MIP level given, use level 0. |
| TIntermTyped* queryLod = mipQuery ? argAggregate->getSequence()[1]->getAsTyped() : |
| intermediate.addConstantUnion(0, loc, true); |
| sizeQuery->getSequence().push_back(queryLod); |
| } |
| |
| sizeQuery->setType(TType(EbtUint, EvqTemporary, numDims)); |
| sizeQuery->setLoc(loc); |
| |
| // Return value from size query |
| TVariable* tempArg = makeInternalVariable("sizeQueryTemp", sizeQuery->getType()); |
| tempArg->getWritableType().getQualifier().makeTemporary(); |
| TIntermTyped* sizeQueryAssign = intermediate.addAssign(EOpAssign, |
| intermediate.addSymbol(*tempArg, loc), |
| sizeQuery, loc); |
| |
| // Compound statement for assigning outputs |
| TIntermAggregate* compoundStatement = intermediate.makeAggregate(sizeQueryAssign, loc); |
| // Index of first output parameter |
| const int outParamBase = mipQuery ? 2 : 1; |
| |
| for (int compNum = 0; compNum < numDims; ++compNum) { |
| TIntermTyped* indexedOut = nullptr; |
| TIntermSymbol* sizeQueryReturn = intermediate.addSymbol(*tempArg, loc); |
| |
| if (numDims > 1) { |
| TIntermTyped* component = intermediate.addConstantUnion(compNum, loc, true); |
| indexedOut = intermediate.addIndex(EOpIndexDirect, sizeQueryReturn, component, loc); |
| indexedOut->setType(TType(EbtUint, EvqTemporary, 1)); |
| indexedOut->setLoc(loc); |
| } else { |
| indexedOut = sizeQueryReturn; |
| } |
| |
| TIntermTyped* outParam = argAggregate->getSequence()[outParamBase + compNum]->getAsTyped(); |
| TIntermTyped* compAssign = intermediate.addAssign(EOpAssign, outParam, indexedOut, loc); |
| |
| compoundStatement = intermediate.growAggregate(compoundStatement, compAssign); |
| } |
| |
| // handle mip level parameter |
| if (mipQuery) { |
| TIntermTyped* outParam = argAggregate->getSequence()[outParamBase + numDims]->getAsTyped(); |
| |
| TIntermAggregate* levelsQuery = new TIntermAggregate(EOpTextureQueryLevels); |
| levelsQuery->getSequence().push_back(argTex); |
| levelsQuery->setType(TType(EbtUint, EvqTemporary, 1)); |
| levelsQuery->setLoc(loc); |
| |
| TIntermTyped* compAssign = intermediate.addAssign(EOpAssign, outParam, levelsQuery, loc); |
| compoundStatement = intermediate.growAggregate(compoundStatement, compAssign); |
| } |
| |
| // 2DMS formats query # samples, which needs a different query op |
| if (sampler.isMultiSample()) { |
| TIntermTyped* outParam = argAggregate->getSequence()[outParamBase + numDims]->getAsTyped(); |
| |
| TIntermAggregate* samplesQuery = new TIntermAggregate(EOpImageQuerySamples); |
| samplesQuery->getSequence().push_back(argTex); |
| samplesQuery->setType(TType(EbtUint, EvqTemporary, 1)); |
| samplesQuery->setLoc(loc); |
| |
| TIntermTyped* compAssign = intermediate.addAssign(EOpAssign, outParam, samplesQuery, loc); |
| compoundStatement = intermediate.growAggregate(compoundStatement, compAssign); |
| } |
| |
| compoundStatement->setOperator(EOpSequence); |
| compoundStatement->setLoc(loc); |
| compoundStatement->setType(TType(EbtVoid)); |
| |
| node = compoundStatement; |
| |
| break; |
| } |
| |
| case EOpMethodSampleCmp: // fall through... |
| case EOpMethodSampleCmpLevelZero: |
| { |
| TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped(); |
| TIntermTyped* argSamp = argAggregate->getSequence()[1]->getAsTyped(); |
| TIntermTyped* argCoord = argAggregate->getSequence()[2]->getAsTyped(); |
| TIntermTyped* argCmpVal = argAggregate->getSequence()[3]->getAsTyped(); |
| TIntermTyped* argOffset = nullptr; |
| |
| // Sampler argument should be a sampler. |
| if (argSamp->getType().getBasicType() != EbtSampler) { |
| error(loc, "expected: sampler type", "", ""); |
| return; |
| } |
| |
| // Sampler should be a SamplerComparisonState |
| if (! argSamp->getType().getSampler().isShadow()) { |
| error(loc, "expected: SamplerComparisonState", "", ""); |
| return; |
| } |
| |
| // optional offset value |
| if (argAggregate->getSequence().size() > 4) |
| argOffset = argAggregate->getSequence()[4]->getAsTyped(); |
| |
| const int coordDimWithCmpVal = argCoord->getType().getVectorSize() + 1; // +1 for cmp |
| |
| // AST wants comparison value as one of the texture coordinates |
| TOperator constructOp = EOpNull; |
| switch (coordDimWithCmpVal) { |
| // 1D can't happen: there's always at least 1 coordinate dimension + 1 cmp val |
| case 2: constructOp = EOpConstructVec2; break; |
| case 3: constructOp = EOpConstructVec3; break; |
| case 4: constructOp = EOpConstructVec4; break; |
| case 5: constructOp = EOpConstructVec4; break; // cubeArrayShadow, cmp value is separate arg. |
| default: assert(0); break; |
| } |
| |
| TIntermAggregate* coordWithCmp = new TIntermAggregate(constructOp); |
| coordWithCmp->getSequence().push_back(argCoord); |
| if (coordDimWithCmpVal != 5) // cube array shadow is special. |
| coordWithCmp->getSequence().push_back(argCmpVal); |
| coordWithCmp->setLoc(loc); |
| coordWithCmp->setType(TType(argCoord->getBasicType(), EvqTemporary, std::min(coordDimWithCmpVal, 4))); |
| |
| TOperator textureOp = (op == EOpMethodSampleCmpLevelZero ? EOpTextureLod : EOpTexture); |
| if (argOffset != nullptr) |
| textureOp = (op == EOpMethodSampleCmpLevelZero ? EOpTextureLodOffset : EOpTextureOffset); |
| |
| // Create combined sampler & texture op |
| TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp); |
| TIntermAggregate* txsample = new TIntermAggregate(textureOp); |
| txsample->getSequence().push_back(txcombine); |
| txsample->getSequence().push_back(coordWithCmp); |
| |
| if (coordDimWithCmpVal == 5) // cube array shadow is special: cmp val follows coord. |
| txsample->getSequence().push_back(argCmpVal); |
| |
| // the LevelZero form uses 0 as an explicit LOD |
| if (op == EOpMethodSampleCmpLevelZero) |
| txsample->getSequence().push_back(intermediate.addConstantUnion(0.0, EbtFloat, loc, true)); |
| |
| // Add offset if present |
| if (argOffset != nullptr) |
| txsample->getSequence().push_back(argOffset); |
| |
| txsample->setType(node->getType()); |
| txsample->setLoc(loc); |
| node = txsample; |
| |
| break; |
| } |
| |
| case EOpMethodLoad: |
| { |
| TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped(); |
| TIntermTyped* argCoord = argAggregate->getSequence()[1]->getAsTyped(); |
| TIntermTyped* argOffset = nullptr; |
| TIntermTyped* lodComponent = nullptr; |
| TIntermTyped* coordSwizzle = nullptr; |
| |
| const TSampler& sampler = argTex->getType().getSampler(); |
| const bool isMS = sampler.isMultiSample(); |
| const bool isBuffer = sampler.dim == EsdBuffer; |
| const bool isImage = sampler.isImage(); |
| const TBasicType coordBaseType = argCoord->getType().getBasicType(); |
| |
| // Last component of coordinate is the mip level, for non-MS. we separate them here: |
| if (isMS || isBuffer || isImage) { |
| // MS, Buffer, and Image have no LOD |
| coordSwizzle = argCoord; |
| } else { |
| // Extract coordinate |
| int swizzleSize = argCoord->getType().getVectorSize() - (isMS ? 0 : 1); |
| TSwizzleSelectors<TVectorSelector> coordFields; |
| for (int i = 0; i < swizzleSize; ++i) |
| coordFields.push_back(i); |
| TIntermTyped* coordIdx = intermediate.addSwizzle(coordFields, loc); |
| coordSwizzle = intermediate.addIndex(EOpVectorSwizzle, argCoord, coordIdx, loc); |
| coordSwizzle->setType(TType(coordBaseType, EvqTemporary, coordFields.size())); |
| |
| // Extract LOD |
| TIntermTyped* lodIdx = intermediate.addConstantUnion(coordFields.size(), loc, true); |
| lodComponent = intermediate.addIndex(EOpIndexDirect, argCoord, lodIdx, loc); |
| lodComponent->setType(TType(coordBaseType, EvqTemporary, 1)); |
| } |
| |
| const int numArgs = (int)argAggregate->getSequence().size(); |
| const bool hasOffset = ((!isMS && numArgs == 3) || (isMS && numArgs == 4)); |
| |
| // Create texel fetch |
| const TOperator fetchOp = (isImage ? EOpImageLoad : |
| hasOffset ? EOpTextureFetchOffset : |
| EOpTextureFetch); |
| TIntermAggregate* txfetch = new TIntermAggregate(fetchOp); |
| |
| // Build up the fetch |
| txfetch->getSequence().push_back(argTex); |
| txfetch->getSequence().push_back(coordSwizzle); |
| |
| if (isMS) { |
| // add 2DMS sample index |
| TIntermTyped* argSampleIdx = argAggregate->getSequence()[2]->getAsTyped(); |
| txfetch->getSequence().push_back(argSampleIdx); |
| } else if (isBuffer) { |
| // Nothing else to do for buffers. |
| } else if (isImage) { |
| // Nothing else to do for images. |
| } else { |
| // 2DMS and buffer have no LOD, but everything else does. |
| txfetch->getSequence().push_back(lodComponent); |
| } |
| |
| // Obtain offset arg, if there is one. |
| if (hasOffset) { |
| const int offsetPos = (isMS ? 3 : 2); |
| argOffset = argAggregate->getSequence()[offsetPos]->getAsTyped(); |
| txfetch->getSequence().push_back(argOffset); |
| } |
| |
| node = convertReturn(txfetch, sampler); |
| |
| break; |
| } |
| |
| case EOpMethodSampleLevel: |
| { |
| TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped(); |
| TIntermTyped* argSamp = argAggregate->getSequence()[1]->getAsTyped(); |
| TIntermTyped* argCoord = argAggregate->getSequence()[2]->getAsTyped(); |
| TIntermTyped* argLod = argAggregate->getSequence()[3]->getAsTyped(); |
| TIntermTyped* argOffset = nullptr; |
| const TSampler& sampler = argTex->getType().getSampler(); |
| |
| const int numArgs = (int)argAggregate->getSequence().size(); |
| |
| if (numArgs == 5) // offset, if present |
| argOffset = argAggregate->getSequence()[4]->getAsTyped(); |
| |
| const TOperator textureOp = (argOffset == nullptr ? EOpTextureLod : EOpTextureLodOffset); |
| TIntermAggregate* txsample = new TIntermAggregate(textureOp); |
| |
| TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp); |
| |
| txsample->getSequence().push_back(txcombine); |
| txsample->getSequence().push_back(argCoord); |
| txsample->getSequence().push_back(argLod); |
| |
| if (argOffset != nullptr) |
| txsample->getSequence().push_back(argOffset); |
| |
| node = convertReturn(txsample, sampler); |
| |
| break; |
| } |
| |
| case EOpMethodGather: |
| { |
| TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped(); |
| TIntermTyped* argSamp = argAggregate->getSequence()[1]->getAsTyped(); |
| TIntermTyped* argCoord = argAggregate->getSequence()[2]->getAsTyped(); |
| TIntermTyped* argOffset = nullptr; |
| |
| // Offset is optional |
| if (argAggregate->getSequence().size() > 3) |
| argOffset = argAggregate->getSequence()[3]->getAsTyped(); |
| |
| const TOperator textureOp = (argOffset == nullptr ? EOpTextureGather : EOpTextureGatherOffset); |
| TIntermAggregate* txgather = new TIntermAggregate(textureOp); |
| |
| TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp); |
| |
| txgather->getSequence().push_back(txcombine); |
| txgather->getSequence().push_back(argCoord); |
| // Offset if not given is implicitly channel 0 (red) |
| |
| if (argOffset != nullptr) |
| txgather->getSequence().push_back(argOffset); |
| |
| txgather->setType(node->getType()); |
| txgather->setLoc(loc); |
| node = txgather; |
| |
| break; |
| } |
| |
| case EOpMethodGatherRed: // fall through... |
| case EOpMethodGatherGreen: // ... |
| case EOpMethodGatherBlue: // ... |
| case EOpMethodGatherAlpha: // ... |
| case EOpMethodGatherCmpRed: // ... |
| case EOpMethodGatherCmpGreen: // ... |
| case EOpMethodGatherCmpBlue: // ... |
| case EOpMethodGatherCmpAlpha: // ... |
| { |
| int channel = 0; // the channel we are gathering |
| int cmpValues = 0; // 1 if there is a compare value (handier than a bool below) |
| |
| switch (op) { |
| case EOpMethodGatherCmpRed: cmpValues = 1; // fall through |
| case EOpMethodGatherRed: channel = 0; break; |
| case EOpMethodGatherCmpGreen: cmpValues = 1; // fall through |
| case EOpMethodGatherGreen: channel = 1; break; |
| case EOpMethodGatherCmpBlue: cmpValues = 1; // fall through |
| case EOpMethodGatherBlue: channel = 2; break; |
| case EOpMethodGatherCmpAlpha: cmpValues = 1; // fall through |
| case EOpMethodGatherAlpha: channel = 3; break; |
| default: assert(0); break; |
| } |
| |
| // For now, we have nothing to map the component-wise comparison forms |
| // to, because neither GLSL nor SPIR-V has such an opcode. Issue an |
| // unimplemented error instead. Most of the machinery is here if that |
| // should ever become available. However, red can be passed through |
| // to OpImageDrefGather. G/B/A cannot, because that opcode does not |
| // accept a component. |
| if (cmpValues != 0 && op != EOpMethodGatherCmpRed) { |
| error(loc, "unimplemented: component-level gather compare", "", ""); |
| return; |
| } |
| |
| int arg = 0; |
| |
| TIntermTyped* argTex = argAggregate->getSequence()[arg++]->getAsTyped(); |
| TIntermTyped* argSamp = argAggregate->getSequence()[arg++]->getAsTyped(); |
| TIntermTyped* argCoord = argAggregate->getSequence()[arg++]->getAsTyped(); |
| TIntermTyped* argOffset = nullptr; |
| TIntermTyped* argOffsets[4] = { nullptr, nullptr, nullptr, nullptr }; |
| // TIntermTyped* argStatus = nullptr; // TODO: residency |
| TIntermTyped* argCmp = nullptr; |
| |
| const TSamplerDim dim = argTex->getType().getSampler().dim; |
| |
| const int argSize = (int)argAggregate->getSequence().size(); |
| bool hasStatus = (argSize == (5+cmpValues) || argSize == (8+cmpValues)); |
| bool hasOffset1 = false; |
| bool hasOffset4 = false; |
| |
| // Sampler argument should be a sampler. |
| if (argSamp->getType().getBasicType() != EbtSampler) { |
| error(loc, "expected: sampler type", "", ""); |
| return; |
| } |
| |
| // Cmp forms require SamplerComparisonState |
| if (cmpValues > 0 && ! argSamp->getType().getSampler().isShadow()) { |
| error(loc, "expected: SamplerComparisonState", "", ""); |
| return; |
| } |
| |
| // Only 2D forms can have offsets. Discover if we have 0, 1 or 4 offsets. |
| if (dim == Esd2D) { |
| hasOffset1 = (argSize == (4+cmpValues) || argSize == (5+cmpValues)); |
| hasOffset4 = (argSize == (7+cmpValues) || argSize == (8+cmpValues)); |
| } |
| |
| assert(!(hasOffset1 && hasOffset4)); |
| |
| TOperator textureOp = EOpTextureGather; |
| |
| // Compare forms have compare value |
| if (cmpValues != 0) |
| argCmp = argOffset = argAggregate->getSequence()[arg++]->getAsTyped(); |
| |
| // Some forms have single offset |
| if (hasOffset1) { |
| textureOp = EOpTextureGatherOffset; // single offset form |
| argOffset = argAggregate->getSequence()[arg++]->getAsTyped(); |
| } |
| |
| // Some forms have 4 gather offsets |
| if (hasOffset4) { |
| textureOp = EOpTextureGatherOffsets; // note plural, for 4 offset form |
| for (int offsetNum = 0; offsetNum < 4; ++offsetNum) |
| argOffsets[offsetNum] = argAggregate->getSequence()[arg++]->getAsTyped(); |
| } |
| |
| // Residency status |
| if (hasStatus) { |
| // argStatus = argAggregate->getSequence()[arg++]->getAsTyped(); |
| error(loc, "unimplemented: residency status", "", ""); |
| return; |
| } |
| |
| TIntermAggregate* txgather = new TIntermAggregate(textureOp); |
| TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp); |
| |
| TIntermTyped* argChannel = intermediate.addConstantUnion(channel, loc, true); |
| |
| txgather->getSequence().push_back(txcombine); |
| txgather->getSequence().push_back(argCoord); |
| |
| // AST wants an array of 4 offsets, where HLSL has separate args. Here |
| // we construct an array from the separate args. |
| if (hasOffset4) { |
| TType arrayType(EbtInt, EvqTemporary, 2); |
| TArraySizes* arraySizes = new TArraySizes; |
| arraySizes->addInnerSize(4); |
| arrayType.transferArraySizes(arraySizes); |
| |
| TIntermAggregate* initList = new TIntermAggregate(EOpNull); |
| |
| for (int offsetNum = 0; offsetNum < 4; ++offsetNum) |
| initList->getSequence().push_back(argOffsets[offsetNum]); |
| |
| argOffset = addConstructor(loc, initList, arrayType); |
| } |
| |
| // Add comparison value if we have one |
| if (argCmp != nullptr) |
| txgather->getSequence().push_back(argCmp); |
| |
| // Add offset (either 1, or an array of 4) if we have one |
| if (argOffset != nullptr) |
| txgather->getSequence().push_back(argOffset); |
| |
| // Add channel value if the sampler is not shadow |
| if (! argSamp->getType().getSampler().isShadow()) |
| txgather->getSequence().push_back(argChannel); |
| |
| txgather->setType(node->getType()); |
| txgather->setLoc(loc); |
| node = txgather; |
| |
| break; |
| } |
| |
| case EOpMethodCalculateLevelOfDetail: |
| case EOpMethodCalculateLevelOfDetailUnclamped: |
| { |
| TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped(); |
| TIntermTyped* argSamp = argAggregate->getSequence()[1]->getAsTyped(); |
| TIntermTyped* argCoord = argAggregate->getSequence()[2]->getAsTyped(); |
| |
| TIntermAggregate* txquerylod = new TIntermAggregate(EOpTextureQueryLod); |
| |
| TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp); |
| txquerylod->getSequence().push_back(txcombine); |
| txquerylod->getSequence().push_back(argCoord); |
| |
| TIntermTyped* lodComponent = intermediate.addConstantUnion( |
| op == EOpMethodCalculateLevelOfDetail ? 0 : 1, |
| loc, true); |
| TIntermTyped* lodComponentIdx = intermediate.addIndex(EOpIndexDirect, txquerylod, lodComponent, loc); |
| lodComponentIdx->setType(TType(EbtFloat, EvqTemporary, 1)); |
| node = lodComponentIdx; |
| |
| break; |
| } |
| |
| case EOpMethodGetSamplePosition: |
| { |
| // TODO: this entire decomposition exists because there is not yet a way to query |
| // the sample position directly through SPIR-V. Instead, we return fixed sample |
| // positions for common cases. *** If the sample positions are set differently, |
| // this will be wrong. *** |
| |
| TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped(); |
| TIntermTyped* argSampIdx = argAggregate->getSequence()[1]->getAsTyped(); |
| |
| TIntermAggregate* samplesQuery = new TIntermAggregate(EOpImageQuerySamples); |
| samplesQuery->getSequence().push_back(argTex); |
| samplesQuery->setType(TType(EbtUint, EvqTemporary, 1)); |
| samplesQuery->setLoc(loc); |
| |
| TIntermAggregate* compoundStatement = nullptr; |
| |
| TVariable* outSampleCount = makeInternalVariable("@sampleCount", TType(EbtUint)); |
| outSampleCount->getWritableType().getQualifier().makeTemporary(); |
| TIntermTyped* compAssign = intermediate.addAssign(EOpAssign, intermediate.addSymbol(*outSampleCount, loc), |
| samplesQuery, loc); |
| compoundStatement = intermediate.growAggregate(compoundStatement, compAssign); |
| |
| TIntermTyped* idxtest[4]; |
| |
| // Create tests against 2, 4, 8, and 16 sample values |
| int count = 0; |
| for (int val = 2; val <= 16; val *= 2) |
| idxtest[count++] = |
| intermediate.addBinaryNode(EOpEqual, |
| intermediate.addSymbol(*outSampleCount, loc), |
| intermediate.addConstantUnion(val, loc), |
| loc, TType(EbtBool)); |
| |
| const TOperator idxOp = (argSampIdx->getQualifier().storage == EvqConst) ? EOpIndexDirect : EOpIndexIndirect; |
| |
| // Create index ops into position arrays given sample index. |
| // TODO: should it be clamped? |
| TIntermTyped* index[4]; |
| count = 0; |
| for (int val = 2; val <= 16; val *= 2) { |
| index[count] = intermediate.addIndex(idxOp, getSamplePosArray(val), argSampIdx, loc); |
| index[count++]->setType(TType(EbtFloat, EvqTemporary, 2)); |
| } |
| |
| // Create expression as: |
| // (sampleCount == 2) ? pos2[idx] : |
| // (sampleCount == 4) ? pos4[idx] : |
| // (sampleCount == 8) ? pos8[idx] : |
| // (sampleCount == 16) ? pos16[idx] : float2(0,0); |
| TIntermTyped* test = |
| intermediate.addSelection(idxtest[0], index[0], |
| intermediate.addSelection(idxtest[1], index[1], |
| intermediate.addSelection(idxtest[2], index[2], |
| intermediate.addSelection(idxtest[3], index[3], |
| getSamplePosArray(1), loc), loc), loc), loc); |
| |
| compoundStatement = intermediate.growAggregate(compoundStatement, test); |
| compoundStatement->setOperator(EOpSequence); |
| compoundStatement->setLoc(loc); |
| compoundStatement->setType(TType(EbtFloat, EvqTemporary, 2)); |
| |
| node = compoundStatement; |
| |
| break; |
| } |
| |
| case EOpSubpassLoad: |
| { |
| const TIntermTyped* argSubpass = |
| argAggregate ? argAggregate->getSequence()[0]->getAsTyped() : |
| arguments->getAsTyped(); |
| |
| const TSampler& sampler = argSubpass->getType().getSampler(); |
| |
| // subpass load: the multisample form is overloaded. Here, we convert that to |
| // the EOpSubpassLoadMS opcode. |
| if (argAggregate != nullptr && argAggregate->getSequence().size() > 1) |
| node->getAsOperator()->setOp(EOpSubpassLoadMS); |
| |
| node = convertReturn(node, sampler); |
| |
| break; |
| } |
| |
| |
| default: |
| break; // most pass through unchanged |
| } |
| } |
| |
| // |
| // Decompose geometry shader methods |
| // |
| void HlslParseContext::decomposeGeometryMethods(const TSourceLoc& loc, TIntermTyped*& node, TIntermNode* arguments) |
| { |
| if (node == nullptr || !node->getAsOperator()) |
| return; |
| |
| const TOperator op = node->getAsOperator()->getOp(); |
| const TIntermAggregate* argAggregate = arguments ? arguments->getAsAggregate() : nullptr; |
| |
| switch (op) { |
| case EOpMethodAppend: |
| if (argAggregate) { |
| // Don't emit these for non-GS stage, since we won't have the gsStreamOutput symbol. |
| if (language != EShLangGeometry) { |
| node = nullptr; |
| return; |
| } |
| |
| TIntermAggregate* sequence = nullptr; |
| TIntermAggregate* emit = new TIntermAggregate(EOpEmitVertex); |
| |
| emit->setLoc(loc); |
| emit->setType(TType(EbtVoid)); |
| |
| TIntermTyped* data = argAggregate->getSequence()[1]->getAsTyped(); |
| |
| // This will be patched in finalization during finalizeAppendMethods() |
| sequence = intermediate.growAggregate(sequence, data, loc); |
| sequence = intermediate.growAggregate(sequence, emit); |
| |
| sequence->setOperator(EOpSequence); |
| sequence->setLoc(loc); |
| sequence->setType(TType(EbtVoid)); |
| |
| gsAppends.push_back({sequence, loc}); |
| |
| node = sequence; |
| } |
| break; |
| |
| case EOpMethodRestartStrip: |
| { |
| // Don't emit these for non-GS stage, since we won't have the gsStreamOutput symbol. |
| if (language != EShLangGeometry) { |
| node = nullptr; |
| return; |
| } |
| |
| TIntermAggregate* cut = new TIntermAggregate(EOpEndPrimitive); |
| cut->setLoc(loc); |
| cut->setType(TType(EbtVoid)); |
| node = cut; |
| } |
| break; |
| |
| default: |
| break; // most pass through unchanged |
| } |
| } |
| |
| // |
| // Optionally decompose intrinsics to AST opcodes. |
| // |
| void HlslParseContext::decomposeIntrinsic(const TSourceLoc& loc, TIntermTyped*& node, TIntermNode* arguments) |
| { |
| // Helper to find image data for image atomics: |
| // OpImageLoad(image[idx]) |
| // We take the image load apart and add its params to the atomic op aggregate node |
| const auto imageAtomicParams = [this, &loc, &node](TIntermAggregate* atomic, TIntermTyped* load) { |
| TIntermAggregate* loadOp = load->getAsAggregate(); |
| if (loadOp == nullptr) { |
| error(loc, "unknown image type in atomic operation", "", ""); |
| node = nullptr; |
| return; |
| } |
| |
| atomic->getSequence().push_back(loadOp->getSequence()[0]); |
| atomic->getSequence().push_back(loadOp->getSequence()[1]); |
| }; |
| |
| // Return true if this is an imageLoad, which we will change to an image atomic. |
| const auto isImageParam = [](TIntermTyped* image) -> bool { |
| TIntermAggregate* imageAggregate = image->getAsAggregate(); |
| return imageAggregate != nullptr && imageAggregate->getOp() == EOpImageLoad; |
| }; |
| |
| const auto lookupBuiltinVariable = [&](const char* name, TBuiltInVariable builtin, TType& type) -> TIntermTyped* { |
| TSymbol* symbol = symbolTable.find(name); |
| if (nullptr == symbol) { |
| type.getQualifier().builtIn = builtin; |
| |
| TVariable* variable = new TVariable(NewPoolTString(name), type); |
| |
| symbolTable.insert(*variable); |
| |
| symbol = symbolTable.find(name); |
| assert(symbol && "Inserted symbol could not be found!"); |
| } |
| |
| return intermediate.addSymbol(*(symbol->getAsVariable()), loc); |
| }; |
| |
| // HLSL intrinsics can be pass through to native AST opcodes, or decomposed here to existing AST |
| // opcodes for compatibility with existing software stacks. |
| static const bool decomposeHlslIntrinsics = true; |
| |
| if (!decomposeHlslIntrinsics || !node || !node->getAsOperator()) |
| return; |
| |
| const TIntermAggregate* argAggregate = arguments ? arguments->getAsAggregate() : nullptr; |
| TIntermUnary* fnUnary = node->getAsUnaryNode(); |
| const TOperator op = node->getAsOperator()->getOp(); |
| |
| switch (op) { |
| case EOpGenMul: |
| { |
| // mul(a,b) -> MatrixTimesMatrix, MatrixTimesVector, MatrixTimesScalar, VectorTimesScalar, Dot, Mul |
| // Since we are treating HLSL rows like GLSL columns (the first matrix indirection), |
| // we must reverse the operand order here. Hence, arg0 gets sequence[1], etc. |
| TIntermTyped* arg0 = argAggregate->getSequence()[1]->getAsTyped(); |
| TIntermTyped* arg1 = argAggregate->getSequence()[0]->getAsTyped(); |
| |
| if (arg0->isVector() && arg1->isVector()) { // vec * vec |
| node->getAsAggregate()->setOperator(EOpDot); |
| } else { |
| node = handleBinaryMath(loc, "mul", EOpMul, arg0, arg1); |
| } |
| |
| break; |
| } |
| |
| case EOpRcp: |
| { |
| // rcp(a) -> 1 / a |
| TIntermTyped* arg0 = fnUnary->getOperand(); |
| TBasicType type0 = arg0->getBasicType(); |
| TIntermTyped* one = intermediate.addConstantUnion(1, type0, loc, true); |
| node = handleBinaryMath(loc, "rcp", EOpDiv, one, arg0); |
| |
| break; |
| } |
| |
| case EOpAny: // fall through |
| case EOpAll: |
| { |
| TIntermTyped* typedArg = arguments->getAsTyped(); |
| |
| // HLSL allows float/etc types here, and the SPIR-V opcode requires a bool. |
| // We'll convert here. Note that for efficiency, we could add a smarter |
| // decomposition for some type cases, e.g, maybe by decomposing a dot product. |
| if (typedArg->getType().getBasicType() != EbtBool) { |
| const TType boolType(EbtBool, EvqTemporary, |
| typedArg->getVectorSize(), |
| typedArg->getMatrixCols(), |
| typedArg->getMatrixRows(), |
| typedArg->isVector()); |
| |
| typedArg = intermediate.addConversion(EOpConstructBool, boolType, typedArg); |
| node->getAsUnaryNode()->setOperand(typedArg); |
| } |
| |
| break; |
| } |
| |
| case EOpSaturate: |
| { |
| // saturate(a) -> clamp(a,0,1) |
| TIntermTyped* arg0 = fnUnary->getOperand(); |
| TBasicType type0 = arg0->getBasicType(); |
| TIntermAggregate* clamp = new TIntermAggregate(EOpClamp); |
| |
| clamp->getSequence().push_back(arg0); |
| clamp->getSequence().push_back(intermediate.addConstantUnion(0, type0, loc, true)); |
| clamp->getSequence().push_back(intermediate.addConstantUnion(1, type0, loc, true)); |
| clamp->setLoc(loc); |
| clamp->setType(node->getType()); |
| clamp->getWritableType().getQualifier().makeTemporary(); |
| node = clamp; |
| |
| break; |
| } |
| |
| case EOpSinCos: |
| { |
| // sincos(a,b,c) -> b = sin(a), c = cos(a) |
| TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped(); |
| TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped(); |
| TIntermTyped* arg2 = argAggregate->getSequence()[2]->getAsTyped(); |
| |
| TIntermTyped* sinStatement = handleUnaryMath(loc, "sin", EOpSin, arg0); |
| TIntermTyped* cosStatement = handleUnaryMath(loc, "cos", EOpCos, arg0); |
| TIntermTyped* sinAssign = intermediate.addAssign(EOpAssign, arg1, sinStatement, loc); |
| TIntermTyped* cosAssign = intermediate.addAssign(EOpAssign, arg2, cosStatement, loc); |
| |
| TIntermAggregate* compoundStatement = intermediate.makeAggregate(sinAssign, loc); |
| compoundStatement = intermediate.growAggregate(compoundStatement, cosAssign); |
| compoundStatement->setOperator(EOpSequence); |
| compoundStatement->setLoc(loc); |
| compoundStatement->setType(TType(EbtVoid)); |
| |
| node = compoundStatement; |
| |
| break; |
| } |
| |
| case EOpClip: |
| { |
| // clip(a) -> if (any(a<0)) discard; |
| TIntermTyped* arg0 = fnUnary->getOperand(); |
| TBasicType type0 = arg0->getBasicType(); |
| TIntermTyped* compareNode = nullptr; |
| |
| // For non-scalars: per experiment with FXC compiler, discard if any component < 0. |
| if (!arg0->isScalar()) { |
| // component-wise compare: a < 0 |
| TIntermAggregate* less = new TIntermAggregate(EOpLessThan); |
| less->getSequence().push_back(arg0); |
| less->setLoc(loc); |
| |
| // make vec or mat of bool matching dimensions of input |
| less->setType(TType(EbtBool, EvqTemporary, |
| arg0->getType().getVectorSize(), |
| arg0->getType().getMatrixCols(), |
| arg0->getType().getMatrixRows(), |
| arg0->getType().isVector())); |
| |
| // calculate # of components for comparison const |
| const int constComponentCount = |
