| /*------------------------------------------------------------------------- |
| * drawElements Quality Program Reference Renderer |
| * ----------------------------------------------- |
| * |
| * Copyright 2014 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| * |
| *//*! |
| * \file |
| * \brief Reference rasterizer |
| *//*--------------------------------------------------------------------*/ |
| |
| #include "rrRasterizer.hpp" |
| #include "deMath.h" |
| #include "tcuVectorUtil.hpp" |
| |
| namespace rr |
| { |
| |
| inline deInt64 toSubpixelCoord (float v) |
| { |
| return (deInt64)(v * (1<<RASTERIZER_SUBPIXEL_BITS) + (v < 0.f ? -0.5f : 0.5f)); |
| } |
| |
| inline deInt64 toSubpixelCoord (deInt32 v) |
| { |
| return v << RASTERIZER_SUBPIXEL_BITS; |
| } |
| |
| inline deInt32 ceilSubpixelToPixelCoord (deInt64 coord, bool fillEdge) |
| { |
| if (coord >= 0) |
| return (deInt32)((coord + ((1ll<<RASTERIZER_SUBPIXEL_BITS) - (fillEdge ? 0 : 1))) >> RASTERIZER_SUBPIXEL_BITS); |
| else |
| return (deInt32)((coord + (fillEdge ? 1 : 0)) >> RASTERIZER_SUBPIXEL_BITS); |
| } |
| |
| inline deInt32 floorSubpixelToPixelCoord (deInt64 coord, bool fillEdge) |
| { |
| if (coord >= 0) |
| return (deInt32)((coord - (fillEdge ? 1 : 0)) >> RASTERIZER_SUBPIXEL_BITS); |
| else |
| return (deInt32)((coord - ((1ll<<RASTERIZER_SUBPIXEL_BITS) - (fillEdge ? 0 : 1))) >> RASTERIZER_SUBPIXEL_BITS); |
| } |
| |
| static inline void initEdgeCCW (EdgeFunction& edge, const HorizontalFill horizontalFill, const VerticalFill verticalFill, const deInt64 x0, const deInt64 y0, const deInt64 x1, const deInt64 y1) |
| { |
| // \note See EdgeFunction documentation for details. |
| |
| const deInt64 xd = x1-x0; |
| const deInt64 yd = y1-y0; |
| bool inclusive = false; //!< Inclusive in CCW orientation. |
| |
| if (yd == 0) |
| inclusive = verticalFill == FILL_BOTTOM ? xd >= 0 : xd <= 0; |
| else |
| inclusive = horizontalFill == FILL_LEFT ? yd <= 0 : yd >= 0; |
| |
| edge.a = (y0 - y1); |
| edge.b = (x1 - x0); |
| edge.c = x0*y1 - y0*x1; |
| edge.inclusive = inclusive; //!< \todo [pyry] Swap for CW triangles |
| } |
| |
| static inline void reverseEdge (EdgeFunction& edge) |
| { |
| edge.a = -edge.a; |
| edge.b = -edge.b; |
| edge.c = -edge.c; |
| edge.inclusive = !edge.inclusive; |
| } |
| |
| static inline deInt64 evaluateEdge (const EdgeFunction& edge, const deInt64 x, const deInt64 y) |
| { |
| return edge.a*x + edge.b*y + edge.c; |
| } |
| |
| static inline bool isInsideCCW (const EdgeFunction& edge, const deInt64 edgeVal) |
| { |
| return edge.inclusive ? (edgeVal >= 0) : (edgeVal > 0); |
| } |
| |
| namespace LineRasterUtil |
| { |
| |
| struct SubpixelLineSegment |
| { |
| const tcu::Vector<deInt64,2> m_v0; |
| const tcu::Vector<deInt64,2> m_v1; |
| |
| SubpixelLineSegment (const tcu::Vector<deInt64,2>& v0, const tcu::Vector<deInt64,2>& v1) |
| : m_v0(v0) |
| , m_v1(v1) |
| { |
| } |
| |
| tcu::Vector<deInt64,2> direction (void) const |
| { |
| return m_v1 - m_v0; |
| } |
| }; |
| |
| enum LINE_SIDE |
| { |
| LINE_SIDE_INTERSECT = 0, |
| LINE_SIDE_LEFT, |
| LINE_SIDE_RIGHT |
| }; |
| |
| static tcu::Vector<deInt64,2> toSubpixelVector (const tcu::Vec2& v) |
| { |
| return tcu::Vector<deInt64,2>(toSubpixelCoord(v.x()), toSubpixelCoord(v.y())); |
| } |
| |
| static tcu::Vector<deInt64,2> toSubpixelVector (const tcu::IVec2& v) |
| { |
| return tcu::Vector<deInt64,2>(toSubpixelCoord(v.x()), toSubpixelCoord(v.y())); |
| } |
| |
| #if defined(DE_DEBUG) |
| static bool isTheCenterOfTheFragment (const tcu::Vector<deInt64,2>& a) |
| { |
| const deUint64 pixelSize = 1ll << (RASTERIZER_SUBPIXEL_BITS); |
| const deUint64 halfPixel = 1ll << (RASTERIZER_SUBPIXEL_BITS-1); |
| return ((a.x() & (pixelSize-1)) == halfPixel && |
| (a.y() & (pixelSize-1)) == halfPixel); |
| } |
| |
| static bool inViewport (const tcu::IVec2& p, const tcu::IVec4& viewport) |
| { |
| return p.x() >= viewport.x() && |
| p.y() >= viewport.y() && |
| p.x() < viewport.x() + viewport.z() && |
| p.y() < viewport.y() + viewport.w(); |
| } |
| #endif // DE_DEBUG |
| |
| // returns true if vertex is on the left side of the line |
| static bool vertexOnLeftSideOfLine (const tcu::Vector<deInt64,2>& p, const SubpixelLineSegment& l) |
| { |
| const tcu::Vector<deInt64,2> u = l.direction(); |
| const tcu::Vector<deInt64,2> v = ( p - l.m_v0); |
| const deInt64 crossProduct = (u.x() * v.y() - u.y() * v.x()); |
| return crossProduct < 0; |
| } |
| |
| // returns true if vertex is on the right side of the line |
| static bool vertexOnRightSideOfLine (const tcu::Vector<deInt64,2>& p, const SubpixelLineSegment& l) |
| { |
| const tcu::Vector<deInt64,2> u = l.direction(); |
| const tcu::Vector<deInt64,2> v = ( p - l.m_v0); |
| const deInt64 crossProduct = (u.x() * v.y() - u.y() * v.x()); |
| return crossProduct > 0; |
| } |
| |
| // returns true if vertex is on the line |
| static bool vertexOnLine (const tcu::Vector<deInt64,2>& p, const SubpixelLineSegment& l) |
| { |
| const tcu::Vector<deInt64,2> u = l.direction(); |
| const tcu::Vector<deInt64,2> v = ( p - l.m_v0); |
| const deInt64 crossProduct = (u.x() * v.y() - u.y() * v.x()); |
| return crossProduct == 0; // cross product == 0 |
| } |
| |
| // returns true if vertex is on the line segment |
| static bool vertexOnLineSegment (const tcu::Vector<deInt64,2>& p, const SubpixelLineSegment& l) |
| { |
| if (!vertexOnLine(p, l)) |
| return false; |
| |
| const tcu::Vector<deInt64,2> v = l.direction(); |
| const tcu::Vector<deInt64,2> u1 = ( p - l.m_v0); |
| const tcu::Vector<deInt64,2> u2 = ( p - l.m_v1); |
| |
| if (v.x() == 0 && v.y() == 0) |
| return false; |
| |
| return tcu::dot( v, u1) >= 0 && |
| tcu::dot(-v, u2) >= 0; // dot (A->B, A->V) >= 0 and dot (B->A, B->V) >= 0 |
