blob: c20c00ae455b27152944695c3403fba7e545b5f2 [file] [log] [blame]
John Kessenich72133242013-07-08 19:39:16 +00001# -*- Autoconf -*-
2# This file is part of Autoconf.
3# foreach-based replacements for recursive functions.
4# Speeds up GNU M4 1.4.x by avoiding quadratic $@ recursion, but penalizes
5# GNU M4 1.6 by requiring more memory and macro expansions.
6#
7# Copyright (C) 2008-2012 Free Software Foundation, Inc.
8
9# This file is part of Autoconf. This program is free
10# software; you can redistribute it and/or modify it under the
11# terms of the GNU General Public License as published by the
12# Free Software Foundation, either version 3 of the License, or
13# (at your option) any later version.
14#
15# This program is distributed in the hope that it will be useful,
16# but WITHOUT ANY WARRANTY; without even the implied warranty of
17# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18# GNU General Public License for more details.
19#
20# Under Section 7 of GPL version 3, you are granted additional
21# permissions described in the Autoconf Configure Script Exception,
22# version 3.0, as published by the Free Software Foundation.
23#
24# You should have received a copy of the GNU General Public License
25# and a copy of the Autoconf Configure Script Exception along with
26# this program; see the files COPYINGv3 and COPYING.EXCEPTION
27# respectively. If not, see <http://www.gnu.org/licenses/>.
28
29# Written by Eric Blake.
30
31# In M4 1.4.x, every byte of $@ is rescanned. This means that an
32# algorithm on n arguments that recurses with one less argument each
33# iteration will scan n * (n + 1) / 2 arguments, for O(n^2) time. In
34# M4 1.6, this was fixed so that $@ is only scanned once, then
35# back-references are made to information stored about the scan.
36# Thus, n iterations need only scan n arguments, for O(n) time.
37# Additionally, in M4 1.4.x, recursive algorithms did not clean up
38# memory very well, requiring O(n^2) memory rather than O(n) for n
39# iterations.
40#
41# This file is designed to overcome the quadratic nature of $@
42# recursion by writing a variant of m4_foreach that uses m4_for rather
43# than $@ recursion to operate on the list. This involves more macro
44# expansions, but avoids the need to rescan a quadratic number of
45# arguments, making these replacements very attractive for M4 1.4.x.
46# On the other hand, in any version of M4, expanding additional macros
47# costs additional time; therefore, in M4 1.6, where $@ recursion uses
48# fewer macros, these replacements actually pessimize performance.
49# Additionally, the use of $10 to mean the tenth argument violates
50# POSIX; although all versions of m4 1.4.x support this meaning, a
51# future m4 version may switch to take it as the first argument
52# concatenated with a literal 0, so the implementations in this file
53# are not future-proof. Thus, this file is conditionally included as
54# part of m4_init(), only when it is detected that M4 probably has
55# quadratic behavior (ie. it lacks the macro __m4_version__).
56#
57# Please keep this file in sync with m4sugar.m4.
58
59# _m4_foreach(PRE, POST, IGNORED, ARG...)
60# ---------------------------------------
61# Form the common basis of the m4_foreach and m4_map macros. For each
62# ARG, expand PRE[ARG]POST[]. The IGNORED argument makes recursion
63# easier, and must be supplied rather than implicit.
64#
65# This version minimizes the number of times that $@ is evaluated by
66# using m4_for to generate a boilerplate into _m4_f then passing $@ to
67# that temporary macro. Thus, the recursion is done in m4_for without
68# reparsing any user input, and is not quadratic. For an idea of how
69# this works, note that m4_foreach(i,[1,2],[i]) calls
70# _m4_foreach([m4_define([i],],[)i],[],[1],[2])
71# which defines _m4_f:
72# $1[$4]$2[]$1[$5]$2[]_m4_popdef([_m4_f])
73# then calls _m4_f([m4_define([i],],[)i],[],[1],[2]) for a net result:
74# m4_define([i],[1])i[]m4_define([i],[2])i[]_m4_popdef([_m4_f]).
