| |
| //g++-4.4 -DNOMTL -Wl,-rpath /usr/local/lib/oski -L /usr/local/lib/oski/ -l oski -l oski_util -l oski_util_Tid -DOSKI -I ~/Coding/LinearAlgebra/mtl4/ spmv.cpp -I .. -O2 -DNDEBUG -lrt -lm -l oski_mat_CSC_Tid -loskilt && ./a.out r200000 c200000 n100 t1 p1 |
| |
| #define SCALAR double |
| |
| #include <iostream> |
| #include <algorithm> |
| #include "BenchTimer.h" |
| #include "BenchSparseUtil.h" |
| |
| #define SPMV_BENCH(CODE) BENCH(t,tries,repeats,CODE); |
| |
| // #ifdef MKL |
| // |
| // #include "mkl_types.h" |
| // #include "mkl_spblas.h" |
| // |
| // template<typename Lhs,typename Rhs,typename Res> |
| // void mkl_multiply(const Lhs& lhs, const Rhs& rhs, Res& res) |
| // { |
| // char n = 'N'; |
| // float alpha = 1; |
| // char matdescra[6]; |
| // matdescra[0] = 'G'; |
| // matdescra[1] = 0; |
| // matdescra[2] = 0; |
| // matdescra[3] = 'C'; |
| // mkl_scscmm(&n, lhs.rows(), rhs.cols(), lhs.cols(), &alpha, matdescra, |
| // lhs._valuePtr(), lhs._innerIndexPtr(), lhs.outerIndexPtr(), |
| // pntre, b, &ldb, &beta, c, &ldc); |
| // // mkl_somatcopy('C', 'T', lhs.rows(), lhs.cols(), 1, |
| // // lhs._valuePtr(), lhs.rows(), DST, dst_stride); |
| // } |
| // |
| // #endif |
| |
| int main(int argc, char *argv[]) |
| { |
| int size = 10000; |
| int rows = size; |
| int cols = size; |
| int nnzPerCol = 40; |
| int tries = 2; |
| int repeats = 2; |
| |
| bool need_help = false; |
| for(int i = 1; i < argc; i++) |
| { |
| if(argv[i][0] == 'r') |
| { |
| rows = atoi(argv[i]+1); |
| } |
| else if(argv[i][0] == 'c') |
| { |
| cols = atoi(argv[i]+1); |
| } |
| else if(argv[i][0] == 'n') |
| { |
| nnzPerCol = atoi(argv[i]+1); |
| } |
| else if(argv[i][0] == 't') |
| { |
| tries = atoi(argv[i]+1); |
| } |
| else if(argv[i][0] == 'p') |
| { |
| repeats = atoi(argv[i]+1); |
| } |
| else |
| { |
| need_help = true; |
| } |
| } |
| if(need_help) |
| { |
| std::cout << argv[0] << " r<nb rows> c<nb columns> n<non zeros per column> t<nb tries> p<nb repeats>\n"; |
| return 1; |
| } |
| |
| std::cout << "SpMV " << rows << " x " << cols << " with " << nnzPerCol << " non zeros per column. (" << repeats << " repeats, and " << tries << " tries)\n\n"; |
| |
| EigenSparseMatrix sm(rows,cols); |
| DenseVector dv(cols), res(rows); |
| dv.setRandom(); |
| |
| BenchTimer t; |
| while (nnzPerCol>=4) |
| { |
| std::cout << "nnz: " << nnzPerCol << "\n"; |
| sm.setZero(); |
| fillMatrix2(nnzPerCol, rows, cols, sm); |
| |
| // dense matrices |
| #ifdef DENSEMATRIX |
| { |
| DenseMatrix dm(rows,cols), (rows,cols); |
| eiToDense(sm, dm); |
| |
| SPMV_BENCH(res = dm * sm); |
| std::cout << "Dense " << t.value()/repeats << "\t"; |
| |
| SPMV_BENCH(res = dm.transpose() * sm); |
| std::cout << t.value()/repeats << endl; |
| } |
| #endif |
| |
| // eigen sparse matrices |
| { |
| SPMV_BENCH(res.noalias() += sm * dv; ) |
| std::cout << "Eigen " << t.value()/repeats << "\t"; |
| |
| SPMV_BENCH(res.noalias() += sm.transpose() * dv; ) |
| std::cout << t.value()/repeats << endl; |
| } |
| |
| // CSparse |
| #ifdef CSPARSE |
| { |
