Narayan Kamath | c981c48 | 2012-11-02 10:59:05 +0000 | [diff] [blame] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. Eigen itself is part of the KDE project. |
| 3 | // |
| 4 | // Copyright (C) 2008 Daniel Gomez Ferro <dgomezferro@gmail.com> |
| 5 | // |
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 9 | |
| 10 | #include "sparse.h" |
| 11 | |
| 12 | template<typename SetterType,typename DenseType, typename Scalar, int Options> |
| 13 | bool test_random_setter(SparseMatrix<Scalar,Options>& sm, const DenseType& ref, const std::vector<Vector2i>& nonzeroCoords) |
| 14 | { |
| 15 | typedef SparseMatrix<Scalar,Options> SparseType; |
| 16 | { |
| 17 | sm.setZero(); |
| 18 | SetterType w(sm); |
| 19 | std::vector<Vector2i> remaining = nonzeroCoords; |
| 20 | while(!remaining.empty()) |
| 21 | { |
| 22 | int i = ei_random<int>(0,remaining.size()-1); |
| 23 | w(remaining[i].x(),remaining[i].y()) = ref.coeff(remaining[i].x(),remaining[i].y()); |
| 24 | remaining[i] = remaining.back(); |
| 25 | remaining.pop_back(); |
| 26 | } |
| 27 | } |
| 28 | return sm.isApprox(ref); |
| 29 | } |
| 30 | |
| 31 | template<typename SetterType,typename DenseType, typename T> |
| 32 | bool test_random_setter(DynamicSparseMatrix<T>& sm, const DenseType& ref, const std::vector<Vector2i>& nonzeroCoords) |
| 33 | { |
| 34 | sm.setZero(); |
| 35 | std::vector<Vector2i> remaining = nonzeroCoords; |
| 36 | while(!remaining.empty()) |
| 37 | { |
| 38 | int i = ei_random<int>(0,remaining.size()-1); |
| 39 | sm.coeffRef(remaining[i].x(),remaining[i].y()) = ref.coeff(remaining[i].x(),remaining[i].y()); |
| 40 | remaining[i] = remaining.back(); |
| 41 | remaining.pop_back(); |
| 42 | } |
| 43 | return sm.isApprox(ref); |
| 44 | } |
| 45 | |
| 46 | template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& ref) |
| 47 | { |
| 48 | const int rows = ref.rows(); |
| 49 | const int cols = ref.cols(); |
| 50 | typedef typename SparseMatrixType::Scalar Scalar; |
| 51 | enum { Flags = SparseMatrixType::Flags }; |
| 52 | |
| 53 | double density = std::max(8./(rows*cols), 0.01); |
| 54 | typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; |
| 55 | typedef Matrix<Scalar,Dynamic,1> DenseVector; |
| 56 | Scalar eps = 1e-6; |
| 57 | |
| 58 | SparseMatrixType m(rows, cols); |
| 59 | DenseMatrix refMat = DenseMatrix::Zero(rows, cols); |
| 60 | DenseVector vec1 = DenseVector::Random(rows); |
| 61 | Scalar s1 = ei_random<Scalar>(); |
| 62 | |
| 63 | std::vector<Vector2i> zeroCoords; |
| 64 | std::vector<Vector2i> nonzeroCoords; |
| 65 | initSparse<Scalar>(density, refMat, m, 0, &zeroCoords, &nonzeroCoords); |
| 66 | |
| 67 | if (zeroCoords.size()==0 || nonzeroCoords.size()==0) |
| 68 | return; |
| 69 | |
| 70 | // test coeff and coeffRef |
| 71 | for (int i=0; i<(int)zeroCoords.size(); ++i) |
| 72 | { |
| 73 | VERIFY_IS_MUCH_SMALLER_THAN( m.coeff(zeroCoords[i].x(),zeroCoords[i].y()), eps ); |
| 74 | if(ei_is_same_type<SparseMatrixType,SparseMatrix<Scalar,Flags> >::ret) |
| 75 | VERIFY_RAISES_ASSERT( m.coeffRef(zeroCoords[0].x(),zeroCoords[0].y()) = 5 ); |
| 76 | } |
| 77 | VERIFY_IS_APPROX(m, refMat); |
