| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2010 Manuel Yguel <manuel.yguel@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| #include <unsupported/Eigen/Polynomials> |
| #include <iostream> |
| #include <algorithm> |
| |
| using namespace std; |
| |
| namespace Eigen { |
| namespace internal { |
| template<int Size> |
| struct increment_if_fixed_size |
| { |
| enum { |
| ret = (Size == Dynamic) ? Dynamic : Size+1 |
| }; |
| }; |
| } |
| } |
| |
| |
| template<int Deg, typename POLYNOMIAL, typename SOLVER> |
| bool aux_evalSolver( const POLYNOMIAL& pols, SOLVER& psolve ) |
| { |
| typedef typename POLYNOMIAL::Index Index; |
| typedef typename POLYNOMIAL::Scalar Scalar; |
| |
| typedef typename SOLVER::RootsType RootsType; |
| typedef Matrix<Scalar,Deg,1> EvalRootsType; |
| |
| const Index deg = pols.size()-1; |
| |
| // Test template constructor from coefficient vector |
| SOLVER solve_constr (pols); |
| |
| psolve.compute( pols ); |
| const RootsType& roots( psolve.roots() ); |
| EvalRootsType evr( deg ); |
| for( int i=0; i<roots.size(); ++i ){ |
| evr[i] = std::abs( poly_eval( pols, roots[i] ) ); } |
| |
| bool evalToZero = evr.isZero( test_precision<Scalar>() ); |
| if( !evalToZero ) |
| { |
| cerr << "WRONG root: " << endl; |
| cerr << "Polynomial: " << pols.transpose() << endl; |
| cerr << "Roots found: " << roots.transpose() << endl; |
| cerr << "Abs value of the polynomial at the roots: " << evr.transpose() << endl; |
| cerr << endl; |
| } |
| |
| std::vector<Scalar> rootModuli( roots.size() ); |
| Map< EvalRootsType > aux( &rootModuli[0], roots.size() ); |
| aux = roots.array().abs(); |
| std::sort( rootModuli.begin(), rootModuli.end() ); |
| bool distinctModuli=true; |
| for( size_t i=1; i<rootModuli.size() && distinctModuli; ++i ) |
| { |
| if( internal::isApprox( rootModuli[i], rootModuli[i-1] ) ){ |
| distinctModuli = false; } |
| } |
| VERIFY( evalToZero || !distinctModuli ); |
| |
| return distinctModuli; |
| } |
| |
| |
| |
| |
| |
| |
| |
| template<int Deg, typename POLYNOMIAL> |
| void evalSolver( const POLYNOMIAL& pols ) |
| { |
| typedef typename POLYNOMIAL::Scalar Scalar; |
| |
| typedef PolynomialSolver<Scalar, Deg > PolynomialSolverType; |
| |
| PolynomialSolverType psolve; |
| aux_evalSolver<Deg, POLYNOMIAL, PolynomialSolverType>( pols, psolve ); |
| } |
| |
| |
| |
| |
| template< int Deg, typename POLYNOMIAL, typename ROOTS, typename REAL_ROOTS > |
| void evalSolverSugarFunction( const POLYNOMIAL& pols, const ROOTS& roots, const REAL_ROOTS& real_roots ) |
| { |
| using std::sqrt; |
| typedef typename POLYNOMIAL::Scalar Scalar; |
| |
| typedef PolynomialSolver<Scalar, Deg > PolynomialSolverType; |
| |
| PolynomialSolverType psolve; |
| if( aux_evalSolver<Deg, POLYNOMIAL, PolynomialSolverType>( pols, psolve ) ) |
| { |
| //It is supposed that |
| // 1) the roots found are correct |
| // 2) the roots have distinct moduli |
| |
| typedef typename POLYNOMIAL::Scalar Scalar; |
| typedef typename REAL_ROOTS::Scalar Real; |
| |
| //Test realRoots |
| std::vector< Real > calc_realRoots; |
| psolve.realRoots( calc_realRoots ); |
| VERIFY( calc_realRoots.size() == (size_t)real_roots.size() ); |
| |
| const Scalar psPrec = sqrt( test_precision<Scalar>() ); |
| |
| for( size_t i=0; i<calc_realRoots.size(); ++i ) |