75m4_define([_m4_foreach],
76[m4_if([$#], [3], [],
77 [m4_pushdef([_m4_f], _m4_for([4], [$#], [1],
78 [$0_([1], [2],], [)])[_m4_popdef([_m4_f])])_m4_f($@)])])
79
80m4_define([_m4_foreach_],
81[[$$1[$$3]$$2[]]])
82
83# m4_case(SWITCH, VAL1, IF-VAL1, VAL2, IF-VAL2, ..., DEFAULT)
84# -----------------------------------------------------------
85# Find the first VAL that SWITCH matches, and expand the corresponding
86# IF-VAL. If there are no matches, expand DEFAULT.
87#
88# Use m4_for to create a temporary macro in terms of a boilerplate
89# m4_if with final cleanup. If $# is even, we have DEFAULT; if it is
90# odd, then rounding the last $# up in the temporary macro is
91# harmless. For example, both m4_case(1,2,3,4,5) and
92# m4_case(1,2,3,4,5,6) result in the intermediate _m4_case being
93# m4_if([$1],[$2],[$3],[$1],[$4],[$5],_m4_popdef([_m4_case])[$6])
94m4_define([m4_case],
95[m4_if(m4_eval([$# <= 2]), [1], [$2],
96[m4_pushdef([_$0], [m4_if(]_m4_for([2], m4_eval([($# - 1) / 2 * 2]), [2],
97 [_$0_(], [)])[_m4_popdef(
98 [_$0])]m4_dquote($m4_eval([($# + 1) & ~1]))[)])_$0($@)])])
99
100m4_define([_m4_case_],
101[$0_([1], [$1], m4_incr([$1]))])
102
103m4_define([_m4_case__],
104[[[$$1],[$$2],[$$3],]])
105
106# m4_bmatch(SWITCH, RE1, VAL1, RE2, VAL2, ..., DEFAULT)
107# -----------------------------------------------------
108# m4 equivalent of
109#
110# if (SWITCH =~ RE1)
111# VAL1;
112# elif (SWITCH =~ RE2)
113# VAL2;
114# elif ...
115# ...
116# else
117# DEFAULT
118#
119# We build the temporary macro _m4_b:
120# m4_define([_m4_b], _m4_defn([_m4_bmatch]))_m4_b([$1], [$2], [$3])...
121# _m4_b([$1], [$m-1], [$m])_m4_b([], [], [$m+1]_m4_popdef([_m4_b]))
122# then invoke m4_unquote(_m4_b($@)), for concatenation with later text.
123m4_define([m4_bmatch],
124[m4_if([$#], 0, [m4_fatal([$0: too few arguments: $#])],
125 [$#], 1, [m4_fatal([$0: too few arguments: $#: $1])],
126 [$#], 2, [$2],
127 [m4_pushdef([_m4_b], [m4_define([_m4_b],
128 _m4_defn([_$0]))]_m4_for([3], m4_eval([($# + 1) / 2 * 2 - 1]),
129 [2], [_$0_(], [)])[_m4_b([], [],]m4_dquote([$]m4_eval(
130 [($# + 1) / 2 * 2]))[_m4_popdef([_m4_b]))])m4_unquote(_m4_b($@))])])
131
132m4_define([_m4_bmatch],
133[m4_if(m4_bregexp([$1], [$2]), [-1], [], [[$3]m4_define([$0])])])
134
135m4_define([_m4_bmatch_],
136[$0_([1], m4_decr([$1]), [$1])])
137
138m4_define([_m4_bmatch__],
139[[_m4_b([$$1], [$$2], [$$3])]])
140
141
142# m4_cond(TEST1, VAL1, IF-VAL1, TEST2, VAL2, IF-VAL2, ..., [DEFAULT])
143# -------------------------------------------------------------------
144# Similar to m4_if, except that each TEST is expanded when encountered.
145# If the expansion of TESTn matches the string VALn, the result is IF-VALn.
146# The result is DEFAULT if no tests passed. This macro allows
147# short-circuiting of expensive tests, where it pays to arrange quick
148# filter tests to run first.