| std::max(arg0->getType().getVectorSize(), 1) * |
| std::max(arg0->getType().getMatrixCols(), 1) * |
| std::max(arg0->getType().getMatrixRows(), 1); |
| |
| TConstUnion zero; |
| if (arg0->getType().isIntegerDomain()) |
| zero.setDConst(0); |
| else |
| zero.setDConst(0.0); |
| TConstUnionArray zeros(constComponentCount, zero); |
| |
| less->getSequence().push_back(intermediate.addConstantUnion(zeros, arg0->getType(), loc, true)); |
| |
| compareNode = intermediate.addBuiltInFunctionCall(loc, EOpAny, true, less, TType(EbtBool)); |
| } else { |
| TIntermTyped* zero; |
| if (arg0->getType().isIntegerDomain()) |
| zero = intermediate.addConstantUnion(0, loc, true); |
| else |
| zero = intermediate.addConstantUnion(0.0, type0, loc, true); |
| compareNode = handleBinaryMath(loc, "clip", EOpLessThan, arg0, zero); |
| } |
| |
| TIntermBranch* killNode = intermediate.addBranch(EOpKill, loc); |
| |
| node = new TIntermSelection(compareNode, killNode, nullptr); |
| node->setLoc(loc); |
| |
| break; |
| } |
| |
| case EOpLog10: |
| { |
| // log10(a) -> log2(a) * 0.301029995663981 (== 1/log2(10)) |
| TIntermTyped* arg0 = fnUnary->getOperand(); |
| TIntermTyped* log2 = handleUnaryMath(loc, "log2", EOpLog2, arg0); |
| TIntermTyped* base = intermediate.addConstantUnion(0.301029995663981f, EbtFloat, loc, true); |
| |
| node = handleBinaryMath(loc, "mul", EOpMul, log2, base); |
| |
| break; |
| } |
| |
| case EOpDst: |
| { |
| // dest.x = 1; |
| // dest.y = src0.y * src1.y; |
| // dest.z = src0.z; |
| // dest.w = src1.w; |
| |
| TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped(); |
| TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped(); |
| |
| TIntermTyped* y = intermediate.addConstantUnion(1, loc, true); |
| TIntermTyped* z = intermediate.addConstantUnion(2, loc, true); |
| TIntermTyped* w = intermediate.addConstantUnion(3, loc, true); |
| |
| TIntermTyped* src0y = intermediate.addIndex(EOpIndexDirect, arg0, y, loc); |
| TIntermTyped* src1y = intermediate.addIndex(EOpIndexDirect, arg1, y, loc); |
| TIntermTyped* src0z = intermediate.addIndex(EOpIndexDirect, arg0, z, loc); |
| TIntermTyped* src1w = intermediate.addIndex(EOpIndexDirect, arg1, w, loc); |
| |
| TIntermAggregate* dst = new TIntermAggregate(EOpConstructVec4); |
| |
| dst->getSequence().push_back(intermediate.addConstantUnion(1.0, EbtFloat, loc, true)); |
| dst->getSequence().push_back(handleBinaryMath(loc, "mul", EOpMul, src0y, src1y)); |
| dst->getSequence().push_back(src0z); |
| dst->getSequence().push_back(src1w); |
| dst->setType(TType(EbtFloat, EvqTemporary, 4)); |
| dst->setLoc(loc); |
| node = dst; |
| |
| break; |
| } |
| |
| case EOpInterlockedAdd: // optional last argument (if present) is assigned from return value |
| case EOpInterlockedMin: // ... |
| case EOpInterlockedMax: // ... |
| case EOpInterlockedAnd: // ... |
| case EOpInterlockedOr: // ... |
| case EOpInterlockedXor: // ... |
| case EOpInterlockedExchange: // always has output arg |
| { |
| TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped(); // dest |
| TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped(); // value |
| TIntermTyped* arg2 = nullptr; |
| |
| if (argAggregate->getSequence().size() > 2) |
| arg2 = argAggregate->getSequence()[2]->getAsTyped(); |
| |
| const bool isImage = isImageParam(arg0); |
| const TOperator atomicOp = mapAtomicOp(loc, op, isImage); |
| TIntermAggregate* atomic = new TIntermAggregate(atomicOp); |
| atomic->setType(arg0->getType()); |
| atomic->getWritableType().getQualifier().makeTemporary(); |
| atomic->setLoc(loc); |
| |
| if (isImage) { |
| // orig_value = imageAtomicOp(image, loc, data) |
| imageAtomicParams(atomic, arg0); |
| atomic->getSequence().push_back(arg1); |
| |
| if (argAggregate->getSequence().size() > 2) { |
| node = intermediate.addAssign(EOpAssign, arg2, atomic, loc); |
| } else { |
| node = atomic; // no assignment needed, as there was no out var. |
| } |
| } else { |
| // Normal memory variable: |
| // arg0 = mem, arg1 = data, arg2(optional,out) = orig_value |
| if (argAggregate->getSequence().size() > 2) { |
| // optional output param is present. return value goes to arg2. |
| atomic->getSequence().push_back(arg0); |
| atomic->getSequence().push_back(arg1); |
| |
| node = intermediate.addAssign(EOpAssign, arg2, atomic, loc); |
| } else { |
| // Set the matching operator. Since output is absent, this is all we need to do. |
| node->getAsAggregate()->setOperator(atomicOp); |
| node->setType(atomic->getType()); |
| } |
| } |
| |
| break; |
| } |
| |
| case EOpInterlockedCompareExchange: |
| { |
| TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped(); // dest |
| TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped(); // cmp |
| TIntermTyped* arg2 = argAggregate->getSequence()[2]->getAsTyped(); // value |
| TIntermTyped* arg3 = argAggregate->getSequence()[3]->getAsTyped(); // orig |
| |
| const bool isImage = isImageParam(arg0); |
| TIntermAggregate* atomic = new TIntermAggregate(mapAtomicOp(loc, op, isImage)); |
| atomic->setLoc(loc); |
| atomic->setType(arg2->getType()); |
| atomic->getWritableType().getQualifier().makeTemporary(); |
| |
| if (isImage) { |
| imageAtomicParams(atomic, arg0); |
| } else { |
| atomic->getSequence().push_back(arg0); |
| } |
| |
| atomic->getSequence().push_back(arg1); |
| atomic->getSequence().push_back(arg2); |
| node = intermediate.addAssign(EOpAssign, arg3, atomic, loc); |
| |
| break; |
| } |
| |
| case EOpEvaluateAttributeSnapped: |
| { |
| // SPIR-V InterpolateAtOffset uses float vec2 offset in pixels |
| // HLSL uses int2 offset on a 16x16 grid in [-8..7] on x & y: |
| // iU = (iU<<28)>>28 |
| // fU = ((float)iU)/16 |
| // Targets might handle this natively, in which case they can disable |
| // decompositions. |
| |
| TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped(); // value |
| TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped(); // offset |
| |
| TIntermTyped* i28 = intermediate.addConstantUnion(28, loc, true); |
| TIntermTyped* iU = handleBinaryMath(loc, ">>", EOpRightShift, |
| handleBinaryMath(loc, "<<", EOpLeftShift, arg1, i28), |
| i28); |
| |
| TIntermTyped* recip16 = intermediate.addConstantUnion((1.0/16.0), EbtFloat, loc, true); |
| TIntermTyped* floatOffset = handleBinaryMath(loc, "mul", EOpMul, |
| intermediate.addConversion(EOpConstructFloat, |
| TType(EbtFloat, EvqTemporary, 2), iU), |
| recip16); |
| |
| TIntermAggregate* interp = new TIntermAggregate(EOpInterpolateAtOffset); |
| interp->getSequence().push_back(arg0); |
| interp->getSequence().push_back(floatOffset); |
| interp->setLoc(loc); |
| interp->setType(arg0->getType()); |
| interp->getWritableType().getQualifier().makeTemporary(); |
| |
| node = interp; |
| |
| break; |
| } |
| |
| case EOpLit: |
| { |
| TIntermTyped* n_dot_l = argAggregate->getSequence()[0]->getAsTyped(); |
| TIntermTyped* n_dot_h = argAggregate->getSequence()[1]->getAsTyped(); |
| TIntermTyped* m = argAggregate->getSequence()[2]->getAsTyped(); |
| |
| TIntermAggregate* dst = new TIntermAggregate(EOpConstructVec4); |
| |
| // Ambient |
| dst->getSequence().push_back(intermediate.addConstantUnion(1.0, EbtFloat, loc, true)); |
| |
| // Diffuse: |
| TIntermTyped* zero = intermediate.addConstantUnion(0.0, EbtFloat, loc, true); |
| TIntermAggregate* diffuse = new TIntermAggregate(EOpMax); |
| diffuse->getSequence().push_back(n_dot_l); |
| diffuse->getSequence().push_back(zero); |
| diffuse->setLoc(loc); |
| diffuse->setType(TType(EbtFloat)); |
| dst->getSequence().push_back(diffuse); |
| |
| // Specular: |
| TIntermAggregate* min_ndot = new TIntermAggregate(EOpMin); |
| min_ndot->getSequence().push_back(n_dot_l); |
| min_ndot->getSequence().push_back(n_dot_h); |
| min_ndot->setLoc(loc); |
| min_ndot->setType(TType(EbtFloat)); |
| |
| TIntermTyped* compare = handleBinaryMath(loc, "<", EOpLessThan, min_ndot, zero); |
| TIntermTyped* n_dot_h_m = handleBinaryMath(loc, "mul", EOpMul, n_dot_h, m); // n_dot_h * m |
| |
| dst->getSequence().push_back(intermediate.addSelection(compare, zero, n_dot_h_m, loc)); |
| |
| // One: |
| dst->getSequence().push_back(intermediate.addConstantUnion(1.0, EbtFloat, loc, true)); |
| |
| dst->setLoc(loc); |
| dst->setType(TType(EbtFloat, EvqTemporary, 4)); |
| node = dst; |
| break; |
| } |
| |
| case EOpAsDouble: |
| { |
| // asdouble accepts two 32 bit ints. we can use EOpUint64BitsToDouble, but must |
| // first construct a uint64. |
| TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped(); |
| TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped(); |
| |
| if (arg0->getType().isVector()) { // TODO: ... |
| error(loc, "double2 conversion not implemented", "asdouble", ""); |
| break; |
| } |
| |
| TIntermAggregate* uint64 = new TIntermAggregate(EOpConstructUVec2); |
| |
| uint64->getSequence().push_back(arg0); |
| uint64->getSequence().push_back(arg1); |
| uint64->setType(TType(EbtUint, EvqTemporary, 2)); // convert 2 uints to a uint2 |
| uint64->setLoc(loc); |
| |
| // bitcast uint2 to a double |
| TIntermTyped* convert = new TIntermUnary(EOpUint64BitsToDouble); |
| convert->getAsUnaryNode()->setOperand(uint64); |
| convert->setLoc(loc); |
| convert->setType(TType(EbtDouble, EvqTemporary)); |
| node = convert; |
| |
| break; |
| } |
| |
| case EOpF16tof32: |
| { |
| // input uvecN with low 16 bits of each component holding a float16. convert to float32. |
| TIntermTyped* argValue = node->getAsUnaryNode()->getOperand(); |
| TIntermTyped* zero = intermediate.addConstantUnion(0, loc, true); |
| const int vecSize = argValue->getType().getVectorSize(); |
| |
| TOperator constructOp = EOpNull; |
| switch (vecSize) { |
| case 1: constructOp = EOpNull; break; // direct use, no construct needed |
| case 2: constructOp = EOpConstructVec2; break; |
| case 3: constructOp = EOpConstructVec3; break; |
| case 4: constructOp = EOpConstructVec4; break; |
| default: assert(0); break; |
| } |
| |
| // For scalar case, we don't need to construct another type. |
| TIntermAggregate* result = (vecSize > 1) ? new TIntermAggregate(constructOp) : nullptr; |
| |
| if (result) { |
| result->setType(TType(EbtFloat, EvqTemporary, vecSize)); |
| result->setLoc(loc); |
| } |
| |
| for (int idx = 0; idx < vecSize; ++idx) { |
| TIntermTyped* idxConst = intermediate.addConstantUnion(idx, loc, true); |
| TIntermTyped* component = argValue->getType().isVector() ? |
| intermediate.addIndex(EOpIndexDirect, argValue, idxConst, loc) : argValue; |
| |
| if (component != argValue) |
| component->setType(TType(argValue->getBasicType(), EvqTemporary)); |
| |
| TIntermTyped* unpackOp = new TIntermUnary(EOpUnpackHalf2x16); |
| unpackOp->setType(TType(EbtFloat, EvqTemporary, 2)); |
| unpackOp->getAsUnaryNode()->setOperand(component); |
| unpackOp->setLoc(loc); |
| |
| TIntermTyped* lowOrder = intermediate.addIndex(EOpIndexDirect, unpackOp, zero, loc); |
| |
| if (result != nullptr) { |
| result->getSequence().push_back(lowOrder); |
| node = result; |
| } else { |
| node = lowOrder; |
| } |
| } |
| |
| break; |
| } |
| |
| case EOpF32tof16: |
| { |
| // input floatN converted to 16 bit float in low order bits of each component of uintN |
| TIntermTyped* argValue = node->getAsUnaryNode()->getOperand(); |
| |
| TIntermTyped* zero = intermediate.addConstantUnion(0.0, EbtFloat, loc, true); |
| const int vecSize = argValue->getType().getVectorSize(); |
| |
| TOperator constructOp = EOpNull; |
| switch (vecSize) { |
| case 1: constructOp = EOpNull; break; // direct use, no construct needed |
| case 2: constructOp = EOpConstructUVec2; break; |
| case 3: constructOp = EOpConstructUVec3; break; |
| case 4: constructOp = EOpConstructUVec4; break; |
| default: assert(0); break; |
| } |
| |
| // For scalar case, we don't need to construct another type. |
| TIntermAggregate* result = (vecSize > 1) ? new TIntermAggregate(constructOp) : nullptr; |
| |
| if (result) { |
| result->setType(TType(EbtUint, EvqTemporary, vecSize)); |
| result->setLoc(loc); |
| } |
| |
| for (int idx = 0; idx < vecSize; ++idx) { |
| TIntermTyped* idxConst = intermediate.addConstantUnion(idx, loc, true); |
| TIntermTyped* component = argValue->getType().isVector() ? |
| intermediate.addIndex(EOpIndexDirect, argValue, idxConst, loc) : argValue; |
| |
| if (component != argValue) |
| component->setType(TType(argValue->getBasicType(), EvqTemporary)); |
| |
| TIntermAggregate* vec2ComponentAndZero = new TIntermAggregate(EOpConstructVec2); |
| vec2ComponentAndZero->getSequence().push_back(component); |
| vec2ComponentAndZero->getSequence().push_back(zero); |
| vec2ComponentAndZero->setType(TType(EbtFloat, EvqTemporary, 2)); |
| vec2ComponentAndZero->setLoc(loc); |
| |
| TIntermTyped* packOp = new TIntermUnary(EOpPackHalf2x16); |
| packOp->getAsUnaryNode()->setOperand(vec2ComponentAndZero); |
| packOp->setLoc(loc); |
| packOp->setType(TType(EbtUint, EvqTemporary)); |
| |
| if (result != nullptr) { |
| result->getSequence().push_back(packOp); |
| node = result; |
| } else { |
| node = packOp; |
| } |
| } |
| |
| break; |
| } |
| |
| case EOpD3DCOLORtoUBYTE4: |
| { |
| // ivec4 ( x.zyxw * 255.001953 ); |
| TIntermTyped* arg0 = node->getAsUnaryNode()->getOperand(); |
| TSwizzleSelectors<TVectorSelector> selectors; |
| selectors.push_back(2); |
| selectors.push_back(1); |
| selectors.push_back(0); |
| selectors.push_back(3); |
| TIntermTyped* swizzleIdx = intermediate.addSwizzle(selectors, loc); |
| TIntermTyped* swizzled = intermediate.addIndex(EOpVectorSwizzle, arg0, swizzleIdx, loc); |
| swizzled->setType(arg0->getType()); |
| swizzled->getWritableType().getQualifier().makeTemporary(); |
| |
| TIntermTyped* conversion = intermediate.addConstantUnion(255.001953f, EbtFloat, loc, true); |
| TIntermTyped* rangeConverted = handleBinaryMath(loc, "mul", EOpMul, conversion, swizzled); |
| rangeConverted->setType(arg0->getType()); |
| rangeConverted->getWritableType().getQualifier().makeTemporary(); |
| |
| node = intermediate.addConversion(EOpConstructInt, TType(EbtInt, EvqTemporary, 4), rangeConverted); |
| node->setLoc(loc); |
| node->setType(TType(EbtInt, EvqTemporary, 4)); |
| break; |
| } |
| |
| case EOpIsFinite: |
| { |
| // Since OPIsFinite in SPIR-V is only supported with the Kernel capability, we translate |
| // it to !isnan && !isinf |
| |
| TIntermTyped* arg0 = node->getAsUnaryNode()->getOperand(); |
| |
| // We'll make a temporary in case the RHS is cmoplex |
| TVariable* tempArg = makeInternalVariable("@finitetmp", arg0->getType()); |
| tempArg->getWritableType().getQualifier().makeTemporary(); |
| |
| TIntermTyped* tmpArgAssign = intermediate.addAssign(EOpAssign, |
| intermediate.addSymbol(*tempArg, loc), |
| arg0, loc); |
| |
| TIntermAggregate* compoundStatement = intermediate.makeAggregate(tmpArgAssign, loc); |
| |
| const TType boolType(EbtBool, EvqTemporary, arg0->getVectorSize(), arg0->getMatrixCols(), |
| arg0->getMatrixRows()); |
| |
| TIntermTyped* isnan = handleUnaryMath(loc, "isnan", EOpIsNan, intermediate.addSymbol(*tempArg, loc)); |
| isnan->setType(boolType); |
| |
| TIntermTyped* notnan = handleUnaryMath(loc, "!", EOpLogicalNot, isnan); |
| notnan->setType(boolType); |
| |
| TIntermTyped* isinf = handleUnaryMath(loc, "isinf", EOpIsInf, intermediate.addSymbol(*tempArg, loc)); |
| isinf->setType(boolType); |
| |
| TIntermTyped* notinf = handleUnaryMath(loc, "!", EOpLogicalNot, isinf); |
| notinf->setType(boolType); |
| |
| TIntermTyped* andNode = handleBinaryMath(loc, "and", EOpLogicalAnd, notnan, notinf); |
| andNode->setType(boolType); |
| |
| compoundStatement = intermediate.growAggregate(compoundStatement, andNode); |
| compoundStatement->setOperator(EOpSequence); |
| compoundStatement->setLoc(loc); |
| compoundStatement->setType(boolType); |
| |
| node = compoundStatement; |
| |
| break; |
| } |
| case EOpWaveGetLaneCount: |
| { |
| // Mapped to gl_SubgroupSize builtin (We preprend @ to the symbol |
| // so that it inhabits the symbol table, but has a user-invalid name |
| // in-case some source HLSL defined the symbol also). |
| TType type(EbtUint, EvqVaryingIn); |
| node = lookupBuiltinVariable("@gl_SubgroupSize", EbvSubgroupSize2, type); |
| break; |
| } |
| case EOpWaveGetLaneIndex: |
| { |
| // Mapped to gl_SubgroupInvocationID builtin (We preprend @ to the |
| // symbol so that it inhabits the symbol table, but has a |
| // user-invalid name in-case some source HLSL defined the symbol |
| // also). |
| TType type(EbtUint, EvqVaryingIn); |
| node = lookupBuiltinVariable("@gl_SubgroupInvocationID", EbvSubgroupInvocation2, type); |
| break; |
| } |
| case EOpWaveActiveCountBits: |
| { |
| // Mapped to subgroupBallotBitCount(subgroupBallot()) builtin |
| |
| // uvec4 type. |
| TType uvec4Type(EbtUint, EvqTemporary, 4); |
| |
| // Get the uvec4 return from subgroupBallot(). |
| TIntermTyped* res = intermediate.addBuiltInFunctionCall(loc, |
| EOpSubgroupBallot, true, arguments, uvec4Type); |
| |
| // uint type. |
| TType uintType(EbtUint, EvqTemporary); |
| |
| node = intermediate.addBuiltInFunctionCall(loc, |
| EOpSubgroupBallotBitCount, true, res, uintType); |
| |
| break; |
| } |
| case EOpWavePrefixCountBits: |
| { |
| // Mapped to subgroupBallotInclusiveBitCount(subgroupBallot()) |
| // builtin |
| |
| // uvec4 type. |
| TType uvec4Type(EbtUint, EvqTemporary, 4); |
| |
| // Get the uvec4 return from subgroupBallot(). |
| TIntermTyped* res = intermediate.addBuiltInFunctionCall(loc, |
| EOpSubgroupBallot, true, arguments, uvec4Type); |
| |
| // uint type. |
| TType uintType(EbtUint, EvqTemporary); |
| |
| node = intermediate.addBuiltInFunctionCall(loc, |
| EOpSubgroupBallotInclusiveBitCount, true, res, uintType); |
| |
| break; |
| } |
| |
| default: |
| break; // most pass through unchanged |
| } |
| } |
| |
| // |
| // Handle seeing function call syntax in the grammar, which could be any of |
| // - .length() method |
| // - constructor |
| // - a call to a built-in function mapped to an operator |
| // - a call to a built-in function that will remain a function call (e.g., texturing) |
| // - user function |
| // - subroutine call (not implemented yet) |
| // |
| TIntermTyped* HlslParseContext::handleFunctionCall(const TSourceLoc& loc, TFunction* function, TIntermTyped* arguments) |
| { |
| TIntermTyped* result = nullptr; |
| |
| TOperator op = function->getBuiltInOp(); |
| if (op != EOpNull) { |
| // |
| // Then this should be a constructor. |
| // Don't go through the symbol table for constructors. |
| // Their parameters will be verified algorithmically. |
| // |
| TType type(EbtVoid); // use this to get the type back |
| if (! constructorError(loc, arguments, *function, op, type)) { |
| // |
| // It's a constructor, of type 'type'. |
| // |
| result = handleConstructor(loc, arguments, type); |
| if (result == nullptr) { |
| error(loc, "cannot construct with these arguments", type.getCompleteString().c_str(), ""); |
| return nullptr; |
| } |
| } |
| } else { |
| // |
| // Find it in the symbol table. |
| // |
| const TFunction* fnCandidate = nullptr; |
| bool builtIn = false; |
| int thisDepth = 0; |
| |
| // For mat mul, the situation is unusual: we have to compare vector sizes to mat row or col sizes, |
| // and clamp the opposite arg. Since that's complex, we farm it off to a separate method. |
| // It doesn't naturally fall out of processing an argument at a time in isolation. |
| if (function->getName() == "mul") |
| addGenMulArgumentConversion(loc, *function, arguments); |
| |
| TIntermAggregate* aggregate = arguments ? arguments->getAsAggregate() : nullptr; |
| |
| // TODO: this needs improvement: there's no way at present to look up a signature in |
| // the symbol table for an arbitrary type. This is a temporary hack until that ability exists. |
| // It will have false positives, since it doesn't check arg counts or types. |
| if (arguments) { |
| // Check if first argument is struct buffer type. It may be an aggregate or a symbol, so we |
| // look for either case. |
| |
| TIntermTyped* arg0 = nullptr; |
| |
| if (aggregate && aggregate->getSequence().size() > 0 && aggregate->getSequence()[0]) |
| arg0 = aggregate->getSequence()[0]->getAsTyped(); |
| else if (arguments->getAsSymbolNode()) |
| arg0 = arguments->getAsSymbolNode(); |
| |
| if (arg0 != nullptr && isStructBufferType(arg0->getType())) { |
| static const int methodPrefixSize = sizeof(BUILTIN_PREFIX)-1; |
| |
| if (function->getName().length() > methodPrefixSize && |
| isStructBufferMethod(function->getName().substr(methodPrefixSize))) { |
| const TString mangle = function->getName() + "("; |
| TSymbol* symbol = symbolTable.find(mangle, &builtIn); |
| |
| if (symbol) |
| fnCandidate = symbol->getAsFunction(); |
| } |
| } |
| } |
| |
| if (fnCandidate == nullptr) |
| fnCandidate = findFunction(loc, *function, builtIn, thisDepth, arguments); |
| |
| if (fnCandidate) { |
| // This is a declared function that might map to |
| // - a built-in operator, |
| // - a built-in function not mapped to an operator, or |
| // - a user function. |
| |
| // turn an implicit member-function resolution into an explicit call |
| TString callerName; |
| if (thisDepth == 0) |
| callerName = fnCandidate->getMangledName(); |
| else { |
| // get the explicit (full) name of the function |
| callerName = currentTypePrefix[currentTypePrefix.size() - thisDepth]; |
| callerName += fnCandidate->getMangledName(); |
| // insert the implicit calling argument |
| pushFrontArguments(intermediate.addSymbol(*getImplicitThis(thisDepth)), arguments); |
| } |
| |
| // Convert 'in' arguments, so that types match. |
| // However, skip those that need expansion, that is covered next. |
| if (arguments) |
| addInputArgumentConversions(*fnCandidate, arguments); |
| |
| // Expand arguments. Some arguments must physically expand to a different set |
| // than what the shader declared and passes. |
| if (arguments && !builtIn) |
| expandArguments(loc, *fnCandidate, arguments); |
| |
| // Expansion may have changed the form of arguments |
| aggregate = arguments ? arguments->getAsAggregate() : nullptr; |
| |
| op = fnCandidate->getBuiltInOp(); |
| if (builtIn && op != EOpNull) { |
| // A function call mapped to a built-in operation. |
| result = intermediate.addBuiltInFunctionCall(loc, op, fnCandidate->getParamCount() == 1, arguments, |
| fnCandidate->getType()); |
| if (result == nullptr) { |
| error(arguments->getLoc(), " wrong operand type", "Internal Error", |
| "built in unary operator function. Type: %s", |
| static_cast<TIntermTyped*>(arguments)->getCompleteString().c_str()); |
| } else if (result->getAsOperator()) { |
| builtInOpCheck(loc, *fnCandidate, *result->getAsOperator()); |
| } |
| } else { |
| // This is a function call not mapped to built-in operator. |
| // It could still be a built-in function, but only if PureOperatorBuiltins == false. |
| result = intermediate.setAggregateOperator(arguments, EOpFunctionCall, fnCandidate->getType(), loc); |
| TIntermAggregate* call = result->getAsAggregate(); |
| call->setName(callerName); |
| |
| // this is how we know whether the given function is a built-in function or a user-defined function |
| // if builtIn == false, it's a userDefined -> could be an overloaded built-in function also |
| // if builtIn == true, it's definitely a built-in function with EOpNull |
| if (! builtIn) { |
| call->setUserDefined(); |
| intermediate.addToCallGraph(infoSink, currentCaller, callerName); |
| } |
| } |
| |
| // for decompositions, since we want to operate on the function node, not the aggregate holding |
| // output conversions. |
| const TIntermTyped* fnNode = result; |
| |
| decomposeStructBufferMethods(loc, result, arguments); // HLSL->AST struct buffer method decompositions |
| decomposeIntrinsic(loc, result, arguments); // HLSL->AST intrinsic decompositions |
| decomposeSampleMethods(loc, result, arguments); // HLSL->AST sample method decompositions |
| decomposeGeometryMethods(loc, result, arguments); // HLSL->AST geometry method decompositions |
| |
| // Create the qualifier list, carried in the AST for the call. |
| // Because some arguments expand to multiple arguments, the qualifier list will |
| // be longer than the formal parameter list. |
| if (result == fnNode && result->getAsAggregate()) { |
| TQualifierList& qualifierList = result->getAsAggregate()->getQualifierList(); |
| for (int i = 0; i < fnCandidate->getParamCount(); ++i) { |
| TStorageQualifier qual = (*fnCandidate)[i].type->getQualifier().storage; |
| if (hasStructBuffCounter(*(*fnCandidate)[i].type)) { |
| // add buffer and counter buffer argument qualifier |
| qualifierList.push_back(qual); |
| qualifierList.push_back(qual); |
| } else if (shouldFlatten(*(*fnCandidate)[i].type, (*fnCandidate)[i].type->getQualifier().storage, |
| true)) { |
| // add structure member expansion |
| for (int memb = 0; memb < (int)(*fnCandidate)[i].type->getStruct()->size(); ++memb) |
| qualifierList.push_back(qual); |
| } else { |
| // Normal 1:1 case |
| qualifierList.push_back(qual); |
| } |
| } |
| } |
| |
| // Convert 'out' arguments. If it was a constant folded built-in, it won't be an aggregate anymore. |
| // Built-ins with a single argument aren't called with an aggregate, but they also don't have an output. |
| // Also, build the qualifier list for user function calls, which are always called with an aggregate. |
| // We don't do this is if there has been a decomposition, which will have added its own conversions |
| // for output parameters. |
| if (result == fnNode && result->getAsAggregate()) |
| result = addOutputArgumentConversions(*fnCandidate, *result->getAsOperator()); |
| } |
| } |
| |
| // generic error recovery |
| // TODO: simplification: localize all the error recoveries that look like this, and taking type into account to |
| // reduce cascades |
| if (result == nullptr) |
| result = intermediate.addConstantUnion(0.0, EbtFloat, loc); |
| |
| return result; |
| } |
| |
| // An initial argument list is difficult: it can be null, or a single node, |
| // or an aggregate if more than one argument. Add one to the front, maintaining |
| // this lack of uniformity. |
| void HlslParseContext::pushFrontArguments(TIntermTyped* front, TIntermTyped*& arguments) |
| { |
| if (arguments == nullptr) |
| arguments = front; |
| else if (arguments->getAsAggregate() != nullptr) |
| arguments->getAsAggregate()->getSequence().insert(arguments->getAsAggregate()->getSequence().begin(), front); |
| else |
| arguments = intermediate.growAggregate(front, arguments); |
| } |
| |
| // |
| // HLSL allows mismatched dimensions on vec*mat, mat*vec, vec*vec, and mat*mat. This is a |
| // situation not well suited to resolution in intrinsic selection, but we can do so here, since we |
| // can look at both arguments insert explicit shape changes if required. |
| // |
| void HlslParseContext::addGenMulArgumentConversion(const TSourceLoc& loc, TFunction& call, TIntermTyped*& args) |
| { |
| TIntermAggregate* argAggregate = args ? args->getAsAggregate() : nullptr; |
| |
| if (argAggregate == nullptr || argAggregate->getSequence().size() != 2) { |
| // It really ought to have two arguments. |
| error(loc, "expected: mul arguments", "", ""); |
| return; |
| } |
| |
| TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped(); |
| TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped(); |
| |
| if (arg0->isVector() && arg1->isVector()) { |
| // For: |
| // vec * vec: it's handled during intrinsic selection, so while we could do it here, |
| // we can also ignore it, which is easier. |
| } else if (arg0->isVector() && arg1->isMatrix()) { |
| // vec * mat: we clamp the vec if the mat col is smaller, else clamp the mat col. |
| if (arg0->getVectorSize() < arg1->getMatrixCols()) { |
| // vec is smaller, so truncate larger mat dimension |
| const TType truncType(arg1->getBasicType(), arg1->getQualifier().storage, arg1->getQualifier().precision, |
| 0, arg0->getVectorSize(), arg1->getMatrixRows()); |
| arg1 = addConstructor(loc, arg1, truncType); |
| } else if (arg0->getVectorSize() > arg1->getMatrixCols()) { |
| // vec is larger, so truncate vec to mat size |
| const TType truncType(arg0->getBasicType(), arg0->getQualifier().storage, arg0->getQualifier().precision, |
| arg1->getMatrixCols()); |
| arg0 = addConstructor(loc, arg0, truncType); |
| } |
| } else if (arg0->isMatrix() && arg1->isVector()) { |
| // mat * vec: we clamp the vec if the mat col is smaller, else clamp the mat col. |
| if (arg1->getVectorSize() < arg0->getMatrixRows()) { |
