blob: 389a094cb61b7915ac3b7f855dde56d78c382f27 [file] [log] [blame]
/*-------------------------------------------------------------------------
* drawElements Quality Program OpenGL ES 3.1 Module
* -------------------------------------------------
*
* Copyright 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*//*!
* \file
* \brief Common built-in function tests.
*//*--------------------------------------------------------------------*/
#include "es31fShaderCommonFunctionTests.hpp"
#include "gluContextInfo.hpp"
#include "glsShaderExecUtil.hpp"
#include "tcuTestLog.hpp"
#include "tcuFormatUtil.hpp"
#include "tcuFloat.hpp"
#include "tcuInterval.hpp"
#include "tcuFloatFormat.hpp"
#include "deRandom.hpp"
#include "deMath.h"
#include "deString.h"
#include "deArrayUtil.hpp"
namespace deqp
{
namespace gles31
{
namespace Functional
{
using std::vector;
using std::string;
using tcu::TestLog;
using namespace gls::ShaderExecUtil;
using tcu::Vec2;
using tcu::Vec3;
using tcu::Vec4;
using tcu::IVec2;
using tcu::IVec3;
using tcu::IVec4;
// Utilities
template<typename T, int Size>
struct VecArrayAccess
{
public:
VecArrayAccess (const void* ptr) : m_array((tcu::Vector<T, Size>*)ptr) {}
~VecArrayAccess (void) {}
const tcu::Vector<T, Size>& operator[] (size_t offset) const { return m_array[offset]; }
tcu::Vector<T, Size>& operator[] (size_t offset) { return m_array[offset]; }
private:
tcu::Vector<T, Size>* m_array;
};
template<typename T> T randomScalar (de::Random& rnd, T minValue, T maxValue);
template<> inline float randomScalar (de::Random& rnd, float minValue, float maxValue) { return rnd.getFloat(minValue, maxValue); }
template<> inline deInt32 randomScalar (de::Random& rnd, deInt32 minValue, deInt32 maxValue) { return rnd.getInt(minValue, maxValue); }
template<> inline deUint32 randomScalar (de::Random& rnd, deUint32 minValue, deUint32 maxValue) { return minValue + rnd.getUint32() % (maxValue - minValue + 1); }
template<typename T, int Size>
inline tcu::Vector<T, Size> randomVector (de::Random& rnd, const tcu::Vector<T, Size>& minValue, const tcu::Vector<T, Size>& maxValue)
{
tcu::Vector<T, Size> res;
for (int ndx = 0; ndx < Size; ndx++)
res[ndx] = randomScalar<T>(rnd, minValue[ndx], maxValue[ndx]);
return res;
}
template<typename T, int Size>
static void fillRandomVectors (de::Random& rnd, const tcu::Vector<T, Size>& minValue, const tcu::Vector<T, Size>& maxValue, void* dst, int numValues, int offset = 0)
{
VecArrayAccess<T, Size> access(dst);
for (int ndx = 0; ndx < numValues; ndx++)
access[offset + ndx] = randomVector<T, Size>(rnd, minValue, maxValue);
}
template<typename T>
static void fillRandomScalars (de::Random& rnd, T minValue, T maxValue, void* dst, int numValues, int offset = 0)
{
T* typedPtr = (T*)dst;
for (int ndx = 0; ndx < numValues; ndx++)
typedPtr[offset + ndx] = randomScalar<T>(rnd, minValue, maxValue);
}
inline int numBitsLostInOp (float input, float output)
{
const int inExp = tcu::Float32(input).exponent();
const int outExp = tcu::Float32(output).exponent();
return de::max(0, inExp-outExp); // Lost due to mantissa shift.
}
inline deUint32 getUlpDiff (float a, float b)
{
const deUint32 aBits = tcu::Float32(a).bits();
const deUint32 bBits = tcu::Float32(b).bits();
return aBits > bBits ? aBits - bBits : bBits - aBits;
}
inline deUint32 getUlpDiffIgnoreZeroSign (float a, float b)
{
if (tcu::Float32(a).isZero())
return getUlpDiff(tcu::Float32::construct(tcu::Float32(b).sign(), 0, 0).asFloat(), b);
else if (tcu::Float32(b).isZero())
return getUlpDiff(a, tcu::Float32::construct(tcu::Float32(a).sign(), 0, 0).asFloat());
else
return getUlpDiff(a, b);
}
inline bool supportsSignedZero (glu::Precision precision)
{
// \note GLSL ES 3.1 doesn't really require support for -0, but we require it for highp
// as it is very widely supported.
return precision == glu::PRECISION_HIGHP;
}
inline float getEpsFromMaxUlpDiff (float value, deUint32 ulpDiff)
{
const int exp = tcu::Float32(value).exponent();
return tcu::Float32::construct(+1, exp, (1u<<23) | ulpDiff).asFloat() - tcu::Float32::construct(+1, exp, 1u<<23).asFloat();
}
inline deUint32 getMaxUlpDiffFromBits (int numAccurateBits)
{
const int numGarbageBits = 23-numAccurateBits;
const deUint32 mask = (1u<<numGarbageBits)-1u;
return mask;
}
inline float getEpsFromBits (float value, int numAccurateBits)
{
return getEpsFromMaxUlpDiff(value, getMaxUlpDiffFromBits(numAccurateBits));
}
static int getMinMantissaBits (glu::Precision precision)
{
const int bits[] =
{
7, // lowp
10, // mediump
23 // highp
};
DE_STATIC_ASSERT(DE_LENGTH_OF_ARRAY(bits) == glu::PRECISION_LAST);
DE_ASSERT(de::inBounds<int>(precision, 0, DE_LENGTH_OF_ARRAY(bits)));
return bits[precision];
}
static int getMaxNormalizedValueExponent (glu::Precision precision)
{
const int exponent[] =
{
0, // lowp
13, // mediump
127 // highp
};
DE_STATIC_ASSERT(DE_LENGTH_OF_ARRAY(exponent) == glu::PRECISION_LAST);
DE_ASSERT(de::inBounds<int>(precision, 0, DE_LENGTH_OF_ARRAY(exponent)));
return exponent[precision];
}
static int getMinNormalizedValueExponent (glu::Precision precision)
{
const int exponent[] =
{
-7, // lowp
-13, // mediump
-126 // highp
};
DE_STATIC_ASSERT(DE_LENGTH_OF_ARRAY(exponent) == glu::PRECISION_LAST);
DE_ASSERT(de::inBounds<int>(precision, 0, DE_LENGTH_OF_ARRAY(exponent)));
return exponent[precision];
}
static float makeFloatRepresentable (float f, glu::Precision precision)
{
if (precision == glu::PRECISION_HIGHP)
{
// \note: assuming f is not extended-precision
return f;
}
else
{
const int numMantissaBits = getMinMantissaBits(precision);
const int maxNormalizedValueExponent = getMaxNormalizedValueExponent(precision);
const int minNormalizedValueExponent = getMinNormalizedValueExponent(precision);
const deUint32 representableMantissaMask = ((deUint32(1) << numMantissaBits) - 1) << (23 - (deUint32)numMantissaBits);
const float largestRepresentableValue = tcu::Float32::constructBits(+1, maxNormalizedValueExponent, ((1u << numMantissaBits) - 1u) << (23u - (deUint32)numMantissaBits)).asFloat();
const bool zeroNotRepresentable = (precision == glu::PRECISION_LOWP);
// if zero is not required to be representable, use smallest positive non-subnormal value
const float zeroValue = (zeroNotRepresentable) ? (tcu::Float32::constructBits(+1, minNormalizedValueExponent, 1).asFloat()) : (0.0f);
const tcu::Float32 float32Representation (f);
if (float32Representation.exponent() < minNormalizedValueExponent)
{
// flush too small values to zero
return zeroValue;
}
else if (float32Representation.exponent() > maxNormalizedValueExponent)
{
// clamp too large values
return (float32Representation.sign() == +1) ? (largestRepresentableValue) : (-largestRepresentableValue);
}
else
{
// remove unrepresentable mantissa bits
const tcu::Float32 targetRepresentation(tcu::Float32::constructBits(float32Representation.sign(),
float32Representation.exponent(),
float32Representation.mantissaBits() & representableMantissaMask));
return targetRepresentation.asFloat();
}
}
}
// CommonFunctionCase
class CommonFunctionCase : public TestCase
{
public:
CommonFunctionCase (Context& context, const char* name, const char* description, glu::ShaderType shaderType);
~CommonFunctionCase (void);
void init (void);
void deinit (void);
IterateResult iterate (void);
protected:
CommonFunctionCase (const CommonFunctionCase& other);
CommonFunctionCase& operator= (const CommonFunctionCase& other);
virtual void getInputValues (int numValues, void* const* values) const = 0;
virtual bool compare (const void* const* inputs, const void* const* outputs) = 0;
glu::ShaderType m_shaderType;
ShaderSpec m_spec;
int m_numValues;
std::ostringstream m_failMsg; //!< Comparison failure help message.
private:
ShaderExecutor* m_executor;
};
CommonFunctionCase::CommonFunctionCase (Context& context, const char* name, const char* description, glu::ShaderType shaderType)
: TestCase (context, name, description)
, m_shaderType (shaderType)
, m_numValues (100)
, m_executor (DE_NULL)
{
m_spec.version = glu::GLSL_VERSION_310_ES;
}
CommonFunctionCase::~CommonFunctionCase (void)
{
CommonFunctionCase::deinit();
}
void CommonFunctionCase::init (void)
{
DE_ASSERT(!m_executor);
m_executor = createExecutor(m_context.getRenderContext(), m_shaderType, m_spec);
m_testCtx.getLog() << m_executor;
if (!m_executor->isOk())
throw tcu::TestError("Compile failed");
}
void CommonFunctionCase::deinit (void)
{
delete m_executor;
m_executor = DE_NULL;
}
static vector<int> getScalarSizes (const vector<Symbol>& symbols)
{
vector<int> sizes(symbols.size());
for (int ndx = 0; ndx < (int)symbols.size(); ++ndx)
sizes[ndx] = symbols[ndx].varType.getScalarSize();
return sizes;
}
static int computeTotalScalarSize (const vector<Symbol>& symbols)
{
int totalSize = 0;
for (vector<Symbol>::const_iterator sym = symbols.begin(); sym != symbols.end(); ++sym)
totalSize += sym->varType.getScalarSize();
return totalSize;
}
static vector<void*> getInputOutputPointers (const vector<Symbol>& symbols, vector<deUint32>& data, const int numValues)
{
vector<void*> pointers (symbols.size());
int curScalarOffset = 0;
for (int varNdx = 0; varNdx < (int)symbols.size(); ++varNdx)
{
const Symbol& var = symbols[varNdx];
const int scalarSize = var.varType.getScalarSize();
// Uses planar layout as input/output specs do not support strides.
pointers[varNdx] = &data[curScalarOffset];
curScalarOffset += scalarSize*numValues;
}
DE_ASSERT(curScalarOffset == (int)data.size());
return pointers;
}
// \todo [2013-08-08 pyry] Make generic utility and move to glu?