149#
150# m4_cond already guarantees either 3*n or 3*n + 1 arguments, 1 <= n.
151# We only have to speed up _m4_cond, by building the temporary _m4_c:
152# m4_define([_m4_c], _m4_defn([m4_unquote]))_m4_c([m4_if(($1), [($2)],
153# [[$3]m4_define([_m4_c])])])_m4_c([m4_if(($4), [($5)],
154# [[$6]m4_define([_m4_c])])])..._m4_c([m4_if(($m-2), [($m-1)],
155# [[$m]m4_define([_m4_c])])])_m4_c([[$m+1]]_m4_popdef([_m4_c]))
156# We invoke m4_unquote(_m4_c($@)), for concatenation with later text.
157m4_define([_m4_cond],
158[m4_pushdef([_m4_c], [m4_define([_m4_c],
159 _m4_defn([m4_unquote]))]_m4_for([2], m4_eval([$# / 3 * 3 - 1]), [3],
160 [$0_(], [)])[_m4_c(]m4_dquote(m4_dquote(
161 [$]m4_eval([$# / 3 * 3 + 1])))[_m4_popdef([_m4_c]))])m4_unquote(_m4_c($@))])
162
163m4_define([_m4_cond_],
164[$0_(m4_decr([$1]), [$1], m4_incr([$1]))])
165
166m4_define([_m4_cond__],
167[[_m4_c([m4_if(($$1), [($$2)], [[$$3]m4_define([_m4_c])])])]])
168
169# m4_bpatsubsts(STRING, RE1, SUBST1, RE2, SUBST2, ...)
170# ----------------------------------------------------
171# m4 equivalent of
172#
173# $_ = STRING;
174# s/RE1/SUBST1/g;
175# s/RE2/SUBST2/g;
176# ...
177#
178# m4_bpatsubsts already validated an odd number of arguments; we only
179# need to speed up _m4_bpatsubsts. To avoid nesting, we build the
180# temporary _m4_p:
181# m4_define([_m4_p], [$1])m4_define([_m4_p],
182# m4_bpatsubst(m4_dquote(_m4_defn([_m4_p])), [$2], [$3]))m4_define([_m4_p],
183# m4_bpatsubst(m4_dquote(_m4_defn([_m4_p])), [$4], [$5]))m4_define([_m4_p],...
184# m4_bpatsubst(m4_dquote(_m4_defn([_m4_p])), [$m-1], [$m]))m4_unquote(
185# _m4_defn([_m4_p])_m4_popdef([_m4_p]))
186m4_define([_m4_bpatsubsts],
187[m4_pushdef([_m4_p], [m4_define([_m4_p],
188 ]m4_dquote([$]1)[)]_m4_for([3], [$#], [2], [$0_(],
189 [)])[m4_unquote(_m4_defn([_m4_p])_m4_popdef([_m4_p]))])_m4_p($@)])
190
191m4_define([_m4_bpatsubsts_],
192[$0_(m4_decr([$1]), [$1])])
193
194m4_define([_m4_bpatsubsts__],
195[[m4_define([_m4_p],
196m4_bpatsubst(m4_dquote(_m4_defn([_m4_p])), [$$1], [$$2]))]])
197
198# m4_shiftn(N, ...)
199# -----------------
200# Returns ... shifted N times. Useful for recursive "varargs" constructs.
201#
202# m4_shiftn already validated arguments; we only need to speed up
203# _m4_shiftn. If N is 3, then we build the temporary _m4_s, defined as
204# ,[$5],[$6],...,[$m]_m4_popdef([_m4_s])
205# before calling m4_shift(_m4_s($@)).
206m4_define([_m4_shiftn],
207[m4_if(m4_incr([$1]), [$#], [], [m4_pushdef([_m4_s],
208 _m4_for(m4_eval([$1 + 2]), [$#], [1],
209 [[,]m4_dquote($], [)])[_m4_popdef([_m4_s])])m4_shift(_m4_s($@))])])
210
211# m4_do(STRING, ...)