| // vec is smaller, so truncate larger mat dimension |
| const TType truncType(arg0->getBasicType(), arg0->getQualifier().storage, arg0->getQualifier().precision, |
| 0, arg0->getMatrixCols(), arg1->getVectorSize()); |
| arg0 = addConstructor(loc, arg0, truncType); |
| } else if (arg1->getVectorSize() > arg0->getMatrixRows()) { |
| // vec is larger, so truncate vec to mat size |
| const TType truncType(arg1->getBasicType(), arg1->getQualifier().storage, arg1->getQualifier().precision, |
| arg0->getMatrixRows()); |
| arg1 = addConstructor(loc, arg1, truncType); |
| } |
| } else if (arg0->isMatrix() && arg1->isMatrix()) { |
| // mat * mat: we clamp the smaller inner dimension to match the other matrix size. |
| // Remember, HLSL Mrc = GLSL/SPIRV Mcr. |
| if (arg0->getMatrixRows() > arg1->getMatrixCols()) { |
| const TType truncType(arg0->getBasicType(), arg0->getQualifier().storage, arg0->getQualifier().precision, |
| 0, arg0->getMatrixCols(), arg1->getMatrixCols()); |
| arg0 = addConstructor(loc, arg0, truncType); |
| } else if (arg0->getMatrixRows() < arg1->getMatrixCols()) { |
| const TType truncType(arg1->getBasicType(), arg1->getQualifier().storage, arg1->getQualifier().precision, |
| 0, arg0->getMatrixRows(), arg1->getMatrixRows()); |
| arg1 = addConstructor(loc, arg1, truncType); |
| } |
| } else { |
| // It's something with scalars: we'll just leave it alone. Function selection will handle it |
| // downstream. |
| } |
| |
| // Warn if we altered one of the arguments |
| if (arg0 != argAggregate->getSequence()[0] || arg1 != argAggregate->getSequence()[1]) |
| warn(loc, "mul() matrix size mismatch", "", ""); |
| |
| // Put arguments back. (They might be unchanged, in which case this is harmless). |
| argAggregate->getSequence()[0] = arg0; |
| argAggregate->getSequence()[1] = arg1; |
| |
| call[0].type = &arg0->getWritableType(); |
| call[1].type = &arg1->getWritableType(); |
| } |
| |
| // |
| // Add any needed implicit conversions for function-call arguments to input parameters. |
| // |
| void HlslParseContext::addInputArgumentConversions(const TFunction& function, TIntermTyped*& arguments) |
| { |
| TIntermAggregate* aggregate = arguments->getAsAggregate(); |
| |
| // Replace a single argument with a single argument. |
| const auto setArg = [&](int paramNum, TIntermTyped* arg) { |
| if (function.getParamCount() == 1) |
| arguments = arg; |
| else { |
| if (aggregate == nullptr) |
| arguments = arg; |
| else |
| aggregate->getSequence()[paramNum] = arg; |
| } |
| }; |
| |
| // Process each argument's conversion |
| for (int param = 0; param < function.getParamCount(); ++param) { |
| if (! function[param].type->getQualifier().isParamInput()) |
| continue; |
| |
| // At this early point there is a slight ambiguity between whether an aggregate 'arguments' |
| // is the single argument itself or its children are the arguments. Only one argument |
| // means take 'arguments' itself as the one argument. |
| TIntermTyped* arg = function.getParamCount() == 1 |
| ? arguments->getAsTyped() |
| : (aggregate ? |
| aggregate->getSequence()[param]->getAsTyped() : |
| arguments->getAsTyped()); |
| if (*function[param].type != arg->getType()) { |
| // In-qualified arguments just need an extra node added above the argument to |
| // convert to the correct type. |
| TIntermTyped* convArg = intermediate.addConversion(EOpFunctionCall, *function[param].type, arg); |
| if (convArg != nullptr) |
| convArg = intermediate.addUniShapeConversion(EOpFunctionCall, *function[param].type, convArg); |
| if (convArg != nullptr) |
| setArg(param, convArg); |
| else |
| error(arg->getLoc(), "cannot convert input argument, argument", "", "%d", param); |
| } else { |
| if (wasFlattened(arg)) { |
| // If both formal and calling arg are to be flattened, leave that to argument |
| // expansion, not conversion. |
| if (!shouldFlatten(*function[param].type, function[param].type->getQualifier().storage, true)) { |
| // Will make a two-level subtree. |
| // The deepest will copy member-by-member to build the structure to pass. |
| // The level above that will be a two-operand EOpComma sequence that follows the copy by the |
| // object itself. |
| TVariable* internalAggregate = makeInternalVariable("aggShadow", *function[param].type); |
| internalAggregate->getWritableType().getQualifier().makeTemporary(); |
| TIntermSymbol* internalSymbolNode = new TIntermSymbol(internalAggregate->getUniqueId(), |
| internalAggregate->getName(), |
| internalAggregate->getType()); |
| internalSymbolNode->setLoc(arg->getLoc()); |
| // This makes the deepest level, the member-wise copy |
| TIntermAggregate* assignAgg = handleAssign(arg->getLoc(), EOpAssign, |
| internalSymbolNode, arg)->getAsAggregate(); |
| |
| // Now, pair that with the resulting aggregate. |
| assignAgg = intermediate.growAggregate(assignAgg, internalSymbolNode, arg->getLoc()); |
| assignAgg->setOperator(EOpComma); |
| assignAgg->setType(internalAggregate->getType()); |
| setArg(param, assignAgg); |
| } |
| } |
| } |
| } |
| } |
| |
| // |
| // Add any needed implicit expansion of calling arguments from what the shader listed to what's |
| // internally needed for the AST (given the constraints downstream). |
| // |
| void HlslParseContext::expandArguments(const TSourceLoc& loc, const TFunction& function, TIntermTyped*& arguments) |
| { |
| TIntermAggregate* aggregate = arguments->getAsAggregate(); |
| int functionParamNumberOffset = 0; |
| |
| // Replace a single argument with a single argument. |
| const auto setArg = [&](int paramNum, TIntermTyped* arg) { |
| if (function.getParamCount() + functionParamNumberOffset == 1) |
| arguments = arg; |
| else { |
| if (aggregate == nullptr) |
| arguments = arg; |
| else |
| aggregate->getSequence()[paramNum] = arg; |
| } |
| }; |
| |
| // Replace a single argument with a list of arguments |
| const auto setArgList = [&](int paramNum, const TVector<TIntermTyped*>& args) { |
| if (args.size() == 1) |
| setArg(paramNum, args.front()); |
| else if (args.size() > 1) { |
| if (function.getParamCount() + functionParamNumberOffset == 1) { |
| arguments = intermediate.makeAggregate(args.front()); |
| std::for_each(args.begin() + 1, args.end(), |
| [&](TIntermTyped* arg) { |
| arguments = intermediate.growAggregate(arguments, arg); |
| }); |
| } else { |
| auto it = aggregate->getSequence().erase(aggregate->getSequence().begin() + paramNum); |
| aggregate->getSequence().insert(it, args.begin(), args.end()); |
| } |
| functionParamNumberOffset += (int)(args.size() - 1); |
| } |
| }; |
| |
| // Process each argument's conversion |
| for (int param = 0; param < function.getParamCount(); ++param) { |
| // At this early point there is a slight ambiguity between whether an aggregate 'arguments' |
| // is the single argument itself or its children are the arguments. Only one argument |
| // means take 'arguments' itself as the one argument. |
| TIntermTyped* arg = function.getParamCount() == 1 |
| ? arguments->getAsTyped() |
| : (aggregate ? |
| aggregate->getSequence()[param + functionParamNumberOffset]->getAsTyped() : |
| arguments->getAsTyped()); |
| |
| if (wasFlattened(arg) && shouldFlatten(*function[param].type, function[param].type->getQualifier().storage, true)) { |
| // Need to pass the structure members instead of the structure. |
| TVector<TIntermTyped*> memberArgs; |
| for (int memb = 0; memb < (int)arg->getType().getStruct()->size(); ++memb) |
| memberArgs.push_back(flattenAccess(arg, memb)); |
| setArgList(param + functionParamNumberOffset, memberArgs); |
| } |
| } |
| |
| // TODO: if we need both hidden counter args (below) and struct expansion (above) |
| // the two algorithms need to be merged: Each assumes the list starts out 1:1 between |
| // parameters and arguments. |
| |
| // If any argument is a pass-by-reference struct buffer with an associated counter |
| // buffer, we have to add another hidden parameter for that counter. |
| if (aggregate) |
| addStructBuffArguments(loc, aggregate); |
| } |
| |
| // |
| // Add any needed implicit output conversions for function-call arguments. This |
| // can require a new tree topology, complicated further by whether the function |
| // has a return value. |
| // |
| // Returns a node of a subtree that evaluates to the return value of the function. |
| // |
| TIntermTyped* HlslParseContext::addOutputArgumentConversions(const TFunction& function, TIntermOperator& intermNode) |
| { |
| assert (intermNode.getAsAggregate() != nullptr || intermNode.getAsUnaryNode() != nullptr); |
| |
| const TSourceLoc& loc = intermNode.getLoc(); |
| |
| TIntermSequence argSequence; // temp sequence for unary node args |
| |
| if (intermNode.getAsUnaryNode()) |
| argSequence.push_back(intermNode.getAsUnaryNode()->getOperand()); |
| |
| TIntermSequence& arguments = argSequence.empty() ? intermNode.getAsAggregate()->getSequence() : argSequence; |
| |
| const auto needsConversion = [&](int argNum) { |
| return function[argNum].type->getQualifier().isParamOutput() && |
| (*function[argNum].type != arguments[argNum]->getAsTyped()->getType() || |
| shouldConvertLValue(arguments[argNum]) || |
| wasFlattened(arguments[argNum]->getAsTyped())); |
| }; |
| |
| // Will there be any output conversions? |
| bool outputConversions = false; |
| for (int i = 0; i < function.getParamCount(); ++i) { |
| if (needsConversion(i)) { |
| outputConversions = true; |
| break; |
| } |
| } |
| |
| if (! outputConversions) |
| return &intermNode; |
| |
| // Setup for the new tree, if needed: |
| // |
| // Output conversions need a different tree topology. |
| // Out-qualified arguments need a temporary of the correct type, with the call |
| // followed by an assignment of the temporary to the original argument: |
| // void: function(arg, ...) -> ( function(tempArg, ...), arg = tempArg, ...) |
| // ret = function(arg, ...) -> ret = (tempRet = function(tempArg, ...), arg = tempArg, ..., tempRet) |
| // Where the "tempArg" type needs no conversion as an argument, but will convert on assignment. |
| TIntermTyped* conversionTree = nullptr; |
| TVariable* tempRet = nullptr; |
| if (intermNode.getBasicType() != EbtVoid) { |
| // do the "tempRet = function(...), " bit from above |
| tempRet = makeInternalVariable("tempReturn", intermNode.getType()); |
| TIntermSymbol* tempRetNode = intermediate.addSymbol(*tempRet, loc); |
| conversionTree = intermediate.addAssign(EOpAssign, tempRetNode, &intermNode, loc); |
| } else |
| conversionTree = &intermNode; |
| |
| conversionTree = intermediate.makeAggregate(conversionTree); |
| |
| // Process each argument's conversion |
| for (int i = 0; i < function.getParamCount(); ++i) { |
| if (needsConversion(i)) { |
| // Out-qualified arguments needing conversion need to use the topology setup above. |
| // Do the " ...(tempArg, ...), arg = tempArg" bit from above. |
| |
| // Make a temporary for what the function expects the argument to look like. |
| TVariable* tempArg = makeInternalVariable("tempArg", *function[i].type); |
| tempArg->getWritableType().getQualifier().makeTemporary(); |
| TIntermSymbol* tempArgNode = intermediate.addSymbol(*tempArg, loc); |
| |
| // This makes the deepest level, the member-wise copy |
| TIntermTyped* tempAssign = handleAssign(arguments[i]->getLoc(), EOpAssign, arguments[i]->getAsTyped(), |
| tempArgNode); |
| tempAssign = handleLvalue(arguments[i]->getLoc(), "assign", tempAssign); |
| conversionTree = intermediate.growAggregate(conversionTree, tempAssign, arguments[i]->getLoc()); |
| |
| // replace the argument with another node for the same tempArg variable |
| arguments[i] = intermediate.addSymbol(*tempArg, loc); |
| } |
| } |
| |
| // Finalize the tree topology (see bigger comment above). |
| if (tempRet) { |
| // do the "..., tempRet" bit from above |
| TIntermSymbol* tempRetNode = intermediate.addSymbol(*tempRet, loc); |
| conversionTree = intermediate.growAggregate(conversionTree, tempRetNode, loc); |
| } |
| |
| conversionTree = intermediate.setAggregateOperator(conversionTree, EOpComma, intermNode.getType(), loc); |
| |
| return conversionTree; |
| } |
| |
| // |
| // Add any needed "hidden" counter buffer arguments for function calls. |
| // |
| // Modifies the 'aggregate' argument if needed. Otherwise, is no-op. |
| // |
| void HlslParseContext::addStructBuffArguments(const TSourceLoc& loc, TIntermAggregate*& aggregate) |
| { |
| // See if there are any SB types with counters. |
| const bool hasStructBuffArg = |
| std::any_of(aggregate->getSequence().begin(), |
| aggregate->getSequence().end(), |
| [this](const TIntermNode* node) { |
| return (node && node->getAsTyped() != nullptr) && hasStructBuffCounter(node->getAsTyped()->getType()); |
| }); |
| |
| // Nothing to do, if we didn't find one. |
| if (! hasStructBuffArg) |
| return; |
| |
| TIntermSequence argsWithCounterBuffers; |
| |
| for (int param = 0; param < int(aggregate->getSequence().size()); ++param) { |
| argsWithCounterBuffers.push_back(aggregate->getSequence()[param]); |
| |
| if (hasStructBuffCounter(aggregate->getSequence()[param]->getAsTyped()->getType())) { |
| const TIntermSymbol* blockSym = aggregate->getSequence()[param]->getAsSymbolNode(); |
| if (blockSym != nullptr) { |
| TType counterType; |
| counterBufferType(loc, counterType); |
| |
| const TString counterBlockName(intermediate.addCounterBufferName(blockSym->getName())); |
| |
| TVariable* variable = makeInternalVariable(counterBlockName, counterType); |
| |
| // Mark this buffer's counter block as being in use |
| structBufferCounter[counterBlockName] = true; |
| |
| TIntermSymbol* sym = intermediate.addSymbol(*variable, loc); |
| argsWithCounterBuffers.push_back(sym); |
| } |
| } |
| } |
| |
| // Swap with the temp list we've built up. |
| aggregate->getSequence().swap(argsWithCounterBuffers); |
| } |
| |
| |
| // |
| // Do additional checking of built-in function calls that is not caught |
| // by normal semantic checks on argument type, extension tagging, etc. |
| // |
| // Assumes there has been a semantically correct match to a built-in function prototype. |
| // |
| void HlslParseContext::builtInOpCheck(const TSourceLoc& loc, const TFunction& fnCandidate, TIntermOperator& callNode) |
| { |
| // Set up convenience accessors to the argument(s). There is almost always |
| // multiple arguments for the cases below, but when there might be one, |
| // check the unaryArg first. |
| const TIntermSequence* argp = nullptr; // confusing to use [] syntax on a pointer, so this is to help get a reference |
| const TIntermTyped* unaryArg = nullptr; |
| const TIntermTyped* arg0 = nullptr; |
| if (callNode.getAsAggregate()) { |
| argp = &callNode.getAsAggregate()->getSequence(); |
| if (argp->size() > 0) |
| arg0 = (*argp)[0]->getAsTyped(); |
| } else { |
| assert(callNode.getAsUnaryNode()); |
| unaryArg = callNode.getAsUnaryNode()->getOperand(); |
| arg0 = unaryArg; |
| } |
| const TIntermSequence& aggArgs = *argp; // only valid when unaryArg is nullptr |
| |
| switch (callNode.getOp()) { |
| case EOpTextureGather: |
| case EOpTextureGatherOffset: |
| case EOpTextureGatherOffsets: |
| { |
| // Figure out which variants are allowed by what extensions, |
| // and what arguments must be constant for which situations. |
| |
| TString featureString = fnCandidate.getName() + "(...)"; |
| const char* feature = featureString.c_str(); |
| int compArg = -1; // track which argument, if any, is the constant component argument |
| switch (callNode.getOp()) { |
| case EOpTextureGather: |
| // More than two arguments needs gpu_shader5, and rectangular or shadow needs gpu_shader5, |
| // otherwise, need GL_ARB_texture_gather. |
| if (fnCandidate.getParamCount() > 2 || fnCandidate[0].type->getSampler().dim == EsdRect || |
| fnCandidate[0].type->getSampler().shadow) { |
| if (! fnCandidate[0].type->getSampler().shadow) |
| compArg = 2; |
| } |
| break; |
| case EOpTextureGatherOffset: |
| // GL_ARB_texture_gather is good enough for 2D non-shadow textures with no component argument |
| if (! fnCandidate[0].type->getSampler().shadow) |
| compArg = 3; |
| break; |
| case EOpTextureGatherOffsets: |
| if (! fnCandidate[0].type->getSampler().shadow) |
| compArg = 3; |
| break; |
| default: |
| break; |
| } |
| |
| if (compArg > 0 && compArg < fnCandidate.getParamCount()) { |
| if (aggArgs[compArg]->getAsConstantUnion()) { |
| int value = aggArgs[compArg]->getAsConstantUnion()->getConstArray()[0].getIConst(); |
| if (value < 0 || value > 3) |
| error(loc, "must be 0, 1, 2, or 3:", feature, "component argument"); |
| } else |
| error(loc, "must be a compile-time constant:", feature, "component argument"); |
| } |
| |
| break; |
| } |
| |
| case EOpTextureOffset: |
| case EOpTextureFetchOffset: |
| case EOpTextureProjOffset: |
| case EOpTextureLodOffset: |
| case EOpTextureProjLodOffset: |
| case EOpTextureGradOffset: |
| case EOpTextureProjGradOffset: |
| { |
| // Handle texture-offset limits checking |
| // Pick which argument has to hold constant offsets |
| int arg = -1; |
| switch (callNode.getOp()) { |
| case EOpTextureOffset: arg = 2; break; |
| case EOpTextureFetchOffset: arg = (arg0->getType().getSampler().dim != EsdRect) ? 3 : 2; break; |
| case EOpTextureProjOffset: arg = 2; break; |
| case EOpTextureLodOffset: arg = 3; break; |
| case EOpTextureProjLodOffset: arg = 3; break; |
| case EOpTextureGradOffset: arg = 4; break; |
| case EOpTextureProjGradOffset: arg = 4; break; |
| default: |
| assert(0); |
| break; |
| } |
| |
| if (arg > 0) { |
| if (aggArgs[arg]->getAsConstantUnion() == nullptr) |
| error(loc, "argument must be compile-time constant", "texel offset", ""); |
| else { |
| const TType& type = aggArgs[arg]->getAsTyped()->getType(); |
| for (int c = 0; c < type.getVectorSize(); ++c) { |
| int offset = aggArgs[arg]->getAsConstantUnion()->getConstArray()[c].getIConst(); |
| if (offset > resources.maxProgramTexelOffset || offset < resources.minProgramTexelOffset) |
| error(loc, "value is out of range:", "texel offset", |
| "[gl_MinProgramTexelOffset, gl_MaxProgramTexelOffset]"); |
| } |
| } |
| } |
| |
| break; |
| } |
| |
| case EOpTextureQuerySamples: |
| case EOpImageQuerySamples: |
| break; |
| |
| case EOpImageAtomicAdd: |
| case EOpImageAtomicMin: |
| case EOpImageAtomicMax: |
| case EOpImageAtomicAnd: |
| case EOpImageAtomicOr: |
| case EOpImageAtomicXor: |
| case EOpImageAtomicExchange: |
| case EOpImageAtomicCompSwap: |
| break; |
| |
| case EOpInterpolateAtCentroid: |
| case EOpInterpolateAtSample: |
| case EOpInterpolateAtOffset: |
| // Make sure the first argument is an interpolant, or an array element of an interpolant |
| if (arg0->getType().getQualifier().storage != EvqVaryingIn) { |
| // It might still be an array element. |
| // |
| // We could check more, but the semantics of the first argument are already met; the |
| // only way to turn an array into a float/vec* is array dereference and swizzle. |
| // |
| // ES and desktop 4.3 and earlier: swizzles may not be used |
| // desktop 4.4 and later: swizzles may be used |
| const TIntermTyped* base = TIntermediate::findLValueBase(arg0, true); |
| if (base == nullptr || base->getType().getQualifier().storage != EvqVaryingIn) |
| error(loc, "first argument must be an interpolant, or interpolant-array element", |
| fnCandidate.getName().c_str(), ""); |
| } |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| // |
| // Handle seeing something in a grammar production that can be done by calling |
| // a constructor. |
| // |
| // The constructor still must be "handled" by handleFunctionCall(), which will |
| // then call handleConstructor(). |
| // |
| TFunction* HlslParseContext::makeConstructorCall(const TSourceLoc& loc, const TType& type) |
| { |
| TOperator op = intermediate.mapTypeToConstructorOp(type); |
| |
| if (op == EOpNull) { |
| error(loc, "cannot construct this type", type.getBasicString(), ""); |
| return nullptr; |
| } |
| |
| TString empty(""); |
| |
| return new TFunction(&empty, type, op); |
| } |
| |
| // |
| // Handle seeing a "COLON semantic" at the end of a type declaration, |
| // by updating the type according to the semantic. |
| // |
| void HlslParseContext::handleSemantic(TSourceLoc loc, TQualifier& qualifier, TBuiltInVariable builtIn, |
| const TString& upperCase) |
| { |
| // Parse and return semantic number. If limit is 0, it will be ignored. Otherwise, if the parsed |
| // semantic number is >= limit, errorMsg is issued and 0 is returned. |
| // TODO: it would be nicer if limit and errorMsg had default parameters, but some compilers don't yet |
| // accept those in lambda functions. |
| const auto getSemanticNumber = [this, loc](const TString& semantic, unsigned int limit, const char* errorMsg) -> unsigned int { |
| size_t pos = semantic.find_last_not_of("0123456789"); |
| if (pos == std::string::npos) |
| return 0u; |
| |
| unsigned int semanticNum = (unsigned int)atoi(semantic.c_str() + pos + 1); |
| |
| if (limit != 0 && semanticNum >= limit) { |
| error(loc, errorMsg, semantic.c_str(), ""); |
| return 0u; |
| } |
| |
| return semanticNum; |
| }; |
| |
| switch(builtIn) { |
| case EbvNone: |
| // Get location numbers from fragment outputs, instead of |
| // auto-assigning them. |
| if (language == EShLangFragment && upperCase.compare(0, 9, "SV_TARGET") == 0) { |
| qualifier.layoutLocation = getSemanticNumber(upperCase, 0, nullptr); |
| nextOutLocation = std::max(nextOutLocation, qualifier.layoutLocation + 1u); |
| } else if (upperCase.compare(0, 15, "SV_CLIPDISTANCE") == 0) { |
| builtIn = EbvClipDistance; |
| qualifier.layoutLocation = getSemanticNumber(upperCase, maxClipCullRegs, "invalid clip semantic"); |
| } else if (upperCase.compare(0, 15, "SV_CULLDISTANCE") == 0) { |
| builtIn = EbvCullDistance; |
| qualifier.layoutLocation = getSemanticNumber(upperCase, maxClipCullRegs, "invalid cull semantic"); |
| } |
| break; |
| case EbvPosition: |
| // adjust for stage in/out |
| if (language == EShLangFragment) |
| builtIn = EbvFragCoord; |
| break; |
| case EbvFragStencilRef: |
| error(loc, "unimplemented; need ARB_shader_stencil_export", "SV_STENCILREF", ""); |
| break; |
| case EbvTessLevelInner: |
| case EbvTessLevelOuter: |
| qualifier.patch = true; |
| break; |
| default: |
| break; |
| } |
| |
| if (qualifier.builtIn == EbvNone) |
| qualifier.builtIn = builtIn; |
| qualifier.semanticName = intermediate.addSemanticName(upperCase); |
| } |
| |
| // |
| // Handle seeing something like "PACKOFFSET LEFT_PAREN c[Subcomponent][.component] RIGHT_PAREN" |
| // |
| // 'location' has the "c[Subcomponent]" part. |
| // 'component' points to the "component" part, or nullptr if not present. |
| // |
| void HlslParseContext::handlePackOffset(const TSourceLoc& loc, TQualifier& qualifier, const glslang::TString& location, |
| const glslang::TString* component) |
| { |
| if (location.size() == 0 || location[0] != 'c') { |
| error(loc, "expected 'c'", "packoffset", ""); |
| return; |
| } |
| if (location.size() == 1) |
| return; |
| if (! isdigit(location[1])) { |
| error(loc, "expected number after 'c'", "packoffset", ""); |
| return; |
| } |
| |
| qualifier.layoutOffset = 16 * atoi(location.substr(1, location.size()).c_str()); |
| if (component != nullptr) { |
| int componentOffset = 0; |
| switch ((*component)[0]) { |
| case 'x': componentOffset = 0; break; |
| case 'y': componentOffset = 4; break; |
| case 'z': componentOffset = 8; break; |
| case 'w': componentOffset = 12; break; |
| default: |
| componentOffset = -1; |
| break; |
| } |
| if (componentOffset < 0 || component->size() > 1) { |
| error(loc, "expected {x, y, z, w} for component", "packoffset", ""); |
| return; |
| } |
| qualifier.layoutOffset += componentOffset; |
| } |
| } |
| |
| // |
| // Handle seeing something like "REGISTER LEFT_PAREN [shader_profile,] Type# RIGHT_PAREN" |
| // |
| // 'profile' points to the shader_profile part, or nullptr if not present. |
| // 'desc' is the type# part. |
| // |
| void HlslParseContext::handleRegister(const TSourceLoc& loc, TQualifier& qualifier, const glslang::TString* profile, |
| const glslang::TString& desc, int subComponent, const glslang::TString* spaceDesc) |
| { |
| if (profile != nullptr) |
| warn(loc, "ignoring shader_profile", "register", ""); |
| |
| if (desc.size() < 1) { |
| error(loc, "expected register type", "register", ""); |
| return; |
| } |
| |
| int regNumber = 0; |
| if (desc.size() > 1) { |
| if (isdigit(desc[1])) |
| regNumber = atoi(desc.substr(1, desc.size()).c_str()); |
| else { |
| error(loc, "expected register number after register type", "register", ""); |
| return; |
| } |
| } |
| |
| // more information about register types see |
| // https://docs.microsoft.com/en-us/windows/desktop/direct3dhlsl/dx-graphics-hlsl-variable-register |
| const std::vector<std::string>& resourceInfo = intermediate.getResourceSetBinding(); |
| switch (std::tolower(desc[0])) { |
| case 'c': |
| // c register is the register slot in the global const buffer |
| // each slot is a vector of 4 32 bit components |
| qualifier.layoutOffset = regNumber * 4 * 4; |
| break; |
| // const buffer register slot |
| case 'b': |
| // textrues and structured buffers |
| case 't': |
| // samplers |
| case 's': |
| // uav resources |
| case 'u': |
| // if nothing else has set the binding, do so now |
| // (other mechanisms override this one) |
| if (!qualifier.hasBinding()) |
| qualifier.layoutBinding = regNumber + subComponent; |
| |
| // This handles per-register layout sets numbers. For the global mode which sets |
| // every symbol to the same value, see setLinkageLayoutSets(). |
| if ((resourceInfo.size() % 3) == 0) { |
| // Apply per-symbol resource set and binding. |
| for (auto it = resourceInfo.cbegin(); it != resourceInfo.cend(); it = it + 3) { |
| if (strcmp(desc.c_str(), it[0].c_str()) == 0) { |
| qualifier.layoutSet = atoi(it[1].c_str()); |
| qualifier.layoutBinding = atoi(it[2].c_str()) + subComponent; |
| break; |
| } |
| } |
| } |
| break; |
| default: |
| warn(loc, "ignoring unrecognized register type", "register", "%c", desc[0]); |
| break; |
| } |
| |
| // space |
| unsigned int setNumber; |
| const auto crackSpace = [&]() -> bool { |
| const int spaceLen = 5; |
| if (spaceDesc->size() < spaceLen + 1) |
| return false; |
| if (spaceDesc->compare(0, spaceLen, "space") != 0) |
| return false; |
| if (! isdigit((*spaceDesc)[spaceLen])) |
| return false; |
| setNumber = atoi(spaceDesc->substr(spaceLen, spaceDesc->size()).c_str()); |
| return true; |
| }; |
| |
| // if nothing else has set the set, do so now |
| // (other mechanisms override this one) |
| if (spaceDesc && !qualifier.hasSet()) { |
| if (! crackSpace()) { |
| error(loc, "expected spaceN", "register", ""); |
| return; |
| } |
| qualifier.layoutSet = setNumber; |
| } |
| } |
| |
| // Convert to a scalar boolean, or if not allowed by HLSL semantics, |
| // report an error and return nullptr. |
| TIntermTyped* HlslParseContext::convertConditionalExpression(const TSourceLoc& loc, TIntermTyped* condition, |
| bool mustBeScalar) |
| { |
| if (mustBeScalar && !condition->getType().isScalarOrVec1()) { |
| error(loc, "requires a scalar", "conditional expression", ""); |
| return nullptr; |
| } |
| |
| return intermediate.addConversion(EOpConstructBool, TType(EbtBool, EvqTemporary, condition->getVectorSize()), |
| condition); |
| } |
| |
| // |
| // Same error message for all places assignments don't work. |
| // |
| void HlslParseContext::assignError(const TSourceLoc& loc, const char* op, TString left, TString right) |
| { |
| error(loc, "", op, "cannot convert from '%s' to '%s'", |
| right.c_str(), left.c_str()); |
| } |
| |
| // |
| // Same error message for all places unary operations don't work. |
| // |
| void HlslParseContext::unaryOpError(const TSourceLoc& loc, const char* op, TString operand) |
| { |
| error(loc, " wrong operand type", op, |
| "no operation '%s' exists that takes an operand of type %s (or there is no acceptable conversion)", |
| op, operand.c_str()); |
| } |
| |
| // |
| // Same error message for all binary operations don't work. |
| // |
| void HlslParseContext::binaryOpError(const TSourceLoc& loc, const char* op, TString left, TString right) |
| { |
| error(loc, " wrong operand types:", op, |
| "no operation '%s' exists that takes a left-hand operand of type '%s' and " |
| "a right operand of type '%s' (or there is no acceptable conversion)", |
| op, left.c_str(), right.c_str()); |
| } |
| |
| // |
| // A basic type of EbtVoid is a key that the name string was seen in the source, but |