struct HexFloat
{
const float value;
HexFloat (const float value_) : value(value_) {}
};
std::ostream& operator<< (std::ostream& str, const HexFloat& v)
{
return str << v.value << " / " << tcu::toHex(tcu::Float32(v.value).bits());
}
struct HexBool
{
const deUint32 value;
HexBool (const deUint32 value_) : value(value_) {}
};
std::ostream& operator<< (std::ostream& str, const HexBool& v)
{
return str << (v.value ? "true" : "false") << " / " << tcu::toHex(v.value);
}
struct VarValue
{
const glu::VarType& type;
const void* value;
VarValue (const glu::VarType& type_, const void* value_) : type(type_), value(value_) {}
};
std::ostream& operator<< (std::ostream& str, const VarValue& varValue)
{
DE_ASSERT(varValue.type.isBasicType());
const glu::DataType basicType = varValue.type.getBasicType();
const glu::DataType scalarType = glu::getDataTypeScalarType(basicType);
const int numComponents = glu::getDataTypeScalarSize(basicType);
if (numComponents > 1)
str << glu::getDataTypeName(basicType) << "(";
for (int compNdx = 0; compNdx < numComponents; compNdx++)
{
if (compNdx != 0)
str << ", ";
switch (scalarType)
{
case glu::TYPE_FLOAT: str << HexFloat(((const float*)varValue.value)[compNdx]); break;
case glu::TYPE_INT: str << ((const deInt32*)varValue.value)[compNdx]; break;
case glu::TYPE_UINT: str << tcu::toHex(((const deUint32*)varValue.value)[compNdx]); break;
case glu::TYPE_BOOL: str << HexBool(((const deUint32*)varValue.value)[compNdx]); break;
default:
DE_ASSERT(false);
}
}
if (numComponents > 1)
str << ")";
return str;
}
CommonFunctionCase::IterateResult CommonFunctionCase::iterate (void)
{
const int numInputScalars = computeTotalScalarSize(m_spec.inputs);
const int numOutputScalars = computeTotalScalarSize(m_spec.outputs);
vector<deUint32> inputData (numInputScalars * m_numValues);
vector<deUint32> outputData (numOutputScalars * m_numValues);
const vector<void*> inputPointers = getInputOutputPointers(m_spec.inputs, inputData, m_numValues);
const vector<void*> outputPointers = getInputOutputPointers(m_spec.outputs, outputData, m_numValues);
// Initialize input data.
getInputValues(m_numValues, &inputPointers[0]);
// Execute shader.
m_executor->useProgram();
m_executor->execute(m_numValues, &inputPointers[0], &outputPointers[0]);
// Compare results.
{
const vector<int> inScalarSizes = getScalarSizes(m_spec.inputs);
const vector<int> outScalarSizes = getScalarSizes(m_spec.outputs);
vector<void*> curInputPtr (inputPointers.size());
vector<void*> curOutputPtr (outputPointers.size());
int numFailed = 0;
for (int valNdx = 0; valNdx < m_numValues; valNdx++)
{
// Set up pointers for comparison.
for (int inNdx = 0; inNdx < (int)curInputPtr.size(); ++inNdx)
curInputPtr[inNdx] = (deUint32*)inputPointers[inNdx] + inScalarSizes[inNdx]*valNdx;
for (int outNdx = 0; outNdx < (int)curOutputPtr.size(); ++outNdx)
curOutputPtr[outNdx] = (deUint32*)outputPointers[outNdx] + outScalarSizes[outNdx]*valNdx;
if (!compare(&curInputPtr[0], &curOutputPtr[0]))
{
// \todo [2013-08-08 pyry] We probably want to log reference value as well?
m_testCtx.getLog() << TestLog::Message << "ERROR: comparison failed for value " << valNdx << ":\n " << m_failMsg.str() << TestLog::EndMessage;
m_testCtx.getLog() << TestLog::Message << " inputs:" << TestLog::EndMessage;
for (int inNdx = 0; inNdx < (int)curInputPtr.size(); inNdx++)
m_testCtx.getLog() << TestLog::Message << " " << m_spec.inputs[inNdx].name << " = "
<< VarValue(m_spec.inputs[inNdx].varType, curInputPtr[inNdx])
<< TestLog::EndMessage;
m_testCtx.getLog() << TestLog::Message << " outputs:" << TestLog::EndMessage;
for (int outNdx = 0; outNdx < (int)curOutputPtr.size(); outNdx++)
m_testCtx.getLog() << TestLog::Message << " " << m_spec.outputs[outNdx].name << " = "
<< VarValue(m_spec.outputs[outNdx].varType, curOutputPtr[outNdx])
<< TestLog::EndMessage;
m_failMsg.str("");
m_failMsg.clear();
numFailed += 1;
}
}
m_testCtx.getLog() << TestLog::Message << (m_numValues - numFailed) << " / " << m_numValues << " values passed" << TestLog::EndMessage;
m_testCtx.setTestResult(numFailed == 0 ? QP_TEST_RESULT_PASS : QP_TEST_RESULT_FAIL,
numFailed == 0 ? "Pass" : "Result comparison failed");
}
return STOP;
}
static const char* getPrecisionPostfix (glu::Precision precision)
{
static const char* s_postfix[] =
{
"_lowp",
"_mediump",
"_highp"
};
DE_STATIC_ASSERT(DE_LENGTH_OF_ARRAY(s_postfix) == glu::PRECISION_LAST);
DE_ASSERT(de::inBounds<int>(precision, 0, DE_LENGTH_OF_ARRAY(s_postfix)));
return s_postfix[precision];
}
static const char* getShaderTypePostfix (glu::ShaderType shaderType)
{
static const char* s_postfix[] =
{
"_vertex",
"_fragment",
"_geometry",
"_tess_control",
"_tess_eval",
"_compute"
};
DE_ASSERT(de::inBounds<int>(shaderType, 0, DE_LENGTH_OF_ARRAY(s_postfix)));
return s_postfix[shaderType];
}
static std::string getCommonFuncCaseName (glu::DataType baseType, glu::Precision precision, glu::ShaderType shaderType)
{
return string(glu::getDataTypeName(baseType)) + getPrecisionPostfix(precision) + getShaderTypePostfix(shaderType);
}
class AbsCase : public CommonFunctionCase
{
public:
AbsCase (Context& context, glu::DataType baseType, glu::Precision precision, glu::ShaderType shaderType)
: CommonFunctionCase(context, getCommonFuncCaseName(baseType, precision, shaderType).c_str(), "abs", shaderType)
{
m_spec.inputs.push_back(Symbol("in0", glu::VarType(baseType, precision)));
m_spec.outputs.push_back(Symbol("out0", glu::VarType(baseType, precision)));
m_spec.source = "out0 = abs(in0);";
}
void getInputValues (int numValues, void* const* values) const
{
const Vec2 floatRanges[] =
{
Vec2(-2.0f, 2.0f), // lowp
Vec2(-1e3f, 1e3f), // mediump
Vec2(-1e7f, 1e7f) // highp
};
const IVec2 intRanges[] =
{
IVec2(-(1<<7)+1, (1<<7)-1),
IVec2(-(1<<15)+1, (1<<15)-1),
IVec2(0x80000001, 0x7fffffff)
};
de::Random rnd (deStringHash(getName()) ^ 0x235facu);
const glu::DataType type = m_spec.inputs[0].varType.getBasicType();
const glu::Precision precision = m_spec.inputs[0].varType.getPrecision();
const int scalarSize = glu::getDataTypeScalarSize(type);
if (glu::isDataTypeFloatOrVec(type))
fillRandomScalars(rnd, floatRanges[precision].x(), floatRanges[precision].y(), values[0], numValues*scalarSize);
else
fillRandomScalars(rnd, intRanges[precision].x(), intRanges[precision].y(), values[0], numValues*scalarSize);
}
bool compare (const void* const* inputs, const void* const* outputs)
{
const glu::DataType type = m_spec.inputs[0].varType.getBasicType();
const glu::Precision precision = m_spec.inputs[0].varType.getPrecision();
const int scalarSize = glu::getDataTypeScalarSize(type);
if (glu::isDataTypeFloatOrVec(type))
{
const int mantissaBits = getMinMantissaBits(precision);
const deUint32 maxUlpDiff = (1u<<(23-mantissaBits))-1u;
for (int compNdx = 0; compNdx < scalarSize; compNdx++)
{
const float in0 = ((const float*)inputs[0])[compNdx];
const float out0 = ((const float*)outputs[0])[compNdx];
const float ref0 = de::abs(in0);
const deUint32 ulpDiff0 = getUlpDiff(out0, ref0);
if (ulpDiff0 > maxUlpDiff)
{
m_failMsg << "Expected [" << compNdx << "] = " << HexFloat(ref0) << " with ULP threshold " << maxUlpDiff << ", got ULP diff " << ulpDiff0;
return false;
}
}
}
else
{
for (int compNdx = 0; compNdx < scalarSize; compNdx++)
{
const int in0 = ((const int*)inputs[0])[compNdx];
const int out0 = ((const int*)outputs[0])[compNdx];
const int ref0 = de::abs(in0);
if (out0 != ref0)
{
m_failMsg << "Expected [" << compNdx << "] = " << ref0;
return false;
}
}
}
return true;
}
};
class SignCase : public CommonFunctionCase
{
public:
SignCase (Context& context, glu::DataType baseType, glu::Precision precision, glu::ShaderType shaderType)
: CommonFunctionCase(context, getCommonFuncCaseName(baseType, precision, shaderType).c_str(), "sign", shaderType)
{
m_spec.inputs.push_back(Symbol("in0", glu::VarType(baseType, precision)));
m_spec.outputs.push_back(Symbol("out0", glu::VarType(baseType, precision)));
m_spec.source = "out0 = sign(in0);";
}
void getInputValues (int numValues, void* const* values) const
{
const Vec2 floatRanges[] =
{
Vec2(-2.0f, 2.0f), // lowp
Vec2(-1e4f, 1e4f), // mediump - note: may end up as inf
Vec2(-1e8f, 1e8f) // highp - note: may end up as inf
};
const IVec2 intRanges[] =
{
IVec2(-(1<<7), (1<<7)-1),
IVec2(-(1<<15), (1<<15)-1),
IVec2(0x80000000, 0x7fffffff)
};
de::Random rnd (deStringHash(getName()) ^ 0x324u);
const glu::DataType type = m_spec.inputs[0].varType.getBasicType();
const glu::Precision precision = m_spec.inputs[0].varType.getPrecision();
const int scalarSize = glu::getDataTypeScalarSize(type);
if (glu::isDataTypeFloatOrVec(type))
{
// Special cases.