| } |
| |
| static LINE_SIDE getVertexSide (const tcu::Vector<deInt64,2>& v, const SubpixelLineSegment& l) |
| { |
| if (vertexOnLeftSideOfLine(v, l)) |
| return LINE_SIDE_LEFT; |
| else if (vertexOnRightSideOfLine(v, l)) |
| return LINE_SIDE_RIGHT; |
| else if (vertexOnLine(v, l)) |
| return LINE_SIDE_INTERSECT; |
| else |
| { |
| DE_ASSERT(false); |
| return LINE_SIDE_INTERSECT; |
| } |
| } |
| |
| // returns true if angle between line and given cornerExitNormal is in range (-45, 45) |
| bool lineInCornerAngleRange (const SubpixelLineSegment& line, const tcu::Vector<deInt64,2>& cornerExitNormal) |
| { |
| // v0 -> v1 has angle difference to cornerExitNormal in range (-45, 45) |
| const tcu::Vector<deInt64,2> v = line.direction(); |
| const deInt64 dotProduct = dot(v, cornerExitNormal); |
| |
| // dotProduct > |v1-v0|*|cornerExitNormal|/sqrt(2) |
| if (dotProduct < 0) |
| return false; |
| return 2 * dotProduct * dotProduct > tcu::lengthSquared(v)*tcu::lengthSquared(cornerExitNormal); |
| } |
| |
| // returns true if angle between line and given cornerExitNormal is in range (-135, 135) |
| bool lineInCornerOutsideAngleRange (const SubpixelLineSegment& line, const tcu::Vector<deInt64,2>& cornerExitNormal) |
| { |
| // v0 -> v1 has angle difference to cornerExitNormal in range (-135, 135) |
| const tcu::Vector<deInt64,2> v = line.direction(); |
| const deInt64 dotProduct = dot(v, cornerExitNormal); |
| |
| // dotProduct > -|v1-v0|*|cornerExitNormal|/sqrt(2) |
| if (dotProduct >= 0) |
| return true; |
| return 2 * (-dotProduct) * (-dotProduct) < tcu::lengthSquared(v)*tcu::lengthSquared(cornerExitNormal); |
| } |
| |
| bool doesLineSegmentExitDiamond (const SubpixelLineSegment& line, const tcu::Vector<deInt64,2>& diamondCenter) |
| { |
| DE_ASSERT(isTheCenterOfTheFragment(diamondCenter)); |
| |
| // Diamond Center is at diamondCenter in subpixel coords |
| |
| const deInt64 halfPixel = 1ll << (RASTERIZER_SUBPIXEL_BITS-1); |
| |
| // Reject distant diamonds early |
| { |
| const tcu::Vector<deInt64,2> u = line.direction(); |
| const tcu::Vector<deInt64,2> v = (diamondCenter - line.m_v0); |
| const deInt64 crossProduct = (u.x() * v.y() - u.y() * v.x()); |
| |
| // crossProduct = |p| |l| sin(theta) |
| // distanceFromLine = |p| sin(theta) |
| // => distanceFromLine = crossProduct / |l| |
| // |
| // |distanceFromLine| > C |
| // => distanceFromLine^2 > C^2 |
| // => crossProduct^2 / |l|^2 > C^2 |
| // => crossProduct^2 > |l|^2 * C^2 |
| |
| const deInt64 floorSqrtMaxInt64 = 3037000499LL; //!< floor(sqrt(MAX_INT64)) |
| |
| const deInt64 broadRejectDistance = 2 * halfPixel; |
| const deInt64 broadRejectDistanceSquared = broadRejectDistance * broadRejectDistance; |
| const bool crossProductOverflows = (crossProduct > floorSqrtMaxInt64 || crossProduct < -floorSqrtMaxInt64); |
| const deInt64 crossProductSquared = (crossProductOverflows) ? (0) : (crossProduct * crossProduct); // avoid overflow |
| const deInt64 lineLengthSquared = tcu::lengthSquared(u); |
| const bool limitValueCouldOverflow = ((64 - deClz64(lineLengthSquared)) + (64 - deClz64(broadRejectDistanceSquared))) > 63; |
| const deInt64 limitValue = (limitValueCouldOverflow) ? (0) : (lineLengthSquared * broadRejectDistanceSquared); // avoid overflow |
| |
| // only cross overflows |
| if (crossProductOverflows && !limitValueCouldOverflow) |
| return false; |
| |
| // both representable |
| if (!crossProductOverflows && !limitValueCouldOverflow) |
| { |
| if (crossProductSquared > limitValue) |
| return false; |
| } |
| } |
| |
| const struct DiamondBound |
| { |
| tcu::Vector<deInt64,2> p0; |
| tcu::Vector<deInt64,2> p1; |
| bool edgeInclusive; // would a point on the bound be inside of the region |
| } bounds[] = |
| { |
| { diamondCenter + tcu::Vector<deInt64,2>(0, -halfPixel), diamondCenter + tcu::Vector<deInt64,2>(-halfPixel, 0), false }, |
| { diamondCenter + tcu::Vector<deInt64,2>(-halfPixel, 0), diamondCenter + tcu::Vector<deInt64,2>(0, halfPixel), false }, |
| { diamondCenter + tcu::Vector<deInt64,2>(0, halfPixel), diamondCenter + tcu::Vector<deInt64,2>(halfPixel, 0), true }, |
| { diamondCenter + tcu::Vector<deInt64,2>(halfPixel, 0), diamondCenter + tcu::Vector<deInt64,2>(0, -halfPixel), true }, |
| }; |
| |
| const struct DiamondCorners |
| { |
| enum CORNER_EDGE_CASE_BEHAVIOR |
| { |
| CORNER_EDGE_CASE_NONE, // if the line intersects just a corner, no entering or exiting |
| CORNER_EDGE_CASE_HIT, // if the line intersects just a corner, entering and exit |
| CORNER_EDGE_CASE_HIT_FIRST_QUARTER, // if the line intersects just a corner and the line has either endpoint in (+X,-Y) direction (preturbing moves the line inside) |
| CORNER_EDGE_CASE_HIT_SECOND_QUARTER // if the line intersects just a corner and the line has either endpoint in (+X,+Y) direction (preturbing moves the line inside) |
| }; |
| enum CORNER_START_CASE_BEHAVIOR |
| { |
| CORNER_START_CASE_NONE, // the line starting point is outside, no exiting |
| CORNER_START_CASE_OUTSIDE, // exit, if line does not intersect the region (preturbing moves the start point inside) |
| CORNER_START_CASE_POSITIVE_Y_45, // exit, if line the angle of line vector and X-axis is in range (0, 45] in positive Y side. |
| CORNER_START_CASE_NEGATIVE_Y_45 // exit, if line the angle of line vector and X-axis is in range [0, 45] in negative Y side. |
| }; |
| enum CORNER_END_CASE_BEHAVIOR |
| { |
| CORNER_END_CASE_NONE, // end is inside, no exiting (preturbing moves the line end inside) |
| CORNER_END_CASE_DIRECTION, // exit, if line intersected the region (preturbing moves the line end outside) |
| CORNER_END_CASE_DIRECTION_AND_FIRST_QUARTER, // exit, if line intersected the region, or line originates from (+X,-Y) direction (preturbing moves the line end outside) |