| // it was not found as a variable in the symbol table. If so, give the error |
| // message and insert a dummy variable in the symbol table to prevent future errors. |
| // |
| void HlslParseContext::variableCheck(TIntermTyped*& nodePtr) |
| { |
| TIntermSymbol* symbol = nodePtr->getAsSymbolNode(); |
| if (! symbol) |
| return; |
| |
| if (symbol->getType().getBasicType() == EbtVoid) { |
| error(symbol->getLoc(), "undeclared identifier", symbol->getName().c_str(), ""); |
| |
| // Add to symbol table to prevent future error messages on the same name |
| if (symbol->getName().size() > 0) { |
| TVariable* fakeVariable = new TVariable(&symbol->getName(), TType(EbtFloat)); |
| symbolTable.insert(*fakeVariable); |
| |
| // substitute a symbol node for this new variable |
| nodePtr = intermediate.addSymbol(*fakeVariable, symbol->getLoc()); |
| } |
| } |
| } |
| |
| // |
| // Both test, and if necessary spit out an error, to see if the node is really |
| // a constant. |
| // |
| void HlslParseContext::constantValueCheck(TIntermTyped* node, const char* token) |
| { |
| if (node->getQualifier().storage != EvqConst) |
| error(node->getLoc(), "constant expression required", token, ""); |
| } |
| |
| // |
| // Both test, and if necessary spit out an error, to see if the node is really |
| // an integer. |
| // |
| void HlslParseContext::integerCheck(const TIntermTyped* node, const char* token) |
| { |
| if ((node->getBasicType() == EbtInt || node->getBasicType() == EbtUint) && node->isScalar()) |
| return; |
| |
| error(node->getLoc(), "scalar integer expression required", token, ""); |
| } |
| |
| // |
| // Both test, and if necessary spit out an error, to see if we are currently |
| // globally scoped. |
| // |
| void HlslParseContext::globalCheck(const TSourceLoc& loc, const char* token) |
| { |
| if (! symbolTable.atGlobalLevel()) |
| error(loc, "not allowed in nested scope", token, ""); |
| } |
| |
| bool HlslParseContext::builtInName(const TString& /*identifier*/) |
| { |
| return false; |
| } |
| |
| // |
| // Make sure there is enough data and not too many arguments provided to the |
| // constructor to build something of the type of the constructor. Also returns |
| // the type of the constructor. |
| // |
| // Returns true if there was an error in construction. |
| // |
| bool HlslParseContext::constructorError(const TSourceLoc& loc, TIntermNode* node, TFunction& function, |
| TOperator op, TType& type) |
| { |
| type.shallowCopy(function.getType()); |
| |
| bool constructingMatrix = false; |
| switch (op) { |
| case EOpConstructTextureSampler: |
| error(loc, "unhandled texture constructor", "constructor", ""); |
| return true; |
| case EOpConstructMat2x2: |
| case EOpConstructMat2x3: |
| case EOpConstructMat2x4: |
| case EOpConstructMat3x2: |
| case EOpConstructMat3x3: |
| case EOpConstructMat3x4: |
| case EOpConstructMat4x2: |
| case EOpConstructMat4x3: |
| case EOpConstructMat4x4: |
| case EOpConstructDMat2x2: |
| case EOpConstructDMat2x3: |
| case EOpConstructDMat2x4: |
| case EOpConstructDMat3x2: |
| case EOpConstructDMat3x3: |
| case EOpConstructDMat3x4: |
| case EOpConstructDMat4x2: |
| case EOpConstructDMat4x3: |
| case EOpConstructDMat4x4: |
| case EOpConstructIMat2x2: |
| case EOpConstructIMat2x3: |
| case EOpConstructIMat2x4: |
| case EOpConstructIMat3x2: |
| case EOpConstructIMat3x3: |
| case EOpConstructIMat3x4: |
| case EOpConstructIMat4x2: |
| case EOpConstructIMat4x3: |
| case EOpConstructIMat4x4: |
| case EOpConstructUMat2x2: |
| case EOpConstructUMat2x3: |
| case EOpConstructUMat2x4: |
| case EOpConstructUMat3x2: |
| case EOpConstructUMat3x3: |
| case EOpConstructUMat3x4: |
| case EOpConstructUMat4x2: |
| case EOpConstructUMat4x3: |
| case EOpConstructUMat4x4: |
| case EOpConstructBMat2x2: |
| case EOpConstructBMat2x3: |
| case EOpConstructBMat2x4: |
| case EOpConstructBMat3x2: |
| case EOpConstructBMat3x3: |
| case EOpConstructBMat3x4: |
| case EOpConstructBMat4x2: |
| case EOpConstructBMat4x3: |
| case EOpConstructBMat4x4: |
| constructingMatrix = true; |
| break; |
| default: |
| break; |
| } |
| |
| // |
| // Walk the arguments for first-pass checks and collection of information. |
| // |
| |
| int size = 0; |
| bool constType = true; |
| bool full = false; |
| bool overFull = false; |
| bool matrixInMatrix = false; |
| bool arrayArg = false; |
| for (int arg = 0; arg < function.getParamCount(); ++arg) { |
| if (function[arg].type->isArray()) { |
| if (function[arg].type->isUnsizedArray()) { |
| // Can't construct from an unsized array. |
| error(loc, "array argument must be sized", "constructor", ""); |
| return true; |
| } |
| arrayArg = true; |
| } |
| if (constructingMatrix && function[arg].type->isMatrix()) |
| matrixInMatrix = true; |
| |
| // 'full' will go to true when enough args have been seen. If we loop |
| // again, there is an extra argument. |
| if (full) { |
| // For vectors and matrices, it's okay to have too many components |
| // available, but not okay to have unused arguments. |
| overFull = true; |
| } |
| |
| size += function[arg].type->computeNumComponents(); |
| if (op != EOpConstructStruct && ! type.isArray() && size >= type.computeNumComponents()) |
| full = true; |
| |
| if (function[arg].type->getQualifier().storage != EvqConst) |
| constType = false; |
| } |
| |
| if (constType) |
| type.getQualifier().storage = EvqConst; |
| |
| if (type.isArray()) { |
| if (function.getParamCount() == 0) { |
| error(loc, "array constructor must have at least one argument", "constructor", ""); |
| return true; |
| } |
| |
| if (type.isUnsizedArray()) { |
| // auto adapt the constructor type to the number of arguments |
| type.changeOuterArraySize(function.getParamCount()); |
| } else if (type.getOuterArraySize() != function.getParamCount() && type.computeNumComponents() > size) { |
| error(loc, "array constructor needs one argument per array element", "constructor", ""); |
| return true; |
| } |
| |
| if (type.isArrayOfArrays()) { |
| // Types have to match, but we're still making the type. |
| // Finish making the type, and the comparison is done later |
| // when checking for conversion. |
| TArraySizes& arraySizes = *type.getArraySizes(); |
| |
| // At least the dimensionalities have to match. |
| if (! function[0].type->isArray() || |
| arraySizes.getNumDims() != function[0].type->getArraySizes()->getNumDims() + 1) { |
| error(loc, "array constructor argument not correct type to construct array element", "constructor", ""); |
| return true; |
| } |
| |
| if (arraySizes.isInnerUnsized()) { |
| // "Arrays of arrays ..., and the size for any dimension is optional" |
| // That means we need to adopt (from the first argument) the other array sizes into the type. |
| for (int d = 1; d < arraySizes.getNumDims(); ++d) { |
| if (arraySizes.getDimSize(d) == UnsizedArraySize) { |
| arraySizes.setDimSize(d, function[0].type->getArraySizes()->getDimSize(d - 1)); |
| } |
| } |
| } |
| } |
| } |
| |
| // Some array -> array type casts are okay |
| if (arrayArg && function.getParamCount() == 1 && op != EOpConstructStruct && type.isArray() && |
| !type.isArrayOfArrays() && !function[0].type->isArrayOfArrays() && |
| type.getVectorSize() >= 1 && function[0].type->getVectorSize() >= 1) |
| return false; |
| |
| if (arrayArg && op != EOpConstructStruct && ! type.isArrayOfArrays()) { |
| error(loc, "constructing non-array constituent from array argument", "constructor", ""); |
| return true; |
| } |
| |
| if (matrixInMatrix && ! type.isArray()) { |
| return false; |
| } |
| |
| if (overFull) { |
| error(loc, "too many arguments", "constructor", ""); |
| return true; |
| } |
| |
| if (op == EOpConstructStruct && ! type.isArray()) { |
| if (isScalarConstructor(node)) |
| return false; |
| |
| // Self-type construction: e.g, we can construct a struct from a single identically typed object. |
| if (function.getParamCount() == 1 && type == *function[0].type) |
| return false; |
| |
| if ((int)type.getStruct()->size() != function.getParamCount()) { |
| error(loc, "Number of constructor parameters does not match the number of structure fields", "constructor", ""); |
| return true; |
| } |
| } |
| |
| if ((op != EOpConstructStruct && size != 1 && size < type.computeNumComponents()) || |
| (op == EOpConstructStruct && size < type.computeNumComponents())) { |
| error(loc, "not enough data provided for construction", "constructor", ""); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| // See if 'node', in the context of constructing aggregates, is a scalar argument |
| // to a constructor. |
| // |
| bool HlslParseContext::isScalarConstructor(const TIntermNode* node) |
| { |
| // Obviously, it must be a scalar, but an aggregate node might not be fully |
| // completed yet: holding a sequence of initializers under an aggregate |
| // would not yet be typed, so don't check it's type. This corresponds to |
| // the aggregate operator also not being set yet. (An aggregate operation |
| // that legitimately yields a scalar will have a getOp() of that operator, |
| // not EOpNull.) |
| |
| return node->getAsTyped() != nullptr && |
| node->getAsTyped()->isScalar() && |
| (node->getAsAggregate() == nullptr || node->getAsAggregate()->getOp() != EOpNull); |
| } |
| |
| // Checks to see if a void variable has been declared and raise an error message for such a case |
| // |
| // returns true in case of an error |
| // |
| bool HlslParseContext::voidErrorCheck(const TSourceLoc& loc, const TString& identifier, const TBasicType basicType) |
| { |
| if (basicType == EbtVoid) { |
| error(loc, "illegal use of type 'void'", identifier.c_str(), ""); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| // |
| // Fix just a full qualifier (no variables or types yet, but qualifier is complete) at global level. |
| // |
| void HlslParseContext::globalQualifierFix(const TSourceLoc&, TQualifier& qualifier) |
| { |
| // move from parameter/unknown qualifiers to pipeline in/out qualifiers |
| switch (qualifier.storage) { |
| case EvqIn: |
| qualifier.storage = EvqVaryingIn; |
| break; |
| case EvqOut: |
| qualifier.storage = EvqVaryingOut; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| // |
| // Merge characteristics of the 'src' qualifier into the 'dst'. |
| // If there is duplication, issue error messages, unless 'force' |
| // is specified, which means to just override default settings. |
| // |
| // Also, when force is false, it will be assumed that 'src' follows |
| // 'dst', for the purpose of error checking order for versions |
| // that require specific orderings of qualifiers. |
| // |
| void HlslParseContext::mergeQualifiers(TQualifier& dst, const TQualifier& src) |
| { |
| // Storage qualification |
| if (dst.storage == EvqTemporary || dst.storage == EvqGlobal) |
| dst.storage = src.storage; |
| else if ((dst.storage == EvqIn && src.storage == EvqOut) || |
| (dst.storage == EvqOut && src.storage == EvqIn)) |
| dst.storage = EvqInOut; |
| else if ((dst.storage == EvqIn && src.storage == EvqConst) || |
| (dst.storage == EvqConst && src.storage == EvqIn)) |
| dst.storage = EvqConstReadOnly; |
| |
| // Layout qualifiers |
| mergeObjectLayoutQualifiers(dst, src, false); |
| |
| // individual qualifiers |
| bool repeated = false; |
| #define MERGE_SINGLETON(field) repeated |= dst.field && src.field; dst.field |= src.field; |
| MERGE_SINGLETON(invariant); |
| MERGE_SINGLETON(noContraction); |
| MERGE_SINGLETON(centroid); |
| MERGE_SINGLETON(smooth); |
| MERGE_SINGLETON(flat); |
| MERGE_SINGLETON(nopersp); |
| MERGE_SINGLETON(patch); |
| MERGE_SINGLETON(sample); |
| MERGE_SINGLETON(coherent); |
| MERGE_SINGLETON(volatil); |
| MERGE_SINGLETON(restrict); |
| MERGE_SINGLETON(readonly); |
| MERGE_SINGLETON(writeonly); |
| MERGE_SINGLETON(specConstant); |
| MERGE_SINGLETON(nonUniform); |
| } |
| |
| // used to flatten the sampler type space into a single dimension |
| // correlates with the declaration of defaultSamplerPrecision[] |
| int HlslParseContext::computeSamplerTypeIndex(TSampler& sampler) |
| { |
| int arrayIndex = sampler.arrayed ? 1 : 0; |
| int shadowIndex = sampler.shadow ? 1 : 0; |
| int externalIndex = sampler.external ? 1 : 0; |
| |
| return EsdNumDims * |
| (EbtNumTypes * (2 * (2 * arrayIndex + shadowIndex) + externalIndex) + sampler.type) + sampler.dim; |
| } |
| |
| // |
| // Do size checking for an array type's size. |
| // |
| void HlslParseContext::arraySizeCheck(const TSourceLoc& loc, TIntermTyped* expr, TArraySize& sizePair) |
| { |
| bool isConst = false; |
| sizePair.size = 1; |
| sizePair.node = nullptr; |
| |
| TIntermConstantUnion* constant = expr->getAsConstantUnion(); |
| if (constant) { |
| // handle true (non-specialization) constant |
| sizePair.size = constant->getConstArray()[0].getIConst(); |
| isConst = true; |
| } else { |
| // see if it's a specialization constant instead |
| if (expr->getQualifier().isSpecConstant()) { |
| isConst = true; |
| sizePair.node = expr; |
| TIntermSymbol* symbol = expr->getAsSymbolNode(); |
| if (symbol && symbol->getConstArray().size() > 0) |
| sizePair.size = symbol->getConstArray()[0].getIConst(); |
| } |
| } |
| |
| if (! isConst || (expr->getBasicType() != EbtInt && expr->getBasicType() != EbtUint)) { |
| error(loc, "array size must be a constant integer expression", "", ""); |
| return; |
| } |
| |
| if (sizePair.size <= 0) { |
| error(loc, "array size must be a positive integer", "", ""); |
| return; |
| } |
| } |
| |
| // |
| // Require array to be completely sized |
| // |
| void HlslParseContext::arraySizeRequiredCheck(const TSourceLoc& loc, const TArraySizes& arraySizes) |
| { |
| if (arraySizes.hasUnsized()) |
| error(loc, "array size required", "", ""); |
| } |
| |
| void HlslParseContext::structArrayCheck(const TSourceLoc& /*loc*/, const TType& type) |
| { |
| const TTypeList& structure = *type.getStruct(); |
| for (int m = 0; m < (int)structure.size(); ++m) { |
| const TType& member = *structure[m].type; |
| if (member.isArray()) |
| arraySizeRequiredCheck(structure[m].loc, *member.getArraySizes()); |
| } |
| } |
| |
| // |
| // Do all the semantic checking for declaring or redeclaring an array, with and |
| // without a size, and make the right changes to the symbol table. |
| // |
| void HlslParseContext::declareArray(const TSourceLoc& loc, const TString& identifier, const TType& type, |
| TSymbol*& symbol, bool track) |
| { |
| if (symbol == nullptr) { |
| bool currentScope; |
| symbol = symbolTable.find(identifier, nullptr, ¤tScope); |
| |
| if (symbol && builtInName(identifier) && ! symbolTable.atBuiltInLevel()) { |
| // bad shader (errors already reported) trying to redeclare a built-in name as an array |
| return; |
| } |
| if (symbol == nullptr || ! currentScope) { |
| // |
| // Successfully process a new definition. |
| // (Redeclarations have to take place at the same scope; otherwise they are hiding declarations) |
| // |
| symbol = new TVariable(&identifier, type); |
| symbolTable.insert(*symbol); |
| if (track && symbolTable.atGlobalLevel()) |
| trackLinkage(*symbol); |
| |
| return; |
| } |
| if (symbol->getAsAnonMember()) { |
| error(loc, "cannot redeclare a user-block member array", identifier.c_str(), ""); |
| symbol = nullptr; |
| return; |
| } |
| } |
| |
| // |
| // Process a redeclaration. |
| // |
| |
| if (symbol == nullptr) { |
| error(loc, "array variable name expected", identifier.c_str(), ""); |
| return; |
| } |
| |
| // redeclareBuiltinVariable() should have already done the copyUp() |
| TType& existingType = symbol->getWritableType(); |
| |
| if (existingType.isSizedArray()) { |
| // be more lenient for input arrays to geometry shaders and tessellation control outputs, |
| // where the redeclaration is the same size |
| return; |
| } |
| |
| existingType.updateArraySizes(type); |
| } |
| |
| // |
| // Enforce non-initializer type/qualifier rules. |
| // |
| void HlslParseContext::fixConstInit(const TSourceLoc& loc, const TString& identifier, TType& type, |
| TIntermTyped*& initializer) |
| { |
| // |
| // Make the qualifier make sense, given that there is an initializer. |
| // |
| if (initializer == nullptr) { |
| if (type.getQualifier().storage == EvqConst || |
| type.getQualifier().storage == EvqConstReadOnly) { |
| initializer = intermediate.makeAggregate(loc); |
| warn(loc, "variable with qualifier 'const' not initialized; zero initializing", identifier.c_str(), ""); |
| } |
| } |
| } |
| |
| // |
| // See if the identifier is a built-in symbol that can be redeclared, and if so, |
| // copy the symbol table's read-only built-in variable to the current |
| // global level, where it can be modified based on the passed in type. |
| // |
| // Returns nullptr if no redeclaration took place; meaning a normal declaration still |
| // needs to occur for it, not necessarily an error. |
| // |
| // Returns a redeclared and type-modified variable if a redeclared occurred. |
| // |
| TSymbol* HlslParseContext::redeclareBuiltinVariable(const TSourceLoc& /*loc*/, const TString& identifier, |
| const TQualifier& /*qualifier*/, |
| const TShaderQualifiers& /*publicType*/) |
| { |
| if (! builtInName(identifier) || symbolTable.atBuiltInLevel() || ! symbolTable.atGlobalLevel()) |
| return nullptr; |
| |
| return nullptr; |
| } |
| |
| // |
| // Generate index to the array element in a structure buffer (SSBO) |
| // |
| TIntermTyped* HlslParseContext::indexStructBufferContent(const TSourceLoc& loc, TIntermTyped* buffer) const |
| { |
| // Bail out if not a struct buffer |
| if (buffer == nullptr || ! isStructBufferType(buffer->getType())) |
| return nullptr; |
| |
| // Runtime sized array is always the last element. |
| const TTypeList* bufferStruct = buffer->getType().getStruct(); |
| TIntermTyped* arrayPosition = intermediate.addConstantUnion(unsigned(bufferStruct->size()-1), loc); |
| |
| TIntermTyped* argArray = intermediate.addIndex(EOpIndexDirectStruct, buffer, arrayPosition, loc); |
| argArray->setType(*(*bufferStruct)[bufferStruct->size()-1].type); |
| |
| return argArray; |
| } |
| |
| // |
| // IFF type is a structuredbuffer/byteaddressbuffer type, return the content |
| // (template) type. E.g, StructuredBuffer<MyType> -> MyType. Else return nullptr. |
| // |
| TType* HlslParseContext::getStructBufferContentType(const TType& type) const |
| { |
| if (type.getBasicType() != EbtBlock || type.getQualifier().storage != EvqBuffer) |
| return nullptr; |
| |
| const int memberCount = (int)type.getStruct()->size(); |
| assert(memberCount > 0); |
| |
| TType* contentType = (*type.getStruct())[memberCount-1].type; |
| |
| return contentType->isUnsizedArray() ? contentType : nullptr; |
| } |
| |
| // |
| // If an existing struct buffer has a sharable type, then share it. |
| // |
| void HlslParseContext::shareStructBufferType(TType& type) |
| { |
| // PackOffset must be equivalent to share types on a per-member basis. |
| // Note: cannot use auto type due to recursion. Thus, this is a std::function. |
| const std::function<bool(TType& lhs, TType& rhs)> |
| compareQualifiers = [&](TType& lhs, TType& rhs) -> bool { |
| if (lhs.getQualifier().layoutOffset != rhs.getQualifier().layoutOffset) |
| return false; |
| |
| if (lhs.isStruct() != rhs.isStruct()) |
| return false; |
| |
| if (lhs.isStruct() && rhs.isStruct()) { |
| if (lhs.getStruct()->size() != rhs.getStruct()->size()) |
| return false; |
| |
| for (int i = 0; i < int(lhs.getStruct()->size()); ++i) |
| if (!compareQualifiers(*(*lhs.getStruct())[i].type, *(*rhs.getStruct())[i].type)) |
| return false; |
| } |
| |
| return true; |
| }; |
| |
| // We need to compare certain qualifiers in addition to the type. |
| const auto typeEqual = [compareQualifiers](TType& lhs, TType& rhs) -> bool { |
| if (lhs.getQualifier().readonly != rhs.getQualifier().readonly) |
| return false; |
| |
| // If both are structures, recursively look for packOffset equality |
| // as well as type equality. |
| return compareQualifiers(lhs, rhs) && lhs == rhs; |
| }; |
| |
| // This is an exhaustive O(N) search, but real world shaders have |
| // only a small number of these. |
| for (int idx = 0; idx < int(structBufferTypes.size()); ++idx) { |
| // If the deep structure matches, modulo qualifiers, use it |
| if (typeEqual(*structBufferTypes[idx], type)) { |
| type.shallowCopy(*structBufferTypes[idx]); |
| return; |
| } |
| } |
| |
| // Otherwise, remember it: |
| TType* typeCopy = new TType; |
| typeCopy->shallowCopy(type); |
| structBufferTypes.push_back(typeCopy); |
| } |
| |
| void HlslParseContext::paramFix(TType& type) |
| { |
| switch (type.getQualifier().storage) { |
| case EvqConst: |
| type.getQualifier().storage = EvqConstReadOnly; |
| break; |
| case EvqGlobal: |
| case EvqUniform: |
| case EvqTemporary: |
| type.getQualifier().storage = EvqIn; |
| break; |
| case EvqBuffer: |
| { |
| // SSBO parameter. These do not go through the declareBlock path since they are fn parameters. |
| correctUniform(type.getQualifier()); |
| TQualifier bufferQualifier = globalBufferDefaults; |
| mergeObjectLayoutQualifiers(bufferQualifier, type.getQualifier(), true); |
| bufferQualifier.storage = type.getQualifier().storage; |
| bufferQualifier.readonly = type.getQualifier().readonly; |
| bufferQualifier.coherent = type.getQualifier().coherent; |
| bufferQualifier.declaredBuiltIn = type.getQualifier().declaredBuiltIn; |
| type.getQualifier() = bufferQualifier; |
| break; |
| } |
| default: |
| break; |
| } |
| } |
| |
| void HlslParseContext::specializationCheck(const TSourceLoc& loc, const TType& type, const char* op) |
| { |
| if (type.containsSpecializationSize()) |
| error(loc, "can't use with types containing arrays sized with a specialization constant", op, ""); |
| } |
| |
| // |
| // Layout qualifier stuff. |
| // |
| |
| // Put the id's layout qualification into the public type, for qualifiers not having a number set. |
| // This is before we know any type information for error checking. |
| void HlslParseContext::setLayoutQualifier(const TSourceLoc& loc, TQualifier& qualifier, TString& id) |
| { |
| std::transform(id.begin(), id.end(), id.begin(), ::tolower); |
| |
| if (id == TQualifier::getLayoutMatrixString(ElmColumnMajor)) { |
| qualifier.layoutMatrix = ElmRowMajor; |
| return; |
| } |
| if (id == TQualifier::getLayoutMatrixString(ElmRowMajor)) { |
| qualifier.layoutMatrix = ElmColumnMajor; |
| return; |
| } |
| if (id == "push_constant") { |
| requireVulkan(loc, "push_constant"); |
| qualifier.layoutPushConstant = true; |
| return; |
| } |
| if (language == EShLangGeometry || language == EShLangTessEvaluation) { |
| if (id == TQualifier::getGeometryString(ElgTriangles)) { |
| // publicType.shaderQualifiers.geometry = ElgTriangles; |
| warn(loc, "ignored", id.c_str(), ""); |
| return; |
| } |
| if (language == EShLangGeometry) { |
| if (id == TQualifier::getGeometryString(ElgPoints)) { |
| // publicType.shaderQualifiers.geometry = ElgPoints; |
| warn(loc, "ignored", id.c_str(), ""); |
| return; |
| } |
| if (id == TQualifier::getGeometryString(ElgLineStrip)) { |
| // publicType.shaderQualifiers.geometry = ElgLineStrip; |
| warn(loc, "ignored", id.c_str(), ""); |
| return; |
| } |
| if (id == TQualifier::getGeometryString(ElgLines)) { |
| // publicType.shaderQualifiers.geometry = ElgLines; |
| warn(loc, "ignored", id.c_str(), ""); |
| return; |
| } |
| if (id == TQualifier::getGeometryString(ElgLinesAdjacency)) { |
| // publicType.shaderQualifiers.geometry = ElgLinesAdjacency; |
| warn(loc, "ignored", id.c_str(), ""); |
| return; |
| } |
| if (id == TQualifier::getGeometryString(ElgTrianglesAdjacency)) { |
| // publicType.shaderQualifiers.geometry = ElgTrianglesAdjacency; |
| warn(loc, "ignored", id.c_str(), ""); |
| return; |
| } |
| if (id == TQualifier::getGeometryString(ElgTriangleStrip)) { |
| // publicType.shaderQualifiers.geometry = ElgTriangleStrip; |
| warn(loc, "ignored", id.c_str(), ""); |
| return; |
| } |
| } else { |
| assert(language == EShLangTessEvaluation); |
| |
| // input primitive |
| if (id == TQualifier::getGeometryString(ElgTriangles)) { |
| // publicType.shaderQualifiers.geometry = ElgTriangles; |
| warn(loc, "ignored", id.c_str(), ""); |
| return; |
| } |
| if (id == TQualifier::getGeometryString(ElgQuads)) { |
| // publicType.shaderQualifiers.geometry = ElgQuads; |
| warn(loc, "ignored", id.c_str(), ""); |
| return; |
| } |
| if (id == TQualifier::getGeometryString(ElgIsolines)) { |
| // publicType.shaderQualifiers.geometry = ElgIsolines; |
| warn(loc, "ignored", id.c_str(), ""); |
| return; |
| } |
| |
| // vertex spacing |
| if (id == TQualifier::getVertexSpacingString(EvsEqual)) { |
| // publicType.shaderQualifiers.spacing = EvsEqual; |
| warn(loc, "ignored", id.c_str(), ""); |
| return; |
| } |
| if (id == TQualifier::getVertexSpacingString(EvsFractionalEven)) { |
| // publicType.shaderQualifiers.spacing = EvsFractionalEven; |
| warn(loc, "ignored", id.c_str(), ""); |
| return; |
| } |
| if (id == TQualifier::getVertexSpacingString(EvsFractionalOdd)) { |
| // publicType.shaderQualifiers.spacing = EvsFractionalOdd; |
| warn(loc, "ignored", id.c_str(), ""); |
| return; |
| } |
| |
| // triangle order |
| if (id == TQualifier::getVertexOrderString(EvoCw)) { |
| // publicType.shaderQualifiers.order = EvoCw; |
| warn(loc, "ignored", id.c_str(), ""); |
| return; |
| } |
| if (id == TQualifier::getVertexOrderString(EvoCcw)) { |
| // publicType.shaderQualifiers.order = EvoCcw; |
| warn(loc, "ignored", id.c_str(), ""); |
| return; |
| } |
| |
| // point mode |
| if (id == "point_mode") { |
| // publicType.shaderQualifiers.pointMode = true; |
| warn(loc, "ignored", id.c_str(), ""); |
| return; |
| } |
| } |
| } |
| if (language == EShLangFragment) { |
| if (id == "origin_upper_left") { |
| // publicType.shaderQualifiers.originUpperLeft = true; |
| warn(loc, "ignored", id.c_str(), ""); |
| return; |
| } |
| if (id == "pixel_center_integer") { |
| // publicType.shaderQualifiers.pixelCenterInteger = true; |
| warn(loc, "ignored", id.c_str(), ""); |
| return; |
| } |
| if (id == "early_fragment_tests") { |
| // publicType.shaderQualifiers.earlyFragmentTests = true; |
| warn(loc, "ignored", id.c_str(), ""); |
| return; |
| } |
| for (TLayoutDepth depth = (TLayoutDepth)(EldNone + 1); depth < EldCount; depth = (TLayoutDepth)(depth + 1)) { |
| if (id == TQualifier::getLayoutDepthString(depth)) { |
| // publicType.shaderQualifiers.layoutDepth = depth; |
| warn(loc, "ignored", id.c_str(), ""); |
| return; |
| } |
| } |
| if (id.compare(0, 13, "blend_support") == 0) { |
| bool found = false; |
| for (TBlendEquationShift be = (TBlendEquationShift)0; be < EBlendCount; be = (TBlendEquationShift)(be + 1)) { |
| if (id == TQualifier::getBlendEquationString(be)) { |
| requireExtensions(loc, 1, &E_GL_KHR_blend_equation_advanced, "blend equation"); |
| intermediate.addBlendEquation(be); |
| // publicType.shaderQualifiers.blendEquation = true; |
| warn(loc, "ignored", id.c_str(), ""); |
| found = true; |
| break; |
| } |
| } |
| if (! found) |
| error(loc, "unknown blend equation", "blend_support", ""); |
| return; |
| } |
| } |
| error(loc, "unrecognized layout identifier, or qualifier requires assignment (e.g., binding = 4)", id.c_str(), ""); |
| } |
| |
| // Put the id's layout qualifier value into the public type, for qualifiers having a number set. |
| // This is before we know any type information for error checking. |
| void HlslParseContext::setLayoutQualifier(const TSourceLoc& loc, TQualifier& qualifier, TString& id, |
| const TIntermTyped* node) |
| { |
| const char* feature = "layout-id value"; |
| // const char* nonLiteralFeature = "non-literal layout-id value"; |
| |
| integerCheck(node, feature); |
| const TIntermConstantUnion* constUnion = node->getAsConstantUnion(); |
| int value = 0; |
| if (constUnion) { |
| value = constUnion->getConstArray()[0].getIConst(); |
| } |
| |
| std::transform(id.begin(), id.end(), id.begin(), ::tolower); |
| |
| if (id == "offset") { |
| qualifier.layoutOffset = value; |
| return; |
| } else if (id == "align") { |
| // "The specified alignment must be a power of 2, or a compile-time error results." |
| if (! IsPow2(value)) |
| error(loc, "must be a power of 2", "align", ""); |
| else |
| qualifier.layoutAlign = value; |
| return; |
| } else if (id == "location") { |
| if ((unsigned int)value >= TQualifier::layoutLocationEnd) |
| error(loc, "location is too large", id.c_str(), ""); |
| else |
| qualifier.layoutLocation = value; |
| return; |
| } else if (id == "set") { |
