| #version 450 |
| |
| #extension GL_EXT_shader_explicit_arithmetic_types: enable |
| #extension GL_EXT_shader_explicit_arithmetic_types_int8: require |
| #extension GL_EXT_shader_explicit_arithmetic_types_int16: require |
| #extension GL_EXT_shader_explicit_arithmetic_types_int32: require |
| #extension GL_EXT_shader_explicit_arithmetic_types_int64: require |
| #extension GL_EXT_shader_explicit_arithmetic_types_float16: require |
| #extension GL_EXT_shader_explicit_arithmetic_types_float32: require |
| #extension GL_EXT_shader_explicit_arithmetic_types_float64: require |
| |
| void main() |
| { |
| } |
| |
| // Single float literals |
| void literal() |
| { |
| const float32_t f32c = 0.000001f; |
| const f32vec2 f32cv = f32vec2(-0.25F, 0.03f); |
| |
| f32vec2 f32v; |
| f32v.x = f32c; |
| f32v += f32cv; |
| } |
| |
| // Block memory layout |
| struct S |
| { |
| float32_t x; |
| f32vec2 y; |
| f32vec3 z; |
| }; |
| |
| layout(column_major, std140) uniform B1 |
| { |
| float32_t a; |
| f32vec2 b; |
| f32vec3 c; |
| float32_t d[2]; |
| f32mat2x3 e; |
| f32mat2x3 f[2]; |
| S g; |
| S h[2]; |
| }; |
| |
| // Specialization constant |
| layout(constant_id = 100) const float16_t sf16 = 0.125hf; |
| layout(constant_id = 101) const float32_t sf = 0.25; |
| layout(constant_id = 102) const float64_t sd = 0.5lf; |
| |
| const float f16_to_f = float(sf16); |
| const double f16_to_d = float(sf16); |
| |
| const float16_t f_to_f16 = float16_t(sf); |
| const float16_t d_to_f16 = float16_t(sd); |
| |
| void operators() |
| { |
| float32_t f32; |
| f32vec2 f32v; |
| f32mat2x2 f32m; |
| bool b; |
| |
| // Arithmetic |
| f32v += f32v; |
| f32v -= f32v; |
| f32v *= f32v; |
| f32v /= f32v; |
| f32v++; |
| f32v--; |
| ++f32m; |
| --f32m; |
| f32v = -f32v; |
| f32m = -f32m; |
| |
| f32 = f32v.x + f32v.y; |
| f32 = f32v.x - f32v.y; |
| f32 = f32v.x * f32v.y; |
| f32 = f32v.x / f32v.y; |
| |
| // Relational |
| b = (f32v.x != f32); |
| b = (f32v.y == f32); |
| b = (f32v.x > f32); |
| b = (f32v.y < f32); |
| b = (f32v.x >= f32); |
| b = (f32v.y <= f32); |
| |
| // Vector/matrix operations |
| f32v = f32v * f32; |
| f32m = f32m * f32; |
| f32v = f32m * f32v; |
| f32v = f32v * f32m; |
| f32m = f32m * f32m; |
| } |
| |
| void typeCast() |
| { |
| bvec3 bv; |
| f32vec3 f32v; |
| f64vec3 f64v; |
| i8vec3 i8v; |
| u8vec3 u8v; |
| i16vec3 i16v; |
| u16vec3 u16v; |
| i32vec3 i32v; |
| u32vec3 u32v; |
| i64vec3 i64v; |
| u64vec3 u64v; |
| f16vec3 f16v; |
| |
| f64v = f32v; // float32_t -> float64_t |
| |
| f32v = f32vec3(bv); // bool -> float32 |
| bv = bvec3(f32v); // float32 -> bool |
| |
| f32v = f32vec3(f64v); // double -> float32 |
| f64v = f64vec3(f32v); // float32 -> double |
| |
| f32v = f32vec3(f16v); // float16 -> float32 |
| f16v = f16vec3(f32v); // float32 -> float16 |
| |
| i8v = i8vec3(f32v); // float32 -> int8 |
| i16v = i16vec3(f32v); // float32 -> int16 |
| i32v = i32vec3(f32v); // float32 -> int32 |
| i64v = i64vec3(f32v); // float32 -> int64 |
| |
| u8v = u8vec3(f32v); // float32 -> uint8 |
| u16v = u16vec3(f32v); // float32 -> uint16 |
| u32v = u32vec3(f32v); // float32 -> uint32 |
| u64v = u64vec3(f32v); // float32 -> uint64 |
| } |
| |
| void builtinAngleTrigFuncs() |
| { |
| f32vec4 f32v1, f32v2; |
| |
| f32v2 = radians(f32v1); |
| f32v2 = degrees(f32v1); |