| CORNER_END_CASE_DIRECTION_AND_SECOND_QUARTER // exit, if line intersected the region, or line originates from (+X,+Y) direction (preturbing moves the line end outside) |
| }; |
| |
| tcu::Vector<deInt64,2> dp; |
| bool pointInclusive; // would a point in this corner intersect with the region |
| CORNER_EDGE_CASE_BEHAVIOR lineBehavior; // would a line segment going through this corner intersect with the region |
| CORNER_START_CASE_BEHAVIOR startBehavior; // how the corner behaves if the start point at the corner |
| CORNER_END_CASE_BEHAVIOR endBehavior; // how the corner behaves if the end point at the corner |
| } corners[] = |
| { |
| { tcu::Vector<deInt64,2>(0, -halfPixel), false, DiamondCorners::CORNER_EDGE_CASE_HIT_SECOND_QUARTER, DiamondCorners::CORNER_START_CASE_POSITIVE_Y_45, DiamondCorners::CORNER_END_CASE_DIRECTION_AND_SECOND_QUARTER}, |
| { tcu::Vector<deInt64,2>(-halfPixel, 0), false, DiamondCorners::CORNER_EDGE_CASE_NONE, DiamondCorners::CORNER_START_CASE_NONE, DiamondCorners::CORNER_END_CASE_DIRECTION }, |
| { tcu::Vector<deInt64,2>(0, halfPixel), false, DiamondCorners::CORNER_EDGE_CASE_HIT_FIRST_QUARTER, DiamondCorners::CORNER_START_CASE_NEGATIVE_Y_45, DiamondCorners::CORNER_END_CASE_DIRECTION_AND_FIRST_QUARTER }, |
| { tcu::Vector<deInt64,2>(halfPixel, 0), true, DiamondCorners::CORNER_EDGE_CASE_HIT, DiamondCorners::CORNER_START_CASE_OUTSIDE, DiamondCorners::CORNER_END_CASE_NONE }, |
| }; |
| |
| // Corner cases at the corners |
| for (int ndx = 0; ndx < DE_LENGTH_OF_ARRAY(corners); ++ndx) |
| { |
| const tcu::Vector<deInt64,2> p = diamondCenter + corners[ndx].dp; |
| const bool intersectsAtCorner = LineRasterUtil::vertexOnLineSegment(p, line); |
| |
| if (!intersectsAtCorner) |
| continue; |
| |
| // line segment body intersects with the corner |
| if (p != line.m_v0 && p != line.m_v1) |
| { |
| if (corners[ndx].lineBehavior == DiamondCorners::CORNER_EDGE_CASE_HIT) |
| return true; |
| |
| // endpoint in (+X, -Y) (X or Y may be 0) direction <==> x*y <= 0 |
| if (corners[ndx].lineBehavior == DiamondCorners::CORNER_EDGE_CASE_HIT_FIRST_QUARTER && |
| (line.direction().x() * line.direction().y()) <= 0) |
| return true; |
| |
| // endpoint in (+X, +Y) (Y > 0) direction <==> x*y > 0 |
| if (corners[ndx].lineBehavior == DiamondCorners::CORNER_EDGE_CASE_HIT_SECOND_QUARTER && |
| (line.direction().x() * line.direction().y()) > 0) |
| return true; |
| } |
| |
| // line exits the area at the corner |
| if (lineInCornerAngleRange(line, corners[ndx].dp)) |
| { |
| const bool startIsInside = corners[ndx].pointInclusive || p != line.m_v0; |
| const bool endIsOutside = !corners[ndx].pointInclusive || p != line.m_v1; |
| |
| // starting point is inside the region and end endpoint is outside |
| if (startIsInside && endIsOutside) |
| return true; |
| } |
| |
| // line end is at the corner |
| if (p == line.m_v1) |
| { |
| if (corners[ndx].endBehavior == DiamondCorners::CORNER_END_CASE_DIRECTION || |
| corners[ndx].endBehavior == DiamondCorners::CORNER_END_CASE_DIRECTION_AND_FIRST_QUARTER || |
| corners[ndx].endBehavior == DiamondCorners::CORNER_END_CASE_DIRECTION_AND_SECOND_QUARTER) |
| { |
| // did the line intersect the region |
| if (lineInCornerAngleRange(line, corners[ndx].dp)) |
| return true; |
| } |
| |
| // due to the perturbed endpoint, lines at this the angle will cause and enter-exit pair |
| if (corners[ndx].endBehavior == DiamondCorners::CORNER_END_CASE_DIRECTION_AND_FIRST_QUARTER && |
| line.direction().x() < 0 && |
| line.direction().y() > 0) |
| return true; |
| if (corners[ndx].endBehavior == DiamondCorners::CORNER_END_CASE_DIRECTION_AND_SECOND_QUARTER && |
| line.direction().x() > 0 && |
| line.direction().y() > 0) |
| return true; |
| } |
| |
| // line start is at the corner |
| if (p == line.m_v0) |
| { |
| if (corners[ndx].startBehavior == DiamondCorners::CORNER_START_CASE_OUTSIDE) |
| { |
| // if the line is not going inside, it will exit |
| if (lineInCornerOutsideAngleRange(line, corners[ndx].dp)) |
| return true; |
| } |
| |
| // exit, if line the angle between line vector and X-axis is in range (0, 45] in positive Y side. |
| if (corners[ndx].startBehavior == DiamondCorners::CORNER_START_CASE_POSITIVE_Y_45 && |
| line.direction().x() > 0 && |
| line.direction().y() > 0 && |
| line.direction().y() <= line.direction().x()) |
| return true; |
| |
| // exit, if line the angle between line vector and X-axis is in range [0, 45] in negative Y side. |
| if (corners[ndx].startBehavior == DiamondCorners::CORNER_START_CASE_NEGATIVE_Y_45 && |
| line.direction().x() > 0 && |
| line.direction().y() <= 0 && |
| -line.direction().y() <= line.direction().x()) |
| return true; |
| } |
| } |
| |
| // Does the line intersect boundary at the left == exits the diamond |
| for (int ndx = 0; ndx < DE_LENGTH_OF_ARRAY(bounds); ++ndx) |
| { |
| const bool startVertexInside = LineRasterUtil::vertexOnLeftSideOfLine (line.m_v0, LineRasterUtil::SubpixelLineSegment(bounds[ndx].p0, bounds[ndx].p1)) || |
| (bounds[ndx].edgeInclusive && LineRasterUtil::vertexOnLine (line.m_v0, LineRasterUtil::SubpixelLineSegment(bounds[ndx].p0, bounds[ndx].p1))); |
| const bool endVertexInside = LineRasterUtil::vertexOnLeftSideOfLine (line.m_v1, LineRasterUtil::SubpixelLineSegment(bounds[ndx].p0, bounds[ndx].p1)) || |
| (bounds[ndx].edgeInclusive && LineRasterUtil::vertexOnLine (line.m_v1, LineRasterUtil::SubpixelLineSegment(bounds[ndx].p0, bounds[ndx].p1))); |
| |
| // start must be on inside this half space (left or at the inclusive boundary) |
| if (!startVertexInside) |
| continue; |
| |
| // end must be outside of this half-space (right or at non-inclusive boundary) |