| 78 | |
| 79 | m.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5); |
| 80 | refMat.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5); |
| 81 | |
| 82 | VERIFY_IS_APPROX(m, refMat); |
| 83 | /* |
| 84 | // test InnerIterators and Block expressions |
| 85 | for (int t=0; t<10; ++t) |
| 86 | { |
| 87 | int j = ei_random<int>(0,cols-1); |
| 88 | int i = ei_random<int>(0,rows-1); |
| 89 | int w = ei_random<int>(1,cols-j-1); |
| 90 | int h = ei_random<int>(1,rows-i-1); |
| 91 | |
| 92 | // VERIFY_IS_APPROX(m.block(i,j,h,w), refMat.block(i,j,h,w)); |
| 93 | for(int c=0; c<w; c++) |
| 94 | { |
| 95 | VERIFY_IS_APPROX(m.block(i,j,h,w).col(c), refMat.block(i,j,h,w).col(c)); |
| 96 | for(int r=0; r<h; r++) |
| 97 | { |
| 98 | // VERIFY_IS_APPROX(m.block(i,j,h,w).col(c).coeff(r), refMat.block(i,j,h,w).col(c).coeff(r)); |
| 99 | } |
| 100 | } |
| 101 | // for(int r=0; r<h; r++) |
| 102 | // { |
| 103 | // VERIFY_IS_APPROX(m.block(i,j,h,w).row(r), refMat.block(i,j,h,w).row(r)); |
| 104 | // for(int c=0; c<w; c++) |
| 105 | // { |
| 106 | // VERIFY_IS_APPROX(m.block(i,j,h,w).row(r).coeff(c), refMat.block(i,j,h,w).row(r).coeff(c)); |
| 107 | // } |
| 108 | // } |
| 109 | } |
| 110 | |
| 111 | for(int c=0; c<cols; c++) |
| 112 | { |
| 113 | VERIFY_IS_APPROX(m.col(c) + m.col(c), (m + m).col(c)); |
| 114 | VERIFY_IS_APPROX(m.col(c) + m.col(c), refMat.col(c) + refMat.col(c)); |
| 115 | } |
| 116 | |
| 117 | for(int r=0; r<rows; r++) |
| 118 | { |
| 119 | VERIFY_IS_APPROX(m.row(r) + m.row(r), (m + m).row(r)); |
| 120 | VERIFY_IS_APPROX(m.row(r) + m.row(r), refMat.row(r) + refMat.row(r)); |
| 121 | } |
| 122 | */ |
| 123 | |
| 124 | // test SparseSetters |
| 125 | // coherent setter |
| 126 | // TODO extend the MatrixSetter |
| 127 | // { |
| 128 | // m.setZero(); |
| 129 | // VERIFY_IS_NOT_APPROX(m, refMat); |
| 130 | // SparseSetter<SparseMatrixType, FullyCoherentAccessPattern> w(m); |
| 131 | // for (int i=0; i<nonzeroCoords.size(); ++i) |
| 132 | // { |
| 133 | // w->coeffRef(nonzeroCoords[i].x(),nonzeroCoords[i].y()) = refMat.coeff(nonzeroCoords[i].x(),nonzeroCoords[i].y()); |
| 134 | // } |
| 135 | // } |
| 136 | // VERIFY_IS_APPROX(m, refMat); |
| 137 | |
| 138 | // random setter |
| 139 | // { |
| 140 | // m.setZero(); |
| 141 | // VERIFY_IS_NOT_APPROX(m, refMat); |
| 142 | // SparseSetter<SparseMatrixType, RandomAccessPattern> w(m); |
| 143 | // std::vector<Vector2i> remaining = nonzeroCoords; |
| 144 | // while(!remaining.empty()) |
| 145 | // { |
| 146 | // int i = ei_random<int>(0,remaining.size()-1); |
| 147 | // w->coeffRef(remaining[i].x(),remaining[i].y()) = refMat.coeff(remaining[i].x(),remaining[i].y()); |
| 148 | // remaining[i] = remaining.back(); |
| 149 | // remaining.pop_back(); |
| 150 | // } |
| 151 | // } |
| 152 | // VERIFY_IS_APPROX(m, refMat); |
| 153 | |
| 154 | VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, StdMapTraits> >(m,refMat,nonzeroCoords) )); |
| 155 | #ifdef EIGEN_UNORDERED_MAP_SUPPORT |
| 156 | VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, StdUnorderedMapTraits> >(m,refMat,nonzeroCoords) )); |