212# ------------------
213# This macro invokes all its arguments (in sequence, of course). It is
214# useful for making your macros more structured and readable by dropping
215# unnecessary dnl's and have the macros indented properly.
216#
217# Here, we use the temporary macro _m4_do, defined as
218# $1[]$2[]...[]$n[]_m4_popdef([_m4_do])
219m4_define([m4_do],
220[m4_if([$#], [0], [],
221 [m4_pushdef([_$0], _m4_for([1], [$#], [1],
222 [$], [[[]]])[_m4_popdef([_$0])])_$0($@)])])
223
224# m4_dquote_elt(ARGS)
225# -------------------
226# Return ARGS as an unquoted list of double-quoted arguments.
227#
228# _m4_foreach to the rescue.
229m4_define([m4_dquote_elt],
230[m4_if([$#], [0], [], [[[$1]]_m4_foreach([,m4_dquote(], [)], $@)])])
231
232# m4_reverse(ARGS)
233# ----------------
234# Output ARGS in reverse order.
235#
236# Invoke _m4_r($@) with the temporary _m4_r built as
237# [$m], [$m-1], ..., [$2], [$1]_m4_popdef([_m4_r])
238m4_define([m4_reverse],
239[m4_if([$#], [0], [], [$#], [1], [[$1]],
240[m4_pushdef([_m4_r], [[$$#]]_m4_for(m4_decr([$#]), [1], [-1],
241 [[, ]m4_dquote($], [)])[_m4_popdef([_m4_r])])_m4_r($@)])])
242
243
244# m4_map_args_pair(EXPRESSION, [END-EXPR = EXPRESSION], ARG...)
245# -------------------------------------------------------------
246# Perform a pairwise grouping of consecutive ARGs, by expanding
247# EXPRESSION([ARG1], [ARG2]). If there are an odd number of ARGs, the
248# final argument is expanded with END-EXPR([ARGn]).
249#
250# Build the temporary macro _m4_map_args_pair, with the $2([$m+1])
251# only output if $# is odd:
252# $1([$3], [$4])[]$1([$5], [$6])[]...$1([$m-1],
253# [$m])[]m4_default([$2], [$1])([$m+1])[]_m4_popdef([_m4_map_args_pair])
254m4_define([m4_map_args_pair],
255[m4_if([$#], [0], [m4_fatal([$0: too few arguments: $#])],
256 [$#], [1], [m4_fatal([$0: too few arguments: $#: $1])],
257 [$#], [2], [],
258 [$#], [3], [m4_default([$2], [$1])([$3])[]],
259 [m4_pushdef([_$0], _m4_for([3],
260 m4_eval([$# / 2 * 2 - 1]), [2], [_$0_(], [)])_$0_end(
261 [1], [2], [$#])[_m4_popdef([_$0])])_$0($@)])])
262
263m4_define([_m4_map_args_pair_],
264[$0_([1], [$1], m4_incr([$1]))])
265
266m4_define([_m4_map_args_pair__],
267[[$$1([$$2], [$$3])[]]])
268
269m4_define([_m4_map_args_pair_end],
270[m4_if(m4_eval([$3 & 1]), [1], [[m4_default([$$2], [$$1])([$$3])[]]])])
271
272# m4_join(SEP, ARG1, ARG2...)
273# ---------------------------
274# Produce ARG1SEPARG2...SEPARGn. Avoid back-to-back SEP when a given ARG
275# is the empty string. No expansion is performed on SEP or ARGs.
276#
277# Use a self-modifying separator, since we don't know how many
278# arguments might be skipped before a separator is first printed, but
279# be careful if the separator contains $. _m4_foreach to the rescue.
280m4_define([m4_join],
281[m4_pushdef([_m4_sep], [m4_define([_m4_sep], _m4_defn([m4_echo]))])]dnl
282[_m4_foreach([_$0([$1],], [)], $@)_m4_popdef([_m4_sep])])
283
284m4_define([_m4_join],
285[m4_if([$2], [], [], [_m4_sep([$1])[$2]])])
286
287# m4_joinall(SEP, ARG1, ARG2...)