| if (endVertexInside) |
| continue; |
| |
| // Does the line via v0 and v1 intersect the line segment p0-p1 |
| // <==> p0 and p1 are the different sides (LEFT, RIGHT) of the v0-v1 line. |
| // Corners are not allowed, they are checked already |
| LineRasterUtil::LINE_SIDE sideP0 = LineRasterUtil::getVertexSide(bounds[ndx].p0, line); |
| LineRasterUtil::LINE_SIDE sideP1 = LineRasterUtil::getVertexSide(bounds[ndx].p1, line); |
| |
| if (sideP0 != LineRasterUtil::LINE_SIDE_INTERSECT && |
| sideP1 != LineRasterUtil::LINE_SIDE_INTERSECT && |
| sideP0 != sideP1) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| } // LineRasterUtil |
| |
| TriangleRasterizer::TriangleRasterizer (const tcu::IVec4& viewport, const int numSamples, const RasterizationState& state) |
| : m_viewport (viewport) |
| , m_numSamples (numSamples) |
| , m_winding (state.winding) |
| , m_horizontalFill (state.horizontalFill) |
| , m_verticalFill (state.verticalFill) |
| , m_face (FACETYPE_LAST) |
| , m_viewportOrientation (state.viewportOrientation) |
| { |
| } |
| |
| /*--------------------------------------------------------------------*//*! |
| * \brief Initialize triangle rasterization |
| * \param v0 Screen-space coordinates (x, y, z) and 1/w for vertex 0. |
| * \param v1 Screen-space coordinates (x, y, z) and 1/w for vertex 1. |
| * \param v2 Screen-space coordinates (x, y, z) and 1/w for vertex 2. |
| *//*--------------------------------------------------------------------*/ |
| void TriangleRasterizer::init (const tcu::Vec4& v0, const tcu::Vec4& v1, const tcu::Vec4& v2) |
| { |
| m_v0 = v0; |
| m_v1 = v1; |
| m_v2 = v2; |
| |
| // Positions in fixed-point coordinates. |
| const deInt64 x0 = toSubpixelCoord(v0.x()); |
| const deInt64 y0 = toSubpixelCoord(v0.y()); |
| const deInt64 x1 = toSubpixelCoord(v1.x()); |
| const deInt64 y1 = toSubpixelCoord(v1.y()); |
| const deInt64 x2 = toSubpixelCoord(v2.x()); |
| const deInt64 y2 = toSubpixelCoord(v2.y()); |
| |
| // Initialize edge functions. |
| if (m_winding == WINDING_CCW) |
| { |
| initEdgeCCW(m_edge01, m_horizontalFill, m_verticalFill, x0, y0, x1, y1); |
| initEdgeCCW(m_edge12, m_horizontalFill, m_verticalFill, x1, y1, x2, y2); |
| initEdgeCCW(m_edge20, m_horizontalFill, m_verticalFill, x2, y2, x0, y0); |
| } |
| else |
| { |
| // Reverse edges |
| initEdgeCCW(m_edge01, m_horizontalFill, m_verticalFill, x1, y1, x0, y0); |
| initEdgeCCW(m_edge12, m_horizontalFill, m_verticalFill, x2, y2, x1, y1); |
| initEdgeCCW(m_edge20, m_horizontalFill, m_verticalFill, x0, y0, x2, y2); |
| } |
| |
| // Determine face. |
| const deInt64 s = evaluateEdge(m_edge01, x2, y2); |
| const bool positiveArea = (m_winding == WINDING_CCW) ? (s > 0) : (s < 0); |
| |
| if (m_viewportOrientation == VIEWPORTORIENTATION_UPPER_LEFT) |
| m_face = positiveArea ? FACETYPE_BACK : FACETYPE_FRONT; |
| else |
| m_face = positiveArea ? FACETYPE_FRONT : FACETYPE_BACK; |
| |
| if (!positiveArea) |
| { |
| // Reverse edges so that we can use CCW area tests & interpolation |
| reverseEdge(m_edge01); |
| reverseEdge(m_edge12); |
| reverseEdge(m_edge20); |
| } |
| |
| // Bounding box |
| const deInt64 xMin = de::min(de::min(x0, x1), x2); |
| const deInt64 xMax = de::max(de::max(x0, x1), x2); |
| const deInt64 yMin = de::min(de::min(y0, y1), y2); |
| const deInt64 yMax = de::max(de::max(y0, y1), y2); |
| |
| m_bboxMin.x() = floorSubpixelToPixelCoord (xMin, m_horizontalFill == FILL_LEFT); |
| m_bboxMin.y() = floorSubpixelToPixelCoord (yMin, m_verticalFill == FILL_BOTTOM); |
| m_bboxMax.x() = ceilSubpixelToPixelCoord (xMax, m_horizontalFill == FILL_RIGHT); |
| m_bboxMax.y() = ceilSubpixelToPixelCoord (yMax, m_verticalFill == FILL_TOP); |
| |
| // Clamp to viewport |
| const int wX0 = m_viewport.x(); |
| const int wY0 = m_viewport.y(); |
| const int wX1 = wX0 + m_viewport.z() - 1; |
| const int wY1 = wY0 + m_viewport.w() -1; |
| |
| m_bboxMin.x() = de::clamp(m_bboxMin.x(), wX0, wX1); |
| m_bboxMin.y() = de::clamp(m_bboxMin.y(), wY0, wY1); |
| m_bboxMax.x() = de::clamp(m_bboxMax.x(), wX0, wX1); |
| m_bboxMax.y() = de::clamp(m_bboxMax.y(), wY0, wY1); |
| |
| m_curPos = m_bboxMin; |
| } |
| |
| void TriangleRasterizer::rasterizeSingleSample (FragmentPacket* const fragmentPackets, float* const depthValues, const int maxFragmentPackets, int& numPacketsRasterized) |
| { |
| DE_ASSERT(maxFragmentPackets > 0); |
| |
| const deUint64 halfPixel = 1ll << (RASTERIZER_SUBPIXEL_BITS-1); |
| int packetNdx = 0; |
| |
| // For depth interpolation; given barycentrics A, B, C = (1 - A - B) |
| // we can reformulate the usual z = z0*A + z1*B + z2*C into more |
| // stable equation z = A*(z0 - z2) + B*(z1 - z2) + z2. |
| const float za = m_v0.z()-m_v2.z(); |
| const float zb = m_v1.z()-m_v2.z(); |
| const float zc = m_v2.z(); |
| |
| while (m_curPos.y() <= m_bboxMax.y() && packetNdx < maxFragmentPackets) |
| { |
| const int x0 = m_curPos.x(); |
| const int y0 = m_curPos.y(); |
| |
| // Subpixel coords |
| const deInt64 sx0 = toSubpixelCoord(x0) + halfPixel; |
| const deInt64 sx1 = toSubpixelCoord(x0+1) + halfPixel; |
| const deInt64 sy0 = toSubpixelCoord(y0) + halfPixel; |
| const deInt64 sy1 = toSubpixelCoord(y0+1) + halfPixel; |
| |
| const deInt64 sx[4] = { sx0, sx1, sx0, sx1 }; |
| const deInt64 sy[4] = { sy0, sy0, sy1, sy1 }; |
| |
| // Viewport test |
| const bool outX1 = x0+1 == m_viewport.x()+m_viewport.z(); |
| const bool outY1 = y0+1 == m_viewport.y()+m_viewport.w(); |
| |
| DE_ASSERT(x0 < m_viewport.x()+m_viewport.z()); |
| DE_ASSERT(y0 < m_viewport.y()+m_viewport.w()); |
| |
| // Edge values |
| tcu::Vector<deInt64, 4> e01; |
| tcu::Vector<deInt64, 4> e12; |
| tcu::Vector<deInt64, 4> e20; |
| |
| // Coverage |