| if ((unsigned int)value >= TQualifier::layoutSetEnd) |
| error(loc, "set is too large", id.c_str(), ""); |
| else |
| qualifier.layoutSet = value; |
| return; |
| } else if (id == "binding") { |
| if ((unsigned int)value >= TQualifier::layoutBindingEnd) |
| error(loc, "binding is too large", id.c_str(), ""); |
| else |
| qualifier.layoutBinding = value; |
| return; |
| } else if (id == "component") { |
| if ((unsigned)value >= TQualifier::layoutComponentEnd) |
| error(loc, "component is too large", id.c_str(), ""); |
| else |
| qualifier.layoutComponent = value; |
| return; |
| } else if (id.compare(0, 4, "xfb_") == 0) { |
| // "Any shader making any static use (after preprocessing) of any of these |
| // *xfb_* qualifiers will cause the shader to be in a transform feedback |
| // capturing mode and hence responsible for describing the transform feedback |
| // setup." |
| intermediate.setXfbMode(); |
| if (id == "xfb_buffer") { |
| // "It is a compile-time error to specify an *xfb_buffer* that is greater than |
| // the implementation-dependent constant gl_MaxTransformFeedbackBuffers." |
| if (value >= resources.maxTransformFeedbackBuffers) |
| error(loc, "buffer is too large:", id.c_str(), "gl_MaxTransformFeedbackBuffers is %d", |
| resources.maxTransformFeedbackBuffers); |
| if (value >= (int)TQualifier::layoutXfbBufferEnd) |
| error(loc, "buffer is too large:", id.c_str(), "internal max is %d", TQualifier::layoutXfbBufferEnd - 1); |
| else |
| qualifier.layoutXfbBuffer = value; |
| return; |
| } else if (id == "xfb_offset") { |
| if (value >= (int)TQualifier::layoutXfbOffsetEnd) |
| error(loc, "offset is too large:", id.c_str(), "internal max is %d", TQualifier::layoutXfbOffsetEnd - 1); |
| else |
| qualifier.layoutXfbOffset = value; |
| return; |
| } else if (id == "xfb_stride") { |
| // "The resulting stride (implicit or explicit), when divided by 4, must be less than or equal to the |
| // implementation-dependent constant gl_MaxTransformFeedbackInterleavedComponents." |
| if (value > 4 * resources.maxTransformFeedbackInterleavedComponents) |
| error(loc, "1/4 stride is too large:", id.c_str(), "gl_MaxTransformFeedbackInterleavedComponents is %d", |
| resources.maxTransformFeedbackInterleavedComponents); |
| else if (value >= (int)TQualifier::layoutXfbStrideEnd) |
| error(loc, "stride is too large:", id.c_str(), "internal max is %d", TQualifier::layoutXfbStrideEnd - 1); |
| if (value < (int)TQualifier::layoutXfbStrideEnd) |
| qualifier.layoutXfbStride = value; |
| return; |
| } |
| } |
| |
| if (id == "input_attachment_index") { |
| requireVulkan(loc, "input_attachment_index"); |
| if (value >= (int)TQualifier::layoutAttachmentEnd) |
| error(loc, "attachment index is too large", id.c_str(), ""); |
| else |
| qualifier.layoutAttachment = value; |
| return; |
| } |
| if (id == "constant_id") { |
| setSpecConstantId(loc, qualifier, value); |
| return; |
| } |
| |
| switch (language) { |
| case EShLangVertex: |
| break; |
| |
| case EShLangTessControl: |
| if (id == "vertices") { |
| if (value == 0) |
| error(loc, "must be greater than 0", "vertices", ""); |
| else |
| // publicType.shaderQualifiers.vertices = value; |
| warn(loc, "ignored", id.c_str(), ""); |
| return; |
| } |
| break; |
| |
| case EShLangTessEvaluation: |
| break; |
| |
| case EShLangGeometry: |
| if (id == "invocations") { |
| if (value == 0) |
| error(loc, "must be at least 1", "invocations", ""); |
| else |
| // publicType.shaderQualifiers.invocations = value; |
| warn(loc, "ignored", id.c_str(), ""); |
| return; |
| } |
| if (id == "max_vertices") { |
| // publicType.shaderQualifiers.vertices = value; |
| warn(loc, "ignored", id.c_str(), ""); |
| if (value > resources.maxGeometryOutputVertices) |
| error(loc, "too large, must be less than gl_MaxGeometryOutputVertices", "max_vertices", ""); |
| return; |
| } |
| if (id == "stream") { |
| qualifier.layoutStream = value; |
| return; |
| } |
| break; |
| |
| case EShLangFragment: |
| if (id == "index") { |
| qualifier.layoutIndex = value; |
| return; |
| } |
| break; |
| |
| case EShLangCompute: |
| if (id.compare(0, 11, "local_size_") == 0) { |
| if (id == "local_size_x") { |
| // publicType.shaderQualifiers.localSize[0] = value; |
| warn(loc, "ignored", id.c_str(), ""); |
| return; |
| } |
| if (id == "local_size_y") { |
| // publicType.shaderQualifiers.localSize[1] = value; |
| warn(loc, "ignored", id.c_str(), ""); |
| return; |
| } |
| if (id == "local_size_z") { |
| // publicType.shaderQualifiers.localSize[2] = value; |
| warn(loc, "ignored", id.c_str(), ""); |
| return; |
| } |
| if (spvVersion.spv != 0) { |
| if (id == "local_size_x_id") { |
| // publicType.shaderQualifiers.localSizeSpecId[0] = value; |
| warn(loc, "ignored", id.c_str(), ""); |
| return; |
| } |
| if (id == "local_size_y_id") { |
| // publicType.shaderQualifiers.localSizeSpecId[1] = value; |
| warn(loc, "ignored", id.c_str(), ""); |
| return; |
| } |
| if (id == "local_size_z_id") { |
| // publicType.shaderQualifiers.localSizeSpecId[2] = value; |
| warn(loc, "ignored", id.c_str(), ""); |
| return; |
| } |
| } |
| } |
| break; |
| |
| default: |
| break; |
| } |
| |
| error(loc, "there is no such layout identifier for this stage taking an assigned value", id.c_str(), ""); |
| } |
| |
| void HlslParseContext::setSpecConstantId(const TSourceLoc& loc, TQualifier& qualifier, int value) |
| { |
| if (value >= (int)TQualifier::layoutSpecConstantIdEnd) { |
| error(loc, "specialization-constant id is too large", "constant_id", ""); |
| } else { |
| qualifier.layoutSpecConstantId = value; |
| qualifier.specConstant = true; |
| if (! intermediate.addUsedConstantId(value)) |
| error(loc, "specialization-constant id already used", "constant_id", ""); |
| } |
| return; |
| } |
| |
| // Merge any layout qualifier information from src into dst, leaving everything else in dst alone |
| // |
| // "More than one layout qualifier may appear in a single declaration. |
| // Additionally, the same layout-qualifier-name can occur multiple times |
| // within a layout qualifier or across multiple layout qualifiers in the |
| // same declaration. When the same layout-qualifier-name occurs |
| // multiple times, in a single declaration, the last occurrence overrides |
| // the former occurrence(s). Further, if such a layout-qualifier-name |
| // will effect subsequent declarations or other observable behavior, it |
| // is only the last occurrence that will have any effect, behaving as if |
| // the earlier occurrence(s) within the declaration are not present. |
| // This is also true for overriding layout-qualifier-names, where one |
| // overrides the other (e.g., row_major vs. column_major); only the last |
| // occurrence has any effect." |
| // |
| void HlslParseContext::mergeObjectLayoutQualifiers(TQualifier& dst, const TQualifier& src, bool inheritOnly) |
| { |
| if (src.hasMatrix()) |
| dst.layoutMatrix = src.layoutMatrix; |
| if (src.hasPacking()) |
| dst.layoutPacking = src.layoutPacking; |
| |
| if (src.hasStream()) |
| dst.layoutStream = src.layoutStream; |
| |
| if (src.hasFormat()) |
| dst.layoutFormat = src.layoutFormat; |
| |
| if (src.hasXfbBuffer()) |
| dst.layoutXfbBuffer = src.layoutXfbBuffer; |
| |
| if (src.hasAlign()) |
| dst.layoutAlign = src.layoutAlign; |
| |
| if (! inheritOnly) { |
| if (src.hasLocation()) |
| dst.layoutLocation = src.layoutLocation; |
| if (src.hasComponent()) |
| dst.layoutComponent = src.layoutComponent; |
| if (src.hasIndex()) |
| dst.layoutIndex = src.layoutIndex; |
| |
| if (src.hasOffset()) |
| dst.layoutOffset = src.layoutOffset; |
| |
| if (src.hasSet()) |
| dst.layoutSet = src.layoutSet; |
| if (src.layoutBinding != TQualifier::layoutBindingEnd) |
| dst.layoutBinding = src.layoutBinding; |
| |
| if (src.hasXfbStride()) |
| dst.layoutXfbStride = src.layoutXfbStride; |
| if (src.hasXfbOffset()) |
| dst.layoutXfbOffset = src.layoutXfbOffset; |
| if (src.hasAttachment()) |
| dst.layoutAttachment = src.layoutAttachment; |
| if (src.hasSpecConstantId()) |
| dst.layoutSpecConstantId = src.layoutSpecConstantId; |
| |
| if (src.layoutPushConstant) |
| dst.layoutPushConstant = true; |
| } |
| } |
| |
| |
| // |
| // Look up a function name in the symbol table, and make sure it is a function. |
| // |
| // First, look for an exact match. If there is none, use the generic selector |
| // TParseContextBase::selectFunction() to find one, parameterized by the |
| // convertible() and better() predicates defined below. |
| // |
| // Return the function symbol if found, otherwise nullptr. |
| // |
| const TFunction* HlslParseContext::findFunction(const TSourceLoc& loc, TFunction& call, bool& builtIn, int& thisDepth, |
| TIntermTyped*& args) |
| { |
| if (symbolTable.isFunctionNameVariable(call.getName())) { |
| error(loc, "can't use function syntax on variable", call.getName().c_str(), ""); |
| return nullptr; |
| } |
| |
| // first, look for an exact match |
| bool dummyScope; |
| TSymbol* symbol = symbolTable.find(call.getMangledName(), &builtIn, &dummyScope, &thisDepth); |
| if (symbol) |
| return symbol->getAsFunction(); |
| |
| // no exact match, use the generic selector, parameterized by the GLSL rules |
| |
| // create list of candidates to send |
| TVector<const TFunction*> candidateList; |
| symbolTable.findFunctionNameList(call.getMangledName(), candidateList, builtIn); |
| |
| // These built-in ops can accept any type, so we bypass the argument selection |
| if (candidateList.size() == 1 && builtIn && |
| (candidateList[0]->getBuiltInOp() == EOpMethodAppend || |
| candidateList[0]->getBuiltInOp() == EOpMethodRestartStrip || |
| candidateList[0]->getBuiltInOp() == EOpMethodIncrementCounter || |
| candidateList[0]->getBuiltInOp() == EOpMethodDecrementCounter || |
| candidateList[0]->getBuiltInOp() == EOpMethodAppend || |
| candidateList[0]->getBuiltInOp() == EOpMethodConsume)) { |
| return candidateList[0]; |
| } |
| |
| bool allowOnlyUpConversions = true; |
| |
| // can 'from' convert to 'to'? |
| const auto convertible = [&](const TType& from, const TType& to, TOperator op, int arg) -> bool { |
| if (from == to) |
| return true; |
| |
| // no aggregate conversions |
| if (from.isArray() || to.isArray() || |
| from.isStruct() || to.isStruct()) |
| return false; |
| |
| switch (op) { |
| case EOpInterlockedAdd: |
| case EOpInterlockedAnd: |
| case EOpInterlockedCompareExchange: |
| case EOpInterlockedCompareStore: |
| case EOpInterlockedExchange: |
| case EOpInterlockedMax: |
| case EOpInterlockedMin: |
| case EOpInterlockedOr: |
| case EOpInterlockedXor: |
| // We do not promote the texture or image type for these ocodes. Normally that would not |
| // be an issue because it's a buffer, but we haven't decomposed the opcode yet, and at this |
| // stage it's merely e.g, a basic integer type. |
| // |
| // Instead, we want to promote other arguments, but stay within the same family. In other |
| // words, InterlockedAdd(RWBuffer<int>, ...) will always use the int flavor, never the uint flavor, |
| // but it is allowed to promote its other arguments. |
| if (arg == 0) |
| return false; |
| break; |
| case EOpMethodSample: |
| case EOpMethodSampleBias: |
| case EOpMethodSampleCmp: |
| case EOpMethodSampleCmpLevelZero: |
| case EOpMethodSampleGrad: |
| case EOpMethodSampleLevel: |
| case EOpMethodLoad: |
| case EOpMethodGetDimensions: |
| case EOpMethodGetSamplePosition: |
| case EOpMethodGather: |
| case EOpMethodCalculateLevelOfDetail: |
| case EOpMethodCalculateLevelOfDetailUnclamped: |
| case EOpMethodGatherRed: |
| case EOpMethodGatherGreen: |
| case EOpMethodGatherBlue: |
| case EOpMethodGatherAlpha: |
| case EOpMethodGatherCmp: |
| case EOpMethodGatherCmpRed: |
| case EOpMethodGatherCmpGreen: |
| case EOpMethodGatherCmpBlue: |
| case EOpMethodGatherCmpAlpha: |
| case EOpMethodAppend: |
| case EOpMethodRestartStrip: |
| // those are method calls, the object type can not be changed |
| // they are equal if the dim and type match (is dim sufficient?) |
| if (arg == 0) |
| return from.getSampler().type == to.getSampler().type && |
| from.getSampler().arrayed == to.getSampler().arrayed && |
| from.getSampler().shadow == to.getSampler().shadow && |
| from.getSampler().ms == to.getSampler().ms && |
| from.getSampler().dim == to.getSampler().dim; |
| break; |
| default: |
| break; |
| } |
| |
| // basic types have to be convertible |
| if (allowOnlyUpConversions) |
| if (! intermediate.canImplicitlyPromote(from.getBasicType(), to.getBasicType(), EOpFunctionCall)) |
| return false; |
| |
| // shapes have to be convertible |
| if ((from.isScalarOrVec1() && to.isScalarOrVec1()) || |
| (from.isScalarOrVec1() && to.isVector()) || |
| (from.isScalarOrVec1() && to.isMatrix()) || |
| (from.isVector() && to.isVector() && from.getVectorSize() >= to.getVectorSize())) |
| return true; |
| |
| // TODO: what are the matrix rules? they go here |
| |
| return false; |
| }; |
| |
| // Is 'to2' a better conversion than 'to1'? |
| // Ties should not be considered as better. |
| // Assumes 'convertible' already said true. |
| const auto better = [](const TType& from, const TType& to1, const TType& to2) -> bool { |
| // exact match is always better than mismatch |
| if (from == to2) |
| return from != to1; |
| if (from == to1) |
| return false; |
| |
| // shape changes are always worse |
| if (from.isScalar() || from.isVector()) { |
| if (from.getVectorSize() == to2.getVectorSize() && |
| from.getVectorSize() != to1.getVectorSize()) |
| return true; |
| if (from.getVectorSize() == to1.getVectorSize() && |
| from.getVectorSize() != to2.getVectorSize()) |
| return false; |
| } |
| |
| // Handle sampler betterness: An exact sampler match beats a non-exact match. |
| // (If we just looked at basic type, all EbtSamplers would look the same). |
| // If any type is not a sampler, just use the linearize function below. |
| if (from.getBasicType() == EbtSampler && to1.getBasicType() == EbtSampler && to2.getBasicType() == EbtSampler) { |
| // We can ignore the vector size in the comparison. |
| TSampler to1Sampler = to1.getSampler(); |
| TSampler to2Sampler = to2.getSampler(); |
| |
| to1Sampler.vectorSize = to2Sampler.vectorSize = from.getSampler().vectorSize; |
| |
| if (from.getSampler() == to2Sampler) |
| return from.getSampler() != to1Sampler; |
| if (from.getSampler() == to1Sampler) |
| return false; |
| } |
| |
| // Might or might not be changing shape, which means basic type might |
| // or might not match, so within that, the question is how big a |
| // basic-type conversion is being done. |
| // |
| // Use a hierarchy of domains, translated to order of magnitude |
| // in a linearized view: |
| // - floating-point vs. integer |
| // - 32 vs. 64 bit (or width in general) |
| // - bool vs. non bool |
| // - signed vs. not signed |
| const auto linearize = [](const TBasicType& basicType) -> int { |
| switch (basicType) { |
| case EbtBool: return 1; |
| case EbtInt: return 10; |
| case EbtUint: return 11; |
| case EbtInt64: return 20; |
| case EbtUint64: return 21; |
| case EbtFloat: return 100; |
| case EbtDouble: return 110; |
| default: return 0; |
| } |
| }; |
| |
| return abs(linearize(to2.getBasicType()) - linearize(from.getBasicType())) < |
| abs(linearize(to1.getBasicType()) - linearize(from.getBasicType())); |
| }; |
| |
| // for ambiguity reporting |
| bool tie = false; |
| |
| // send to the generic selector |
| const TFunction* bestMatch = selectFunction(candidateList, call, convertible, better, tie); |
| |
| if (bestMatch == nullptr) { |
| // If there is nothing selected by allowing only up-conversions (to a larger linearize() value), |
| // we instead try down-conversions, which are valid in HLSL, but not preferred if there are any |
| // upconversions possible. |
| allowOnlyUpConversions = false; |
| bestMatch = selectFunction(candidateList, call, convertible, better, tie); |
| } |
| |
| if (bestMatch == nullptr) { |
| error(loc, "no matching overloaded function found", call.getName().c_str(), ""); |
| return nullptr; |
| } |
| |
| // For built-ins, we can convert across the arguments. This will happen in several steps: |
| // Step 1: If there's an exact match, use it. |
| // Step 2a: Otherwise, get the operator from the best match and promote arguments: |
| // Step 2b: reconstruct the TFunction based on the new arg types |
| // Step 3: Re-select after type promotion is applied, to find proper candidate. |
| if (builtIn) { |
| // Step 1: If there's an exact match, use it. |
| if (call.getMangledName() == bestMatch->getMangledName()) |
| return bestMatch; |
| |
| // Step 2a: Otherwise, get the operator from the best match and promote arguments as if we |
| // are that kind of operator. |
| if (args != nullptr) { |
| // The arg list can be a unary node, or an aggregate. We have to handle both. |
| // We will use the normal promote() facilities, which require an interm node. |
| TIntermOperator* promote = nullptr; |
| |
| if (call.getParamCount() == 1) { |
| promote = new TIntermUnary(bestMatch->getBuiltInOp()); |
| promote->getAsUnaryNode()->setOperand(args->getAsTyped()); |
| } else { |
| promote = new TIntermAggregate(bestMatch->getBuiltInOp()); |
| promote->getAsAggregate()->getSequence().swap(args->getAsAggregate()->getSequence()); |
| } |
| |
| if (! intermediate.promote(promote)) |
| return nullptr; |
| |
| // Obtain the promoted arg list. |
| if (call.getParamCount() == 1) { |
| args = promote->getAsUnaryNode()->getOperand(); |
| } else { |
| promote->getAsAggregate()->getSequence().swap(args->getAsAggregate()->getSequence()); |
| } |
| } |
| |
| // Step 2b: reconstruct the TFunction based on the new arg types |
| TFunction convertedCall(&call.getName(), call.getType(), call.getBuiltInOp()); |
| |
| if (args->getAsAggregate()) { |
| // Handle aggregates: put all args into the new function call |
| for (int arg=0; arg<int(args->getAsAggregate()->getSequence().size()); ++arg) { |
| // TODO: But for constness, we could avoid the new & shallowCopy, and use the pointer directly. |
| TParameter param = { 0, new TType, nullptr }; |
| param.type->shallowCopy(args->getAsAggregate()->getSequence()[arg]->getAsTyped()->getType()); |
| convertedCall.addParameter(param); |
| } |
| } else if (args->getAsUnaryNode()) { |
| // Handle unaries: put all args into the new function call |
| TParameter param = { 0, new TType, nullptr }; |
| param.type->shallowCopy(args->getAsUnaryNode()->getOperand()->getAsTyped()->getType()); |
| convertedCall.addParameter(param); |
| } else if (args->getAsTyped()) { |
| // Handle bare e.g, floats, not in an aggregate. |
| TParameter param = { 0, new TType, nullptr }; |
| param.type->shallowCopy(args->getAsTyped()->getType()); |
| convertedCall.addParameter(param); |
| } else { |
| assert(0); // unknown argument list. |
| return nullptr; |
| } |
| |
| // Step 3: Re-select after type promotion, to find proper candidate |
| // send to the generic selector |
| bestMatch = selectFunction(candidateList, convertedCall, convertible, better, tie); |
| |
| // At this point, there should be no tie. |
| } |
| |
| if (tie) |
| error(loc, "ambiguous best function under implicit type conversion", call.getName().c_str(), ""); |
| |
| // Append default parameter values if needed |
| if (!tie && bestMatch != nullptr) { |
| for (int defParam = call.getParamCount(); defParam < bestMatch->getParamCount(); ++defParam) { |
| handleFunctionArgument(&call, args, (*bestMatch)[defParam].defaultValue); |
| } |
| } |
| |
| return bestMatch; |
| } |
| |
| // |
| // Do everything necessary to handle a typedef declaration, for a single symbol. |
| // |
| // 'parseType' is the type part of the declaration (to the left) |
| // 'arraySizes' is the arrayness tagged on the identifier (to the right) |
| // |
| void HlslParseContext::declareTypedef(const TSourceLoc& loc, const TString& identifier, const TType& parseType) |
| { |
| TVariable* typeSymbol = new TVariable(&identifier, parseType, true); |
| if (! symbolTable.insert(*typeSymbol)) |
| error(loc, "name already defined", "typedef", identifier.c_str()); |
| } |
| |
| // Do everything necessary to handle a struct declaration, including |
| // making IO aliases because HLSL allows mixed IO in a struct that specializes |
| // based on the usage (input, output, uniform, none). |
| void HlslParseContext::declareStruct(const TSourceLoc& loc, TString& structName, TType& type) |
| { |
| // If it was named, which means the type can be reused later, add |
| // it to the symbol table. (Unless it's a block, in which |
| // case the name is not a type.) |
| if (type.getBasicType() == EbtBlock || structName.size() == 0) |
| return; |
| |
| TVariable* userTypeDef = new TVariable(&structName, type, true); |
| if (! symbolTable.insert(*userTypeDef)) { |
| error(loc, "redefinition", structName.c_str(), "struct"); |
| return; |
| } |
| |
| // See if we need IO aliases for the structure typeList |
| |
| const auto condAlloc = [](bool pred, TTypeList*& list) { |
| if (pred && list == nullptr) |
| list = new TTypeList; |
| }; |
| |
| tIoKinds newLists = { nullptr, nullptr, nullptr }; // allocate for each kind found |
| for (auto member = type.getStruct()->begin(); member != type.getStruct()->end(); ++member) { |
| condAlloc(hasUniform(member->type->getQualifier()), newLists.uniform); |
| condAlloc( hasInput(member->type->getQualifier()), newLists.input); |
| condAlloc( hasOutput(member->type->getQualifier()), newLists.output); |
| |
| if (member->type->isStruct()) { |
| auto it = ioTypeMap.find(member->type->getStruct()); |
| if (it != ioTypeMap.end()) { |
| condAlloc(it->second.uniform != nullptr, newLists.uniform); |
| condAlloc(it->second.input != nullptr, newLists.input); |
| condAlloc(it->second.output != nullptr, newLists.output); |
| } |
| } |
| } |
| if (newLists.uniform == nullptr && |
| newLists.input == nullptr && |
| newLists.output == nullptr) { |
| // Won't do any IO caching, clear up the type and get out now. |
| for (auto member = type.getStruct()->begin(); member != type.getStruct()->end(); ++member) |
| clearUniformInputOutput(member->type->getQualifier()); |
| return; |
| } |
| |
| // We have IO involved. |
| |
| // Make a pure typeList for the symbol table, and cache side copies of IO versions. |
| for (auto member = type.getStruct()->begin(); member != type.getStruct()->end(); ++member) { |
| const auto inheritStruct = [&](TTypeList* s, TTypeLoc& ioMember) { |
| if (s != nullptr) { |
| ioMember.type = new TType; |
| ioMember.type->shallowCopy(*member->type); |
| ioMember.type->setStruct(s); |
| } |
| }; |
| const auto newMember = [&](TTypeLoc& m) { |
| if (m.type == nullptr) { |
| m.type = new TType; |
| m.type->shallowCopy(*member->type); |
| } |
| }; |
| |
| TTypeLoc newUniformMember = { nullptr, member->loc }; |
| TTypeLoc newInputMember = { nullptr, member->loc }; |
| TTypeLoc newOutputMember = { nullptr, member->loc }; |
| if (member->type->isStruct()) { |
| // swap in an IO child if there is one |
| auto it = ioTypeMap.find(member->type->getStruct()); |
| if (it != ioTypeMap.end()) { |
| inheritStruct(it->second.uniform, newUniformMember); |
| inheritStruct(it->second.input, newInputMember); |
| inheritStruct(it->second.output, newOutputMember); |
| } |
| } |
| if (newLists.uniform) { |
| newMember(newUniformMember); |
| |
| // inherit default matrix layout (changeable via #pragma pack_matrix), if none given. |
| if (member->type->isMatrix() && member->type->getQualifier().layoutMatrix == ElmNone) |
| newUniformMember.type->getQualifier().layoutMatrix = globalUniformDefaults.layoutMatrix; |
| |
| correctUniform(newUniformMember.type->getQualifier()); |
| newLists.uniform->push_back(newUniformMember); |
| } |
| if (newLists.input) { |
| newMember(newInputMember); |
| correctInput(newInputMember.type->getQualifier()); |
| newLists.input->push_back(newInputMember); |
| } |
| if (newLists.output) { |
| newMember(newOutputMember); |
| correctOutput(newOutputMember.type->getQualifier()); |
| newLists.output->push_back(newOutputMember); |
| } |
| |
| // make original pure |
| clearUniformInputOutput(member->type->getQualifier()); |
| } |
| ioTypeMap[type.getStruct()] = newLists; |
| } |
| |
| // Lookup a user-type by name. |
| // If found, fill in the type and return the defining symbol. |
| // If not found, return nullptr. |
| TSymbol* HlslParseContext::lookupUserType(const TString& typeName, TType& type) |
| { |
| TSymbol* symbol = symbolTable.find(typeName); |
| if (symbol && symbol->getAsVariable() && symbol->getAsVariable()->isUserType()) { |
| type.shallowCopy(symbol->getType()); |
| return symbol; |
| } else |
| return nullptr; |
| } |
| |
| // |
| // Do everything necessary to handle a variable (non-block) declaration. |
| // Either redeclaring a variable, or making a new one, updating the symbol |
| // table, and all error checking. |
| // |
| // Returns a subtree node that computes an initializer, if needed. |
| // Returns nullptr if there is no code to execute for initialization. |
| // |
| // 'parseType' is the type part of the declaration (to the left) |
| // 'arraySizes' is the arrayness tagged on the identifier (to the right) |
| // |
| TIntermNode* HlslParseContext::declareVariable(const TSourceLoc& loc, const TString& identifier, TType& type, |
| TIntermTyped* initializer) |
| { |
| if (voidErrorCheck(loc, identifier, type.getBasicType())) |
| return nullptr; |
| |
| // Global consts with initializers that are non-const act like EvqGlobal in HLSL. |
| // This test is implicitly recursive, because initializers propagate constness |
| // up the aggregate node tree during creation. E.g, for: |
| // { { 1, 2 }, { 3, 4 } } |
| // the initializer list is marked EvqConst at the top node, and remains so here. However: |
| // { 1, { myvar, 2 }, 3 } |
| // is not a const intializer, and still becomes EvqGlobal here. |
| |
| const bool nonConstInitializer = (initializer != nullptr && initializer->getQualifier().storage != EvqConst); |
| |
| if (type.getQualifier().storage == EvqConst && symbolTable.atGlobalLevel() && nonConstInitializer) { |
| // Force to global |
| type.getQualifier().storage = EvqGlobal; |
| } |
| |
| // make const and initialization consistent |
| fixConstInit(loc, identifier, type, initializer); |
| |
| // Check for redeclaration of built-ins and/or attempting to declare a reserved name |
| TSymbol* symbol = nullptr; |
| |
| inheritGlobalDefaults(type.getQualifier()); |
| |
| const bool flattenVar = shouldFlatten(type, type.getQualifier().storage, true); |
| |
| // correct IO in the type |
| switch (type.getQualifier().storage) { |
| case EvqGlobal: |
| case EvqTemporary: |
| clearUniformInputOutput(type.getQualifier()); |
| break; |
| case EvqUniform: |
| case EvqBuffer: |
| correctUniform(type.getQualifier()); |
| if (type.isStruct()) { |
| auto it = ioTypeMap.find(type.getStruct()); |
| if (it != ioTypeMap.end()) |
| type.setStruct(it->second.uniform); |
| } |
| |
| break; |
| default: |
| break; |
| } |
| |
| // Declare the variable |
| if (type.isArray()) { |
| // array case |
| declareArray(loc, identifier, type, symbol, !flattenVar); |
| } else { |
| // non-array case |
| if (symbol == nullptr) |
| symbol = declareNonArray(loc, identifier, type, !flattenVar); |
| else if (type != symbol->getType()) |
| error(loc, "cannot change the type of", "redeclaration", symbol->getName().c_str()); |
| } |
| |
| if (symbol == nullptr) |
| return nullptr; |
| |
| if (flattenVar) |
| flatten(*symbol->getAsVariable(), symbolTable.atGlobalLevel()); |
| |
| if (initializer == nullptr) |
| return nullptr; |
| |
| // Deal with initializer |
| TVariable* variable = symbol->getAsVariable(); |
| if (variable == nullptr) { |
| error(loc, "initializer requires a variable, not a member", identifier.c_str(), ""); |
| return nullptr; |
| } |
| return executeInitializer(loc, initializer, variable); |
| } |
| |
| // Pick up global defaults from the provide global defaults into dst. |
| void HlslParseContext::inheritGlobalDefaults(TQualifier& dst) const |
| { |
| if (dst.storage == EvqVaryingOut) { |
| if (! dst.hasStream() && language == EShLangGeometry) |
| dst.layoutStream = globalOutputDefaults.layoutStream; |
| if (! dst.hasXfbBuffer()) |
| dst.layoutXfbBuffer = globalOutputDefaults.layoutXfbBuffer; |
| } |
| } |
| |
| // |
| // Make an internal-only variable whose name is for debug purposes only |
| // and won't be searched for. Callers will only use the return value to use |
| // the variable, not the name to look it up. It is okay if the name |
