| /* CFI program execution. |
| Copyright (C) 2009-2010, 2014, 2015 Red Hat, Inc. |
| This file is part of elfutils. |
| |
| This file is free software; you can redistribute it and/or modify |
| it under the terms of either |
| |
| * the GNU Lesser General Public License as published by the Free |
| Software Foundation; either version 3 of the License, or (at |
| your option) any later version |
| |
| or |
| |
| * the GNU General Public License as published by the Free |
| Software Foundation; either version 2 of the License, or (at |
| your option) any later version |
| |
| or both in parallel, as here. |
| |
| elfutils is distributed in the hope that it will be useful, but |
| WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| General Public License for more details. |
| |
| You should have received copies of the GNU General Public License and |
| the GNU Lesser General Public License along with this program. If |
| not, see <http://www.gnu.org/licenses/>. */ |
| |
| #ifdef HAVE_CONFIG_H |
| # include <config.h> |
| #endif |
| |
| #include <dwarf.h> |
| #include "../libebl/libebl.h" |
| #include "cfi.h" |
| #include "memory-access.h" |
| #include "encoded-value.h" |
| #include "system.h" |
| #include <assert.h> |
| #include <stdlib.h> |
| #include <string.h> |
| |
| #define CFI_PRIMARY_MAX 0x3f |
| |
| static Dwarf_Frame * |
| duplicate_frame_state (const Dwarf_Frame *original, |
| Dwarf_Frame *prev) |
| { |
| size_t size = offsetof (Dwarf_Frame, regs[original->nregs]); |
| Dwarf_Frame *copy = malloc (size); |
| if (likely (copy != NULL)) |
| { |
| memcpy (copy, original, size); |
| copy->prev = prev; |
| } |
| return copy; |
| } |
| |
| /* Returns a DWARF_E_* error code, usually NOERROR or INVALID_CFI. |
| Frees *STATE on failure. */ |
| static int |
| execute_cfi (Dwarf_CFI *cache, |
| const struct dwarf_cie *cie, |
| Dwarf_Frame **state, |
| const uint8_t *program, const uint8_t *const end, bool abi_cfi, |
| Dwarf_Addr loc, Dwarf_Addr find_pc) |
| { |
| /* The caller should not give us anything out of range. */ |
| assert (loc <= find_pc); |
| |
| int result = DWARF_E_NOERROR; |
| |
| #define cfi_assert(ok) do { \ |
| if (likely (ok)) break; \ |
| result = DWARF_E_INVALID_CFI; \ |
| goto out; \ |
| } while (0) |
| |
| Dwarf_Frame *fs = *state; |
| inline bool enough_registers (Dwarf_Word reg) |
| { |
| /* Don't allow insanely large register numbers. 268435456 registers |
| should be enough for anybody. And very large values might overflow |
| the array size and offsetof calculations below. */ |
| if (unlikely (reg >= INT32_MAX / sizeof (fs->regs[0]))) |
| { |
| result = DWARF_E_INVALID_CFI; |
| return false; |
| } |
| |
| if (fs->nregs <= reg) |
| { |
| size_t size = offsetof (Dwarf_Frame, regs[reg + 1]); |
| Dwarf_Frame *bigger = realloc (fs, size); |
| if (unlikely (bigger == NULL)) |
| { |
| result = DWARF_E_NOMEM; |
| return false; |
| } |
| else |
| { |
| eu_static_assert (reg_unspecified == 0); |
| memset (bigger->regs + bigger->nregs, 0, |
| (reg + 1 - bigger->nregs) * sizeof bigger->regs[0]); |
| bigger->nregs = reg + 1; |
| fs = bigger; |
| } |
| } |
| return true; |
| } |
| |
| inline void require_cfa_offset (void) |
| { |
| if (unlikely (fs->cfa_rule != cfa_offset)) |
| fs->cfa_rule = cfa_invalid; |
| } |
| |
| #define register_rule(regno, r_rule, r_value) do { \ |
| if (unlikely (! enough_registers (regno))) \ |
| goto out; \ |
| fs->regs[regno].rule = reg_##r_rule; \ |
| fs->regs[regno].value = (r_value); \ |
| } while (0) |
| |
| while (program < end) |
| { |
| uint8_t opcode = *program++; |
| Dwarf_Word regno; |
| Dwarf_Word offset; |
| Dwarf_Word sf_offset; |
| Dwarf_Word operand = opcode & CFI_PRIMARY_MAX; |
| switch (opcode) |