| deUint64 coverage = 0; |
| |
| // Evaluate edge values |
| for (int i = 0; i < 4; i++) |
| { |
| e01[i] = evaluateEdge(m_edge01, sx[i], sy[i]); |
| e12[i] = evaluateEdge(m_edge12, sx[i], sy[i]); |
| e20[i] = evaluateEdge(m_edge20, sx[i], sy[i]); |
| } |
| |
| // Compute coverage mask |
| coverage = setCoverageValue(coverage, 1, 0, 0, 0, isInsideCCW(m_edge01, e01[0]) && isInsideCCW(m_edge12, e12[0]) && isInsideCCW(m_edge20, e20[0])); |
| coverage = setCoverageValue(coverage, 1, 1, 0, 0, !outX1 && isInsideCCW(m_edge01, e01[1]) && isInsideCCW(m_edge12, e12[1]) && isInsideCCW(m_edge20, e20[1])); |
| coverage = setCoverageValue(coverage, 1, 0, 1, 0, !outY1 && isInsideCCW(m_edge01, e01[2]) && isInsideCCW(m_edge12, e12[2]) && isInsideCCW(m_edge20, e20[2])); |
| coverage = setCoverageValue(coverage, 1, 1, 1, 0, !outX1 && !outY1 && isInsideCCW(m_edge01, e01[3]) && isInsideCCW(m_edge12, e12[3]) && isInsideCCW(m_edge20, e20[3])); |
| |
| // Advance to next location |
| m_curPos.x() += 2; |
| if (m_curPos.x() > m_bboxMax.x()) |
| { |
| m_curPos.y() += 2; |
| m_curPos.x() = m_bboxMin.x(); |
| } |
| |
| if (coverage == 0) |
| continue; // Discard. |
| |
| // Floating-point edge values for barycentrics etc. |
| const tcu::Vec4 e01f = e01.asFloat(); |
| const tcu::Vec4 e12f = e12.asFloat(); |
| const tcu::Vec4 e20f = e20.asFloat(); |
| |
| // Compute depth values. |
| if (depthValues) |
| { |
| const tcu::Vec4 edgeSum = e01f + e12f + e20f; |
| const tcu::Vec4 z0 = e12f / edgeSum; |
| const tcu::Vec4 z1 = e20f / edgeSum; |
| |
| depthValues[packetNdx*4+0] = z0[0]*za + z1[0]*zb + zc; |
| depthValues[packetNdx*4+1] = z0[1]*za + z1[1]*zb + zc; |
| depthValues[packetNdx*4+2] = z0[2]*za + z1[2]*zb + zc; |
| depthValues[packetNdx*4+3] = z0[3]*za + z1[3]*zb + zc; |
| } |
| |
| // Compute barycentrics and write out fragment packet |
| { |
| FragmentPacket& packet = fragmentPackets[packetNdx]; |
| |
| const tcu::Vec4 b0 = e12f * m_v0.w(); |
| const tcu::Vec4 b1 = e20f * m_v1.w(); |
| const tcu::Vec4 b2 = e01f * m_v2.w(); |
| const tcu::Vec4 bSum = b0 + b1 + b2; |
| |
| packet.position = tcu::IVec2(x0, y0); |
| packet.coverage = coverage; |
| packet.barycentric[0] = b0 / bSum; |
| packet.barycentric[1] = b1 / bSum; |
| packet.barycentric[2] = 1.0f - packet.barycentric[0] - packet.barycentric[1]; |
| |
| packetNdx += 1; |
| } |
| } |
| |
| DE_ASSERT(packetNdx <= maxFragmentPackets); |
| numPacketsRasterized = packetNdx; |
| } |
| |
| // Sample positions - ordered as (x, y) list. |
| |
| // \note Macros are used to eliminate function calls even in debug builds. |
| #define SAMPLE_POS_TO_SUBPIXEL_COORD(POS) \ |
| (deInt64)((POS) * (1<<RASTERIZER_SUBPIXEL_BITS) + 0.5f) |
| |
| #define SAMPLE_POS(X, Y) \ |
| SAMPLE_POS_TO_SUBPIXEL_COORD(X), SAMPLE_POS_TO_SUBPIXEL_COORD(Y) |
| |
| static const deInt64 s_samplePos2[] = |
| { |
| SAMPLE_POS(0.3f, 0.3f), |
| SAMPLE_POS(0.7f, 0.7f) |
| }; |
| |
| static const deInt64 s_samplePos4[] = |
| { |
| SAMPLE_POS(0.25f, 0.25f), |
| SAMPLE_POS(0.75f, 0.25f), |
| SAMPLE_POS(0.25f, 0.75f), |
| SAMPLE_POS(0.75f, 0.75f) |
| }; |
| DE_STATIC_ASSERT(DE_LENGTH_OF_ARRAY(s_samplePos4) == 4*2); |
| |
| static const deInt64 s_samplePos8[] = |
| { |
| SAMPLE_POS( 7.f/16.f, 9.f/16.f), |
| SAMPLE_POS( 9.f/16.f, 13.f/16.f), |
| SAMPLE_POS(11.f/16.f, 3.f/16.f), |
| SAMPLE_POS(13.f/16.f, 11.f/16.f), |
| SAMPLE_POS( 1.f/16.f, 7.f/16.f), |
| SAMPLE_POS( 5.f/16.f, 1.f/16.f), |
| SAMPLE_POS(15.f/16.f, 5.f/16.f), |
| SAMPLE_POS( 3.f/16.f, 15.f/16.f) |
| }; |
| DE_STATIC_ASSERT(DE_LENGTH_OF_ARRAY(s_samplePos8) == 8*2); |
| |
| static const deInt64 s_samplePos16[] = |
| { |
| SAMPLE_POS(1.f/8.f, 1.f/8.f), |
| SAMPLE_POS(3.f/8.f, 1.f/8.f), |
| SAMPLE_POS(5.f/8.f, 1.f/8.f), |
| SAMPLE_POS(7.f/8.f, 1.f/8.f), |
| SAMPLE_POS(1.f/8.f, 3.f/8.f), |
| SAMPLE_POS(3.f/8.f, 3.f/8.f), |
| SAMPLE_POS(5.f/8.f, 3.f/8.f), |
| SAMPLE_POS(7.f/8.f, 3.f/8.f), |
| SAMPLE_POS(1.f/8.f, 5.f/8.f), |
| SAMPLE_POS(3.f/8.f, 5.f/8.f), |
| SAMPLE_POS(5.f/8.f, 5.f/8.f), |
| SAMPLE_POS(7.f/8.f, 5.f/8.f), |
| SAMPLE_POS(1.f/8.f, 7.f/8.f), |
| SAMPLE_POS(3.f/8.f, 7.f/8.f), |
| SAMPLE_POS(5.f/8.f, 7.f/8.f), |
| SAMPLE_POS(7.f/8.f, 7.f/8.f) |
| }; |
| DE_STATIC_ASSERT(DE_LENGTH_OF_ARRAY(s_samplePos16) == 16*2); |
| |
| #undef SAMPLE_POS |
| #undef SAMPLE_POS_TO_SUBPIXEL_COORD |
| |
| template<int NumSamples> |
| void TriangleRasterizer::rasterizeMultiSample (FragmentPacket* const fragmentPackets, float* const depthValues, const int maxFragmentPackets, int& numPacketsRasterized) |
| { |
| DE_ASSERT(maxFragmentPackets > 0); |
| |
| const deInt64* samplePos = DE_NULL; |
| const deUint64 halfPixel = 1ll << (RASTERIZER_SUBPIXEL_BITS-1); |
| int packetNdx = 0; |
| |
| // For depth interpolation, see rasterizeSingleSample |
| const float za = m_v0.z()-m_v2.z(); |
| const float zb = m_v1.z()-m_v2.z(); |
| const float zc = m_v2.z(); |
| |
| switch (NumSamples) |
| { |
| case 2: samplePos = s_samplePos2; break; |
| case 4: samplePos = s_samplePos4; break; |
| case 8: samplePos = s_samplePos8; break; |
| case 16: samplePos = s_samplePos16; break; |
| default: |
| DE_ASSERT(false); |
| } |
| |
| while (m_curPos.y() <= m_bboxMax.y() && packetNdx < maxFragmentPackets) |
| { |
| const int x0 = m_curPos.x(); |
| const int y0 = m_curPos.y(); |
| |
| // Base subpixel coords |
| const deInt64 sx0 = toSubpixelCoord(x0); |
| const deInt64 sx1 = toSubpixelCoord(x0+1); |
| const deInt64 sy0 = toSubpixelCoord(y0); |
| const deInt64 sy1 = toSubpixelCoord(y0+1); |
| |
| const deInt64 sx[4] = { sx0, sx1, sx0, sx1 }; |
| const deInt64 sy[4] = { sy0, sy0, sy1, sy1 }; |
| |
| // Viewport test |
| const bool outX1 = x0+1 == m_viewport.x()+m_viewport.z(); |
| const bool outY1 = y0+1 == m_viewport.y()+m_viewport.w(); |