| // is the same as other names; there won't be any conflict. |
| // |
| TVariable* HlslParseContext::makeInternalVariable(const char* name, const TType& type) const |
| { |
| TString* nameString = NewPoolTString(name); |
| TVariable* variable = new TVariable(nameString, type); |
| symbolTable.makeInternalVariable(*variable); |
| |
| return variable; |
| } |
| |
| // Make a symbol node holding a new internal temporary variable. |
| TIntermSymbol* HlslParseContext::makeInternalVariableNode(const TSourceLoc& loc, const char* name, |
| const TType& type) const |
| { |
| TVariable* tmpVar = makeInternalVariable(name, type); |
| tmpVar->getWritableType().getQualifier().makeTemporary(); |
| |
| return intermediate.addSymbol(*tmpVar, loc); |
| } |
| |
| // |
| // Declare a non-array variable, the main point being there is no redeclaration |
| // for resizing allowed. |
| // |
| // Return the successfully declared variable. |
| // |
| TVariable* HlslParseContext::declareNonArray(const TSourceLoc& loc, const TString& identifier, const TType& type, |
| bool track) |
| { |
| // make a new variable |
| TVariable* variable = new TVariable(&identifier, type); |
| |
| // add variable to symbol table |
| if (symbolTable.insert(*variable)) { |
| if (track && symbolTable.atGlobalLevel()) |
| trackLinkage(*variable); |
| return variable; |
| } |
| |
| error(loc, "redefinition", variable->getName().c_str(), ""); |
| return nullptr; |
| } |
| |
| // |
| // Handle all types of initializers from the grammar. |
| // |
| // Returning nullptr just means there is no code to execute to handle the |
| // initializer, which will, for example, be the case for constant initializers. |
| // |
| // Returns a subtree that accomplished the initialization. |
| // |
| TIntermNode* HlslParseContext::executeInitializer(const TSourceLoc& loc, TIntermTyped* initializer, TVariable* variable) |
| { |
| // |
| // Identifier must be of type constant, a global, or a temporary, and |
| // starting at version 120, desktop allows uniforms to have initializers. |
| // |
| TStorageQualifier qualifier = variable->getType().getQualifier().storage; |
| |
| // |
| // If the initializer was from braces { ... }, we convert the whole subtree to a |
| // constructor-style subtree, allowing the rest of the code to operate |
| // identically for both kinds of initializers. |
| // |
| // |
| // Type can't be deduced from the initializer list, so a skeletal type to |
| // follow has to be passed in. Constness and specialization-constness |
| // should be deduced bottom up, not dictated by the skeletal type. |
| // |
| TType skeletalType; |
| skeletalType.shallowCopy(variable->getType()); |
| skeletalType.getQualifier().makeTemporary(); |
| if (initializer->getAsAggregate() && initializer->getAsAggregate()->getOp() == EOpNull) |
| initializer = convertInitializerList(loc, skeletalType, initializer, nullptr); |
| if (initializer == nullptr) { |
| // error recovery; don't leave const without constant values |
| if (qualifier == EvqConst) |
| variable->getWritableType().getQualifier().storage = EvqTemporary; |
| return nullptr; |
| } |
| |
| // Fix outer arrayness if variable is unsized, getting size from the initializer |
| if (initializer->getType().isSizedArray() && variable->getType().isUnsizedArray()) |
| variable->getWritableType().changeOuterArraySize(initializer->getType().getOuterArraySize()); |
| |
| // Inner arrayness can also get set by an initializer |
| if (initializer->getType().isArrayOfArrays() && variable->getType().isArrayOfArrays() && |
| initializer->getType().getArraySizes()->getNumDims() == |
| variable->getType().getArraySizes()->getNumDims()) { |
| // adopt unsized sizes from the initializer's sizes |
| for (int d = 1; d < variable->getType().getArraySizes()->getNumDims(); ++d) { |
| if (variable->getType().getArraySizes()->getDimSize(d) == UnsizedArraySize) { |
| variable->getWritableType().getArraySizes()->setDimSize(d, |
| initializer->getType().getArraySizes()->getDimSize(d)); |
| } |
| } |
| } |
| |
| // Uniform and global consts require a constant initializer |
| if (qualifier == EvqUniform && initializer->getType().getQualifier().storage != EvqConst) { |
| error(loc, "uniform initializers must be constant", "=", "'%s'", variable->getType().getCompleteString().c_str()); |
| variable->getWritableType().getQualifier().storage = EvqTemporary; |
| return nullptr; |
| } |
| |
| // Const variables require a constant initializer |
| if (qualifier == EvqConst) { |
| if (initializer->getType().getQualifier().storage != EvqConst) { |
| variable->getWritableType().getQualifier().storage = EvqConstReadOnly; |
| qualifier = EvqConstReadOnly; |
| } |
| } |
| |
| if (qualifier == EvqConst || qualifier == EvqUniform) { |
| // Compile-time tagging of the variable with its constant value... |
| |
| initializer = intermediate.addConversion(EOpAssign, variable->getType(), initializer); |
| if (initializer != nullptr && variable->getType() != initializer->getType()) |
| initializer = intermediate.addUniShapeConversion(EOpAssign, variable->getType(), initializer); |
| if (initializer == nullptr || !initializer->getAsConstantUnion() || |
| variable->getType() != initializer->getType()) { |
| error(loc, "non-matching or non-convertible constant type for const initializer", |
| variable->getType().getStorageQualifierString(), ""); |
| variable->getWritableType().getQualifier().storage = EvqTemporary; |
| return nullptr; |
| } |
| |
| variable->setConstArray(initializer->getAsConstantUnion()->getConstArray()); |
| } else { |
| // normal assigning of a value to a variable... |
| specializationCheck(loc, initializer->getType(), "initializer"); |
| TIntermSymbol* intermSymbol = intermediate.addSymbol(*variable, loc); |
| TIntermNode* initNode = handleAssign(loc, EOpAssign, intermSymbol, initializer); |
| if (initNode == nullptr) |
| assignError(loc, "=", intermSymbol->getCompleteString(), initializer->getCompleteString()); |
| return initNode; |
| } |
| |
| return nullptr; |
| } |
| |
| // |
| // Reprocess any initializer-list { ... } parts of the initializer. |
| // Need to hierarchically assign correct types and implicit |
| // conversions. Will do this mimicking the same process used for |
| // creating a constructor-style initializer, ensuring we get the |
| // same form. |
| // |
| // Returns a node representing an expression for the initializer list expressed |
| // as the correct type. |
| // |
| // Returns nullptr if there is an error. |
| // |
| TIntermTyped* HlslParseContext::convertInitializerList(const TSourceLoc& loc, const TType& type, |
| TIntermTyped* initializer, TIntermTyped* scalarInit) |
| { |
| // Will operate recursively. Once a subtree is found that is constructor style, |
| // everything below it is already good: Only the "top part" of the initializer |
| // can be an initializer list, where "top part" can extend for several (or all) levels. |
| |
| // see if we have bottomed out in the tree within the initializer-list part |
| TIntermAggregate* initList = initializer->getAsAggregate(); |
| if (initList == nullptr || initList->getOp() != EOpNull) { |
| // We don't have a list, but if it's a scalar and the 'type' is a |
| // composite, we need to lengthen below to make it useful. |
| // Otherwise, this is an already formed object to initialize with. |
| if (type.isScalar() || !initializer->getType().isScalar()) |
| return initializer; |
| else |
| initList = intermediate.makeAggregate(initializer); |
| } |
| |
| // Of the initializer-list set of nodes, need to process bottom up, |
| // so recurse deep, then process on the way up. |
| |
| // Go down the tree here... |
| if (type.isArray()) { |
| // The type's array might be unsized, which could be okay, so base sizes on the size of the aggregate. |
| // Later on, initializer execution code will deal with array size logic. |
| TType arrayType; |
| arrayType.shallowCopy(type); // sharing struct stuff is fine |
| arrayType.copyArraySizes(*type.getArraySizes()); // but get a fresh copy of the array information, to edit below |
| |
| // edit array sizes to fill in unsized dimensions |
| if (type.isUnsizedArray()) |
| arrayType.changeOuterArraySize((int)initList->getSequence().size()); |
| |
| // set unsized array dimensions that can be derived from the initializer's first element |
| if (arrayType.isArrayOfArrays() && initList->getSequence().size() > 0) { |
| TIntermTyped* firstInit = initList->getSequence()[0]->getAsTyped(); |
| if (firstInit->getType().isArray() && |
| arrayType.getArraySizes()->getNumDims() == firstInit->getType().getArraySizes()->getNumDims() + 1) { |
| for (int d = 1; d < arrayType.getArraySizes()->getNumDims(); ++d) { |
| if (arrayType.getArraySizes()->getDimSize(d) == UnsizedArraySize) |
| arrayType.getArraySizes()->setDimSize(d, firstInit->getType().getArraySizes()->getDimSize(d - 1)); |
| } |
| } |
| } |
| |
| // lengthen list to be long enough |
| lengthenList(loc, initList->getSequence(), arrayType.getOuterArraySize(), scalarInit); |
| |
| // recursively process each element |
| TType elementType(arrayType, 0); // dereferenced type |
| for (int i = 0; i < arrayType.getOuterArraySize(); ++i) { |
| initList->getSequence()[i] = convertInitializerList(loc, elementType, |
| initList->getSequence()[i]->getAsTyped(), scalarInit); |
| if (initList->getSequence()[i] == nullptr) |
| return nullptr; |
| } |
| |
| return addConstructor(loc, initList, arrayType); |
| } else if (type.isStruct()) { |
| // do we have implicit assignments to opaques? |
| for (size_t i = initList->getSequence().size(); i < type.getStruct()->size(); ++i) { |
| if ((*type.getStruct())[i].type->containsOpaque()) { |
| error(loc, "cannot implicitly initialize opaque members", "initializer list", ""); |
| return nullptr; |
| } |
| } |
| |
| // lengthen list to be long enough |
| lengthenList(loc, initList->getSequence(), static_cast<int>(type.getStruct()->size()), scalarInit); |
| |
| if (type.getStruct()->size() != initList->getSequence().size()) { |
| error(loc, "wrong number of structure members", "initializer list", ""); |
| return nullptr; |
| } |
| for (size_t i = 0; i < type.getStruct()->size(); ++i) { |
| initList->getSequence()[i] = convertInitializerList(loc, *(*type.getStruct())[i].type, |
| initList->getSequence()[i]->getAsTyped(), scalarInit); |
| if (initList->getSequence()[i] == nullptr) |
| return nullptr; |
| } |
| } else if (type.isMatrix()) { |
| if (type.computeNumComponents() == (int)initList->getSequence().size()) { |
| // This means the matrix is initialized component-wise, rather than as |
| // a series of rows and columns. We can just use the list directly as |
| // a constructor; no further processing needed. |
| } else { |
| // lengthen list to be long enough |
| lengthenList(loc, initList->getSequence(), type.getMatrixCols(), scalarInit); |
| |
| if (type.getMatrixCols() != (int)initList->getSequence().size()) { |
| error(loc, "wrong number of matrix columns:", "initializer list", type.getCompleteString().c_str()); |
| return nullptr; |
| } |
| TType vectorType(type, 0); // dereferenced type |
| for (int i = 0; i < type.getMatrixCols(); ++i) { |
| initList->getSequence()[i] = convertInitializerList(loc, vectorType, |
| initList->getSequence()[i]->getAsTyped(), scalarInit); |
| if (initList->getSequence()[i] == nullptr) |
| return nullptr; |
| } |
| } |
| } else if (type.isVector()) { |
| // lengthen list to be long enough |
| lengthenList(loc, initList->getSequence(), type.getVectorSize(), scalarInit); |
| |
| // error check; we're at bottom, so work is finished below |
| if (type.getVectorSize() != (int)initList->getSequence().size()) { |
| error(loc, "wrong vector size (or rows in a matrix column):", "initializer list", |
| type.getCompleteString().c_str()); |
| return nullptr; |
| } |
| } else if (type.isScalar()) { |
| // lengthen list to be long enough |
| lengthenList(loc, initList->getSequence(), 1, scalarInit); |
| |
| if ((int)initList->getSequence().size() != 1) { |
| error(loc, "scalar expected one element:", "initializer list", type.getCompleteString().c_str()); |
| return nullptr; |
| } |
| } else { |
| error(loc, "unexpected initializer-list type:", "initializer list", type.getCompleteString().c_str()); |
| return nullptr; |
| } |
| |
| // Now that the subtree is processed, process this node as if the |
| // initializer list is a set of arguments to a constructor. |
| TIntermTyped* emulatedConstructorArguments; |
| if (initList->getSequence().size() == 1) |
| emulatedConstructorArguments = initList->getSequence()[0]->getAsTyped(); |
| else |
| emulatedConstructorArguments = initList; |
| |
| return addConstructor(loc, emulatedConstructorArguments, type); |
| } |
| |
| // Lengthen list to be long enough to cover any gap from the current list size |
| // to 'size'. If the list is longer, do nothing. |
| // The value to lengthen with is the default for short lists. |
| // |
| // By default, lists that are too short due to lack of initializers initialize to zero. |
| // Alternatively, it could be a scalar initializer for a structure. Both cases are handled, |
| // based on whether something is passed in as 'scalarInit'. |
| // |
| // 'scalarInit' must be safe to use each time this is called (no side effects replication). |
| // |
| void HlslParseContext::lengthenList(const TSourceLoc& loc, TIntermSequence& list, int size, TIntermTyped* scalarInit) |
| { |
| for (int c = (int)list.size(); c < size; ++c) { |
| if (scalarInit == nullptr) |
| list.push_back(intermediate.addConstantUnion(0, loc)); |
| else |
| list.push_back(scalarInit); |
| } |
| } |
| |
| // |
| // Test for the correctness of the parameters passed to various constructor functions |
| // and also convert them to the right data type, if allowed and required. |
| // |
| // Returns nullptr for an error or the constructed node (aggregate or typed) for no error. |
| // |
| TIntermTyped* HlslParseContext::handleConstructor(const TSourceLoc& loc, TIntermTyped* node, const TType& type) |
| { |
| if (node == nullptr) |
| return nullptr; |
| |
| // Construct identical type |
| if (type == node->getType()) |
| return node; |
| |
| // Handle the idiom "(struct type)<scalar value>" |
| if (type.isStruct() && isScalarConstructor(node)) { |
| // 'node' will almost always get used multiple times, so should not be used directly, |
| // it would create a DAG instead of a tree, which might be okay (would |
| // like to formalize that for constants and symbols), but if it has |
| // side effects, they would get executed multiple times, which is not okay. |
| if (node->getAsConstantUnion() == nullptr && node->getAsSymbolNode() == nullptr) { |
| TIntermAggregate* seq = intermediate.makeAggregate(loc); |
| TIntermSymbol* copy = makeInternalVariableNode(loc, "scalarCopy", node->getType()); |
| seq = intermediate.growAggregate(seq, intermediate.addBinaryNode(EOpAssign, copy, node, loc)); |
| seq = intermediate.growAggregate(seq, convertInitializerList(loc, type, intermediate.makeAggregate(loc), copy)); |
| seq->setOp(EOpComma); |
| seq->setType(type); |
| return seq; |
| } else |
| return convertInitializerList(loc, type, intermediate.makeAggregate(loc), node); |
| } |
| |
| return addConstructor(loc, node, type); |
| } |
| |
| // Add a constructor, either from the grammar, or other programmatic reasons. |
| // |
| // 'node' is what to construct from. |
| // 'type' is what type to construct. |
| // |
| // Returns the constructed object. |
| // Return nullptr if it can't be done. |
| // |
| TIntermTyped* HlslParseContext::addConstructor(const TSourceLoc& loc, TIntermTyped* node, const TType& type) |
| { |
| TIntermAggregate* aggrNode = node->getAsAggregate(); |
| TOperator op = intermediate.mapTypeToConstructorOp(type); |
| |
| if (op == EOpConstructTextureSampler) |
| return intermediate.setAggregateOperator(aggrNode, op, type, loc); |
| |
| TTypeList::const_iterator memberTypes; |
| if (op == EOpConstructStruct) |
| memberTypes = type.getStruct()->begin(); |
| |
| TType elementType; |
| if (type.isArray()) { |
| TType dereferenced(type, 0); |
| elementType.shallowCopy(dereferenced); |
| } else |
| elementType.shallowCopy(type); |
| |
| bool singleArg; |
| if (aggrNode != nullptr) { |
| if (aggrNode->getOp() != EOpNull) |
| singleArg = true; |
| else |
| singleArg = false; |
| } else |
| singleArg = true; |
| |
| TIntermTyped *newNode; |
| if (singleArg) { |
| // Handle array -> array conversion |
| // Constructing an array of one type from an array of another type is allowed, |
| // assuming there are enough components available (semantic-checked earlier). |
| if (type.isArray() && node->isArray()) |
| newNode = convertArray(node, type); |
| |
| // If structure constructor or array constructor is being called |
| // for only one parameter inside the aggregate, we need to call constructAggregate function once. |
| else if (type.isArray()) |
| newNode = constructAggregate(node, elementType, 1, node->getLoc()); |
| else if (op == EOpConstructStruct) |
| newNode = constructAggregate(node, *(*memberTypes).type, 1, node->getLoc()); |
| else { |
| // shape conversion for matrix constructor from scalar. HLSL semantics are: scalar |
| // is replicated into every element of the matrix (not just the diagnonal), so |
| // that is handled specially here. |
| if (type.isMatrix() && node->getType().isScalarOrVec1()) |
| node = intermediate.addShapeConversion(type, node); |
| |
| newNode = constructBuiltIn(type, op, node, node->getLoc(), false); |
| } |
| |
| if (newNode && (type.isArray() || op == EOpConstructStruct)) |
| newNode = intermediate.setAggregateOperator(newNode, EOpConstructStruct, type, loc); |
| |
| return newNode; |
| } |
| |
| // |
| // Handle list of arguments. |
| // |
| TIntermSequence& sequenceVector = aggrNode->getSequence(); // Stores the information about the parameter to the constructor |
| // if the structure constructor contains more than one parameter, then construct |
| // each parameter |
| |
| int paramCount = 0; // keeps a track of the constructor parameter number being checked |
| |
| // for each parameter to the constructor call, check to see if the right type is passed or convert them |
| // to the right type if possible (and allowed). |
| // for structure constructors, just check if the right type is passed, no conversion is allowed. |
| |
| for (TIntermSequence::iterator p = sequenceVector.begin(); |
| p != sequenceVector.end(); p++, paramCount++) { |
| if (type.isArray()) |
| newNode = constructAggregate(*p, elementType, paramCount + 1, node->getLoc()); |
| else if (op == EOpConstructStruct) |
| newNode = constructAggregate(*p, *(memberTypes[paramCount]).type, paramCount + 1, node->getLoc()); |
| else |
| newNode = constructBuiltIn(type, op, (*p)->getAsTyped(), node->getLoc(), true); |
| |
| if (newNode) |
| *p = newNode; |
| else |
| return nullptr; |
| } |
| |
| TIntermTyped* constructor = intermediate.setAggregateOperator(aggrNode, op, type, loc); |
| |
| return constructor; |
| } |
| |
| // Function for constructor implementation. Calls addUnaryMath with appropriate EOp value |
| // for the parameter to the constructor (passed to this function). Essentially, it converts |
| // the parameter types correctly. If a constructor expects an int (like ivec2) and is passed a |
| // float, then float is converted to int. |
| // |
| // Returns nullptr for an error or the constructed node. |
| // |
| TIntermTyped* HlslParseContext::constructBuiltIn(const TType& type, TOperator op, TIntermTyped* node, |
| const TSourceLoc& loc, bool subset) |
| { |
| TIntermTyped* newNode; |
| TOperator basicOp; |
| |
| // |
| // First, convert types as needed. |
| // |
| switch (op) { |
| case EOpConstructF16Vec2: |
| case EOpConstructF16Vec3: |
| case EOpConstructF16Vec4: |
| case EOpConstructF16Mat2x2: |
| case EOpConstructF16Mat2x3: |
| case EOpConstructF16Mat2x4: |
| case EOpConstructF16Mat3x2: |
| case EOpConstructF16Mat3x3: |
| case EOpConstructF16Mat3x4: |
| case EOpConstructF16Mat4x2: |
| case EOpConstructF16Mat4x3: |
| case EOpConstructF16Mat4x4: |
| case EOpConstructFloat16: |
| basicOp = EOpConstructFloat16; |
| break; |
| |
| case EOpConstructVec2: |
| case EOpConstructVec3: |
| case EOpConstructVec4: |
| case EOpConstructMat2x2: |
| case EOpConstructMat2x3: |
| case EOpConstructMat2x4: |
| case EOpConstructMat3x2: |
| case EOpConstructMat3x3: |
| case EOpConstructMat3x4: |
| case EOpConstructMat4x2: |
| case EOpConstructMat4x3: |
| case EOpConstructMat4x4: |
| case EOpConstructFloat: |
| basicOp = EOpConstructFloat; |
| break; |
| |
| case EOpConstructDVec2: |
| case EOpConstructDVec3: |
| case EOpConstructDVec4: |
| case EOpConstructDMat2x2: |
| case EOpConstructDMat2x3: |
| case EOpConstructDMat2x4: |
| case EOpConstructDMat3x2: |
| case EOpConstructDMat3x3: |
| case EOpConstructDMat3x4: |
| case EOpConstructDMat4x2: |
| case EOpConstructDMat4x3: |
| case EOpConstructDMat4x4: |
| case EOpConstructDouble: |
| basicOp = EOpConstructDouble; |
| break; |
| |
| case EOpConstructI16Vec2: |
| case EOpConstructI16Vec3: |
| case EOpConstructI16Vec4: |
| case EOpConstructInt16: |
| basicOp = EOpConstructInt16; |
| break; |
| |
| case EOpConstructIVec2: |
| case EOpConstructIVec3: |
| case EOpConstructIVec4: |
| case EOpConstructIMat2x2: |
| case EOpConstructIMat2x3: |
| case EOpConstructIMat2x4: |
| case EOpConstructIMat3x2: |
| case EOpConstructIMat3x3: |
| case EOpConstructIMat3x4: |
| case EOpConstructIMat4x2: |
| case EOpConstructIMat4x3: |
| case EOpConstructIMat4x4: |
| case EOpConstructInt: |
| basicOp = EOpConstructInt; |
| break; |
| |
| case EOpConstructU16Vec2: |
| case EOpConstructU16Vec3: |
| case EOpConstructU16Vec4: |
| case EOpConstructUint16: |
| basicOp = EOpConstructUint16; |
| break; |
| |
| case EOpConstructUVec2: |
| case EOpConstructUVec3: |
| case EOpConstructUVec4: |
| case EOpConstructUMat2x2: |
| case EOpConstructUMat2x3: |
| case EOpConstructUMat2x4: |
| case EOpConstructUMat3x2: |
| case EOpConstructUMat3x3: |
| case EOpConstructUMat3x4: |
| case EOpConstructUMat4x2: |
| case EOpConstructUMat4x3: |
| case EOpConstructUMat4x4: |
| case EOpConstructUint: |
| basicOp = EOpConstructUint; |
| break; |
| |
| case EOpConstructBVec2: |
| case EOpConstructBVec3: |
| case EOpConstructBVec4: |
| case EOpConstructBMat2x2: |
| case EOpConstructBMat2x3: |
| case EOpConstructBMat2x4: |
| case EOpConstructBMat3x2: |
| case EOpConstructBMat3x3: |
| case EOpConstructBMat3x4: |
| case EOpConstructBMat4x2: |
| case EOpConstructBMat4x3: |
| case EOpConstructBMat4x4: |
| case EOpConstructBool: |
| basicOp = EOpConstructBool; |
| break; |
| |
| default: |
| error(loc, "unsupported construction", "", ""); |
| |
| return nullptr; |
| } |
| newNode = intermediate.addUnaryMath(basicOp, node, node->getLoc()); |
| if (newNode == nullptr) { |
| error(loc, "can't convert", "constructor", ""); |
| return nullptr; |
| } |
| |
| // |
| // Now, if there still isn't an operation to do the construction, and we need one, add one. |
| // |
| |
| // Otherwise, skip out early. |
| if (subset || (newNode != node && newNode->getType() == type)) |
| return newNode; |
| |
| // setAggregateOperator will insert a new node for the constructor, as needed. |
| return intermediate.setAggregateOperator(newNode, op, type, loc); |
| } |
| |
| // Convert the array in node to the requested type, which is also an array. |
| // Returns nullptr on failure, otherwise returns aggregate holding the list of |
| // elements needed to construct the array. |
| TIntermTyped* HlslParseContext::convertArray(TIntermTyped* node, const TType& type) |
| { |
| assert(node->isArray() && type.isArray()); |
| if (node->getType().computeNumComponents() < type.computeNumComponents()) |
| return nullptr; |
| |
| // TODO: write an argument replicator, for the case the argument should not be |
| // executed multiple times, yet multiple copies are needed. |
| |
| TIntermTyped* constructee = node->getAsTyped(); |
| // track where we are in consuming the argument |
| int constructeeElement = 0; |
| int constructeeComponent = 0; |
| |
| // bump up to the next component to consume |
| const auto getNextComponent = [&]() { |
| TIntermTyped* component; |
| component = handleBracketDereference(node->getLoc(), constructee, |
| intermediate.addConstantUnion(constructeeElement, node->getLoc())); |
| if (component->isVector()) |
| component = handleBracketDereference(node->getLoc(), component, |
| intermediate.addConstantUnion(constructeeComponent, node->getLoc())); |
| // bump component pointer up |
| ++constructeeComponent; |
| if (constructeeComponent == constructee->getVectorSize()) { |
| constructeeComponent = 0; |
| ++constructeeElement; |
| } |
| return component; |
| }; |
| |
| // make one subnode per constructed array element |
| TIntermAggregate* constructor = nullptr; |
| TType derefType(type, 0); |
| TType speculativeComponentType(derefType, 0); |
| TType* componentType = derefType.isVector() ? &speculativeComponentType : &derefType; |
| TOperator componentOp = intermediate.mapTypeToConstructorOp(*componentType); |
| TType crossType(node->getBasicType(), EvqTemporary, type.getVectorSize()); |
| for (int e = 0; e < type.getOuterArraySize(); ++e) { |
| // construct an element |
| TIntermTyped* elementArg; |
| if (type.getVectorSize() == constructee->getVectorSize()) { |
| // same element shape |
| elementArg = handleBracketDereference(node->getLoc(), constructee, |
| intermediate.addConstantUnion(e, node->getLoc())); |
| } else { |
| // mismatched element shapes |
| if (type.getVectorSize() == 1) |
| elementArg = getNextComponent(); |
| else { |
| // make a vector |
| TIntermAggregate* elementConstructee = nullptr; |
| for (int c = 0; c < type.getVectorSize(); ++c) |
| elementConstructee = intermediate.growAggregate(elementConstructee, getNextComponent()); |
| elementArg = addConstructor(node->getLoc(), elementConstructee, crossType); |
| } |
| } |
| // convert basic types |
| elementArg = intermediate.addConversion(componentOp, derefType, elementArg); |
| if (elementArg == nullptr) |
| return nullptr; |
| // combine with top-level constructor |
| constructor = intermediate.growAggregate(constructor, elementArg); |
| } |
| |
| return constructor; |
| } |
| |
| // This function tests for the type of the parameters to the structure or array constructor. Raises |
| // an error message if the expected type does not match the parameter passed to the constructor. |
| // |
| // Returns nullptr for an error or the input node itself if the expected and the given parameter types match. |
| // |
| TIntermTyped* HlslParseContext::constructAggregate(TIntermNode* node, const TType& type, int paramCount, |
| const TSourceLoc& loc) |
| { |
| // Handle cases that map more 1:1 between constructor arguments and constructed. |
| TIntermTyped* converted = intermediate.addConversion(EOpConstructStruct, type, node->getAsTyped()); |
| if (converted == nullptr || converted->getType() != type) { |
| error(loc, "", "constructor", "cannot convert parameter %d from '%s' to '%s'", paramCount, |
| node->getAsTyped()->getType().getCompleteString().c_str(), type.getCompleteString().c_str()); |
| |
| return nullptr; |
| } |
| |
| return converted; |
| } |
| |
| // |
| // Do everything needed to add an interface block. |
| // |
| void HlslParseContext::declareBlock(const TSourceLoc& loc, TType& type, const TString* instanceName) |
| { |
| assert(type.getWritableStruct() != nullptr); |
| |
| // Clean up top-level decorations that don't belong. |
| switch (type.getQualifier().storage) { |
| case EvqUniform: |
| case EvqBuffer: |
| correctUniform(type.getQualifier()); |
| break; |
| case EvqVaryingIn: |
| correctInput(type.getQualifier()); |
| break; |
| case EvqVaryingOut: |
| correctOutput(type.getQualifier()); |
| break; |
| default: |
| break; |
| } |
| |
| TTypeList& typeList = *type.getWritableStruct(); |
| // fix and check for member storage qualifiers and types that don't belong within a block |
| for (unsigned int member = 0; member < typeList.size(); ++member) { |
| TType& memberType = *typeList[member].type; |
| TQualifier& memberQualifier = memberType.getQualifier(); |
| const TSourceLoc& memberLoc = typeList[member].loc; |
| globalQualifierFix(memberLoc, memberQualifier); |
| memberQualifier.storage = type.getQualifier().storage; |
| |
| if (memberType.isStruct()) { |
| // clean up and pick up the right set of decorations |