std::fill((float*)values[0], (float*)values[0] + scalarSize, +1.0f);
std::fill((float*)values[0] + scalarSize*1, (float*)values[0] + scalarSize*2, -1.0f);
std::fill((float*)values[0] + scalarSize*2, (float*)values[0] + scalarSize*3, 0.0f);
fillRandomScalars(rnd, floatRanges[precision].x(), floatRanges[precision].y(), (float*)values[0] + scalarSize*3, (numValues-3)*scalarSize);
}
else
{
std::fill((int*)values[0], (int*)values[0] + scalarSize, +1);
std::fill((int*)values[0] + scalarSize*1, (int*)values[0] + scalarSize*2, -1);
std::fill((int*)values[0] + scalarSize*2, (int*)values[0] + scalarSize*3, 0);
fillRandomScalars(rnd, intRanges[precision].x(), intRanges[precision].y(), (int*)values[0] + scalarSize*3, (numValues-3)*scalarSize);
}
}
bool compare (const void* const* inputs, const void* const* outputs)
{
const glu::DataType type = m_spec.inputs[0].varType.getBasicType();
const glu::Precision precision = m_spec.inputs[0].varType.getPrecision();
const int scalarSize = glu::getDataTypeScalarSize(type);
if (glu::isDataTypeFloatOrVec(type))
{
// Both highp and mediump should be able to represent -1, 0, and +1 exactly
const deUint32 maxUlpDiff = precision == glu::PRECISION_LOWP ? getMaxUlpDiffFromBits(getMinMantissaBits(precision)) : 0;
for (int compNdx = 0; compNdx < scalarSize; compNdx++)
{
const float in0 = ((const float*)inputs[0])[compNdx];
const float out0 = ((const float*)outputs[0])[compNdx];
const float ref0 = in0 < 0.0f ? -1.0f :
in0 > 0.0f ? +1.0f : 0.0f;
const deUint32 ulpDiff0 = getUlpDiff(out0, ref0);
if (ulpDiff0 > maxUlpDiff)
{
m_failMsg << "Expected [" << compNdx << "] = " << HexFloat(ref0) << " with ULP threshold " << maxUlpDiff << ", got ULP diff " << ulpDiff0;
return false;
}
}
}
else
{
for (int compNdx = 0; compNdx < scalarSize; compNdx++)
{
const int in0 = ((const int*)inputs[0])[compNdx];
const int out0 = ((const int*)outputs[0])[compNdx];
const int ref0 = in0 < 0 ? -1 :
in0 > 0 ? +1 : 0;
if (out0 != ref0)
{
m_failMsg << "Expected [" << compNdx << "] = " << ref0;
return false;
}
}
}
return true;
}
};
static float roundEven (float v)
{
const float q = deFloatFrac(v);
const int truncated = int(v-q);
const int rounded = (q > 0.5f) ? (truncated + 1) : // Rounded up
(q == 0.5f && (truncated % 2 != 0)) ? (truncated + 1) : // Round to nearest even at 0.5
truncated; // Rounded down
return float(rounded);
}
class RoundEvenCase : public CommonFunctionCase
{
public:
RoundEvenCase (Context& context, glu::DataType baseType, glu::Precision precision, glu::ShaderType shaderType)
: CommonFunctionCase(context, getCommonFuncCaseName(baseType, precision, shaderType).c_str(), "roundEven", shaderType)
{
m_spec.inputs.push_back(Symbol("in0", glu::VarType(baseType, precision)));
m_spec.outputs.push_back(Symbol("out0", glu::VarType(baseType, precision)));
m_spec.source = "out0 = roundEven(in0);";
}
void getInputValues (int numValues, void* const* values) const
{
const Vec2 ranges[] =
{
Vec2(-2.0f, 2.0f), // lowp
Vec2(-1e3f, 1e3f), // mediump
Vec2(-1e7f, 1e7f) // highp
};
de::Random rnd (deStringHash(getName()) ^ 0xac23fu);
const glu::DataType type = m_spec.inputs[0].varType.getBasicType();
const glu::Precision precision = m_spec.inputs[0].varType.getPrecision();
const int scalarSize = glu::getDataTypeScalarSize(type);
int numSpecialCases = 0;
// Special cases.
if (precision != glu::PRECISION_LOWP)
{
DE_ASSERT(numValues >= 20);
for (int ndx = 0; ndx < 20; ndx++)
{
const float v = de::clamp(float(ndx) - 10.5f, ranges[precision].x(), ranges[precision].y());
std::fill((float*)values[0], (float*)values[0] + scalarSize, v);
numSpecialCases += 1;
}
}
// Random cases.
fillRandomScalars(rnd, ranges[precision].x(), ranges[precision].y(), (float*)values[0] + numSpecialCases*scalarSize, (numValues-numSpecialCases)*scalarSize);
// If precision is mediump, make sure values can be represented in fp16 exactly
if (precision == glu::PRECISION_MEDIUMP)
{
for (int ndx = 0; ndx < numValues*scalarSize; ndx++)
((float*)values[0])[ndx] = tcu::Float16(((float*)values[0])[ndx]).asFloat();
}
}
bool compare (const void* const* inputs, const void* const* outputs)
{
const glu::DataType type = m_spec.inputs[0].varType.getBasicType();
const glu::Precision precision = m_spec.inputs[0].varType.getPrecision();
const bool hasSignedZero = supportsSignedZero(precision);
const int scalarSize = glu::getDataTypeScalarSize(type);
if (precision == glu::PRECISION_HIGHP || precision == glu::PRECISION_MEDIUMP)
{
// Require exact rounding result.
for (int compNdx = 0; compNdx < scalarSize; compNdx++)
{
const float in0 = ((const float*)inputs[0])[compNdx];
const float out0 = ((const float*)outputs[0])[compNdx];
const float ref = roundEven(in0);
const deUint32 ulpDiff = hasSignedZero ? getUlpDiff(out0, ref) : getUlpDiffIgnoreZeroSign(out0, ref);
if (ulpDiff > 0)
{
m_failMsg << "Expected [" << compNdx << "] = " << HexFloat(ref) << ", got ULP diff " << tcu::toHex(ulpDiff);
return false;
}
}
}
else
{
const int mantissaBits = getMinMantissaBits(precision);
const deUint32 maxUlpDiff = getMaxUlpDiffFromBits(mantissaBits); // ULP diff for rounded integer value.
const float eps = getEpsFromBits(1.0f, mantissaBits); // epsilon for rounding bounds
for (int compNdx = 0; compNdx < scalarSize; compNdx++)
{
const float in0 = ((const float*)inputs[0])[compNdx];
const float out0 = ((const float*)outputs[0])[compNdx];
const int minRes = int(roundEven(in0-eps));
const int maxRes = int(roundEven(in0+eps));
bool anyOk = false;
for (int roundedVal = minRes; roundedVal <= maxRes; roundedVal++)
{
const deUint32 ulpDiff = getUlpDiffIgnoreZeroSign(out0, float(roundedVal));
if (ulpDiff <= maxUlpDiff)
{
anyOk = true;
break;
}
}
if (!anyOk)
{
m_failMsg << "Expected [" << compNdx << "] = [" << minRes << ", " << maxRes << "] with ULP threshold " << tcu::toHex(maxUlpDiff);
return false;
}
}
}
return true;
}
};
class ModfCase : public CommonFunctionCase
{
public:
ModfCase (Context& context, glu::DataType baseType, glu::Precision precision, glu::ShaderType shaderType)
: CommonFunctionCase(context, getCommonFuncCaseName(baseType, precision, shaderType).c_str(), "modf", shaderType)
{
m_spec.inputs.push_back(Symbol("in0", glu::VarType(baseType, precision)));
m_spec.outputs.push_back(Symbol("out0", glu::VarType(baseType, precision)));
m_spec.outputs.push_back(Symbol("out1", glu::VarType(baseType, precision)));
m_spec.source = "out0 = modf(in0, out1);";
}
void getInputValues (int numValues, void* const* values) const
{
const Vec2 ranges[] =
{
Vec2(-2.0f, 2.0f), // lowp
Vec2(-1e3f, 1e3f), // mediump
Vec2(-1e7f, 1e7f) // highp
};
de::Random rnd (deStringHash(getName()) ^ 0xac23fu);
const glu::DataType type = m_spec.inputs[0].varType.getBasicType();
const glu::Precision precision = m_spec.inputs[0].varType.getPrecision();
const int scalarSize = glu::getDataTypeScalarSize(type);
fillRandomScalars(rnd, ranges[precision].x(), ranges[precision].y(), values[0], numValues*scalarSize);
}
bool compare (const void* const* inputs, const void* const* outputs)
{
const glu::DataType type = m_spec.inputs[0].varType.getBasicType();
const glu::Precision precision = m_spec.inputs[0].varType.getPrecision();
const bool hasZeroSign = supportsSignedZero(precision);
const int scalarSize = glu::getDataTypeScalarSize(type);
const int mantissaBits = getMinMantissaBits(precision);
for (int compNdx = 0; compNdx < scalarSize; compNdx++)
{
const float in0 = ((const float*)inputs[0])[compNdx];
const float out0 = ((const float*)outputs[0])[compNdx];
const float out1 = ((const float*)outputs[1])[compNdx];
const float refOut1 = float(int(in0));
const float refOut0 = in0 - refOut1;
const int bitsLost = precision != glu::PRECISION_HIGHP ? numBitsLostInOp(in0, refOut0) : 0;
const deUint32 maxUlpDiff = getMaxUlpDiffFromBits(de::max(mantissaBits - bitsLost, 0));
const float resSum = out0 + out1;
const deUint32 ulpDiff = hasZeroSign ? getUlpDiff(resSum, in0) : getUlpDiffIgnoreZeroSign(resSum, in0);
if (ulpDiff > maxUlpDiff)
{
m_failMsg << "Expected [" << compNdx << "] = (" << HexFloat(refOut0) << ") + (" << HexFloat(refOut1) << ") = " << HexFloat(in0) << " with ULP threshold "
<< tcu::toHex(maxUlpDiff) << ", got ULP diff " << tcu::toHex(ulpDiff);
return false;
}
}
return true;
}
};
class IsnanCase : public CommonFunctionCase
{
public:
IsnanCase (Context& context, glu::DataType baseType, glu::Precision precision, glu::ShaderType shaderType)
: CommonFunctionCase(context, getCommonFuncCaseName(baseType, precision, shaderType).c_str(), "isnan", shaderType)
{
DE_ASSERT(glu::isDataTypeFloatOrVec(baseType));
const int vecSize = glu::getDataTypeScalarSize(baseType);
const glu::DataType boolType = vecSize > 1 ? glu::getDataTypeBoolVec(vecSize) : glu::TYPE_BOOL;
m_spec.inputs.push_back(Symbol("in0", glu::VarType(baseType, precision)));
m_spec.outputs.push_back(Symbol("out0", glu::VarType(boolType, glu::PRECISION_LAST)));
m_spec.source = "out0 = isnan(in0);";
}
void getInputValues (int numValues, void* const* values) const
{
de::Random rnd (deStringHash(getName()) ^ 0xc2a39fu);
const glu::DataType type = m_spec.inputs[0].varType.getBasicType();
const glu::Precision precision = m_spec.inputs[0].varType.getPrecision();
const int scalarSize = glu::getDataTypeScalarSize(type);
const int mantissaBits = getMinMantissaBits(precision);
const deUint32 mantissaMask = ~getMaxUlpDiffFromBits(mantissaBits) & ((1u<<23)-1u);
for (int valNdx = 0; valNdx < numValues*scalarSize; valNdx++)
{
const bool isNan = rnd.getFloat() > 0.3f;
const bool isInf = !isNan && rnd.getFloat() > 0.4f;
const deUint32 mantissa = !isInf ? ((1u<<22) | (rnd.getUint32() & mantissaMask)) : 0;
const deUint32 exp = !isNan && !isInf ? (rnd.getUint32() & 0x7fu) : 0xffu;
const deUint32 sign = rnd.getUint32() & 0x1u;
const deUint32 value = (sign << 31) | (exp << 23) | mantissa;
DE_ASSERT(tcu::Float32(value).isInf() == isInf && tcu::Float32(value).isNaN() == isNan);
((deUint32*)values[0])[valNdx] = value;
}
}
bool compare (const void* const* inputs, const void* const* outputs)
{
const glu::DataType type = m_spec.inputs[0].varType.getBasicType();
const glu::Precision precision = m_spec.inputs[0].varType.getPrecision();
const int scalarSize = glu::getDataTypeScalarSize(type);
if (precision == glu::PRECISION_HIGHP)
{
// Only highp is required to support inf/nan
for (int compNdx = 0; compNdx < scalarSize; compNdx++)
{
const float in0 = ((const float*)inputs[0])[compNdx];
const bool out0 = ((const deUint32*)outputs[0])[compNdx] != 0;
const bool ref = tcu::Float32(in0).isNaN();
if (out0 != ref)
{
m_failMsg << "Expected [" << compNdx << "] = " << (ref ? "true" : "false");
return false;
}
}
}
else if (precision == glu::PRECISION_MEDIUMP || precision == glu::PRECISION_LOWP)
{
// NaN support is optional, check that inputs that are not NaN don't result in true.