| |
| DE_ASSERT(x0 < m_viewport.x()+m_viewport.z()); |
| DE_ASSERT(y0 < m_viewport.y()+m_viewport.w()); |
| |
| // Edge values |
| tcu::Vector<deInt64, 4> e01[NumSamples]; |
| tcu::Vector<deInt64, 4> e12[NumSamples]; |
| tcu::Vector<deInt64, 4> e20[NumSamples]; |
| |
| // Coverage |
| deUint64 coverage = 0; |
| |
| // Evaluate edge values at sample positions |
| for (int sampleNdx = 0; sampleNdx < NumSamples; sampleNdx++) |
| { |
| const deInt64 ox = samplePos[sampleNdx*2 + 0]; |
| const deInt64 oy = samplePos[sampleNdx*2 + 1]; |
| |
| for (int fragNdx = 0; fragNdx < 4; fragNdx++) |
| { |
| e01[sampleNdx][fragNdx] = evaluateEdge(m_edge01, sx[fragNdx] + ox, sy[fragNdx] + oy); |
| e12[sampleNdx][fragNdx] = evaluateEdge(m_edge12, sx[fragNdx] + ox, sy[fragNdx] + oy); |
| e20[sampleNdx][fragNdx] = evaluateEdge(m_edge20, sx[fragNdx] + ox, sy[fragNdx] + oy); |
| } |
| } |
| |
| // Compute coverage mask |
| for (int sampleNdx = 0; sampleNdx < NumSamples; sampleNdx++) |
| { |
| coverage = setCoverageValue(coverage, NumSamples, 0, 0, sampleNdx, isInsideCCW(m_edge01, e01[sampleNdx][0]) && isInsideCCW(m_edge12, e12[sampleNdx][0]) && isInsideCCW(m_edge20, e20[sampleNdx][0])); |
| coverage = setCoverageValue(coverage, NumSamples, 1, 0, sampleNdx, !outX1 && isInsideCCW(m_edge01, e01[sampleNdx][1]) && isInsideCCW(m_edge12, e12[sampleNdx][1]) && isInsideCCW(m_edge20, e20[sampleNdx][1])); |
| coverage = setCoverageValue(coverage, NumSamples, 0, 1, sampleNdx, !outY1 && isInsideCCW(m_edge01, e01[sampleNdx][2]) && isInsideCCW(m_edge12, e12[sampleNdx][2]) && isInsideCCW(m_edge20, e20[sampleNdx][2])); |
| coverage = setCoverageValue(coverage, NumSamples, 1, 1, sampleNdx, !outX1 && !outY1 && isInsideCCW(m_edge01, e01[sampleNdx][3]) && isInsideCCW(m_edge12, e12[sampleNdx][3]) && isInsideCCW(m_edge20, e20[sampleNdx][3])); |
| } |
| |
| // Advance to next location |
| m_curPos.x() += 2; |
| if (m_curPos.x() > m_bboxMax.x()) |
| { |
| m_curPos.y() += 2; |
| m_curPos.x() = m_bboxMin.x(); |
| } |
| |
| if (coverage == 0) |
| continue; // Discard. |
| |
| // Compute depth values. |
| if (depthValues) |
| { |
| for (int sampleNdx = 0; sampleNdx < NumSamples; sampleNdx++) |
| { |
| // Floating-point edge values at sample coordinates. |
| const tcu::Vec4& e01f = e01[sampleNdx].asFloat(); |
| const tcu::Vec4& e12f = e12[sampleNdx].asFloat(); |
| const tcu::Vec4& e20f = e20[sampleNdx].asFloat(); |
| |
| const tcu::Vec4 edgeSum = e01f + e12f + e20f; |
| const tcu::Vec4 z0 = e12f / edgeSum; |
| const tcu::Vec4 z1 = e20f / edgeSum; |
| |
| depthValues[(packetNdx*4+0)*NumSamples + sampleNdx] = z0[0]*za + z1[0]*zb + zc; |
| depthValues[(packetNdx*4+1)*NumSamples + sampleNdx] = z0[1]*za + z1[1]*zb + zc; |
| depthValues[(packetNdx*4+2)*NumSamples + sampleNdx] = z0[2]*za + z1[2]*zb + zc; |
| depthValues[(packetNdx*4+3)*NumSamples + sampleNdx] = z0[3]*za + z1[3]*zb + zc; |
| } |
| } |
| |
| // Compute barycentrics and write out fragment packet |
| { |
| FragmentPacket& packet = fragmentPackets[packetNdx]; |
| |
| // Floating-point edge values at pixel center. |
| tcu::Vec4 e01f; |
| tcu::Vec4 e12f; |
| tcu::Vec4 e20f; |
| |
| for (int i = 0; i < 4; i++) |
| { |
| e01f[i] = float(evaluateEdge(m_edge01, sx[i] + halfPixel, sy[i] + halfPixel)); |
| e12f[i] = float(evaluateEdge(m_edge12, sx[i] + halfPixel, sy[i] + halfPixel)); |
| e20f[i] = float(evaluateEdge(m_edge20, sx[i] + halfPixel, sy[i] + halfPixel)); |
| } |
| |
| // Barycentrics & scale. |
| const tcu::Vec4 b0 = e12f * m_v0.w(); |
| const tcu::Vec4 b1 = e20f * m_v1.w(); |
| const tcu::Vec4 b2 = e01f * m_v2.w(); |
| const tcu::Vec4 bSum = b0 + b1 + b2; |
| |
| packet.position = tcu::IVec2(x0, y0); |
| packet.coverage = coverage; |
| packet.barycentric[0] = b0 / bSum; |
| packet.barycentric[1] = b1 / bSum; |
| packet.barycentric[2] = 1.0f - packet.barycentric[0] - packet.barycentric[1]; |
| |
| packetNdx += 1; |
| } |
| } |
| |
| DE_ASSERT(packetNdx <= maxFragmentPackets); |
| numPacketsRasterized = packetNdx; |
| } |
| |
| void TriangleRasterizer::rasterize (FragmentPacket* const fragmentPackets, float* const depthValues, const int maxFragmentPackets, int& numPacketsRasterized) |
| { |
| DE_ASSERT(maxFragmentPackets > 0); |
| |
| switch (m_numSamples) |
| { |
| case 1: rasterizeSingleSample (fragmentPackets, depthValues, maxFragmentPackets, numPacketsRasterized); break; |
| case 2: rasterizeMultiSample<2> (fragmentPackets, depthValues, maxFragmentPackets, numPacketsRasterized); break; |
| case 4: rasterizeMultiSample<4> (fragmentPackets, depthValues, maxFragmentPackets, numPacketsRasterized); break; |
| case 8: rasterizeMultiSample<8> (fragmentPackets, depthValues, maxFragmentPackets, numPacketsRasterized); break; |
| case 16: rasterizeMultiSample<16> (fragmentPackets, depthValues, maxFragmentPackets, numPacketsRasterized); break; |
| default: |
| DE_ASSERT(DE_FALSE); |
| } |
| } |
| |
| SingleSampleLineRasterizer::SingleSampleLineRasterizer (const tcu::IVec4& viewport) |
| : m_viewport (viewport) |
| , m_curRowFragment (0) |
| , m_lineWidth (0.0f) |
| { |
| } |
| |
| SingleSampleLineRasterizer::~SingleSampleLineRasterizer (void) |
| { |
| } |
| |
| void SingleSampleLineRasterizer::init (const tcu::Vec4& v0, const tcu::Vec4& v1, float lineWidth) |
| { |
| const bool isXMajor = de::abs((v1 - v0).x()) >= de::abs((v1 - v0).y()); |
| |
| // Bounding box \note: with wide lines, the line is actually moved as in the spec |
| const deInt32 lineWidthPixels = (lineWidth > 1.0f) ? (deInt32)floor(lineWidth + 0.5f) : 1; |
| |
| const tcu::Vector<deInt64,2> widthOffset = (isXMajor ? tcu::Vector<deInt64,2>(0, -1) : tcu::Vector<deInt64,2>(-1, 0)) * (toSubpixelCoord(lineWidthPixels - 1) / 2); |
| |