| { |
| /* These cases move LOC, i.e. "create a new table row". */ |
| |
| case DW_CFA_advance_loc1: |
| operand = *program++; |
| case DW_CFA_advance_loc + 0 ... DW_CFA_advance_loc + CFI_PRIMARY_MAX: |
| advance_loc: |
| loc += operand * cie->code_alignment_factor; |
| break; |
| |
| case DW_CFA_advance_loc2: |
| cfi_assert (program + 2 <= end); |
| operand = read_2ubyte_unaligned_inc (cache, program); |
| goto advance_loc; |
| case DW_CFA_advance_loc4: |
| cfi_assert (program + 4 <= end); |
| operand = read_4ubyte_unaligned_inc (cache, program); |
| goto advance_loc; |
| case DW_CFA_MIPS_advance_loc8: |
| cfi_assert (program + 8 <= end); |
| operand = read_8ubyte_unaligned_inc (cache, program); |
| goto advance_loc; |
| |
| case DW_CFA_set_loc: |
| if (likely (!read_encoded_value (cache, cie->fde_encoding, |
| &program, &loc))) |
| break; |
| result = INTUSE(dwarf_errno) (); |
| goto out; |
| |
| /* Now all following cases affect this row, but do not touch LOC. |
| These cases end with 'continue'. We only get out of the |
| switch block for the row-copying (LOC-moving) cases above. */ |
| |
| case DW_CFA_def_cfa: |
| get_uleb128 (operand, program, end); |
| cfi_assert (program < end); |
| get_uleb128 (offset, program, end); |
| def_cfa: |
| fs->cfa_rule = cfa_offset; |
| fs->cfa_val_reg = operand; |
| fs->cfa_val_offset = offset; |
| /* Prime the rest of the Dwarf_Op so dwarf_frame_cfa can use it. */ |
| fs->cfa_data.offset.atom = DW_OP_bregx; |
| fs->cfa_data.offset.offset = 0; |
| continue; |
| |
| case DW_CFA_def_cfa_register: |
| get_uleb128 (regno, program, end); |
| require_cfa_offset (); |
| fs->cfa_val_reg = regno; |
| continue; |
| |
| case DW_CFA_def_cfa_sf: |
| get_uleb128 (operand, program, end); |
| cfi_assert (program < end); |
| get_sleb128 (sf_offset, program, end); |
| offset = sf_offset * cie->data_alignment_factor; |
| goto def_cfa; |
| |
| case DW_CFA_def_cfa_offset: |
| get_uleb128 (offset, program, end); |
| def_cfa_offset: |
| require_cfa_offset (); |
| fs->cfa_val_offset = offset; |
| continue; |
| |
| case DW_CFA_def_cfa_offset_sf: |
| get_sleb128 (sf_offset, program, end); |
| offset = sf_offset * cie->data_alignment_factor; |
| goto def_cfa_offset; |
| |
| case DW_CFA_def_cfa_expression: |
| /* DW_FORM_block is a ULEB128 length followed by that many bytes. */ |
| get_uleb128 (operand, program, end); |
| cfi_assert (operand <= (Dwarf_Word) (end - program)); |
| fs->cfa_rule = cfa_expr; |
| fs->cfa_data.expr.data = (unsigned char *) program; |
| fs->cfa_data.expr.length = operand; |
| program += operand; |
| continue; |
| |
| case DW_CFA_undefined: |
| get_uleb128 (regno, program, end); |
| register_rule (regno, undefined, 0); |
| continue; |
| |
| case DW_CFA_same_value: |
| get_uleb128 (regno, program, end); |
| register_rule (regno, same_value, 0); |
| continue; |
| |
| case DW_CFA_offset_extended: |
| get_uleb128 (operand, program, end); |
| cfi_assert (program < end); |
| case DW_CFA_offset + 0 ... DW_CFA_offset + CFI_PRIMARY_MAX: |
| get_uleb128 (offset, program, end); |
| offset *= cie->data_alignment_factor; |
| offset_extended: |
| register_rule (operand, offset, offset); |
| continue; |
| |
| case DW_CFA_offset_extended_sf: |
| get_uleb128 (operand, program, end); |
| get_sleb128 (sf_offset, program, end); |
| offset_extended_sf: |
| offset = sf_offset * cie->data_alignment_factor; |
| goto offset_extended; |
| |
| case DW_CFA_GNU_negative_offset_extended: |
| /* GNU extension obsoleted by DW_CFA_offset_extended_sf. */ |
| get_uleb128 (operand, program, end); |
| cfi_assert (program < end); |
| get_uleb128 (offset, program, end); |
| sf_offset = -offset; |
| goto offset_extended_sf; |
| |
| case DW_CFA_val_offset: |