for (int compNdx = 0; compNdx < scalarSize; compNdx++)
{
const float in0 = ((const float*)inputs[0])[compNdx];
const bool out0 = ((const deUint32*)outputs[0])[compNdx] != 0;
const bool ref = tcu::Float32(in0).isNaN();
if (!ref && out0)
{
m_failMsg << "Expected [" << compNdx << "] = " << (ref ? "true" : "false");
return false;
}
}
}
return true;
}
};
class IsinfCase : public CommonFunctionCase
{
public:
IsinfCase (Context& context, glu::DataType baseType, glu::Precision precision, glu::ShaderType shaderType)
: CommonFunctionCase(context, getCommonFuncCaseName(baseType, precision, shaderType).c_str(), "isinf", shaderType)
{
DE_ASSERT(glu::isDataTypeFloatOrVec(baseType));
const int vecSize = glu::getDataTypeScalarSize(baseType);
const glu::DataType boolType = vecSize > 1 ? glu::getDataTypeBoolVec(vecSize) : glu::TYPE_BOOL;
m_spec.inputs.push_back(Symbol("in0", glu::VarType(baseType, precision)));
m_spec.outputs.push_back(Symbol("out0", glu::VarType(boolType, glu::PRECISION_LAST)));
m_spec.source = "out0 = isinf(in0);";
}
void getInputValues (int numValues, void* const* values) const
{
de::Random rnd (deStringHash(getName()) ^ 0xc2a39fu);
const glu::DataType type = m_spec.inputs[0].varType.getBasicType();
const glu::Precision precision = m_spec.inputs[0].varType.getPrecision();
const int scalarSize = glu::getDataTypeScalarSize(type);
const int mantissaBits = getMinMantissaBits(precision);
const deUint32 mantissaMask = ~getMaxUlpDiffFromBits(mantissaBits) & ((1u<<23)-1u);
for (int valNdx = 0; valNdx < numValues*scalarSize; valNdx++)
{
const bool isInf = rnd.getFloat() > 0.3f;
const bool isNan = !isInf && rnd.getFloat() > 0.4f;
const deUint32 mantissa = !isInf ? ((1u<<22) | (rnd.getUint32() & mantissaMask)) : 0;
const deUint32 exp = !isNan && !isInf ? (rnd.getUint32() & 0x7fu) : 0xffu;
const deUint32 sign = rnd.getUint32() & 0x1u;
const deUint32 value = (sign << 31) | (exp << 23) | mantissa;
DE_ASSERT(tcu::Float32(value).isInf() == isInf && tcu::Float32(value).isNaN() == isNan);
((deUint32*)values[0])[valNdx] = value;
}
}
bool compare (const void* const* inputs, const void* const* outputs)
{
const glu::DataType type = m_spec.inputs[0].varType.getBasicType();
const glu::Precision precision = m_spec.inputs[0].varType.getPrecision();
const int scalarSize = glu::getDataTypeScalarSize(type);
if (precision == glu::PRECISION_HIGHP)
{
// Only highp is required to support inf/nan
for (int compNdx = 0; compNdx < scalarSize; compNdx++)
{
const float in0 = ((const float*)inputs[0])[compNdx];
const bool out0 = ((const deUint32*)outputs[0])[compNdx] != 0;
const bool ref = tcu::Float32(in0).isInf();
if (out0 != ref)
{
m_failMsg << "Expected [" << compNdx << "] = " << HexBool(ref);
return false;
}
}
}
else if (precision == glu::PRECISION_MEDIUMP)
{
// Inf support is optional, check that inputs that are not Inf in mediump don't result in true.
for (int compNdx = 0; compNdx < scalarSize; compNdx++)
{
const float in0 = ((const float*)inputs[0])[compNdx];
const bool out0 = ((const deUint32*)outputs[0])[compNdx] != 0;
const bool ref = tcu::Float16(in0).isInf();
if (!ref && out0)
{
m_failMsg << "Expected [" << compNdx << "] = " << (ref ? "true" : "false");
return false;
}
}
}
// else: no verification can be performed
return true;
}
};
class FloatBitsToUintIntCase : public CommonFunctionCase
{
public:
FloatBitsToUintIntCase (Context& context, glu::DataType baseType, glu::Precision precision, glu::ShaderType shaderType, bool outIsSigned)
: CommonFunctionCase(context, getCommonFuncCaseName(baseType, precision, shaderType).c_str(), outIsSigned ? "floatBitsToInt" : "floatBitsToUint", shaderType)
{
const int vecSize = glu::getDataTypeScalarSize(baseType);
const glu::DataType intType = outIsSigned ? (vecSize > 1 ? glu::getDataTypeIntVec(vecSize) : glu::TYPE_INT)
: (vecSize > 1 ? glu::getDataTypeUintVec(vecSize) : glu::TYPE_UINT);
m_spec.inputs.push_back(Symbol("in0", glu::VarType(baseType, precision)));
m_spec.outputs.push_back(Symbol("out0", glu::VarType(intType, glu::PRECISION_HIGHP)));
m_spec.source = outIsSigned ? "out0 = floatBitsToInt(in0);" : "out0 = floatBitsToUint(in0);";
}
void getInputValues (int numValues, void* const* values) const
{
const Vec2 ranges[] =
{
Vec2(-2.0f, 2.0f), // lowp
Vec2(-1e3f, 1e3f), // mediump
Vec2(-1e7f, 1e7f) // highp
};
de::Random rnd (deStringHash(getName()) ^ 0x2790au);
const glu::DataType type = m_spec.inputs[0].varType.getBasicType();
const glu::Precision precision = m_spec.inputs[0].varType.getPrecision();
const int scalarSize = glu::getDataTypeScalarSize(type);
fillRandomScalars(rnd, ranges[precision].x(), ranges[precision].y(), values[0], numValues*scalarSize);
}
bool compare (const void* const* inputs, const void* const* outputs)
{
const glu::DataType type = m_spec.inputs[0].varType.getBasicType();
const glu::Precision precision = m_spec.inputs[0].varType.getPrecision();
const int scalarSize = glu::getDataTypeScalarSize(type);
const int mantissaBits = getMinMantissaBits(precision);
const int maxUlpDiff = getMaxUlpDiffFromBits(mantissaBits);
for (int compNdx = 0; compNdx < scalarSize; compNdx++)
{
const float in0 = ((const float*)inputs[0])[compNdx];
const deUint32 out0 = ((const deUint32*)outputs[0])[compNdx];
const deUint32 refOut0 = tcu::Float32(in0).bits();
const int ulpDiff = de::abs((int)out0 - (int)refOut0);
if (ulpDiff > maxUlpDiff)
{
m_failMsg << "Expected [" << compNdx << "] = " << tcu::toHex(refOut0) << " with threshold "
<< tcu::toHex(maxUlpDiff) << ", got diff " << tcu::toHex(ulpDiff);
return false;
}
}
return true;
}
};
class FloatBitsToIntCase : public FloatBitsToUintIntCase
{
public:
FloatBitsToIntCase (Context& context, glu::DataType baseType, glu::Precision precision, glu::ShaderType shaderType)
: FloatBitsToUintIntCase(context, baseType, precision, shaderType, true)
{
}
};
class FloatBitsToUintCase : public FloatBitsToUintIntCase
{
public:
FloatBitsToUintCase (Context& context, glu::DataType baseType, glu::Precision precision, glu::ShaderType shaderType)
: FloatBitsToUintIntCase(context, baseType, precision, shaderType, false)
{
}
};
class BitsToFloatCase : public CommonFunctionCase
{
public:
BitsToFloatCase (Context& context, glu::DataType baseType, glu::ShaderType shaderType)
: CommonFunctionCase(context, getCommonFuncCaseName(baseType, glu::PRECISION_HIGHP, shaderType).c_str(), glu::isDataTypeIntOrIVec(baseType) ? "intBitsToFloat" : "uintBitsToFloat", shaderType)
{
const bool inIsSigned = glu::isDataTypeIntOrIVec(baseType);
const int vecSize = glu::getDataTypeScalarSize(baseType);
const glu::DataType floatType = vecSize > 1 ? glu::getDataTypeFloatVec(vecSize) : glu::TYPE_FLOAT;
m_spec.inputs.push_back(Symbol("in0", glu::VarType(baseType, glu::PRECISION_HIGHP)));
m_spec.outputs.push_back(Symbol("out0", glu::VarType(floatType, glu::PRECISION_HIGHP)));
m_spec.source = inIsSigned ? "out0 = intBitsToFloat(in0);" : "out0 = uintBitsToFloat(in0);";
}
void getInputValues (int numValues, void* const* values) const
{
de::Random rnd (deStringHash(getName()) ^ 0xbbb225u);
const glu::DataType type = m_spec.inputs[0].varType.getBasicType();
const int scalarSize = glu::getDataTypeScalarSize(type);
const Vec2 range (-1e8f, +1e8f);
// \note Filled as floats.