| const deInt64 x0 = toSubpixelCoord(v0.x()) + widthOffset.x(); |
| const deInt64 y0 = toSubpixelCoord(v0.y()) + widthOffset.y(); |
| const deInt64 x1 = toSubpixelCoord(v1.x()) + widthOffset.x(); |
| const deInt64 y1 = toSubpixelCoord(v1.y()) + widthOffset.y(); |
| |
| // line endpoints might be perturbed, add some margin |
| const deInt64 xMin = de::min(x0, x1) - toSubpixelCoord(1); |
| const deInt64 xMax = de::max(x0, x1) + toSubpixelCoord(1); |
| const deInt64 yMin = de::min(y0, y1) - toSubpixelCoord(1); |
| const deInt64 yMax = de::max(y0, y1) + toSubpixelCoord(1); |
| |
| // Remove invisible area |
| |
| if (isXMajor) |
| { |
| // clamp to viewport in major direction |
| m_bboxMin.x() = de::clamp(floorSubpixelToPixelCoord(xMin, true), m_viewport.x(), m_viewport.x() + m_viewport.z() - 1); |
| m_bboxMax.x() = de::clamp(ceilSubpixelToPixelCoord (xMax, true), m_viewport.x(), m_viewport.x() + m_viewport.z() - 1); |
| |
| // clamp to padded viewport in minor direction (wide lines might bleed over viewport in minor direction) |
| m_bboxMin.y() = de::clamp(floorSubpixelToPixelCoord(yMin, true), m_viewport.y() - lineWidthPixels, m_viewport.y() + m_viewport.w() - 1); |
| m_bboxMax.y() = de::clamp(ceilSubpixelToPixelCoord (yMax, true), m_viewport.y() - lineWidthPixels, m_viewport.y() + m_viewport.w() - 1); |
| } |
| else |
| { |
| // clamp to viewport in major direction |
| m_bboxMin.y() = de::clamp(floorSubpixelToPixelCoord(yMin, true), m_viewport.y(), m_viewport.y() + m_viewport.w() - 1); |
| m_bboxMax.y() = de::clamp(ceilSubpixelToPixelCoord (yMax, true), m_viewport.y(), m_viewport.y() + m_viewport.w() - 1); |
| |
| // clamp to padded viewport in minor direction (wide lines might bleed over viewport in minor direction) |
| m_bboxMin.x() = de::clamp(floorSubpixelToPixelCoord(xMin, true), m_viewport.x() - lineWidthPixels, m_viewport.x() + m_viewport.z() - 1); |
| m_bboxMax.x() = de::clamp(ceilSubpixelToPixelCoord (xMax, true), m_viewport.x() - lineWidthPixels, m_viewport.x() + m_viewport.z() - 1); |
| } |
| |
| m_lineWidth = lineWidth; |
| |
| m_v0 = v0; |
| m_v1 = v1; |
| |
| m_curPos = m_bboxMin; |
| m_curRowFragment = 0; |
| } |
| |
| void SingleSampleLineRasterizer::rasterize (FragmentPacket* const fragmentPackets, float* const depthValues, const int maxFragmentPackets, int& numPacketsRasterized) |
| { |
| DE_ASSERT(maxFragmentPackets > 0); |
| |
| const deInt64 halfPixel = 1ll << (RASTERIZER_SUBPIXEL_BITS-1); |
| const deInt32 lineWidth = (m_lineWidth > 1.0f) ? deFloorFloatToInt32(m_lineWidth + 0.5f) : 1; |
| const bool isXMajor = de::abs((m_v1 - m_v0).x()) >= de::abs((m_v1 - m_v0).y()); |
| const tcu::IVec2 minorDirection = (isXMajor) ? (tcu::IVec2(0, 1)) : (tcu::IVec2(1, 0)); |
| const int minViewportLimit = (isXMajor) ? (m_viewport.y()) : (m_viewport.x()); |
| const int maxViewportLimit = (isXMajor) ? (m_viewport.y() + m_viewport.w()) : (m_viewport.x() + m_viewport.z()); |
| const tcu::Vector<deInt64,2> widthOffset = -minorDirection.cast<deInt64>() * (toSubpixelCoord(lineWidth - 1) / 2); |
| const tcu::Vector<deInt64,2> pa = LineRasterUtil::toSubpixelVector(m_v0.xy()) + widthOffset; |
| const tcu::Vector<deInt64,2> pb = LineRasterUtil::toSubpixelVector(m_v1.xy()) + widthOffset; |
| const LineRasterUtil::SubpixelLineSegment line = LineRasterUtil::SubpixelLineSegment(pa, pb); |
| |
| int packetNdx = 0; |
| |
| while (m_curPos.y() <= m_bboxMax.y() && packetNdx < maxFragmentPackets) |
| { |
| const tcu::Vector<deInt64,2> diamondPosition = LineRasterUtil::toSubpixelVector(m_curPos) + tcu::Vector<deInt64,2>(halfPixel,halfPixel); |
| |
| // Should current fragment be drawn? == does the segment exit this diamond? |
| if (LineRasterUtil::doesLineSegmentExitDiamond(line, diamondPosition)) |
| { |
| const tcu::Vector<deInt64,2> pr = diamondPosition; |
| const float t = tcu::dot((pr - pa).asFloat(), (pb - pa).asFloat()) / tcu::lengthSquared(pb.asFloat() - pa.asFloat()); |
| |
| // Rasterize on only fragments that are would end up in the viewport (i.e. visible) |
| const int fragmentLocation = (isXMajor) ? (m_curPos.y()) : (m_curPos.x()); |
| const int rowFragBegin = de::max(0, minViewportLimit - fragmentLocation); |
| const int rowFragEnd = de::min(maxViewportLimit - fragmentLocation, lineWidth); |
| |
| // Wide lines require multiple fragments. |
| for (; rowFragBegin + m_curRowFragment < rowFragEnd; m_curRowFragment++) |
| { |
| const int replicationId = rowFragBegin + m_curRowFragment; |
| const tcu::IVec2 fragmentPos = m_curPos + minorDirection * replicationId; |
| |
| // We only rasterize visible area |
| DE_ASSERT(LineRasterUtil::inViewport(fragmentPos, m_viewport)); |
| |
| // Compute depth values. |
| if (depthValues) |
| { |
| const float za = m_v0.z(); |
| const float zb = m_v1.z(); |
| |
| depthValues[packetNdx*4+0] = (1 - t) * za + t * zb; |
| depthValues[packetNdx*4+1] = 0; |
| depthValues[packetNdx*4+2] = 0; |
| depthValues[packetNdx*4+3] = 0; |
| } |
| |
| { |
| // output this fragment |
| // \note In order to make consistent output with multisampled line rasterization, output "barycentric" coordinates |
| FragmentPacket& packet = fragmentPackets[packetNdx]; |
| |
| const tcu::Vec4 b0 = tcu::Vec4(1 - t); |
| const tcu::Vec4 b1 = tcu::Vec4(t); |
| const tcu::Vec4 ooSum = 1.0f / (b0 + b1); |
| |
| packet.position = fragmentPos; |
| packet.coverage = getCoverageBit(1, 0, 0, 0); |
| packet.barycentric[0] = b0 * ooSum; |
| packet.barycentric[1] = b1 * ooSum; |
| packet.barycentric[2] = tcu::Vec4(0.0f); |
| |
| packetNdx += 1; |
| } |
| |
| if (packetNdx == maxFragmentPackets) |
| { |
| m_curRowFragment++; // don't redraw this fragment again next time |
| numPacketsRasterized = packetNdx; |
| return; |
| } |
| } |