| { |
| bool found = false; |
| for( size_t j=0; j<calc_realRoots.size()&& !found; ++j ) |
| { |
| if( internal::isApprox( calc_realRoots[i], real_roots[j], psPrec ) ){ |
| found = true; } |
| } |
| VERIFY( found ); |
| } |
| |
| //Test greatestRoot |
| VERIFY( internal::isApprox( roots.array().abs().maxCoeff(), |
| abs( psolve.greatestRoot() ), psPrec ) ); |
| |
| //Test smallestRoot |
| VERIFY( internal::isApprox( roots.array().abs().minCoeff(), |
| abs( psolve.smallestRoot() ), psPrec ) ); |
| |
| bool hasRealRoot; |
| //Test absGreatestRealRoot |
| Real r = psolve.absGreatestRealRoot( hasRealRoot ); |
| VERIFY( hasRealRoot == (real_roots.size() > 0 ) ); |
| if( hasRealRoot ){ |
| VERIFY( internal::isApprox( real_roots.array().abs().maxCoeff(), abs(r), psPrec ) ); } |
| |
| //Test absSmallestRealRoot |
| r = psolve.absSmallestRealRoot( hasRealRoot ); |
| VERIFY( hasRealRoot == (real_roots.size() > 0 ) ); |
| if( hasRealRoot ){ |
| VERIFY( internal::isApprox( real_roots.array().abs().minCoeff(), abs( r ), psPrec ) ); } |
| |
| //Test greatestRealRoot |
| r = psolve.greatestRealRoot( hasRealRoot ); |
| VERIFY( hasRealRoot == (real_roots.size() > 0 ) ); |
| if( hasRealRoot ){ |
| VERIFY( internal::isApprox( real_roots.array().maxCoeff(), r, psPrec ) ); } |
| |
| //Test smallestRealRoot |
| r = psolve.smallestRealRoot( hasRealRoot ); |
| VERIFY( hasRealRoot == (real_roots.size() > 0 ) ); |
| if( hasRealRoot ){ |
| VERIFY( internal::isApprox( real_roots.array().minCoeff(), r, psPrec ) ); } |
| } |
| } |
| |
| |
| template<typename _Scalar, int _Deg> |
| void polynomialsolver(int deg) |
| { |
| typedef internal::increment_if_fixed_size<_Deg> Dim; |
| typedef Matrix<_Scalar,Dim::ret,1> PolynomialType; |
| typedef Matrix<_Scalar,_Deg,1> EvalRootsType; |
| |
| cout << "Standard cases" << endl; |
| PolynomialType pols = PolynomialType::Random(deg+1); |
| evalSolver<_Deg,PolynomialType>( pols ); |
| |
| cout << "Hard cases" << endl; |
| _Scalar multipleRoot = internal::random<_Scalar>(); |
| EvalRootsType allRoots = EvalRootsType::Constant(deg,multipleRoot); |
| roots_to_monicPolynomial( allRoots, pols ); |
| evalSolver<_Deg,PolynomialType>( pols ); |
| |
| cout << "Test sugar" << endl; |
| EvalRootsType realRoots = EvalRootsType::Random(deg); |
| roots_to_monicPolynomial( realRoots, pols ); |
| evalSolverSugarFunction<_Deg>( |
| pols, |
| realRoots.template cast < |
| std::complex< |
| typename NumTraits<_Scalar>::Real |
| > |
| >(), |
| realRoots ); |
| } |
| |
| void test_polynomialsolver() |
| { |
| for(int i = 0; i < g_repeat; i++) |
| { |
| CALL_SUBTEST_1( (polynomialsolver<float,1>(1)) ); |
| CALL_SUBTEST_2( (polynomialsolver<double,2>(2)) ); |
| CALL_SUBTEST_3( (polynomialsolver<double,3>(3)) ); |
| CALL_SUBTEST_4( (polynomialsolver<float,4>(4)) ); |
| CALL_SUBTEST_5( (polynomialsolver<double,5>(5)) ); |
| CALL_SUBTEST_6( (polynomialsolver<float,6>(6)) ); |
| CALL_SUBTEST_7( (polynomialsolver<float,7>(7)) ); |
| CALL_SUBTEST_8( (polynomialsolver<double,8>(8)) ); |
| |
| CALL_SUBTEST_9( (polynomialsolver<float,Dynamic>( |
| internal::random<int>(9,13) |
| )) ); |
| CALL_SUBTEST_10((polynomialsolver<double,Dynamic>( |
| internal::random<int>(9,13) |
| )) ); |
| CALL_SUBTEST_11((polynomialsolver<float,Dynamic>(1)) ); |
| } |
| } |