| auto it = ioTypeMap.find(memberType.getStruct()); |
| switch (type.getQualifier().storage) { |
| case EvqUniform: |
| case EvqBuffer: |
| correctUniform(type.getQualifier()); |
| if (it != ioTypeMap.end() && it->second.uniform) |
| memberType.setStruct(it->second.uniform); |
| break; |
| case EvqVaryingIn: |
| correctInput(type.getQualifier()); |
| if (it != ioTypeMap.end() && it->second.input) |
| memberType.setStruct(it->second.input); |
| break; |
| case EvqVaryingOut: |
| correctOutput(type.getQualifier()); |
| if (it != ioTypeMap.end() && it->second.output) |
| memberType.setStruct(it->second.output); |
| break; |
| default: |
| break; |
| } |
| } |
| } |
| |
| // Make default block qualification, and adjust the member qualifications |
| |
| TQualifier defaultQualification; |
| switch (type.getQualifier().storage) { |
| case EvqUniform: defaultQualification = globalUniformDefaults; break; |
| case EvqBuffer: defaultQualification = globalBufferDefaults; break; |
| case EvqVaryingIn: defaultQualification = globalInputDefaults; break; |
| case EvqVaryingOut: defaultQualification = globalOutputDefaults; break; |
| default: defaultQualification.clear(); break; |
| } |
| |
| // Special case for "push_constant uniform", which has a default of std430, |
| // contrary to normal uniform defaults, and can't have a default tracked for it. |
| if (type.getQualifier().layoutPushConstant && ! type.getQualifier().hasPacking()) |
| type.getQualifier().layoutPacking = ElpStd430; |
| |
| // fix and check for member layout qualifiers |
| |
| mergeObjectLayoutQualifiers(defaultQualification, type.getQualifier(), true); |
| |
| bool memberWithLocation = false; |
| bool memberWithoutLocation = false; |
| for (unsigned int member = 0; member < typeList.size(); ++member) { |
| TQualifier& memberQualifier = typeList[member].type->getQualifier(); |
| const TSourceLoc& memberLoc = typeList[member].loc; |
| if (memberQualifier.hasStream()) { |
| if (defaultQualification.layoutStream != memberQualifier.layoutStream) |
| error(memberLoc, "member cannot contradict block", "stream", ""); |
| } |
| |
| // "This includes a block's inheritance of the |
| // current global default buffer, a block member's inheritance of the block's |
| // buffer, and the requirement that any *xfb_buffer* declared on a block |
| // member must match the buffer inherited from the block." |
| if (memberQualifier.hasXfbBuffer()) { |
| if (defaultQualification.layoutXfbBuffer != memberQualifier.layoutXfbBuffer) |
| error(memberLoc, "member cannot contradict block (or what block inherited from global)", "xfb_buffer", ""); |
| } |
| |
| if (memberQualifier.hasLocation()) { |
| switch (type.getQualifier().storage) { |
| case EvqVaryingIn: |
| case EvqVaryingOut: |
| memberWithLocation = true; |
| break; |
| default: |
| break; |
| } |
| } else |
| memberWithoutLocation = true; |
| |
| TQualifier newMemberQualification = defaultQualification; |
| mergeQualifiers(newMemberQualification, memberQualifier); |
| memberQualifier = newMemberQualification; |
| } |
| |
| // Process the members |
| fixBlockLocations(loc, type.getQualifier(), typeList, memberWithLocation, memberWithoutLocation); |
| fixXfbOffsets(type.getQualifier(), typeList); |
| fixBlockUniformOffsets(type.getQualifier(), typeList); |
| |
| // reverse merge, so that currentBlockQualifier now has all layout information |
| // (can't use defaultQualification directly, it's missing other non-layout-default-class qualifiers) |
| mergeObjectLayoutQualifiers(type.getQualifier(), defaultQualification, true); |
| |
| // |
| // Build and add the interface block as a new type named 'blockName' |
| // |
| |
| // Use the instance name as the interface name if one exists, else the block name. |
| const TString& interfaceName = (instanceName && !instanceName->empty()) ? *instanceName : type.getTypeName(); |
| |
| TType blockType(&typeList, interfaceName, type.getQualifier()); |
| if (type.isArray()) |
| blockType.transferArraySizes(type.getArraySizes()); |
| |
| // Add the variable, as anonymous or named instanceName. |
| // Make an anonymous variable if no name was provided. |
| if (instanceName == nullptr) |
| instanceName = NewPoolTString(""); |
| |
| TVariable& variable = *new TVariable(instanceName, blockType); |
| if (! symbolTable.insert(variable)) { |
| if (*instanceName == "") |
| error(loc, "nameless block contains a member that already has a name at global scope", |
| "" /* blockName->c_str() */, ""); |
| else |
| error(loc, "block instance name redefinition", variable.getName().c_str(), ""); |
| |
| return; |
| } |
| |
| // Save it in the AST for linker use. |
| if (symbolTable.atGlobalLevel()) |
| trackLinkage(variable); |
| } |
| |
| // |
| // "For a block, this process applies to the entire block, or until the first member |
| // is reached that has a location layout qualifier. When a block member is declared with a location |
| // qualifier, its location comes from that qualifier: The member's location qualifier overrides the block-level |
| // declaration. Subsequent members are again assigned consecutive locations, based on the newest location, |
| // until the next member declared with a location qualifier. The values used for locations do not have to be |
| // declared in increasing order." |
| void HlslParseContext::fixBlockLocations(const TSourceLoc& loc, TQualifier& qualifier, TTypeList& typeList, bool memberWithLocation, bool memberWithoutLocation) |
| { |
| // "If a block has no block-level location layout qualifier, it is required that either all or none of its members |
| // have a location layout qualifier, or a compile-time error results." |
| if (! qualifier.hasLocation() && memberWithLocation && memberWithoutLocation) |
| error(loc, "either the block needs a location, or all members need a location, or no members have a location", "location", ""); |
| else { |
| if (memberWithLocation) { |
| // remove any block-level location and make it per *every* member |
| int nextLocation = 0; // by the rule above, initial value is not relevant |
| if (qualifier.hasAnyLocation()) { |
| nextLocation = qualifier.layoutLocation; |
| qualifier.layoutLocation = TQualifier::layoutLocationEnd; |
| if (qualifier.hasComponent()) { |
| // "It is a compile-time error to apply the *component* qualifier to a ... block" |
| error(loc, "cannot apply to a block", "component", ""); |
| } |
| if (qualifier.hasIndex()) { |
| error(loc, "cannot apply to a block", "index", ""); |
| } |
| } |
| for (unsigned int member = 0; member < typeList.size(); ++member) { |
| TQualifier& memberQualifier = typeList[member].type->getQualifier(); |
| const TSourceLoc& memberLoc = typeList[member].loc; |
| if (! memberQualifier.hasLocation()) { |
| if (nextLocation >= (int)TQualifier::layoutLocationEnd) |
| error(memberLoc, "location is too large", "location", ""); |
| memberQualifier.layoutLocation = nextLocation; |
| memberQualifier.layoutComponent = 0; |
| } |
| nextLocation = memberQualifier.layoutLocation + |
| intermediate.computeTypeLocationSize(*typeList[member].type, language); |
| } |
| } |
| } |
| } |
| |
| void HlslParseContext::fixXfbOffsets(TQualifier& qualifier, TTypeList& typeList) |
| { |
| // "If a block is qualified with xfb_offset, all its |
| // members are assigned transform feedback buffer offsets. If a block is not qualified with xfb_offset, any |
| // members of that block not qualified with an xfb_offset will not be assigned transform feedback buffer |
| // offsets." |
| |
| if (! qualifier.hasXfbBuffer() || ! qualifier.hasXfbOffset()) |
| return; |
| |
| int nextOffset = qualifier.layoutXfbOffset; |
| for (unsigned int member = 0; member < typeList.size(); ++member) { |
| TQualifier& memberQualifier = typeList[member].type->getQualifier(); |
| bool contains64BitType = false; |
| bool contains32BitType = false; |
| bool contains16BitType = false; |
| int memberSize = intermediate.computeTypeXfbSize(*typeList[member].type, contains64BitType, contains32BitType, contains16BitType); |
| // see if we need to auto-assign an offset to this member |
| if (! memberQualifier.hasXfbOffset()) { |
| // "if applied to an aggregate containing a double or 64-bit integer, the offset must also be a multiple of 8" |
| if (contains64BitType) |
| RoundToPow2(nextOffset, 8); |
| else if (contains32BitType) |
| RoundToPow2(nextOffset, 4); |
| // "if applied to an aggregate containing a half float or 16-bit integer, the offset must also be a multiple of 2" |
| else if (contains16BitType) |
| RoundToPow2(nextOffset, 2); |
| memberQualifier.layoutXfbOffset = nextOffset; |
| } else |
| nextOffset = memberQualifier.layoutXfbOffset; |
| nextOffset += memberSize; |
| } |
| |
| // The above gave all block members an offset, so we can take it off the block now, |
| // which will avoid double counting the offset usage. |
| qualifier.layoutXfbOffset = TQualifier::layoutXfbOffsetEnd; |
| } |
| |
| // Calculate and save the offset of each block member, using the recursively |
| // defined block offset rules and the user-provided offset and align. |
| // |
| // Also, compute and save the total size of the block. For the block's size, arrayness |
| // is not taken into account, as each element is backed by a separate buffer. |
| // |
| void HlslParseContext::fixBlockUniformOffsets(const TQualifier& qualifier, TTypeList& typeList) |
| { |
| if (! qualifier.isUniformOrBuffer()) |
| return; |
| if (qualifier.layoutPacking != ElpStd140 && qualifier.layoutPacking != ElpStd430 && qualifier.layoutPacking != ElpScalar) |
| return; |
| |
| int offset = 0; |
| int memberSize; |
| for (unsigned int member = 0; member < typeList.size(); ++member) { |
| TQualifier& memberQualifier = typeList[member].type->getQualifier(); |
| const TSourceLoc& memberLoc = typeList[member].loc; |
| |
| // "When align is applied to an array, it effects only the start of the array, not the array's internal stride." |
| |
| // modify just the children's view of matrix layout, if there is one for this member |
| TLayoutMatrix subMatrixLayout = typeList[member].type->getQualifier().layoutMatrix; |
| int dummyStride; |
| int memberAlignment = intermediate.getMemberAlignment(*typeList[member].type, memberSize, dummyStride, |
| qualifier.layoutPacking, |
| subMatrixLayout != ElmNone |
| ? subMatrixLayout == ElmRowMajor |
| : qualifier.layoutMatrix == ElmRowMajor); |
| if (memberQualifier.hasOffset()) { |
| // "The specified offset must be a multiple |
| // of the base alignment of the type of the block member it qualifies, or a compile-time error results." |
| if (! IsMultipleOfPow2(memberQualifier.layoutOffset, memberAlignment)) |
| error(memberLoc, "must be a multiple of the member's alignment", "offset", ""); |
| |
| // "The offset qualifier forces the qualified member to start at or after the specified |
| // integral-constant expression, which will be its byte offset from the beginning of the buffer. |
| // "The actual offset of a member is computed as |
| // follows: If offset was declared, start with that offset, otherwise start with the next available offset." |
| offset = std::max(offset, memberQualifier.layoutOffset); |
| } |
| |
| // "The actual alignment of a member will be the greater of the specified align alignment and the standard |
| // (e.g., std140) base alignment for the member's type." |
| if (memberQualifier.hasAlign()) |
| memberAlignment = std::max(memberAlignment, memberQualifier.layoutAlign); |
| |
| // "If the resulting offset is not a multiple of the actual alignment, |
| // increase it to the first offset that is a multiple of |
| // the actual alignment." |
| RoundToPow2(offset, memberAlignment); |
| typeList[member].type->getQualifier().layoutOffset = offset; |
| offset += memberSize; |
| } |
| } |
| |
| // For an identifier that is already declared, add more qualification to it. |
| void HlslParseContext::addQualifierToExisting(const TSourceLoc& loc, TQualifier qualifier, const TString& identifier) |
| { |
| TSymbol* symbol = symbolTable.find(identifier); |
| if (symbol == nullptr) { |
| error(loc, "identifier not previously declared", identifier.c_str(), ""); |
| return; |
| } |
| if (symbol->getAsFunction()) { |
| error(loc, "cannot re-qualify a function name", identifier.c_str(), ""); |
| return; |
| } |
| |
| if (qualifier.isAuxiliary() || |
| qualifier.isMemory() || |
| qualifier.isInterpolation() || |
| qualifier.hasLayout() || |
| qualifier.storage != EvqTemporary || |
| qualifier.precision != EpqNone) { |
| error(loc, "cannot add storage, auxiliary, memory, interpolation, layout, or precision qualifier to an existing variable", identifier.c_str(), ""); |
| return; |
| } |
| |
| // For read-only built-ins, add a new symbol for holding the modified qualifier. |
| // This will bring up an entire block, if a block type has to be modified (e.g., gl_Position inside a block) |
| if (symbol->isReadOnly()) |
| symbol = symbolTable.copyUp(symbol); |
| |
| if (qualifier.invariant) { |
| if (intermediate.inIoAccessed(identifier)) |
| error(loc, "cannot change qualification after use", "invariant", ""); |
| symbol->getWritableType().getQualifier().invariant = true; |
| } else if (qualifier.noContraction) { |
| if (intermediate.inIoAccessed(identifier)) |
| error(loc, "cannot change qualification after use", "precise", ""); |
| symbol->getWritableType().getQualifier().noContraction = true; |
| } else if (qualifier.specConstant) { |
| symbol->getWritableType().getQualifier().makeSpecConstant(); |
| if (qualifier.hasSpecConstantId()) |
| symbol->getWritableType().getQualifier().layoutSpecConstantId = qualifier.layoutSpecConstantId; |
| } else |
| warn(loc, "unknown requalification", "", ""); |
| } |
| |
| void HlslParseContext::addQualifierToExisting(const TSourceLoc& loc, TQualifier qualifier, TIdentifierList& identifiers) |
| { |
| for (unsigned int i = 0; i < identifiers.size(); ++i) |
| addQualifierToExisting(loc, qualifier, *identifiers[i]); |
| } |
| |
| // |
| // Update the intermediate for the given input geometry |
| // |
| bool HlslParseContext::handleInputGeometry(const TSourceLoc& loc, const TLayoutGeometry& geometry) |
| { |
| switch (geometry) { |
| case ElgPoints: // fall through |
| case ElgLines: // ... |
| case ElgTriangles: // ... |
| case ElgLinesAdjacency: // ... |
| case ElgTrianglesAdjacency: // ... |
| if (! intermediate.setInputPrimitive(geometry)) { |
| error(loc, "input primitive geometry redefinition", TQualifier::getGeometryString(geometry), ""); |
| return false; |
| } |
| break; |
| |
| default: |
| error(loc, "cannot apply to 'in'", TQualifier::getGeometryString(geometry), ""); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| // |
| // Update the intermediate for the given output geometry |
| // |
| bool HlslParseContext::handleOutputGeometry(const TSourceLoc& loc, const TLayoutGeometry& geometry) |
| { |
| // If this is not a geometry shader, ignore. It might be a mixed shader including several stages. |
| // Since that's an OK situation, return true for success. |
| if (language != EShLangGeometry) |
| return true; |
| |
| switch (geometry) { |
| case ElgPoints: |
| case ElgLineStrip: |
| case ElgTriangleStrip: |
| if (! intermediate.setOutputPrimitive(geometry)) { |
| error(loc, "output primitive geometry redefinition", TQualifier::getGeometryString(geometry), ""); |
| return false; |
| } |
| break; |
| default: |
| error(loc, "cannot apply to 'out'", TQualifier::getGeometryString(geometry), ""); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| // |
| // Selection attributes |
| // |
| void HlslParseContext::handleSelectionAttributes(const TSourceLoc& loc, TIntermSelection* selection, |
| const TAttributes& attributes) |
| { |
| if (selection == nullptr) |
| return; |
| |
| for (auto it = attributes.begin(); it != attributes.end(); ++it) { |
| switch (it->name) { |
| case EatFlatten: |
| selection->setFlatten(); |
| break; |
| case EatBranch: |
| selection->setDontFlatten(); |
| break; |
| default: |
| warn(loc, "attribute does not apply to a selection", "", ""); |
| break; |
| } |
| } |
| } |
| |
| // |
| // Switch attributes |
| // |
| void HlslParseContext::handleSwitchAttributes(const TSourceLoc& loc, TIntermSwitch* selection, |
| const TAttributes& attributes) |
| { |
| if (selection == nullptr) |
| return; |
| |
| for (auto it = attributes.begin(); it != attributes.end(); ++it) { |
| switch (it->name) { |
| case EatFlatten: |
| selection->setFlatten(); |
| break; |
| case EatBranch: |
| selection->setDontFlatten(); |
| break; |
| default: |
| warn(loc, "attribute does not apply to a switch", "", ""); |
| break; |
| } |
| } |
| } |
| |
| // |
| // Loop attributes |
| // |
| void HlslParseContext::handleLoopAttributes(const TSourceLoc& loc, TIntermLoop* loop, |
| const TAttributes& attributes) |
| { |
| if (loop == nullptr) |
| return; |
| |
| for (auto it = attributes.begin(); it != attributes.end(); ++it) { |
| switch (it->name) { |
| case EatUnroll: |
| loop->setUnroll(); |
| break; |
| case EatLoop: |
| loop->setDontUnroll(); |
| break; |
| default: |
| warn(loc, "attribute does not apply to a loop", "", ""); |
| break; |
| } |
| } |
| } |
| |
| // |
| // Updating default qualifier for the case of a declaration with just a qualifier, |
| // no type, block, or identifier. |
| // |
| void HlslParseContext::updateStandaloneQualifierDefaults(const TSourceLoc& loc, const TPublicType& publicType) |
| { |
| if (publicType.shaderQualifiers.vertices != TQualifier::layoutNotSet) { |
| assert(language == EShLangTessControl || language == EShLangGeometry); |
| // const char* id = (language == EShLangTessControl) ? "vertices" : "max_vertices"; |
| } |
| if (publicType.shaderQualifiers.invocations != TQualifier::layoutNotSet) { |
| if (! intermediate.setInvocations(publicType.shaderQualifiers.invocations)) |
| error(loc, "cannot change previously set layout value", "invocations", ""); |
| } |
| if (publicType.shaderQualifiers.geometry != ElgNone) { |
| if (publicType.qualifier.storage == EvqVaryingIn) { |
| switch (publicType.shaderQualifiers.geometry) { |
| case ElgPoints: |
| case ElgLines: |
| case ElgLinesAdjacency: |
| case ElgTriangles: |
| case ElgTrianglesAdjacency: |
| case ElgQuads: |
| case ElgIsolines: |
| break; |
| default: |
| error(loc, "cannot apply to input", TQualifier::getGeometryString(publicType.shaderQualifiers.geometry), |
| ""); |
| } |
| } else if (publicType.qualifier.storage == EvqVaryingOut) { |
| handleOutputGeometry(loc, publicType.shaderQualifiers.geometry); |
| } else |
| error(loc, "cannot apply to:", TQualifier::getGeometryString(publicType.shaderQualifiers.geometry), |
| GetStorageQualifierString(publicType.qualifier.storage)); |
| } |
| if (publicType.shaderQualifiers.spacing != EvsNone) |
| intermediate.setVertexSpacing(publicType.shaderQualifiers.spacing); |
| if (publicType.shaderQualifiers.order != EvoNone) |
| intermediate.setVertexOrder(publicType.shaderQualifiers.order); |
| if (publicType.shaderQualifiers.pointMode) |
| intermediate.setPointMode(); |
| for (int i = 0; i < 3; ++i) { |
| if (publicType.shaderQualifiers.localSize[i] > 1) { |
| int max = 0; |
| switch (i) { |
| case 0: max = resources.maxComputeWorkGroupSizeX; break; |
| case 1: max = resources.maxComputeWorkGroupSizeY; break; |
| case 2: max = resources.maxComputeWorkGroupSizeZ; break; |
| default: break; |
| } |
| if (intermediate.getLocalSize(i) > (unsigned int)max) |
| error(loc, "too large; see gl_MaxComputeWorkGroupSize", "local_size", ""); |
| |
| // Fix the existing constant gl_WorkGroupSize with this new information. |
| TVariable* workGroupSize = getEditableVariable("gl_WorkGroupSize"); |
| workGroupSize->getWritableConstArray()[i].setUConst(intermediate.getLocalSize(i)); |
| } |
| if (publicType.shaderQualifiers.localSizeSpecId[i] != TQualifier::layoutNotSet) { |
| intermediate.setLocalSizeSpecId(i, publicType.shaderQualifiers.localSizeSpecId[i]); |
| // Set the workgroup built-in variable as a specialization constant |
| TVariable* workGroupSize = getEditableVariable("gl_WorkGroupSize"); |
| workGroupSize->getWritableType().getQualifier().specConstant = true; |
| } |
| } |
| if (publicType.shaderQualifiers.earlyFragmentTests) |
| intermediate.setEarlyFragmentTests(); |
| |
| const TQualifier& qualifier = publicType.qualifier; |
| |
| switch (qualifier.storage) { |
| case EvqUniform: |
| if (qualifier.hasMatrix()) |
| globalUniformDefaults.layoutMatrix = qualifier.layoutMatrix; |
| if (qualifier.hasPacking()) |
| globalUniformDefaults.layoutPacking = qualifier.layoutPacking; |
| break; |
| case EvqBuffer: |
| if (qualifier.hasMatrix()) |
| globalBufferDefaults.layoutMatrix = qualifier.layoutMatrix; |
| if (qualifier.hasPacking()) |
| globalBufferDefaults.layoutPacking = qualifier.layoutPacking; |
| break; |
| case EvqVaryingIn: |
| break; |
| case EvqVaryingOut: |
| if (qualifier.hasStream()) |
| globalOutputDefaults.layoutStream = qualifier.layoutStream; |
| if (qualifier.hasXfbBuffer()) |
| globalOutputDefaults.layoutXfbBuffer = qualifier.layoutXfbBuffer; |
| if (globalOutputDefaults.hasXfbBuffer() && qualifier.hasXfbStride()) { |
| if (! intermediate.setXfbBufferStride(globalOutputDefaults.layoutXfbBuffer, qualifier.layoutXfbStride)) |
| error(loc, "all stride settings must match for xfb buffer", "xfb_stride", "%d", |
| qualifier.layoutXfbBuffer); |
| } |
| break; |
| default: |
| error(loc, "default qualifier requires 'uniform', 'buffer', 'in', or 'out' storage qualification", "", ""); |
| return; |
| } |
| } |
| |
| // |
| // Take the sequence of statements that has been built up since the last case/default, |
| // put it on the list of top-level nodes for the current (inner-most) switch statement, |
| // and follow that by the case/default we are on now. (See switch topology comment on |
| // TIntermSwitch.) |
| // |
| void HlslParseContext::wrapupSwitchSubsequence(TIntermAggregate* statements, TIntermNode* branchNode) |
| { |
| TIntermSequence* switchSequence = switchSequenceStack.back(); |
| |
| if (statements) { |
| statements->setOperator(EOpSequence); |
| switchSequence->push_back(statements); |
| } |
| if (branchNode) { |
| // check all previous cases for the same label (or both are 'default') |
| for (unsigned int s = 0; s < switchSequence->size(); ++s) { |
| TIntermBranch* prevBranch = (*switchSequence)[s]->getAsBranchNode(); |
| if (prevBranch) { |
| TIntermTyped* prevExpression = prevBranch->getExpression(); |
| TIntermTyped* newExpression = branchNode->getAsBranchNode()->getExpression(); |
| if (prevExpression == nullptr && newExpression == nullptr) |
| error(branchNode->getLoc(), "duplicate label", "default", ""); |
| else if (prevExpression != nullptr && |
| newExpression != nullptr && |
| prevExpression->getAsConstantUnion() && |
| newExpression->getAsConstantUnion() && |
| prevExpression->getAsConstantUnion()->getConstArray()[0].getIConst() == |
| newExpression->getAsConstantUnion()->getConstArray()[0].getIConst()) |
| error(branchNode->getLoc(), "duplicated value", "case", ""); |
| } |
| } |
| switchSequence->push_back(branchNode); |
| } |
| } |
| |
| // |
| // Turn the top-level node sequence built up of wrapupSwitchSubsequence |
| // into a switch node. |
| // |
| TIntermNode* HlslParseContext::addSwitch(const TSourceLoc& loc, TIntermTyped* expression, |
| TIntermAggregate* lastStatements, const TAttributes& attributes) |
| { |
| wrapupSwitchSubsequence(lastStatements, nullptr); |
| |
| if (expression == nullptr || |
| (expression->getBasicType() != EbtInt && expression->getBasicType() != EbtUint) || |
| expression->getType().isArray() || expression->getType().isMatrix() || expression->getType().isVector()) |
| error(loc, "condition must be a scalar integer expression", "switch", ""); |
| |
| // If there is nothing to do, drop the switch but still execute the expression |
| TIntermSequence* switchSequence = switchSequenceStack.back(); |
| if (switchSequence->size() == 0) |
| return expression; |
| |
| if (lastStatements == nullptr) { |
| // emulate a break for error recovery |
| lastStatements = intermediate.makeAggregate(intermediate.addBranch(EOpBreak, loc)); |
| lastStatements->setOperator(EOpSequence); |
| switchSequence->push_back(lastStatements); |
| } |
| |
| TIntermAggregate* body = new TIntermAggregate(EOpSequence); |
| body->getSequence() = *switchSequenceStack.back(); |
| body->setLoc(loc); |
| |
| TIntermSwitch* switchNode = new TIntermSwitch(expression, body); |
| switchNode->setLoc(loc); |
| handleSwitchAttributes(loc, switchNode, attributes); |
| |
| return switchNode; |
| } |
| |
| // Make a new symbol-table level that is made out of the members of a structure. |
| // This should be done as an anonymous struct (name is "") so that the symbol table |
| // finds the members with no explicit reference to a 'this' variable. |
| void HlslParseContext::pushThisScope(const TType& thisStruct, const TVector<TFunctionDeclarator>& functionDeclarators) |
| { |
| // member variables |
| TVariable& thisVariable = *new TVariable(NewPoolTString(""), thisStruct); |
| symbolTable.pushThis(thisVariable); |
| |
| // member functions |
| for (auto it = functionDeclarators.begin(); it != functionDeclarators.end(); ++it) { |
| // member should have a prefix matching currentTypePrefix.back() |
| // but, symbol lookup within the class scope will just use the |
| // unprefixed name. Hence, there are two: one fully prefixed and |
| // one with no prefix. |
| TFunction& member = *it->function->clone(); |
| member.removePrefix(currentTypePrefix.back()); |
| symbolTable.insert(member); |
| } |
| } |
| |
| // Track levels of class/struct/namespace nesting with a prefix string using |
| // the type names separated by the scoping operator. E.g., two levels |
| // would look like: |
| // |
| // outer::inner |
| // |
| // The string is empty when at normal global level. |
| // |
| void HlslParseContext::pushNamespace(const TString& typeName) |
| { |
| // make new type prefix |
| TString newPrefix; |
| if (currentTypePrefix.size() > 0) |
| newPrefix = currentTypePrefix.back(); |
| newPrefix.append(typeName); |
| newPrefix.append(scopeMangler); |
| currentTypePrefix.push_back(newPrefix); |
| } |
| |
| // Opposite of pushNamespace(), see above |
| void HlslParseContext::popNamespace() |
| { |
| currentTypePrefix.pop_back(); |
| } |
| |
| // Use the class/struct nesting string to create a global name for |
| // a member of a class/struct. |
| void HlslParseContext::getFullNamespaceName(TString*& name) const |
| { |
| if (currentTypePrefix.size() == 0) |
| return; |
| |
| TString* fullName = NewPoolTString(currentTypePrefix.back().c_str()); |
| fullName->append(*name); |
| name = fullName; |
| } |
| |
| // Helper function to add the namespace scope mangling syntax to a string. |
| void HlslParseContext::addScopeMangler(TString& name) |
| { |
| name.append(scopeMangler); |
| } |
| |
| // Return true if this has uniform-interface like decorations. |
| bool HlslParseContext::hasUniform(const TQualifier& qualifier) const |
| { |
| return qualifier.hasUniformLayout() || |
| qualifier.layoutPushConstant; |
| } |
| |
| // Potentially not the opposite of hasUniform(), as if some characteristic is |
| // ever used for more than one thing (e.g., uniform or input), hasUniform() should |
| // say it exists, but clearUniform() should leave it in place. |
| void HlslParseContext::clearUniform(TQualifier& qualifier) |
| { |
| qualifier.clearUniformLayout(); |
| qualifier.layoutPushConstant = false; |
| } |
| |
| // Return false if builtIn by itself doesn't force this qualifier to be an input qualifier. |
| bool HlslParseContext::isInputBuiltIn(const TQualifier& qualifier) const |
| { |
| switch (qualifier.builtIn) { |
| case EbvPosition: |
| case EbvPointSize: |
| return language != EShLangVertex && language != EShLangCompute && language != EShLangFragment; |
| case EbvClipDistance: |
| case EbvCullDistance: |
| return language != EShLangVertex && language != EShLangCompute; |
| case EbvFragCoord: |
| case EbvFace: |
| case EbvHelperInvocation: |
| case EbvLayer: |
| case EbvPointCoord: |
| case EbvSampleId: |
| case EbvSampleMask: |
| case EbvSamplePosition: |
| case EbvViewportIndex: |
| return language == EShLangFragment; |
| case EbvGlobalInvocationId: |
| case EbvLocalInvocationIndex: |
| case EbvLocalInvocationId: |
| case EbvNumWorkGroups: |
| case EbvWorkGroupId: |
| case EbvWorkGroupSize: |
| return language == EShLangCompute; |
| case EbvInvocationId: |