| |
| m_curRowFragment = 0; |
| } |
| |
| ++m_curPos.x(); |
| if (m_curPos.x() > m_bboxMax.x()) |
| { |
| ++m_curPos.y(); |
| m_curPos.x() = m_bboxMin.x(); |
| } |
| } |
| |
| DE_ASSERT(packetNdx <= maxFragmentPackets); |
| numPacketsRasterized = packetNdx; |
| } |
| |
| MultiSampleLineRasterizer::MultiSampleLineRasterizer (const int numSamples, const tcu::IVec4& viewport) |
| : m_numSamples (numSamples) |
| , m_triangleRasterizer0 (viewport, m_numSamples, RasterizationState()) |
| , m_triangleRasterizer1 (viewport, m_numSamples, RasterizationState()) |
| { |
| } |
| |
| MultiSampleLineRasterizer::~MultiSampleLineRasterizer () |
| { |
| } |
| |
| void MultiSampleLineRasterizer::init (const tcu::Vec4& v0, const tcu::Vec4& v1, float lineWidth) |
| { |
| // allow creation of single sampled rasterizer objects but do not allow using them |
| DE_ASSERT(m_numSamples > 1); |
| |
| const tcu::Vec2 lineVec = tcu::Vec2(tcu::Vec4(v1).xy()) - tcu::Vec2(tcu::Vec4(v0).xy()); |
| const tcu::Vec2 normal2 = tcu::normalize(tcu::Vec2(-lineVec[1], lineVec[0])); |
| const tcu::Vec4 normal4 = tcu::Vec4(normal2.x(), normal2.y(), 0, 0); |
| const float offset = lineWidth / 2.0f; |
| |
| const tcu::Vec4 p0 = v0 + normal4 * offset; |
| const tcu::Vec4 p1 = v0 - normal4 * offset; |
| const tcu::Vec4 p2 = v1 - normal4 * offset; |
| const tcu::Vec4 p3 = v1 + normal4 * offset; |
| |
| // Edge 0 -> 1 is always along the line and edge 1 -> 2 is in 90 degree angle to the line |
| m_triangleRasterizer0.init(p0, p3, p2); |
| m_triangleRasterizer1.init(p2, p1, p0); |
| } |
| |
| void MultiSampleLineRasterizer::rasterize (FragmentPacket* const fragmentPackets, float* const depthValues, const int maxFragmentPackets, int& numPacketsRasterized) |
| { |
| DE_ASSERT(maxFragmentPackets > 0); |
| |
| m_triangleRasterizer0.rasterize(fragmentPackets, depthValues, maxFragmentPackets, numPacketsRasterized); |
| |
| // Remove 3rd barycentric value and rebalance. Lines do not have non-zero barycentric at index 2 |
| for (int packNdx = 0; packNdx < numPacketsRasterized; ++packNdx) |
| for (int fragNdx = 0; fragNdx < 4; fragNdx++) |
| { |
| float removedValue = fragmentPackets[packNdx].barycentric[2][fragNdx]; |
| fragmentPackets[packNdx].barycentric[2][fragNdx] = 0.0f; |
| fragmentPackets[packNdx].barycentric[1][fragNdx] += removedValue; |
| } |
| |
| // rasterizer 0 filled the whole buffer? |
| if (numPacketsRasterized == maxFragmentPackets) |
| return; |
| |
| { |
| FragmentPacket* const nextFragmentPackets = fragmentPackets + numPacketsRasterized; |
| float* nextDepthValues = (depthValues) ? (depthValues+4*numPacketsRasterized*m_numSamples) : (DE_NULL); |
| int numPacketsRasterized2 = 0; |
| |
| m_triangleRasterizer1.rasterize(nextFragmentPackets, nextDepthValues, maxFragmentPackets - numPacketsRasterized, numPacketsRasterized2); |
| |
| numPacketsRasterized += numPacketsRasterized2; |
| |
| // Fix swapped barycentrics in the second triangle |
| for (int packNdx = 0; packNdx < numPacketsRasterized2; ++packNdx) |
| for (int fragNdx = 0; fragNdx < 4; fragNdx++) |
| { |
| float removedValue = nextFragmentPackets[packNdx].barycentric[2][fragNdx]; |
| nextFragmentPackets[packNdx].barycentric[2][fragNdx] = 0.0f; |
| nextFragmentPackets[packNdx].barycentric[1][fragNdx] += removedValue; |
| |
| // edge has reversed direction |
| std::swap(nextFragmentPackets[packNdx].barycentric[0][fragNdx], nextFragmentPackets[packNdx].barycentric[1][fragNdx]); |
| } |
| } |
| } |
| |
| LineExitDiamondGenerator::LineExitDiamondGenerator (void) |
| { |
| } |
| |
| LineExitDiamondGenerator::~LineExitDiamondGenerator (void) |
| { |
| } |
| |
| void LineExitDiamondGenerator::init (const tcu::Vec4& v0, const tcu::Vec4& v1) |
| { |
| const deInt64 x0 = toSubpixelCoord(v0.x()); |
| const deInt64 y0 = toSubpixelCoord(v0.y()); |
| const deInt64 x1 = toSubpixelCoord(v1.x()); |
| const deInt64 y1 = toSubpixelCoord(v1.y()); |
| |
| // line endpoints might be perturbed, add some margin |
| const deInt64 xMin = de::min(x0, x1) - toSubpixelCoord(1); |
| const deInt64 xMax = de::max(x0, x1) + toSubpixelCoord(1); |
| const deInt64 yMin = de::min(y0, y1) - toSubpixelCoord(1); |
| const deInt64 yMax = de::max(y0, y1) + toSubpixelCoord(1); |
| |
| m_bboxMin.x() = floorSubpixelToPixelCoord(xMin, true); |
| m_bboxMin.y() = floorSubpixelToPixelCoord(yMin, true); |
| m_bboxMax.x() = ceilSubpixelToPixelCoord (xMax, true); |
| m_bboxMax.y() = ceilSubpixelToPixelCoord (yMax, true); |
| |
| m_v0 = v0; |
| m_v1 = v1; |
| |
| m_curPos = m_bboxMin; |
| } |
| |
| void LineExitDiamondGenerator::rasterize (LineExitDiamond* const lineDiamonds, const int maxDiamonds, int& numWritten) |
| { |
| DE_ASSERT(maxDiamonds > 0); |
| |
| const deInt64 halfPixel = 1ll << (RASTERIZER_SUBPIXEL_BITS-1); |
| const tcu::Vector<deInt64,2> pa = LineRasterUtil::toSubpixelVector(m_v0.xy()); |
| const tcu::Vector<deInt64,2> pb = LineRasterUtil::toSubpixelVector(m_v1.xy()); |
| const LineRasterUtil::SubpixelLineSegment line = LineRasterUtil::SubpixelLineSegment(pa, pb); |
| |
| int diamondNdx = 0; |
| |
| while (m_curPos.y() <= m_bboxMax.y() && diamondNdx < maxDiamonds) |
| { |
| const tcu::Vector<deInt64,2> diamondPosition = LineRasterUtil::toSubpixelVector(m_curPos) + tcu::Vector<deInt64,2>(halfPixel,halfPixel); |
| |
| if (LineRasterUtil::doesLineSegmentExitDiamond(line, diamondPosition)) |
| { |
| LineExitDiamond& packet = lineDiamonds[diamondNdx]; |
| packet.position = m_curPos; |
| ++diamondNdx; |
| } |
| |
| ++m_curPos.x(); |
| if (m_curPos.x() > m_bboxMax.x()) |
| { |
| ++m_curPos.y(); |
| m_curPos.x() = m_bboxMin.x(); |
| } |
| } |
| |
| DE_ASSERT(diamondNdx <= maxDiamonds); |
| numWritten = diamondNdx; |
| } |
| |
| } // rr |