fillRandomScalars(rnd, range.x(), range.y(), values[0], numValues*scalarSize);
}
bool compare (const void* const* inputs, const void* const* outputs)
{
const glu::DataType type = m_spec.inputs[0].varType.getBasicType();
const int scalarSize = glu::getDataTypeScalarSize(type);
const deUint32 maxUlpDiff = 0;
for (int compNdx = 0; compNdx < scalarSize; compNdx++)
{
const float in0 = ((const float*)inputs[0])[compNdx];
const float out0 = ((const float*)outputs[0])[compNdx];
const deUint32 ulpDiff = getUlpDiff(in0, out0);
if (ulpDiff > maxUlpDiff)
{
m_failMsg << "Expected [" << compNdx << "] = " << tcu::toHex(tcu::Float32(in0).bits()) << " with ULP threshold "
<< tcu::toHex(maxUlpDiff) << ", got ULP diff " << tcu::toHex(ulpDiff);
return false;
}
}
return true;
}
};
class FloorCase : public CommonFunctionCase
{
public:
FloorCase (Context& context, glu::DataType baseType, glu::Precision precision, glu::ShaderType shaderType)
: CommonFunctionCase(context, getCommonFuncCaseName(baseType, precision, shaderType).c_str(), "floor", shaderType)
{
m_spec.inputs.push_back(Symbol("in0", glu::VarType(baseType, precision)));
m_spec.outputs.push_back(Symbol("out0", glu::VarType(baseType, precision)));
m_spec.source = "out0 = floor(in0);";
}
void getInputValues (int numValues, void* const* values) const
{
const Vec2 ranges[] =
{
Vec2(-2.0f, 2.0f), // lowp
Vec2(-1e3f, 1e3f), // mediump
Vec2(-1e7f, 1e7f) // highp
};
de::Random rnd (deStringHash(getName()) ^ 0xac23fu);
const glu::DataType type = m_spec.inputs[0].varType.getBasicType();
const glu::Precision precision = m_spec.inputs[0].varType.getPrecision();
const int scalarSize = glu::getDataTypeScalarSize(type);
// Random cases.
fillRandomScalars(rnd, ranges[precision].x(), ranges[precision].y(), (float*)values[0], numValues*scalarSize);
// If precision is mediump, make sure values can be represented in fp16 exactly
if (precision == glu::PRECISION_MEDIUMP)
{
for (int ndx = 0; ndx < numValues*scalarSize; ndx++)
((float*)values[0])[ndx] = tcu::Float16(((float*)values[0])[ndx]).asFloat();
}
}
bool compare (const void* const* inputs, const void* const* outputs)
{
const glu::DataType type = m_spec.inputs[0].varType.getBasicType();
const glu::Precision precision = m_spec.inputs[0].varType.getPrecision();
const int scalarSize = glu::getDataTypeScalarSize(type);
if (precision == glu::PRECISION_HIGHP || precision == glu::PRECISION_MEDIUMP)
{
// Require exact result.
for (int compNdx = 0; compNdx < scalarSize; compNdx++)
{
const float in0 = ((const float*)inputs[0])[compNdx];
const float out0 = ((const float*)outputs[0])[compNdx];
const float ref = deFloatFloor(in0);
const deUint32 ulpDiff = getUlpDiff(out0, ref);
if (ulpDiff > 0)
{
m_failMsg << "Expected [" << compNdx << "] = " << HexFloat(ref) << ", got ULP diff " << tcu::toHex(ulpDiff);
return false;
}
}
}
else
{
const int mantissaBits = getMinMantissaBits(precision);
const deUint32 maxUlpDiff = getMaxUlpDiffFromBits(mantissaBits); // ULP diff for rounded integer value.
const float eps = getEpsFromBits(1.0f, mantissaBits); // epsilon for rounding bounds
for (int compNdx = 0; compNdx < scalarSize; compNdx++)
{
const float in0 = ((const float*)inputs[0])[compNdx];
const float out0 = ((const float*)outputs[0])[compNdx];
const int minRes = int(deFloatFloor(in0-eps));
const int maxRes = int(deFloatFloor(in0+eps));
bool anyOk = false;
for (int roundedVal = minRes; roundedVal <= maxRes; roundedVal++)
{
const deUint32 ulpDiff = getUlpDiff(out0, float(roundedVal));
if (ulpDiff <= maxUlpDiff)
{
anyOk = true;
break;
}
}
if (!anyOk)
{
m_failMsg << "Expected [" << compNdx << "] = [" << minRes << ", " << maxRes << "] with ULP threshold " << tcu::toHex(maxUlpDiff);
return false;
}
}
}
return true;
}
};
class TruncCase : public CommonFunctionCase
{
public:
TruncCase (Context& context, glu::DataType baseType, glu::Precision precision, glu::ShaderType shaderType)
: CommonFunctionCase(context, getCommonFuncCaseName(baseType, precision, shaderType).c_str(), "trunc", shaderType)
{
m_spec.inputs.push_back(Symbol("in0", glu::VarType(baseType, precision)));
m_spec.outputs.push_back(Symbol("out0", glu::VarType(baseType, precision)));
m_spec.source = "out0 = trunc(in0);";
}
void getInputValues (int numValues, void* const* values) const
{
const Vec2 ranges[] =
{
Vec2(-2.0f, 2.0f), // lowp
Vec2(-1e3f, 1e3f), // mediump
Vec2(-1e7f, 1e7f) // highp
};
de::Random rnd (deStringHash(getName()) ^ 0xac23fu);
const glu::DataType type = m_spec.inputs[0].varType.getBasicType();
const glu::Precision precision = m_spec.inputs[0].varType.getPrecision();
const int scalarSize = glu::getDataTypeScalarSize(type);
const float specialCases[] = { 0.0f, -0.0f, -0.9f, 0.9f, 1.0f, -1.0f };
const int numSpecialCases = DE_LENGTH_OF_ARRAY(specialCases);
// Special cases
for (int caseNdx = 0; caseNdx < numSpecialCases; caseNdx++)
{
for (int scalarNdx = 0; scalarNdx < scalarSize; scalarNdx++)
((float*)values[0])[caseNdx*scalarSize + scalarNdx] = specialCases[caseNdx];
}
// Random cases.
fillRandomScalars(rnd, ranges[precision].x(), ranges[precision].y(), (float*)values[0] + scalarSize*numSpecialCases, (numValues-numSpecialCases)*scalarSize);
// If precision is mediump, make sure values can be represented in fp16 exactly
if (precision == glu::PRECISION_MEDIUMP)
{
for (int ndx = 0; ndx < numValues*scalarSize; ndx++)
((float*)values[0])[ndx] = tcu::Float16(((float*)values[0])[ndx]).asFloat();
}
}
bool compare (const void* const* inputs, const void* const* outputs)
{
const glu::DataType type = m_spec.inputs[0].varType.getBasicType();
const glu::Precision precision = m_spec.inputs[0].varType.getPrecision();
const int scalarSize = glu::getDataTypeScalarSize(type);
if (precision == glu::PRECISION_HIGHP || precision == glu::PRECISION_MEDIUMP)
{
// Require exact result.
for (int compNdx = 0; compNdx < scalarSize; compNdx++)
{
const float in0 = ((const float*)inputs[0])[compNdx];
const float out0 = ((const float*)outputs[0])[compNdx];
const bool isNeg = tcu::Float32(in0).sign() < 0;
const float ref = isNeg ? (-float(int(-in0))) : float(int(in0));
// \note: trunc() function definition is a bit broad on negative zeros. Ignore result sign if zero.
const deUint32 ulpDiff = getUlpDiffIgnoreZeroSign(out0, ref);
if (ulpDiff > 0)
{
m_failMsg << "Expected [" << compNdx << "] = " << HexFloat(ref) << ", got ULP diff " << tcu::toHex(ulpDiff);
return false;
}
}
}
else
{
const int mantissaBits = getMinMantissaBits(precision);
const deUint32 maxUlpDiff = getMaxUlpDiffFromBits(mantissaBits); // ULP diff for rounded integer value.
const float eps = getEpsFromBits(1.0f, mantissaBits); // epsilon for rounding bounds
for (int compNdx = 0; compNdx < scalarSize; compNdx++)
{
const float in0 = ((const float*)inputs[0])[compNdx];
const float out0 = ((const float*)outputs[0])[compNdx];
const int minRes = int(in0-eps);
const int maxRes = int(in0+eps);
bool anyOk = false;
for (int roundedVal = minRes; roundedVal <= maxRes; roundedVal++)
{
const deUint32 ulpDiff = getUlpDiffIgnoreZeroSign(out0, float(roundedVal));
if (ulpDiff <= maxUlpDiff)
{
anyOk = true;
break;
}
}
if (!anyOk)
{
m_failMsg << "Expected [" << compNdx << "] = [" << minRes << ", " << maxRes << "] with ULP threshold " << tcu::toHex(maxUlpDiff);
return false;
}
}
}
return true;
}
};
class RoundCase : public CommonFunctionCase
{
public:
RoundCase (Context& context, glu::DataType baseType, glu::Precision precision, glu::ShaderType shaderType)
: CommonFunctionCase(context, getCommonFuncCaseName(baseType, precision, shaderType).c_str(), "round", shaderType)
{
m_spec.inputs.push_back(Symbol("in0", glu::VarType(baseType, precision)));
m_spec.outputs.push_back(Symbol("out0", glu::VarType(baseType, precision)));
m_spec.source = "out0 = round(in0);";
}
void getInputValues (int numValues, void* const* values) const
{
const Vec2 ranges[] =
{
Vec2(-2.0f, 2.0f), // lowp
Vec2(-1e3f, 1e3f), // mediump
Vec2(-1e7f, 1e7f) // highp
};
de::Random rnd (deStringHash(getName()) ^ 0xac23fu);
const glu::DataType type = m_spec.inputs[0].varType.getBasicType();
const glu::Precision precision = m_spec.inputs[0].varType.getPrecision();
const int scalarSize = glu::getDataTypeScalarSize(type);
int numSpecialCases = 0;
// Special cases.
if (precision != glu::PRECISION_LOWP)
{
DE_ASSERT(numValues >= 10);
for (int ndx = 0; ndx < 10; ndx++)
{
const float v = de::clamp(float(ndx) - 5.5f, ranges[precision].x(), ranges[precision].y());
std::fill((float*)values[0], (float*)values[0] + scalarSize, v);
numSpecialCases += 1;
}
}
// Random cases.