| std::cout << "CSparse \n"; |
| cs *csm; |
| eiToCSparse(sm, csm); |
| |
| // BENCH(); |
| // timer.stop(); |
| // std::cout << " a * b:\t" << timer.value() << endl; |
| |
| // BENCH( { m3 = cs_sorted_multiply2(m1, m2); cs_spfree(m3); } ); |
| // std::cout << " a * b:\t" << timer.value() << endl; |
| } |
| #endif |
| |
| #ifdef OSKI |
| { |
| oski_matrix_t om; |
| oski_vecview_t ov, ores; |
| oski_Init(); |
| om = oski_CreateMatCSC(sm._outerIndexPtr(), sm._innerIndexPtr(), sm._valuePtr(), rows, cols, |
| SHARE_INPUTMAT, 1, INDEX_ZERO_BASED); |
| ov = oski_CreateVecView(dv.data(), cols, STRIDE_UNIT); |
| ores = oski_CreateVecView(res.data(), rows, STRIDE_UNIT); |
| |
| SPMV_BENCH( oski_MatMult(om, OP_NORMAL, 1, ov, 0, ores) ); |
| std::cout << "OSKI " << t.value()/repeats << "\t"; |
| |
| SPMV_BENCH( oski_MatMult(om, OP_TRANS, 1, ov, 0, ores) ); |
| std::cout << t.value()/repeats << "\n"; |
| |
| // tune |
| t.reset(); |
| t.start(); |
| oski_SetHintMatMult(om, OP_NORMAL, 1.0, SYMBOLIC_VEC, 0.0, SYMBOLIC_VEC, ALWAYS_TUNE_AGGRESSIVELY); |
| oski_TuneMat(om); |
| t.stop(); |
| double tuning = t.value(); |
| |
| SPMV_BENCH( oski_MatMult(om, OP_NORMAL, 1, ov, 0, ores) ); |
| std::cout << "OSKI tuned " << t.value()/repeats << "\t"; |
| |
| SPMV_BENCH( oski_MatMult(om, OP_TRANS, 1, ov, 0, ores) ); |
| std::cout << t.value()/repeats << "\t(" << tuning << ")\n"; |
| |
| |
| oski_DestroyMat(om); |
| oski_DestroyVecView(ov); |
| oski_DestroyVecView(ores); |
| oski_Close(); |
| } |
| #endif |
| |
| #ifndef NOUBLAS |
| { |
| using namespace boost::numeric; |
| UblasMatrix um(rows,cols); |
| eiToUblas(sm, um); |
| |
| boost::numeric::ublas::vector<Scalar> uv(cols), ures(rows); |
| Map<Matrix<Scalar,Dynamic,1> >(&uv[0], cols) = dv; |
| Map<Matrix<Scalar,Dynamic,1> >(&ures[0], rows) = res; |
| |
| SPMV_BENCH(ublas::axpy_prod(um, uv, ures, true)); |
| std::cout << "ublas " << t.value()/repeats << "\t"; |
| |
| SPMV_BENCH(ublas::axpy_prod(boost::numeric::ublas::trans(um), uv, ures, true)); |
| std::cout << t.value()/repeats << endl; |
| } |
| #endif |
| |
| // GMM++ |
| #ifndef NOGMM |
| { |
| GmmSparse gm(rows,cols); |
| eiToGmm(sm, gm); |
| |
| std::vector<Scalar> gv(cols), gres(rows); |
| Map<Matrix<Scalar,Dynamic,1> >(&gv[0], cols) = dv; |
| Map<Matrix<Scalar,Dynamic,1> >(&gres[0], rows) = res; |
| |
| SPMV_BENCH(gmm::mult(gm, gv, gres)); |
| std::cout << "GMM++ " << t.value()/repeats << "\t"; |
| |
| SPMV_BENCH(gmm::mult(gmm::transposed(gm), gv, gres)); |
| std::cout << t.value()/repeats << endl; |
| } |
| #endif |
| |
| // MTL4 |
| #ifndef NOMTL |
| { |
| MtlSparse mm(rows,cols); |
| eiToMtl(sm, mm); |
| mtl::dense_vector<Scalar> mv(cols, 1.0); |
| mtl::dense_vector<Scalar> mres(rows, 1.0); |
| |
| SPMV_BENCH(mres = mm * mv); |
| std::cout << "MTL4 " << t.value()/repeats << "\t"; |
| |
| SPMV_BENCH(mres = trans(mm) * mv); |
| std::cout << t.value()/repeats << endl; |
| } |
| #endif |
| |
| std::cout << "\n"; |
| |
| if(nnzPerCol==1) |
| break; |
| nnzPerCol -= nnzPerCol/2; |
| } |
| |
| return 0; |
| } |
| |
| |
| |