288# ------------------------------
289# Produce ARG1SEPARG2...SEPARGn. An empty ARG results in back-to-back SEP.
290# No expansion is performed on SEP or ARGs.
291#
292# A bit easier than m4_join. _m4_foreach to the rescue.
293m4_define([m4_joinall],
294[[$2]m4_if(m4_eval([$# <= 2]), [1], [],
295 [_m4_foreach([$1], [], m4_shift($@))])])
296
297# m4_list_cmp(A, B)
298# -----------------
299# Compare the two lists of integer expressions A and B.
300#
301# m4_list_cmp takes care of any side effects; we only override
302# _m4_list_cmp_raw, where we can safely expand lists multiple times.
303# First, insert padding so that both lists are the same length; the
304# trailing +0 is necessary to handle a missing list. Next, create a
305# temporary macro to perform pairwise comparisons until an inequality
306# is found. For example, m4_list_cmp([1], [1,2]) creates _m4_cmp as
307# m4_if(m4_eval([($1) != ($3)]), [1], [m4_cmp([$1], [$3])],
308# m4_eval([($2) != ($4)]), [1], [m4_cmp([$2], [$4])],
309# [0]_m4_popdef([_m4_cmp]))
310# then calls _m4_cmp([1+0], [0*2], [1], [2+0])
311m4_define([_m4_list_cmp_raw],
312[m4_if([$1], [$2], 0,
313 [_m4_list_cmp($1+0_m4_list_pad(m4_count($1), m4_count($2)),
314 $2+0_m4_list_pad(m4_count($2), m4_count($1)))])])
315
316m4_define([_m4_list_pad],
317[m4_if(m4_eval($1 < $2), [1],
318 [_m4_for(m4_incr([$1]), [$2], [1], [,0*])])])
319
320m4_define([_m4_list_cmp],
321[m4_pushdef([_m4_cmp], [m4_if(]_m4_for(
322 [1], m4_eval([$# >> 1]), [1], [$0_(], [,]m4_eval([$# >> 1])[)])[
323 [0]_m4_popdef([_m4_cmp]))])_m4_cmp($@)])
324
325m4_define([_m4_list_cmp_],
326[$0_([$1], m4_eval([$1 + $2]))])
327
328m4_define([_m4_list_cmp__],
329[[m4_eval([($$1) != ($$2)]), [1], [m4_cmp([$$1], [$$2])],
330]])
331
332# m4_max(EXPR, ...)
333# m4_min(EXPR, ...)
334# -----------------
335# Return the decimal value of the maximum (or minimum) in a series of
336# integer expressions.
337#
338# _m4_foreach to the rescue; we only need to replace _m4_minmax. Here,
339# we need a temporary macro to track the best answer so far, so that
340# the foreach expression is tractable.
341m4_define([_m4_minmax],
342[m4_pushdef([_m4_best], m4_eval([$2]))_m4_foreach(
343 [m4_define([_m4_best], $1(_m4_best,], [))], m4_shift($@))]dnl
344[_m4_best[]_m4_popdef([_m4_best])])
345
346# m4_set_add_all(SET, VALUE...)
347# -----------------------------
348# Add each VALUE into SET. This is O(n) in the number of VALUEs, and
349# can be faster than calling m4_set_add for each VALUE.
350#
351# _m4_foreach to the rescue. If no deletions have occurred, then
352# avoid the speed penalty of m4_set_add.
353m4_define([m4_set_add_all],
354[m4_if([$#], [0], [], [$#], [1], [],
355 [m4_define([_m4_set_size($1)], m4_eval(m4_set_size([$1])
356 + m4_len(_m4_foreach(m4_ifdef([_m4_set_cleanup($1)],
357 [[m4_set_add]], [[_$0]])[([$1],], [)], $@))))])])
358
359m4_define([_m4_set_add_all],
360[m4_ifdef([_m4_set([$1],$2)], [],
361 [m4_define([_m4_set([$1],$2)],
362 [1])m4_pushdef([_m4_set([$1])], [$2])-])])