fillRandomScalars(rnd, ranges[precision].x(), ranges[precision].y(), (float*)values[0] + numSpecialCases*scalarSize, (numValues-numSpecialCases)*scalarSize);
// If precision is mediump, make sure values can be represented in fp16 exactly
if (precision == glu::PRECISION_MEDIUMP)
{
for (int ndx = 0; ndx < numValues*scalarSize; ndx++)
((float*)values[0])[ndx] = tcu::Float16(((float*)values[0])[ndx]).asFloat();
}
}
bool compare (const void* const* inputs, const void* const* outputs)
{
const glu::DataType type = m_spec.inputs[0].varType.getBasicType();
const glu::Precision precision = m_spec.inputs[0].varType.getPrecision();
const bool hasZeroSign = supportsSignedZero(precision);
const int scalarSize = glu::getDataTypeScalarSize(type);
if (precision == glu::PRECISION_HIGHP || precision == glu::PRECISION_MEDIUMP)
{
for (int compNdx = 0; compNdx < scalarSize; compNdx++)
{
const float in0 = ((const float*)inputs[0])[compNdx];
const float out0 = ((const float*)outputs[0])[compNdx];
if (deFloatFrac(in0) == 0.5f)
{
// Allow both ceil(in) and floor(in)
const float ref0 = deFloatFloor(in0);
const float ref1 = deFloatCeil(in0);
const deUint32 ulpDiff0 = hasZeroSign ? getUlpDiff(out0, ref0) : getUlpDiffIgnoreZeroSign(out0, ref0);
const deUint32 ulpDiff1 = hasZeroSign ? getUlpDiff(out0, ref1) : getUlpDiffIgnoreZeroSign(out0, ref1);
if (ulpDiff0 > 0 && ulpDiff1 > 0)
{
m_failMsg << "Expected [" << compNdx << "] = " << HexFloat(ref0) << " or " << HexFloat(ref1) << ", got ULP diff " << tcu::toHex(de::min(ulpDiff0, ulpDiff1));
return false;
}
}
else
{
// Require exact result
const float ref = roundEven(in0);
const deUint32 ulpDiff = hasZeroSign ? getUlpDiff(out0, ref) : getUlpDiffIgnoreZeroSign(out0, ref);
if (ulpDiff > 0)
{
m_failMsg << "Expected [" << compNdx << "] = " << HexFloat(ref) << ", got ULP diff " << tcu::toHex(ulpDiff);
return false;
}
}
}
}
else
{
const int mantissaBits = getMinMantissaBits(precision);
const deUint32 maxUlpDiff = getMaxUlpDiffFromBits(mantissaBits); // ULP diff for rounded integer value.
const float eps = getEpsFromBits(1.0f, mantissaBits); // epsilon for rounding bounds
for (int compNdx = 0; compNdx < scalarSize; compNdx++)
{
const float in0 = ((const float*)inputs[0])[compNdx];
const float out0 = ((const float*)outputs[0])[compNdx];
const int minRes = int(roundEven(in0-eps));
const int maxRes = int(roundEven(in0+eps));
bool anyOk = false;
for (int roundedVal = minRes; roundedVal <= maxRes; roundedVal++)
{
const deUint32 ulpDiff = getUlpDiffIgnoreZeroSign(out0, float(roundedVal));
if (ulpDiff <= maxUlpDiff)
{
anyOk = true;
break;
}
}
if (!anyOk)
{
m_failMsg << "Expected [" << compNdx << "] = [" << minRes << ", " << maxRes << "] with ULP threshold " << tcu::toHex(maxUlpDiff);
return false;
}
}
}
return true;
}
};
class CeilCase : public CommonFunctionCase
{
public:
CeilCase (Context& context, glu::DataType baseType, glu::Precision precision, glu::ShaderType shaderType)
: CommonFunctionCase(context, getCommonFuncCaseName(baseType, precision, shaderType).c_str(), "ceil", shaderType)
{
m_spec.inputs.push_back(Symbol("in0", glu::VarType(baseType, precision)));
m_spec.outputs.push_back(Symbol("out0", glu::VarType(baseType, precision)));
m_spec.source = "out0 = ceil(in0);";
}
void getInputValues (int numValues, void* const* values) const
{
const Vec2 ranges[] =
{
Vec2(-2.0f, 2.0f), // lowp
Vec2(-1e3f, 1e3f), // mediump
Vec2(-1e7f, 1e7f) // highp
};
de::Random rnd (deStringHash(getName()) ^ 0xac23fu);
const glu::DataType type = m_spec.inputs[0].varType.getBasicType();
const glu::Precision precision = m_spec.inputs[0].varType.getPrecision();
const int scalarSize = glu::getDataTypeScalarSize(type);
// Random cases.
fillRandomScalars(rnd, ranges[precision].x(), ranges[precision].y(), (float*)values[0], numValues*scalarSize);
// If precision is mediump, make sure values can be represented in fp16 exactly
if (precision == glu::PRECISION_MEDIUMP)
{
for (int ndx = 0; ndx < numValues*scalarSize; ndx++)
((float*)values[0])[ndx] = tcu::Float16(((float*)values[0])[ndx]).asFloat();
}
}
bool compare (const void* const* inputs, const void* const* outputs)
{
const glu::DataType type = m_spec.inputs[0].varType.getBasicType();
const glu::Precision precision = m_spec.inputs[0].varType.getPrecision();
const bool hasZeroSign = supportsSignedZero(precision);
const int scalarSize = glu::getDataTypeScalarSize(type);
if (precision == glu::PRECISION_HIGHP || precision == glu::PRECISION_MEDIUMP)
{
// Require exact result.
for (int compNdx = 0; compNdx < scalarSize; compNdx++)
{
const float in0 = ((const float*)inputs[0])[compNdx];
const float out0 = ((const float*)outputs[0])[compNdx];
const float ref = deFloatCeil(in0);
const deUint32 ulpDiff = hasZeroSign ? getUlpDiff(out0, ref) : getUlpDiffIgnoreZeroSign(out0, ref);
if (ulpDiff > 0)
{
m_failMsg << "Expected [" << compNdx << "] = " << HexFloat(ref) << ", got ULP diff " << tcu::toHex(ulpDiff);
return false;
}
}
}
else
{
const int mantissaBits = getMinMantissaBits(precision);
const deUint32 maxUlpDiff = getMaxUlpDiffFromBits(mantissaBits); // ULP diff for rounded integer value.
const float eps = getEpsFromBits(1.0f, mantissaBits); // epsilon for rounding bounds
for (int compNdx = 0; compNdx < scalarSize; compNdx++)
{
const float in0 = ((const float*)inputs[0])[compNdx];
const float out0 = ((const float*)outputs[0])[compNdx];
const int minRes = int(deFloatCeil(in0-eps));
const int maxRes = int(deFloatCeil(in0+eps));
bool anyOk = false;
for (int roundedVal = minRes; roundedVal <= maxRes; roundedVal++)
{
const deUint32 ulpDiff = getUlpDiffIgnoreZeroSign(out0, float(roundedVal));
if (ulpDiff <= maxUlpDiff)
{
anyOk = true;
break;
}
}
if (!anyOk && de::inRange(0, minRes, maxRes))
{
// Allow -0 as well.
const int ulpDiff = de::abs((int)tcu::Float32(out0).bits() - (int)0x80000000u);
anyOk = ((deUint32)ulpDiff <= maxUlpDiff);
}
if (!anyOk)
{
m_failMsg << "Expected [" << compNdx << "] = [" << minRes << ", " << maxRes << "] with ULP threshold " << tcu::toHex(maxUlpDiff);
return false;
}
}
}
return true;
}
};
class FractCase : public CommonFunctionCase
{
public:
FractCase (Context& context, glu::DataType baseType, glu::Precision precision, glu::ShaderType shaderType)
: CommonFunctionCase(context, getCommonFuncCaseName(baseType, precision, shaderType).c_str(), "fract", shaderType)
{
m_spec.inputs.push_back(Symbol("in0", glu::VarType(baseType, precision)));
m_spec.outputs.push_back(Symbol("out0", glu::VarType(baseType, precision)));
m_spec.source = "out0 = fract(in0);";
}
void getInputValues (int numValues, void* const* values) const
{
const Vec2 ranges[] =
{
Vec2(-2.0f, 2.0f), // lowp
Vec2(-1e3f, 1e3f), // mediump
Vec2(-1e7f, 1e7f) // highp
};
de::Random rnd (deStringHash(getName()) ^ 0xac23fu);
const glu::DataType type = m_spec.inputs[0].varType.getBasicType();
const glu::Precision precision = m_spec.inputs[0].varType.getPrecision();
const int scalarSize = glu::getDataTypeScalarSize(type);
int numSpecialCases = 0;
// Special cases.
if (precision != glu::PRECISION_LOWP)
{
DE_ASSERT(numValues >= 10);
for (int ndx = 0; ndx < 10; ndx++)
{
const float v = de::clamp(float(ndx) - 5.5f, ranges[precision].x(), ranges[precision].y());
std::fill((float*)values[0], (float*)values[0] + scalarSize, v);
numSpecialCases += 1;
}
}
// Random cases.
fillRandomScalars(rnd, ranges[precision].x(), ranges[precision].y(), (float*)values[0] + numSpecialCases*scalarSize, (numValues-numSpecialCases)*scalarSize);
// If precision is mediump, make sure values can be represented in fp16 exactly
if (precision == glu::PRECISION_MEDIUMP)
{
for (int ndx = 0; ndx < numValues*scalarSize; ndx++)
((float*)values[0])[ndx] = tcu::Float16(((float*)values[0])[ndx]).asFloat();
}
}
bool compare (const void* const* inputs, const void* const* outputs)
{
const glu::DataType type = m_spec.inputs[0].varType.getBasicType();
const glu::Precision precision = m_spec.inputs[0].varType.getPrecision();
const bool hasZeroSign = supportsSignedZero(precision);
const int scalarSize = glu::getDataTypeScalarSize(type);
if (precision == glu::PRECISION_HIGHP || precision == glu::PRECISION_MEDIUMP)
{
// Require exact result.
for (int compNdx = 0; compNdx < scalarSize; compNdx++)
{
const float in0 = ((const float*)inputs[0])[compNdx];
const float out0 = ((const float*)outputs[0])[compNdx];
const float ref = deFloatFrac(in0);
const deUint32 ulpDiff = hasZeroSign ? getUlpDiff(out0, ref) : getUlpDiffIgnoreZeroSign(out0, ref);
if (ulpDiff > 0)
{
m_failMsg << "Expected [" << compNdx << "] = " << HexFloat(ref) << ", got ULP diff " << tcu::toHex(ulpDiff);
return false;
}
}
}
else
{
const int mantissaBits = getMinMantissaBits(precision);
const float eps = getEpsFromBits(1.0f, mantissaBits); // epsilon for rounding bounds
for (int compNdx = 0; compNdx < scalarSize; compNdx++)
{
const float in0 = ((const float*)inputs[0])[compNdx];
const float out0 = ((const float*)outputs[0])[compNdx];
if (int(deFloatFloor(in0-eps)) == int(deFloatFloor(in0+eps)))
{
const float ref = deFloatFrac(in0);
const int bitsLost = numBitsLostInOp(in0, ref);
const deUint32 maxUlpDiff = getMaxUlpDiffFromBits(de::max(0, mantissaBits-bitsLost)); // ULP diff for rounded integer value.
const deUint32 ulpDiff = getUlpDiffIgnoreZeroSign(out0, ref);
if (ulpDiff > maxUlpDiff)
{
m_failMsg << "Expected [" << compNdx << "] = " << HexFloat(ref) << " with ULP threshold " << tcu::toHex(maxUlpDiff) << ", got diff " << tcu::toHex(ulpDiff);
return false;
}
}
else
{
if (out0 >= 1.0f)
{
m_failMsg << "Expected [" << compNdx << "] < 1.0";
return false;
}
}
}
}
return true;
}
};
static inline void frexp (float in, float* significand, int* exponent)
{
const tcu::Float32 fpValue(in);
if (!fpValue.isZero())
{
// Construct float that has exactly the mantissa, and exponent of -1.