| 157 | #endif |
| 158 | #ifdef _DENSE_HASH_MAP_H_ |
| 159 | VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, GoogleDenseHashMapTraits> >(m,refMat,nonzeroCoords) )); |
| 160 | #endif |
| 161 | #ifdef _SPARSE_HASH_MAP_H_ |
| 162 | VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, GoogleSparseHashMapTraits> >(m,refMat,nonzeroCoords) )); |
| 163 | #endif |
| 164 | |
| 165 | // test fillrand |
| 166 | { |
| 167 | DenseMatrix m1(rows,cols); |
| 168 | m1.setZero(); |
| 169 | SparseMatrixType m2(rows,cols); |
| 170 | m2.startFill(); |
| 171 | for (int j=0; j<cols; ++j) |
| 172 | { |
| 173 | for (int k=0; k<rows/2; ++k) |
| 174 | { |
| 175 | int i = ei_random<int>(0,rows-1); |
| 176 | if (m1.coeff(i,j)==Scalar(0)) |
| 177 | m2.fillrand(i,j) = m1(i,j) = ei_random<Scalar>(); |
| 178 | } |
| 179 | } |
| 180 | m2.endFill(); |
| 181 | VERIFY_IS_APPROX(m2,m1); |
| 182 | } |
| 183 | |
| 184 | // test RandomSetter |
| 185 | /*{ |
| 186 | SparseMatrixType m1(rows,cols), m2(rows,cols); |
| 187 | DenseMatrix refM1 = DenseMatrix::Zero(rows, rows); |
| 188 | initSparse<Scalar>(density, refM1, m1); |
| 189 | { |
| 190 | Eigen::RandomSetter<SparseMatrixType > setter(m2); |
| 191 | for (int j=0; j<m1.outerSize(); ++j) |
| 192 | for (typename SparseMatrixType::InnerIterator i(m1,j); i; ++i) |
| 193 | setter(i.index(), j) = i.value(); |
| 194 | } |
| 195 | VERIFY_IS_APPROX(m1, m2); |
| 196 | }*/ |
| 197 | // std::cerr << m.transpose() << "\n\n" << refMat.transpose() << "\n\n"; |
| 198 | // VERIFY_IS_APPROX(m, refMat); |
| 199 | |
| 200 | // test basic computations |
| 201 | { |
| 202 | DenseMatrix refM1 = DenseMatrix::Zero(rows, rows); |
| 203 | DenseMatrix refM2 = DenseMatrix::Zero(rows, rows); |
| 204 | DenseMatrix refM3 = DenseMatrix::Zero(rows, rows); |
| 205 | DenseMatrix refM4 = DenseMatrix::Zero(rows, rows); |
| 206 | SparseMatrixType m1(rows, rows); |
| 207 | SparseMatrixType m2(rows, rows); |
| 208 | SparseMatrixType m3(rows, rows); |
| 209 | SparseMatrixType m4(rows, rows); |
| 210 | initSparse<Scalar>(density, refM1, m1); |
| 211 | initSparse<Scalar>(density, refM2, m2); |
| 212 | initSparse<Scalar>(density, refM3, m3); |
| 213 | initSparse<Scalar>(density, refM4, m4); |
| 214 | |
| 215 | VERIFY_IS_APPROX(m1+m2, refM1+refM2); |
| 216 | VERIFY_IS_APPROX(m1+m2+m3, refM1+refM2+refM3); |
| 217 | VERIFY_IS_APPROX(m3.cwise()*(m1+m2), refM3.cwise()*(refM1+refM2)); |
| 218 | VERIFY_IS_APPROX(m1*s1-m2, refM1*s1-refM2); |
| 219 | |
| 220 | VERIFY_IS_APPROX(m1*=s1, refM1*=s1); |
| 221 | VERIFY_IS_APPROX(m1/=s1, refM1/=s1); |
| 222 | |
| 223 | VERIFY_IS_APPROX(m1+=m2, refM1+=refM2); |
| 224 | VERIFY_IS_APPROX(m1-=m2, refM1-=refM2); |
| 225 | |
| 226 | VERIFY_IS_APPROX(m1.col(0).eigen2_dot(refM2.row(0)), refM1.col(0).eigen2_dot(refM2.row(0))); |
| 227 | |
| 228 | refM4.setRandom(); |
| 229 | // sparse cwise* dense |
| 230 | VERIFY_IS_APPROX(m3.cwise()*refM4, refM3.cwise()*refM4); |
| 231 | // VERIFY_IS_APPROX(m3.cwise()/refM4, refM3.cwise()/refM4); |
| 232 | } |
| 233 | |
| 234 | // test innerVector() |
| 235 | { |
| 236 | DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); |