| f32v2 = sin(f32v1); |
| f32v2 = cos(f32v1); |
| f32v2 = tan(f32v1); |
| f32v2 = asin(f32v1); |
| f32v2 = acos(f32v1); |
| f32v2 = atan(f32v1, f32v2); |
| f32v2 = atan(f32v1); |
| f32v2 = sinh(f32v1); |
| f32v2 = cosh(f32v1); |
| f32v2 = tanh(f32v1); |
| f32v2 = asinh(f32v1); |
| f32v2 = acosh(f32v1); |
| f32v2 = atanh(f32v1); |
| } |
| |
| void builtinExpFuncs() |
| { |
| f32vec2 f32v1, f32v2; |
| |
| f32v2 = pow(f32v1, f32v2); |
| f32v2 = exp(f32v1); |
| f32v2 = log(f32v1); |
| f32v2 = exp2(f32v1); |
| f32v2 = log2(f32v1); |
| f32v2 = sqrt(f32v1); |
| f32v2 = inversesqrt(f32v1); |
| } |
| |
| void builtinCommonFuncs() |
| { |
| f32vec3 f32v1, f32v2, f32v3; |
| float32_t f32; |
| bool b; |
| bvec3 bv; |
| ivec3 iv; |
| |
| f32v2 = abs(f32v1); |
| f32v2 = sign(f32v1); |
| f32v2 = floor(f32v1); |
| f32v2 = trunc(f32v1); |
| f32v2 = round(f32v1); |
| f32v2 = roundEven(f32v1); |
| f32v2 = ceil(f32v1); |
| f32v2 = fract(f32v1); |
| f32v2 = mod(f32v1, f32v2); |
| f32v2 = mod(f32v1, f32); |
| f32v3 = modf(f32v1, f32v2); |
| f32v3 = min(f32v1, f32v2); |
| f32v3 = min(f32v1, f32); |
| f32v3 = max(f32v1, f32v2); |
| f32v3 = max(f32v1, f32); |
| f32v3 = clamp(f32v1, f32, f32v2.x); |
| f32v3 = clamp(f32v1, f32v2, f32vec3(f32)); |
| f32v3 = mix(f32v1, f32v2, f32); |
| f32v3 = mix(f32v1, f32v2, f32v3); |
| f32v3 = mix(f32v1, f32v2, bv); |
| f32v3 = step(f32v1, f32v2); |
| f32v3 = step(f32, f32v3); |
| f32v3 = smoothstep(f32v1, f32v2, f32v3); |
| f32v3 = smoothstep(f32, f32v1.x, f32v2); |
| b = isnan(f32); |
| bv = isinf(f32v1); |
| f32v3 = fma(f32v1, f32v2, f32v3); |
| f32v2 = frexp(f32v1, iv); |
| f32v2 = ldexp(f32v1, iv); |
| } |
| |
| void builtinGeometryFuncs() |
| { |
| float32_t f32; |
| f32vec3 f32v1, f32v2, f32v3; |
| |
| f32 = length(f32v1); |
| f32 = distance(f32v1, f32v2); |
| f32 = dot(f32v1, f32v2); |
| f32v3 = cross(f32v1, f32v2); |
| f32v2 = normalize(f32v1); |
| f32v3 = faceforward(f32v1, f32v2, f32v3); |
| f32v3 = reflect(f32v1, f32v2); |
| f32v3 = refract(f32v1, f32v2, f32); |
| } |
| |
| void builtinMatrixFuncs() |
| { |
| f32mat2x3 f32m1, f32m2, f32m3; |
| f32mat3x2 f32m4; |
| f32mat3 f32m5; |
| f32mat4 f32m6, f32m7; |
| |
| f32vec3 f32v1; |
| f32vec2 f32v2; |
| |
| float32_t f32; |
| |
| f32m3 = matrixCompMult(f32m1, f32m2); |
| f32m1 = outerProduct(f32v1, f32v2); |
| f32m4 = transpose(f32m1); |
| f32 = determinant(f32m5); |
| f32m6 = inverse(f32m7); |
| } |
| |
| void builtinVecRelFuncs() |
| { |
| f32vec3 f32v1, f32v2; |
| bvec3 bv; |
| |
| bv = lessThan(f32v1, f32v2); |
| bv = lessThanEqual(f32v1, f32v2); |
| bv = greaterThan(f32v1, f32v2); |
| bv = greaterThanEqual(f32v1, f32v2); |
| bv = equal(f32v1, f32v2); |
| bv = notEqual(f32v1, f32v2); |
| } |
| |
| in f32vec3 if32v; |
| |
| void builtinFragProcFuncs() |
| { |
| f32vec3 f32v; |
| |
| // Derivative |
| f32v.x = dFdx(if32v.x); |
| f32v.y = dFdy(if32v.y); |
| f32v.xy = dFdxFine(if32v.xy); |
| f32v.xy = dFdyFine(if32v.xy); |
| f32v = dFdxCoarse(if32v); |
| f32v = dFdxCoarse(if32v); |
| |
| f32v.x = fwidth(if32v.x); |
| f32v.xy = fwidthFine(if32v.xy); |
| f32v = fwidthCoarse(if32v); |
| |
| // Interpolation |
| f32v.x = interpolateAtCentroid(if32v.x); |
| f32v.xy = interpolateAtSample(if32v.xy, 1); |
| f32v = interpolateAtOffset(if32v, f32vec2(0.5f)); |
| } |