*significand = tcu::Float32::construct(fpValue.sign(), -1, fpValue.mantissa()).asFloat();
*exponent = fpValue.exponent()+1;
}
else
{
*significand = fpValue.sign() < 0 ? -0.0f : 0.0f;
*exponent = 0;
}
}
static inline float ldexp (float significand, int exponent)
{
const tcu::Float32 mant(significand);
if (exponent == 0 && mant.isZero())
{
return mant.sign() < 0 ? -0.0f : 0.0f;
}
else
{
return tcu::Float32::construct(mant.sign(), exponent+mant.exponent(), mant.mantissa()).asFloat();
}
}
class FrexpCase : public CommonFunctionCase
{
public:
FrexpCase (Context& context, glu::DataType baseType, glu::Precision precision, glu::ShaderType shaderType)
: CommonFunctionCase(context, getCommonFuncCaseName(baseType, precision, shaderType).c_str(), "frexp", shaderType)
{
const int vecSize = glu::getDataTypeScalarSize(baseType);
const glu::DataType intType = vecSize > 1 ? glu::getDataTypeIntVec(vecSize) : glu::TYPE_INT;
m_spec.inputs.push_back(Symbol("in0", glu::VarType(baseType, precision)));
m_spec.outputs.push_back(Symbol("out0", glu::VarType(baseType, glu::PRECISION_HIGHP)));
m_spec.outputs.push_back(Symbol("out1", glu::VarType(intType, glu::PRECISION_HIGHP)));
m_spec.source = "out0 = frexp(in0, out1);";
}
void getInputValues (int numValues, void* const* values) const
{
const Vec2 ranges[] =
{
Vec2(-2.0f, 2.0f), // lowp
Vec2(-1e3f, 1e3f), // mediump
Vec2(-1e7f, 1e7f) // highp
};
de::Random rnd (deStringHash(getName()) ^ 0x2790au);
const glu::DataType type = m_spec.inputs[0].varType.getBasicType();
const glu::Precision precision = m_spec.inputs[0].varType.getPrecision();
const int scalarSize = glu::getDataTypeScalarSize(type);
// Special cases
for (int compNdx = 0; compNdx < scalarSize; compNdx++)
{
((float*)values[0])[scalarSize*0 + compNdx] = 0.0f;
((float*)values[0])[scalarSize*1 + compNdx] = -0.0f;
((float*)values[0])[scalarSize*2 + compNdx] = 0.5f;
((float*)values[0])[scalarSize*3 + compNdx] = -0.5f;
((float*)values[0])[scalarSize*4 + compNdx] = 1.0f;
((float*)values[0])[scalarSize*5 + compNdx] = -1.0f;
((float*)values[0])[scalarSize*6 + compNdx] = 2.0f;
((float*)values[0])[scalarSize*7 + compNdx] = -2.0f;
}
fillRandomScalars(rnd, ranges[precision].x(), ranges[precision].y(), (float*)values[0] + 8*scalarSize, (numValues-8)*scalarSize);
// Make sure the values are representable in the target format
for (int caseNdx = 0; caseNdx < numValues; ++caseNdx)
{
for (int scalarNdx = 0; scalarNdx < scalarSize; scalarNdx++)
{
float* const valuePtr = &((float*)values[0])[caseNdx * scalarSize + scalarNdx];
*valuePtr = makeFloatRepresentable(*valuePtr, precision);
}
}
}
bool compare (const void* const* inputs, const void* const* outputs)
{
const glu::DataType type = m_spec.inputs[0].varType.getBasicType();
const glu::Precision precision = m_spec.inputs[0].varType.getPrecision();
const int scalarSize = glu::getDataTypeScalarSize(type);
const bool transitSupportsSignedZero = (m_shaderType != glu::SHADERTYPE_FRAGMENT); // executor cannot reliably transit negative zero to fragment stage
const bool signedZero = supportsSignedZero(precision) && transitSupportsSignedZero;
const int mantissaBits = getMinMantissaBits(precision);
const deUint32 maxUlpDiff = getMaxUlpDiffFromBits(mantissaBits);
for (int compNdx = 0; compNdx < scalarSize; compNdx++)
{
const float in0 = ((const float*)inputs[0])[compNdx];
const float out0 = ((const float*)outputs[0])[compNdx];
const int out1 = ((const int*)outputs[1])[compNdx];
float refOut0;
int refOut1;
frexp(in0, &refOut0, &refOut1);
const deUint32 ulpDiff0 = signedZero ? getUlpDiff(out0, refOut0) : getUlpDiffIgnoreZeroSign(out0, refOut0);
if (ulpDiff0 > maxUlpDiff || out1 != refOut1)
{
m_failMsg << "Expected [" << compNdx << "] = " << HexFloat(refOut0) << ", " << refOut1 << " with ULP threshold "
<< tcu::toHex(maxUlpDiff) << ", got ULP diff " << tcu::toHex(ulpDiff0);
return false;
}
}
return true;
}
};
class LdexpCase : public CommonFunctionCase
{
public:
LdexpCase (Context& context, glu::DataType baseType, glu::Precision precision, glu::ShaderType shaderType)
: CommonFunctionCase(context, getCommonFuncCaseName(baseType, precision, shaderType).c_str(), "ldexp", shaderType)
{
const int vecSize = glu::getDataTypeScalarSize(baseType);
const glu::DataType intType = vecSize > 1 ? glu::getDataTypeIntVec(vecSize) : glu::TYPE_INT;
m_spec.inputs.push_back(Symbol("in0", glu::VarType(baseType, precision)));
m_spec.inputs.push_back(Symbol("in1", glu::VarType(intType, glu::PRECISION_HIGHP)));
m_spec.outputs.push_back(Symbol("out0", glu::VarType(baseType, glu::PRECISION_HIGHP)));
m_spec.source = "out0 = ldexp(in0, in1);";
}
void getInputValues (int numValues, void* const* values) const
{
const Vec2 ranges[] =
{
Vec2(-2.0f, 2.0f), // lowp
Vec2(-1e3f, 1e3f), // mediump
Vec2(-1e7f, 1e7f) // highp
};
de::Random rnd (deStringHash(getName()) ^ 0x2790au);
const glu::DataType type = m_spec.inputs[0].varType.getBasicType();
const glu::Precision precision = m_spec.inputs[0].varType.getPrecision();
const int scalarSize = glu::getDataTypeScalarSize(type);
int valueNdx = 0;
{
const float easySpecialCases[] = { 0.0f, -0.0f, 0.5f, -0.5f, 1.0f, -1.0f, 2.0f, -2.0f };
DE_ASSERT(valueNdx + DE_LENGTH_OF_ARRAY(easySpecialCases) <= numValues);
for (int caseNdx = 0; caseNdx < DE_LENGTH_OF_ARRAY(easySpecialCases); caseNdx++)
{
float in0;
int in1;
frexp(easySpecialCases[caseNdx], &in0, &in1);
for (int compNdx = 0; compNdx < scalarSize; compNdx++)
{
((float*)values[0])[valueNdx*scalarSize + compNdx] = in0;
((int*)values[1])[valueNdx*scalarSize + compNdx] = in1;
}
valueNdx += 1;
}
}
{
// \note lowp and mediump can not necessarily fit the values in hard cases, so we'll use only easy ones.
const int numEasyRandomCases = precision == glu::PRECISION_HIGHP ? 50 : (numValues-valueNdx);
DE_ASSERT(valueNdx + numEasyRandomCases <= numValues);
for (int caseNdx = 0; caseNdx < numEasyRandomCases; caseNdx++)
{
for (int compNdx = 0; compNdx < scalarSize; compNdx++)
{
const float in = rnd.getFloat(ranges[precision].x(), ranges[precision].y());
float in0;
int in1;
frexp(in, &in0, &in1);
((float*)values[0])[valueNdx*scalarSize + compNdx] = in0;
((int*)values[1])[valueNdx*scalarSize + compNdx] = in1;
}
valueNdx += 1;
}
}
{
const int numHardRandomCases = numValues-valueNdx;
DE_ASSERT(numHardRandomCases >= 0 && valueNdx + numHardRandomCases <= numValues);
for (int caseNdx = 0; caseNdx < numHardRandomCases; caseNdx++)
{
for (int compNdx = 0; compNdx < scalarSize; compNdx++)
{
const int fpExp = rnd.getInt(-126, 127);
const int sign = rnd.getBool() ? -1 : +1;
const deUint32 mantissa = (1u<<23) | (rnd.getUint32() & ((1u<<23)-1));
const int in1 = rnd.getInt(de::max(-126, -126-fpExp), de::min(127, 127-fpExp));
const float in0 = tcu::Float32::construct(sign, fpExp, mantissa).asFloat();
DE_ASSERT(de::inRange(in1, -126, 127)); // See Khronos bug 11180
DE_ASSERT(de::inRange(in1+fpExp, -126, 127));
const float out = ldexp(in0, in1);
DE_ASSERT(!tcu::Float32(out).isInf() && !tcu::Float32(out).isDenorm());
DE_UNREF(out);
((float*)values[0])[valueNdx*scalarSize + compNdx] = in0;
((int*)values[1])[valueNdx*scalarSize + compNdx] = in1;
}
valueNdx += 1;
}
}
}
bool compare (const void* const* inputs, const void* const* outputs)
{
const glu::DataType type = m_spec.inputs[0].varType.getBasicType();
const glu::Precision precision = m_spec.inputs[0].varType.getPrecision();
const int scalarSize = glu::getDataTypeScalarSize(type);
const int mantissaBits = getMinMantissaBits(precision);
const deUint32 maxUlpDiff = getMaxUlpDiffFromBits(mantissaBits);
for (int compNdx = 0; compNdx < scalarSize; compNdx++)
{
const float in0 = ((const float*)inputs[0])[compNdx];
const int in1 = ((const int*)inputs[1])[compNdx];
const float out0 = ((const float*)outputs[0])[compNdx];
const float refOut0 = ldexp(in0, in1);
const deUint32 ulpDiff = getUlpDiffIgnoreZeroSign(out0, refOut0);
const int inExp = tcu::Float32(in0).exponent();
if (ulpDiff > maxUlpDiff)
{
m_failMsg << "Expected [" << compNdx << "] = " << HexFloat(refOut0) << ", (exp = " << inExp << ") with ULP threshold "
<< tcu::toHex(maxUlpDiff) << ", got ULP diff " << tcu::toHex(ulpDiff);
return false;
}
}
return true;
}
};
class FmaCase : public CommonFunctionCase
{
public:
FmaCase (Context& context, glu::DataType baseType, glu::Precision precision, glu::ShaderType shaderType)
: CommonFunctionCase(context, getCommonFuncCaseName(baseType, precision, shaderType).c_str(), "fma", shaderType)
{
m_spec.inputs.push_back(Symbol("a", glu::VarType(baseType, precision)));
m_spec.inputs.push_back(Symbol("b", glu::VarType(baseType, precision)));
m_spec.inputs.push_back(Symbol("c", glu::VarType(baseType, precision)));
m_spec.outputs.push_back(Symbol("res", glu::VarType(baseType, precision)));
m_spec.source = "res = fma(a, b, c);";
m_spec.globalDeclarations = "#extension GL_EXT_gpu_shader5 : require\n";
}
void init (void)
{
if (!m_context.getContextInfo().isExtensionSupported("GL_EXT_gpu_shader5"))
throw tcu::NotSupportedError("GL_EXT_gpu_shader5 not supported");
CommonFunctionCase::init();
}
void getInputValues (int numValues, void* const* values) const
{
const Vec2 ranges[] =
{
Vec2(-2.0f, 2.0f), // lowp
Vec2(-127.f, 127.f), // mediump
Vec2(-1e7f, 1e7f) // highp
};
de::Random rnd (deStringHash(getName()) ^ 0xac23fu);
const glu::DataType type = m_spec.inputs[0].varType.getBasicType();
const glu::Precision precision = m_spec.inputs[0].varType.getPrecision();
const int scalarSize = glu::getDataTypeScalarSize(type);
const float specialCases[][3] =
{
// a b c
{ 0.0f, 0.0f, 0.0f },
{ 0.0f, 1.0f, 0.0f },
{ 0.0f, 0.0f, -1.0f },
{ 1.0f, 1.0f, 0.0f },
{ 1.0f, 1.0f, 1.0f },
{ -1.0f, 1.0f, 0.0f },
{ 1.0f, -1.0f, 0.0f },
{ -1.0f, -1.0f, 0.0f },
{ -0.0f, 1.0f, 0.0f },
{ 1.0f, -0.0f, 0.0f }
};
const int numSpecialCases = DE_LENGTH_OF_ARRAY(specialCases);
// Special cases
for (int caseNdx = 0; caseNdx < numSpecialCases; caseNdx++)
{
for (int inputNdx = 0; inputNdx < 3; inputNdx++)
{
for (int scalarNdx = 0; scalarNdx < scalarSize; scalarNdx++)
((float*)values[inputNdx])[caseNdx*scalarSize + scalarNdx] = specialCases[caseNdx][inputNdx];
}
}
// Random cases.