| 237 | SparseMatrixType m2(rows, rows); |
| 238 | initSparse<Scalar>(density, refMat2, m2); |
| 239 | int j0 = ei_random(0,rows-1); |
| 240 | int j1 = ei_random(0,rows-1); |
| 241 | VERIFY_IS_APPROX(m2.innerVector(j0), refMat2.col(j0)); |
| 242 | VERIFY_IS_APPROX(m2.innerVector(j0)+m2.innerVector(j1), refMat2.col(j0)+refMat2.col(j1)); |
| 243 | //m2.innerVector(j0) = 2*m2.innerVector(j1); |
| 244 | //refMat2.col(j0) = 2*refMat2.col(j1); |
| 245 | //VERIFY_IS_APPROX(m2, refMat2); |
| 246 | } |
| 247 | |
| 248 | // test innerVectors() |
| 249 | { |
| 250 | DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); |
| 251 | SparseMatrixType m2(rows, rows); |
| 252 | initSparse<Scalar>(density, refMat2, m2); |
| 253 | int j0 = ei_random(0,rows-2); |
| 254 | int j1 = ei_random(0,rows-2); |
| 255 | int n0 = ei_random<int>(1,rows-std::max(j0,j1)); |
| 256 | VERIFY_IS_APPROX(m2.innerVectors(j0,n0), refMat2.block(0,j0,rows,n0)); |
| 257 | VERIFY_IS_APPROX(m2.innerVectors(j0,n0)+m2.innerVectors(j1,n0), |
| 258 | refMat2.block(0,j0,rows,n0)+refMat2.block(0,j1,rows,n0)); |
| 259 | //m2.innerVectors(j0,n0) = m2.innerVectors(j0,n0) + m2.innerVectors(j1,n0); |
| 260 | //refMat2.block(0,j0,rows,n0) = refMat2.block(0,j0,rows,n0) + refMat2.block(0,j1,rows,n0); |
| 261 | } |
| 262 | |
| 263 | // test transpose |
| 264 | { |
| 265 | DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); |
| 266 | SparseMatrixType m2(rows, rows); |
| 267 | initSparse<Scalar>(density, refMat2, m2); |
| 268 | VERIFY_IS_APPROX(m2.transpose().eval(), refMat2.transpose().eval()); |
| 269 | VERIFY_IS_APPROX(m2.transpose(), refMat2.transpose()); |
| 270 | } |
| 271 | |
| 272 | // test prune |
| 273 | { |
| 274 | SparseMatrixType m2(rows, rows); |
| 275 | DenseMatrix refM2(rows, rows); |
| 276 | refM2.setZero(); |
| 277 | int countFalseNonZero = 0; |
| 278 | int countTrueNonZero = 0; |
| 279 | m2.startFill(); |
| 280 | for (int j=0; j<m2.outerSize(); ++j) |
| 281 | for (int i=0; i<m2.innerSize(); ++i) |
| 282 | { |
| 283 | float x = ei_random<float>(0,1); |
| 284 | if (x<0.1) |
| 285 | { |
| 286 | // do nothing |
| 287 | } |
| 288 | else if (x<0.5) |
| 289 | { |
| 290 | countFalseNonZero++; |
| 291 | m2.fill(i,j) = Scalar(0); |
| 292 | } |
| 293 | else |
| 294 | { |
| 295 | countTrueNonZero++; |
| 296 | m2.fill(i,j) = refM2(i,j) = Scalar(1); |
| 297 | } |
| 298 | } |
| 299 | m2.endFill(); |
| 300 | VERIFY(countFalseNonZero+countTrueNonZero == m2.nonZeros()); |
| 301 | VERIFY_IS_APPROX(m2, refM2); |
| 302 | m2.prune(1); |
| 303 | VERIFY(countTrueNonZero==m2.nonZeros()); |
| 304 | VERIFY_IS_APPROX(m2, refM2); |
| 305 | } |
| 306 | } |
| 307 | |
| 308 | void test_eigen2_sparse_basic() |
| 309 | { |
| 310 | for(int i = 0; i < g_repeat; i++) { |
| 311 | CALL_SUBTEST_1( sparse_basic(SparseMatrix<double>(8, 8)) ); |
| 312 | CALL_SUBTEST_2( sparse_basic(SparseMatrix<std::complex<double> >(16, 16)) ); |
| 313 | CALL_SUBTEST_1( sparse_basic(SparseMatrix<double>(33, 33)) ); |
| 314 | |
| 315 | CALL_SUBTEST_3( sparse_basic(DynamicSparseMatrix<double>(8, 8)) ); |
| 316 | } |
| 317 | } |