| return language == EShLangTessControl || language == EShLangTessEvaluation || language == EShLangGeometry; |
| case EbvPatchVertices: |
| return language == EShLangTessControl || language == EShLangTessEvaluation; |
| case EbvInstanceId: |
| case EbvInstanceIndex: |
| case EbvVertexId: |
| case EbvVertexIndex: |
| return language == EShLangVertex; |
| case EbvPrimitiveId: |
| return language == EShLangGeometry || language == EShLangFragment || language == EShLangTessControl; |
| case EbvTessLevelInner: |
| case EbvTessLevelOuter: |
| return language == EShLangTessEvaluation; |
| case EbvTessCoord: |
| return language == EShLangTessEvaluation; |
| default: |
| return false; |
| } |
| } |
| |
| // Return true if there are decorations to preserve for input-like storage. |
| bool HlslParseContext::hasInput(const TQualifier& qualifier) const |
| { |
| if (qualifier.hasAnyLocation()) |
| return true; |
| |
| if (language == EShLangFragment && (qualifier.isInterpolation() || qualifier.centroid || qualifier.sample)) |
| return true; |
| |
| if (language == EShLangTessEvaluation && qualifier.patch) |
| return true; |
| |
| if (isInputBuiltIn(qualifier)) |
| return true; |
| |
| return false; |
| } |
| |
| // Return false if builtIn by itself doesn't force this qualifier to be an output qualifier. |
| bool HlslParseContext::isOutputBuiltIn(const TQualifier& qualifier) const |
| { |
| switch (qualifier.builtIn) { |
| case EbvPosition: |
| case EbvPointSize: |
| case EbvClipVertex: |
| case EbvClipDistance: |
| case EbvCullDistance: |
| return language != EShLangFragment && language != EShLangCompute; |
| case EbvFragDepth: |
| case EbvFragDepthGreater: |
| case EbvFragDepthLesser: |
| case EbvSampleMask: |
| return language == EShLangFragment; |
| case EbvLayer: |
| case EbvViewportIndex: |
| return language == EShLangGeometry || language == EShLangVertex; |
| case EbvPrimitiveId: |
| return language == EShLangGeometry; |
| case EbvTessLevelInner: |
| case EbvTessLevelOuter: |
| return language == EShLangTessControl; |
| default: |
| return false; |
| } |
| } |
| |
| // Return true if there are decorations to preserve for output-like storage. |
| bool HlslParseContext::hasOutput(const TQualifier& qualifier) const |
| { |
| if (qualifier.hasAnyLocation()) |
| return true; |
| |
| if (language != EShLangFragment && language != EShLangCompute && qualifier.hasXfb()) |
| return true; |
| |
| if (language == EShLangTessControl && qualifier.patch) |
| return true; |
| |
| if (language == EShLangGeometry && qualifier.hasStream()) |
| return true; |
| |
| if (isOutputBuiltIn(qualifier)) |
| return true; |
| |
| return false; |
| } |
| |
| // Make the IO decorations etc. be appropriate only for an input interface. |
| void HlslParseContext::correctInput(TQualifier& qualifier) |
| { |
| clearUniform(qualifier); |
| if (language == EShLangVertex) |
| qualifier.clearInterstage(); |
| if (language != EShLangTessEvaluation) |
| qualifier.patch = false; |
| if (language != EShLangFragment) { |
| qualifier.clearInterpolation(); |
| qualifier.sample = false; |
| } |
| |
| qualifier.clearStreamLayout(); |
| qualifier.clearXfbLayout(); |
| |
| if (! isInputBuiltIn(qualifier)) |
| qualifier.builtIn = EbvNone; |
| } |
| |
| // Make the IO decorations etc. be appropriate only for an output interface. |
| void HlslParseContext::correctOutput(TQualifier& qualifier) |
| { |
| clearUniform(qualifier); |
| if (language == EShLangFragment) |
| qualifier.clearInterstage(); |
| if (language != EShLangGeometry) |
| qualifier.clearStreamLayout(); |
| if (language == EShLangFragment) |
| qualifier.clearXfbLayout(); |
| if (language != EShLangTessControl) |
| qualifier.patch = false; |
| |
| switch (qualifier.builtIn) { |
| case EbvFragDepth: |
| intermediate.setDepthReplacing(); |
| intermediate.setDepth(EldAny); |
| break; |
| case EbvFragDepthGreater: |
| intermediate.setDepthReplacing(); |
| intermediate.setDepth(EldGreater); |
| qualifier.builtIn = EbvFragDepth; |
| break; |
| case EbvFragDepthLesser: |
| intermediate.setDepthReplacing(); |
| intermediate.setDepth(EldLess); |
| qualifier.builtIn = EbvFragDepth; |
| break; |
| default: |
| break; |
| } |
| |
| if (! isOutputBuiltIn(qualifier)) |
| qualifier.builtIn = EbvNone; |
| } |
| |
| // Make the IO decorations etc. be appropriate only for uniform type interfaces. |
| void HlslParseContext::correctUniform(TQualifier& qualifier) |
| { |
| if (qualifier.declaredBuiltIn == EbvNone) |
| qualifier.declaredBuiltIn = qualifier.builtIn; |
| |
| qualifier.builtIn = EbvNone; |
| qualifier.clearInterstage(); |
| qualifier.clearInterstageLayout(); |
| } |
| |
| // Clear out all IO/Uniform stuff, so this has nothing to do with being an IO interface. |
| void HlslParseContext::clearUniformInputOutput(TQualifier& qualifier) |
| { |
| clearUniform(qualifier); |
| correctUniform(qualifier); |
| } |
| |
| |
| // Set texture return type. Returns success (not all types are valid). |
| bool HlslParseContext::setTextureReturnType(TSampler& sampler, const TType& retType, const TSourceLoc& loc) |
| { |
| // Seed the output with an invalid index. We will set it to a valid one if we can. |
| sampler.structReturnIndex = TSampler::noReturnStruct; |
| |
| // Arrays aren't supported. |
| if (retType.isArray()) { |
| error(loc, "Arrays not supported in texture template types", "", ""); |
| return false; |
| } |
| |
| // If return type is a vector, remember the vector size in the sampler, and return. |
| if (retType.isVector() || retType.isScalar()) { |
| sampler.vectorSize = retType.getVectorSize(); |
| return true; |
| } |
| |
| // If it wasn't a vector, it must be a struct meeting certain requirements. The requirements |
| // are checked below: just check for struct-ness here. |
| if (!retType.isStruct()) { |
| error(loc, "Invalid texture template type", "", ""); |
| return false; |
| } |
| |
| // TODO: Subpass doesn't handle struct returns, due to some oddities with fn overloading. |
| if (sampler.isSubpass()) { |
| error(loc, "Unimplemented: structure template type in subpass input", "", ""); |
| return false; |
| } |
| |
| TTypeList* members = retType.getWritableStruct(); |
| |
| // Check for too many or not enough structure members. |
| if (members->size() > 4 || members->size() == 0) { |
| error(loc, "Invalid member count in texture template structure", "", ""); |
| return false; |
| } |
| |
| // Error checking: We must have <= 4 total components, all of the same basic type. |
| unsigned totalComponents = 0; |
| for (unsigned m = 0; m < members->size(); ++m) { |
| // Check for bad member types |
| if (!(*members)[m].type->isScalar() && !(*members)[m].type->isVector()) { |
| error(loc, "Invalid texture template struct member type", "", ""); |
| return false; |
| } |
| |
| const unsigned memberVectorSize = (*members)[m].type->getVectorSize(); |
| totalComponents += memberVectorSize; |
| |
| // too many total member components |
| if (totalComponents > 4) { |
| error(loc, "Too many components in texture template structure type", "", ""); |
| return false; |
| } |
| |
| // All members must be of a common basic type |
| if ((*members)[m].type->getBasicType() != (*members)[0].type->getBasicType()) { |
| error(loc, "Texture template structure members must same basic type", "", ""); |
| return false; |
| } |
| } |
| |
| // If the structure in the return type already exists in the table, we'll use it. Otherwise, we'll make |
| // a new entry. This is a linear search, but it hardly ever happens, and the list cannot be very large. |
| for (unsigned int idx = 0; idx < textureReturnStruct.size(); ++idx) { |
| if (textureReturnStruct[idx] == members) { |
| sampler.structReturnIndex = idx; |
| return true; |
| } |
| } |
| |
| // It wasn't found as an existing entry. See if we have room for a new one. |
| if (textureReturnStruct.size() >= TSampler::structReturnSlots) { |
| error(loc, "Texture template struct return slots exceeded", "", ""); |
| return false; |
| } |
| |
| // Insert it in the vector that tracks struct return types. |
| sampler.structReturnIndex = unsigned(textureReturnStruct.size()); |
| textureReturnStruct.push_back(members); |
| |
| // Success! |
| return true; |
| } |
| |
| // Return the sampler return type in retType. |
| void HlslParseContext::getTextureReturnType(const TSampler& sampler, TType& retType) const |
| { |
| if (sampler.hasReturnStruct()) { |
| assert(textureReturnStruct.size() >= sampler.structReturnIndex); |
| |
| // We land here if the texture return is a structure. |
| TTypeList* blockStruct = textureReturnStruct[sampler.structReturnIndex]; |
| |
| const TType resultType(blockStruct, ""); |
| retType.shallowCopy(resultType); |
| } else { |
| // We land here if the texture return is a vector or scalar. |
| const TType resultType(sampler.type, EvqTemporary, sampler.getVectorSize()); |
| retType.shallowCopy(resultType); |
| } |
| } |
| |
| |
| // Return a symbol for the tessellation linkage variable of the given TBuiltInVariable type |
| TIntermSymbol* HlslParseContext::findTessLinkageSymbol(TBuiltInVariable biType) const |
| { |
| const auto it = builtInTessLinkageSymbols.find(biType); |
| if (it == builtInTessLinkageSymbols.end()) // if it wasn't declared by the user, return nullptr |
| return nullptr; |
| |
| return intermediate.addSymbol(*it->second->getAsVariable()); |
| } |
| |
| // Find the patch constant function (issues error, returns nullptr if not found) |
| const TFunction* HlslParseContext::findPatchConstantFunction(const TSourceLoc& loc) |
| { |
| if (symbolTable.isFunctionNameVariable(patchConstantFunctionName)) { |
| error(loc, "can't use variable in patch constant function", patchConstantFunctionName.c_str(), ""); |
| return nullptr; |
| } |
| |
| const TString mangledName = patchConstantFunctionName + "("; |
| |
| // create list of PCF candidates |
| TVector<const TFunction*> candidateList; |
| bool builtIn; |
| symbolTable.findFunctionNameList(mangledName, candidateList, builtIn); |
| |
| // We have to have one and only one, or we don't know which to pick: the patchconstantfunc does not |
| // allow any disambiguation of overloads. |
| if (candidateList.empty()) { |
| error(loc, "patch constant function not found", patchConstantFunctionName.c_str(), ""); |
| return nullptr; |
| } |
| |
| // Based on directed experiments, it appears that if there are overloaded patchconstantfunctions, |
| // HLSL picks the last one in shader source order. Since that isn't yet implemented here, error |
| // out if there is more than one candidate. |
| if (candidateList.size() > 1) { |
| error(loc, "ambiguous patch constant function", patchConstantFunctionName.c_str(), ""); |
| return nullptr; |
| } |
| |
| return candidateList[0]; |
| } |
| |
| // Finalization step: Add patch constant function invocation |
| void HlslParseContext::addPatchConstantInvocation() |
| { |
| TSourceLoc loc; |
| loc.init(); |
| |
| // If there's no patch constant function, or we're not a HS, do nothing. |
| if (patchConstantFunctionName.empty() || language != EShLangTessControl) |
| return; |
| |
| // Look for built-in variables in a function's parameter list. |
| const auto findBuiltIns = [&](const TFunction& function, std::set<tInterstageIoData>& builtIns) { |
| for (int p=0; p<function.getParamCount(); ++p) { |
| TStorageQualifier storage = function[p].type->getQualifier().storage; |
| |
| if (storage == EvqConstReadOnly) // treated identically to input |
| storage = EvqIn; |
| |
| if (function[p].getDeclaredBuiltIn() != EbvNone) |
| builtIns.insert(HlslParseContext::tInterstageIoData(function[p].getDeclaredBuiltIn(), storage)); |
| else |
| builtIns.insert(HlslParseContext::tInterstageIoData(function[p].type->getQualifier().builtIn, storage)); |
| } |
| }; |
| |
| // If we synthesize a built-in interface variable, we must add it to the linkage. |
| const auto addToLinkage = [&](const TType& type, const TString* name, TIntermSymbol** symbolNode) { |
| if (name == nullptr) { |
| error(loc, "unable to locate patch function parameter name", "", ""); |
| return; |
| } else { |
| TVariable& variable = *new TVariable(name, type); |
| if (! symbolTable.insert(variable)) { |
| error(loc, "unable to declare patch constant function interface variable", name->c_str(), ""); |
| return; |
| } |
| |
| globalQualifierFix(loc, variable.getWritableType().getQualifier()); |
| |
| if (symbolNode != nullptr) |
| *symbolNode = intermediate.addSymbol(variable); |
| |
| trackLinkage(variable); |
| } |
| }; |
| |
| const auto isOutputPatch = [](TFunction& patchConstantFunction, int param) { |
| const TType& type = *patchConstantFunction[param].type; |
| const TBuiltInVariable biType = patchConstantFunction[param].getDeclaredBuiltIn(); |
| |
| return type.isSizedArray() && biType == EbvOutputPatch; |
| }; |
| |
| // We will perform these steps. Each is in a scoped block for separation: they could |
| // become separate functions to make addPatchConstantInvocation shorter. |
| // |
| // 1. Union the interfaces, and create built-ins for anything present in the PCF and |
| // declared as a built-in variable that isn't present in the entry point's signature. |
| // |
| // 2. Synthesizes a call to the patchconstfunction using built-in variables from either main, |
| // or the ones we created. Matching is based on built-in type. We may use synthesized |
| // variables from (1) above. |
| // |
| // 2B: Synthesize per control point invocations of wrapped entry point if the PCF requires them. |
| // |
| // 3. Create a return sequence: copy the return value (if any) from the PCF to a |
| // (non-sanitized) output variable. In case this may involve multiple copies, such as for |
| // an arrayed variable, a temporary copy of the PCF output is created to avoid multiple |
| // indirections into a complex R-value coming from the call to the PCF. |
| // |
| // 4. Create a barrier. |
| // |
| // 5/5B. Call the PCF inside an if test for (invocation id == 0). |
| |
| TFunction* patchConstantFunctionPtr = const_cast<TFunction*>(findPatchConstantFunction(loc)); |
| |
| if (patchConstantFunctionPtr == nullptr) |
| return; |
| |
| TFunction& patchConstantFunction = *patchConstantFunctionPtr; |
| |
| const int pcfParamCount = patchConstantFunction.getParamCount(); |
| TIntermSymbol* invocationIdSym = findTessLinkageSymbol(EbvInvocationId); |
| TIntermSequence& epBodySeq = entryPointFunctionBody->getAsAggregate()->getSequence(); |
| |
| int outPatchParam = -1; // -1 means there isn't one. |
| |
| // ================ Step 1A: Union Interfaces ================ |
| // Our patch constant function. |
| { |
| std::set<tInterstageIoData> pcfBuiltIns; // patch constant function built-ins |
| std::set<tInterstageIoData> epfBuiltIns; // entry point function built-ins |
| |
| assert(entryPointFunction); |
| assert(entryPointFunctionBody); |
| |
| findBuiltIns(patchConstantFunction, pcfBuiltIns); |
| findBuiltIns(*entryPointFunction, epfBuiltIns); |
| |
| // Find the set of built-ins in the PCF that are not present in the entry point. |
| std::set<tInterstageIoData> notInEntryPoint; |
| |
| notInEntryPoint = pcfBuiltIns; |
| |
| // std::set_difference not usable on unordered containers |
| for (auto bi = epfBuiltIns.begin(); bi != epfBuiltIns.end(); ++bi) |
| notInEntryPoint.erase(*bi); |
| |
| // Now we'll add those to the entry and to the linkage. |
| for (int p=0; p<pcfParamCount; ++p) { |
| const TBuiltInVariable biType = patchConstantFunction[p].getDeclaredBuiltIn(); |
| TStorageQualifier storage = patchConstantFunction[p].type->getQualifier().storage; |
| |
| // Track whether there is an output patch param |
| if (isOutputPatch(patchConstantFunction, p)) { |
| if (outPatchParam >= 0) { |
| // Presently we only support one per ctrl pt input. |
| error(loc, "unimplemented: multiple output patches in patch constant function", "", ""); |
| return; |
| } |
| outPatchParam = p; |
| } |
| |
| if (biType != EbvNone) { |
| TType* paramType = patchConstantFunction[p].type->clone(); |
| |
| if (storage == EvqConstReadOnly) // treated identically to input |
| storage = EvqIn; |
| |
| // Presently, the only non-built-in we support is InputPatch, which is treated as |
| // a pseudo-built-in. |
| if (biType == EbvInputPatch) { |
| builtInTessLinkageSymbols[biType] = inputPatch; |
| } else if (biType == EbvOutputPatch) { |
| // Nothing... |
| } else { |
| // Use the original declaration type for the linkage |
| paramType->getQualifier().builtIn = biType; |
| |
| if (notInEntryPoint.count(tInterstageIoData(biType, storage)) == 1) |
| addToLinkage(*paramType, patchConstantFunction[p].name, nullptr); |
| } |
| } |
| } |
| |
| // If we didn't find it because the shader made one, add our own. |
| if (invocationIdSym == nullptr) { |
| TType invocationIdType(EbtUint, EvqIn, 1); |
| TString* invocationIdName = NewPoolTString("InvocationId"); |
| invocationIdType.getQualifier().builtIn = EbvInvocationId; |
| addToLinkage(invocationIdType, invocationIdName, &invocationIdSym); |
| } |
| |
| assert(invocationIdSym); |
| } |
| |
| TIntermTyped* pcfArguments = nullptr; |
| TVariable* perCtrlPtVar = nullptr; |
| |
| // ================ Step 1B: Argument synthesis ================ |
| // Create pcfArguments for synthesis of patchconstantfunction invocation |
| { |
| for (int p=0; p<pcfParamCount; ++p) { |
| TIntermTyped* inputArg = nullptr; |
| |
| if (p == outPatchParam) { |
| if (perCtrlPtVar == nullptr) { |
| perCtrlPtVar = makeInternalVariable(*patchConstantFunction[outPatchParam].name, |
| *patchConstantFunction[outPatchParam].type); |
| |
| perCtrlPtVar->getWritableType().getQualifier().makeTemporary(); |
| } |
| inputArg = intermediate.addSymbol(*perCtrlPtVar, loc); |
| } else { |
| // find which built-in it is |
| const TBuiltInVariable biType = patchConstantFunction[p].getDeclaredBuiltIn(); |
| |
| if (biType == EbvInputPatch && inputPatch == nullptr) { |
| error(loc, "unimplemented: PCF input patch without entry point input patch parameter", "", ""); |
| return; |
| } |
| |
| inputArg = findTessLinkageSymbol(biType); |
| |
| if (inputArg == nullptr) { |
| error(loc, "unable to find patch constant function built-in variable", "", ""); |
| return; |
| } |
| } |
| |
| if (pcfParamCount == 1) |
| pcfArguments = inputArg; |
| else |
| pcfArguments = intermediate.growAggregate(pcfArguments, inputArg); |
| } |
| } |
| |
| // ================ Step 2: Synthesize call to PCF ================ |
| TIntermAggregate* pcfCallSequence = nullptr; |
| TIntermTyped* pcfCall = nullptr; |
| |
| { |
| // Create a function call to the patchconstantfunction |
| if (pcfArguments) |
| addInputArgumentConversions(patchConstantFunction, pcfArguments); |
| |
| // Synthetic call. |
| pcfCall = intermediate.setAggregateOperator(pcfArguments, EOpFunctionCall, patchConstantFunction.getType(), loc); |
| pcfCall->getAsAggregate()->setUserDefined(); |
| pcfCall->getAsAggregate()->setName(patchConstantFunction.getMangledName()); |
| intermediate.addToCallGraph(infoSink, intermediate.getEntryPointMangledName().c_str(), |
| patchConstantFunction.getMangledName()); |
| |
| if (pcfCall->getAsAggregate()) { |
| TQualifierList& qualifierList = pcfCall->getAsAggregate()->getQualifierList(); |
| for (int i = 0; i < patchConstantFunction.getParamCount(); ++i) { |
| TStorageQualifier qual = patchConstantFunction[i].type->getQualifier().storage; |
| qualifierList.push_back(qual); |
| } |
| pcfCall = addOutputArgumentConversions(patchConstantFunction, *pcfCall->getAsOperator()); |
| } |
| } |
| |
| // ================ Step 2B: Per Control Point synthesis ================ |
| // If there is per control point data, we must either emulate that with multiple |
| // invocations of the entry point to build up an array, or (TODO:) use a yet |
| // unavailable extension to look across the SIMD lanes. This is the former |
| // as a placeholder for the latter. |
| if (outPatchParam >= 0) { |
| // We must introduce a local temp variable of the type wanted by the PCF input. |
| const int arraySize = patchConstantFunction[outPatchParam].type->getOuterArraySize(); |
| |
| if (entryPointFunction->getType().getBasicType() == EbtVoid) { |
| error(loc, "entry point must return a value for use with patch constant function", "", ""); |
| return; |
| } |
| |
| // Create calls to wrapped main to fill in the array. We will substitute fixed values |
| // of invocation ID when calling the wrapped main. |
| |
| // This is the type of the each member of the per ctrl point array. |
| const TType derefType(perCtrlPtVar->getType(), 0); |
| |
| for (int cpt = 0; cpt < arraySize; ++cpt) { |
| // TODO: improve. substr(1) here is to avoid the '@' that was grafted on but isn't in the symtab |
| // for this function. |
| const TString origName = entryPointFunction->getName().substr(1); |
| TFunction callee(&origName, TType(EbtVoid)); |
| TIntermTyped* callingArgs = nullptr; |
| |
| for (int i = 0; i < entryPointFunction->getParamCount(); i++) { |
| TParameter& param = (*entryPointFunction)[i]; |
| TType& paramType = *param.type; |
| |
| if (paramType.getQualifier().isParamOutput()) { |
| error(loc, "unimplemented: entry point outputs in patch constant function invocation", "", ""); |
| return; |
| } |
| |
| if (paramType.getQualifier().isParamInput()) { |
| TIntermTyped* arg = nullptr; |
| if ((*entryPointFunction)[i].getDeclaredBuiltIn() == EbvInvocationId) { |
| // substitute invocation ID with the array element ID |
| arg = intermediate.addConstantUnion(cpt, loc); |
| } else { |
| TVariable* argVar = makeInternalVariable(*param.name, *param.type); |
| argVar->getWritableType().getQualifier().makeTemporary(); |
| arg = intermediate.addSymbol(*argVar); |
| } |
| |
| handleFunctionArgument(&callee, callingArgs, arg); |
| } |
| } |
| |
| // Call and assign to per ctrl point variable |
| currentCaller = intermediate.getEntryPointMangledName().c_str(); |
| TIntermTyped* callReturn = handleFunctionCall(loc, &callee, callingArgs); |
| TIntermTyped* index = intermediate.addConstantUnion(cpt, loc); |
| TIntermSymbol* perCtrlPtSym = intermediate.addSymbol(*perCtrlPtVar, loc); |
| TIntermTyped* element = intermediate.addIndex(EOpIndexDirect, perCtrlPtSym, index, loc); |
| element->setType(derefType); |
| element->setLoc(loc); |
| |
| pcfCallSequence = intermediate.growAggregate(pcfCallSequence, |
| handleAssign(loc, EOpAssign, element, callReturn)); |
| } |
| } |
| |
| // ================ Step 3: Create return Sequence ================ |
| // Return sequence: copy PCF result to a temporary, then to shader output variable. |
| if (pcfCall->getBasicType() != EbtVoid) { |
| const TType* retType = &patchConstantFunction.getType(); // return type from the PCF |
| TType outType; // output type that goes with the return type. |
| outType.shallowCopy(*retType); |
| |
| // substitute the output type |
| const auto newLists = ioTypeMap.find(retType->getStruct()); |
| if (newLists != ioTypeMap.end()) |
| outType.setStruct(newLists->second.output); |
| |
| // Substitute the top level type's built-in type |
| if (patchConstantFunction.getDeclaredBuiltInType() != EbvNone) |
| outType.getQualifier().builtIn = patchConstantFunction.getDeclaredBuiltInType(); |
| |
| outType.getQualifier().patch = true; // make it a per-patch variable |
| |
| TVariable* pcfOutput = makeInternalVariable("@patchConstantOutput", outType); |
| pcfOutput->getWritableType().getQualifier().storage = EvqVaryingOut; |
| |
| if (pcfOutput->getType().containsBuiltIn()) |
| split(*pcfOutput); |
| |
| assignToInterface(*pcfOutput); |
| |
| TIntermSymbol* pcfOutputSym = intermediate.addSymbol(*pcfOutput, loc); |
| |
| // The call to the PCF is a complex R-value: we want to store it in a temp to avoid |
| // repeated calls to the PCF: |
| TVariable* pcfCallResult = makeInternalVariable("@patchConstantResult", *retType); |
| pcfCallResult->getWritableType().getQualifier().makeTemporary(); |
| |
| TIntermSymbol* pcfResultVar = intermediate.addSymbol(*pcfCallResult, loc); |
| TIntermNode* pcfResultAssign = handleAssign(loc, EOpAssign, pcfResultVar, pcfCall); |
| TIntermNode* pcfResultToOut = handleAssign(loc, EOpAssign, pcfOutputSym, |
| intermediate.addSymbol(*pcfCallResult, loc)); |
| |
| pcfCallSequence = intermediate.growAggregate(pcfCallSequence, pcfResultAssign); |
| pcfCallSequence = intermediate.growAggregate(pcfCallSequence, pcfResultToOut); |
| } else { |
| pcfCallSequence = intermediate.growAggregate(pcfCallSequence, pcfCall); |
| } |
| |
| // ================ Step 4: Barrier ================ |
| TIntermTyped* barrier = new TIntermAggregate(EOpBarrier); |
| barrier->setLoc(loc); |
| barrier->setType(TType(EbtVoid)); |
| epBodySeq.insert(epBodySeq.end(), barrier); |
| |
| // ================ Step 5: Test on invocation ID ================ |
| TIntermTyped* zero = intermediate.addConstantUnion(0, loc, true); |
| TIntermTyped* cmp = intermediate.addBinaryNode(EOpEqual, invocationIdSym, zero, loc, TType(EbtBool)); |
| |
| |
| // ================ Step 5B: Create if statement on Invocation ID == 0 ================ |
| intermediate.setAggregateOperator(pcfCallSequence, EOpSequence, TType(EbtVoid), loc); |
| TIntermTyped* invocationIdTest = new TIntermSelection(cmp, pcfCallSequence, nullptr); |
| invocationIdTest->setLoc(loc); |
| |
| // add our test sequence before the return. |
| epBodySeq.insert(epBodySeq.end(), invocationIdTest); |
| } |
| |
| // Finalization step: remove unused buffer blocks from linkage (we don't know until the |
| // shader is entirely compiled). |
| // Preserve order of remaining symbols. |
| void HlslParseContext::removeUnusedStructBufferCounters() |
| { |
| const auto endIt = std::remove_if(linkageSymbols.begin(), linkageSymbols.end(), |
| [this](const TSymbol* sym) { |
| const auto sbcIt = structBufferCounter.find(sym->getName()); |
| return sbcIt != structBufferCounter.end() && !sbcIt->second; |
| }); |
| |
| linkageSymbols.erase(endIt, linkageSymbols.end()); |
| } |
| |
| // Finalization step: patch texture shadow modes to match samplers they were combined with |
| void HlslParseContext::fixTextureShadowModes() |
| { |
| for (auto symbol = linkageSymbols.begin(); symbol != linkageSymbols.end(); ++symbol) { |
| TSampler& sampler = (*symbol)->getWritableType().getSampler(); |
| |
| if (sampler.isTexture()) { |
| const auto shadowMode = textureShadowVariant.find((*symbol)->getUniqueId()); |
| if (shadowMode != textureShadowVariant.end()) { |
| |
| if (shadowMode->second->overloaded()) |
| // Texture needs legalization if it's been seen with both shadow and non-shadow modes. |
| intermediate.setNeedsLegalization(); |
| |
| sampler.shadow = shadowMode->second->isShadowId((*symbol)->getUniqueId()); |
| } |
| } |
| } |
| } |
| |
| // Finalization step: patch append methods to use proper stream output, which isn't known until |
| // main is parsed, which could happen after the append method is parsed. |
| void HlslParseContext::finalizeAppendMethods() |
| { |
| TSourceLoc loc; |
| loc.init(); |
| |
| // Nothing to do: bypass test for valid stream output. |
| if (gsAppends.empty()) |
| return; |
| |
| if (gsStreamOutput == nullptr) { |
| error(loc, "unable to find output symbol for Append()", "", ""); |
| return; |
| } |
| |
| // Patch append sequences, now that we know the stream output symbol. |
| for (auto append = gsAppends.begin(); append != gsAppends.end(); ++append) { |
| append->node->getSequence()[0] = |
| handleAssign(append->loc, EOpAssign, |
| intermediate.addSymbol(*gsStreamOutput, append->loc), |
| append->node->getSequence()[0]->getAsTyped()); |
| } |
| } |
| |
| // post-processing |
| void HlslParseContext::finish() |
| { |
| // Error check: There was a dangling .mips operator. These are not nested constructs in the grammar, so |
| // cannot be detected there. This is not strictly needed in a non-validating parser; it's just helpful. |
| if (! mipsOperatorMipArg.empty()) { |
| error(mipsOperatorMipArg.back().loc, "unterminated mips operator:", "", ""); |
| } |
| |
| removeUnusedStructBufferCounters(); |
| addPatchConstantInvocation(); |
| fixTextureShadowModes(); |
| finalizeAppendMethods(); |
| |
| // Communicate out (esp. for command line) that we formed AST that will make |
| // illegal AST SPIR-V and it needs transforms to legalize it. |
| if (intermediate.needsLegalization() && (messages & EShMsgHlslLegalization)) |
| infoSink.info << "WARNING: AST will form illegal SPIR-V; need to transform to legalize"; |
| |
| TParseContextBase::finish(); |
| } |
| |
| } // end namespace glslang |