{
const int numScalars = (numValues-numSpecialCases)*scalarSize;
const int offs = scalarSize*numSpecialCases;
for (int inputNdx = 0; inputNdx < 3; inputNdx++)
fillRandomScalars(rnd, ranges[precision].x(), ranges[precision].y(), (float*)values[inputNdx] + offs, numScalars);
}
// Make sure the values are representable in the target format
for (int inputNdx = 0; inputNdx < 3; inputNdx++)
{
for (int caseNdx = 0; caseNdx < numValues; ++caseNdx)
{
for (int scalarNdx = 0; scalarNdx < scalarSize; scalarNdx++)
{
float* const valuePtr = &((float*)values[inputNdx])[caseNdx * scalarSize + scalarNdx];
*valuePtr = makeFloatRepresentable(*valuePtr, precision);
}
}
}
}
static tcu::Interval fma (glu::Precision precision, float a, float b, float c)
{
const tcu::FloatFormat formats[] =
{
// minExp maxExp mantissa exact, subnormals infinities NaN
tcu::FloatFormat(0, 0, 7, false, tcu::YES, tcu::MAYBE, tcu::MAYBE),
tcu::FloatFormat(-13, 13, 9, false, tcu::MAYBE, tcu::MAYBE, tcu::MAYBE),
tcu::FloatFormat(-126, 127, 23, true, tcu::MAYBE, tcu::YES, tcu::MAYBE)
};
const tcu::FloatFormat& format = de::getSizedArrayElement<glu::PRECISION_LAST>(formats, precision);
const tcu::Interval ia = format.convert(a);
const tcu::Interval ib = format.convert(b);
const tcu::Interval ic = format.convert(c);
tcu::Interval prod0;
tcu::Interval prod1;
tcu::Interval prod2;
tcu::Interval prod3;
tcu::Interval prod;
tcu::Interval res;
TCU_SET_INTERVAL(prod0, tmp, tmp = ia.lo() * ib.lo());
TCU_SET_INTERVAL(prod1, tmp, tmp = ia.lo() * ib.hi());
TCU_SET_INTERVAL(prod2, tmp, tmp = ia.hi() * ib.lo());
TCU_SET_INTERVAL(prod3, tmp, tmp = ia.hi() * ib.hi());
prod = format.convert(format.roundOut(prod0 | prod1 | prod2 | prod3, ia.isFinite() && ib.isFinite()));
TCU_SET_INTERVAL_BOUNDS(res, tmp,
tmp = prod.lo() + ic.lo(),
tmp = prod.hi() + ic.hi());
return format.convert(format.roundOut(res, prod.isFinite() && ic.isFinite()));
}
bool compare (const void* const* inputs, const void* const* outputs)
{
const glu::DataType type = m_spec.inputs[0].varType.getBasicType();
const glu::Precision precision = m_spec.inputs[0].varType.getPrecision();
const int scalarSize = glu::getDataTypeScalarSize(type);
for (int compNdx = 0; compNdx < scalarSize; compNdx++)
{
const float a = ((const float*)inputs[0])[compNdx];
const float b = ((const float*)inputs[1])[compNdx];
const float c = ((const float*)inputs[2])[compNdx];
const float res = ((const float*)outputs[0])[compNdx];
const tcu::Interval ref = fma(precision, a, b, c);
if (!ref.contains(res))
{
m_failMsg << "Expected [" << compNdx << "] = " << ref;
return false;
}
}
return true;
}
};
ShaderCommonFunctionTests::ShaderCommonFunctionTests (Context& context)
: TestCaseGroup(context, "common", "Common function tests")
{
}
ShaderCommonFunctionTests::~ShaderCommonFunctionTests (void)
{
}
template<class TestClass>
static void addFunctionCases (TestCaseGroup* parent, const char* functionName, bool floatTypes, bool intTypes, bool uintTypes, deUint32 shaderBits)
{
tcu::TestCaseGroup* group = new tcu::TestCaseGroup(parent->getTestContext(), functionName, functionName);
parent->addChild(group);
const glu::DataType scalarTypes[] =
{
glu::TYPE_FLOAT,
glu::TYPE_INT,
glu::TYPE_UINT
};
for (int scalarTypeNdx = 0; scalarTypeNdx < DE_LENGTH_OF_ARRAY(scalarTypes); scalarTypeNdx++)
{
const glu::DataType scalarType = scalarTypes[scalarTypeNdx];
if ((!floatTypes && scalarType == glu::TYPE_FLOAT) ||
(!intTypes && scalarType == glu::TYPE_INT) ||
(!uintTypes && scalarType == glu::TYPE_UINT))
continue;
for (int vecSize = 1; vecSize <= 4; vecSize++)
{
for (int prec = glu::PRECISION_LOWP; prec <= glu::PRECISION_HIGHP; prec++)
{
for (int shaderTypeNdx = 0; shaderTypeNdx < glu::SHADERTYPE_LAST; shaderTypeNdx++)
{
if (shaderBits & (1<<shaderTypeNdx))
group->addChild(new TestClass(parent->getContext(), glu::DataType(scalarType + vecSize - 1), glu::Precision(prec), glu::ShaderType(shaderTypeNdx)));
}
}
}
}
}
void ShaderCommonFunctionTests::init (void)
{
enum
{
VS = (1<<glu::SHADERTYPE_VERTEX),
TC = (1<<glu::SHADERTYPE_TESSELLATION_CONTROL),
TE = (1<<glu::SHADERTYPE_TESSELLATION_EVALUATION),
GS = (1<<glu::SHADERTYPE_GEOMETRY),
FS = (1<<glu::SHADERTYPE_FRAGMENT),
CS = (1<<glu::SHADERTYPE_COMPUTE),
ALL_SHADERS = VS|TC|TE|GS|FS|CS,
NEW_SHADERS = TC|TE|GS|CS,
};
// Float? Int? Uint? Shaders
addFunctionCases<AbsCase> (this, "abs", true, true, false, NEW_SHADERS);
addFunctionCases<SignCase> (this, "sign", true, true, false, NEW_SHADERS);
addFunctionCases<FloorCase> (this, "floor", true, false, false, NEW_SHADERS);
addFunctionCases<TruncCase> (this, "trunc", true, false, false, NEW_SHADERS);
addFunctionCases<RoundCase> (this, "round", true, false, false, NEW_SHADERS);
addFunctionCases<RoundEvenCase> (this, "roundeven", true, false, false, NEW_SHADERS);
addFunctionCases<CeilCase> (this, "ceil", true, false, false, NEW_SHADERS);
addFunctionCases<FractCase> (this, "fract", true, false, false, NEW_SHADERS);
// mod
addFunctionCases<ModfCase> (this, "modf", true, false, false, NEW_SHADERS);
// min
// max
// clamp
// mix
// step
// smoothstep
addFunctionCases<IsnanCase> (this, "isnan", true, false, false, NEW_SHADERS);
addFunctionCases<IsinfCase> (this, "isinf", true, false, false, NEW_SHADERS);
addFunctionCases<FloatBitsToIntCase> (this, "floatbitstoint", true, false, false, NEW_SHADERS);
addFunctionCases<FloatBitsToUintCase> (this, "floatbitstouint", true, false, false, NEW_SHADERS);
addFunctionCases<FrexpCase> (this, "frexp", true, false, false, ALL_SHADERS);
addFunctionCases<LdexpCase> (this, "ldexp", true, false, false, ALL_SHADERS);
addFunctionCases<FmaCase> (this, "fma", true, false, false, ALL_SHADERS);
// (u)intBitsToFloat()
{
const deUint32 shaderBits = NEW_SHADERS;
tcu::TestCaseGroup* intGroup = new tcu::TestCaseGroup(m_testCtx, "intbitstofloat", "intBitsToFloat() Tests");
tcu::TestCaseGroup* uintGroup = new tcu::TestCaseGroup(m_testCtx, "uintbitstofloat", "uintBitsToFloat() Tests");
addChild(intGroup);
addChild(uintGroup);
for (int vecSize = 1; vecSize < 4; vecSize++)
{
const glu::DataType intType = vecSize > 1 ? glu::getDataTypeIntVec(vecSize) : glu::TYPE_INT;
const glu::DataType uintType = vecSize > 1 ? glu::getDataTypeUintVec(vecSize) : glu::TYPE_UINT;
for (int shaderType = 0; shaderType < glu::SHADERTYPE_LAST; shaderType++)
{
if (shaderBits & (1<<shaderType))
{
intGroup->addChild(new BitsToFloatCase(m_context, intType, glu::ShaderType(shaderType)));
uintGroup->addChild(new BitsToFloatCase(m_context, uintType, glu::ShaderType(shaderType)));
}
}
}
}
}
} // Functional
} // gles31
} // deqp