| get_uleb128 (operand, program, end); |
| cfi_assert (program < end); |
| get_uleb128 (offset, program, end); |
| offset *= cie->data_alignment_factor; |
| val_offset: |
| register_rule (operand, val_offset, offset); |
| continue; |
| |
| case DW_CFA_val_offset_sf: |
| get_uleb128 (operand, program, end); |
| cfi_assert (program < end); |
| get_sleb128 (sf_offset, program, end); |
| offset = sf_offset * cie->data_alignment_factor; |
| goto val_offset; |
| |
| case DW_CFA_register: |
| get_uleb128 (regno, program, end); |
| cfi_assert (program < end); |
| get_uleb128 (operand, program, end); |
| register_rule (regno, register, operand); |
| continue; |
| |
| case DW_CFA_expression: |
| /* Expression rule relies on section data, abi_cfi cannot use it. */ |
| assert (! abi_cfi); |
| get_uleb128 (regno, program, end); |
| offset = program - (const uint8_t *) cache->data->d.d_buf; |
| /* DW_FORM_block is a ULEB128 length followed by that many bytes. */ |
| cfi_assert (program < end); |
| get_uleb128 (operand, program, end); |
| cfi_assert (operand <= (Dwarf_Word) (end - program)); |
| program += operand; |
| register_rule (regno, expression, offset); |
| continue; |
| |
| case DW_CFA_val_expression: |
| /* Expression rule relies on section data, abi_cfi cannot use it. */ |
| assert (! abi_cfi); |
| get_uleb128 (regno, program, end); |
| /* DW_FORM_block is a ULEB128 length followed by that many bytes. */ |
| offset = program - (const uint8_t *) cache->data->d.d_buf; |
| get_uleb128 (operand, program, end); |
| cfi_assert (operand <= (Dwarf_Word) (end - program)); |
| program += operand; |
| register_rule (regno, val_expression, offset); |
| continue; |
| |
| case DW_CFA_restore_extended: |
| get_uleb128 (operand, program, end); |
| case DW_CFA_restore + 0 ... DW_CFA_restore + CFI_PRIMARY_MAX: |
| |
| if (unlikely (abi_cfi) && likely (opcode == DW_CFA_restore)) |
| { |
| /* Special case hack to give backend abi_cfi a shorthand. */ |
| cache->default_same_value = true; |
| continue; |
| } |
| |
| /* This can't be used in the CIE's own initial instructions. */ |
| cfi_assert (cie->initial_state != NULL); |
| |
| /* Restore the CIE's initial rule for this register. */ |
| if (unlikely (! enough_registers (operand))) |
| goto out; |
| if (cie->initial_state->nregs > operand) |
| fs->regs[operand] = cie->initial_state->regs[operand]; |
| else |
| fs->regs[operand].rule = reg_unspecified; |
| continue; |
| |
| case DW_CFA_remember_state: |
| { |
| /* Duplicate the state and chain the copy on. */ |
| Dwarf_Frame *copy = duplicate_frame_state (fs, fs); |
| if (unlikely (copy == NULL)) |
| { |
| result = DWARF_E_NOMEM; |
| goto out; |
| } |
| fs = copy; |
| continue; |
| } |
| |
| case DW_CFA_restore_state: |
| { |
| /* Pop the current state off and use the old one instead. */ |
| Dwarf_Frame *prev = fs->prev; |
| cfi_assert (prev != NULL); |
| free (fs); |
| fs = prev; |
| continue; |
| } |
| |
| case DW_CFA_nop: |
| continue; |
| |
| case DW_CFA_GNU_window_save: |
| /* This is magic shorthand used only by SPARC. It's equivalent |
| to a bunch of DW_CFA_register and DW_CFA_offset operations. */ |
| if (unlikely (! enough_registers (31))) |
| goto out; |
| for (regno = 8; regno < 16; ++regno) |
| { |
| /* Find each %oN in %iN. */ |
| fs->regs[regno].rule = reg_register; |
| fs->regs[regno].value = regno + 16; |
| } |
| unsigned int address_size = (cache->e_ident[EI_CLASS] == ELFCLASS32 |
| ? 4 : 8); |
| for (; regno < 32; ++regno) |
| { |
| /* Find %l0..%l7 and %i0..%i7 in a block at the CFA. */ |
| fs->regs[regno].rule = reg_offset; |
| fs->regs[regno].value = (regno - 16) * address_size; |
| } |
| continue; |
| |
| case DW_CFA_GNU_args_size: |
| /* XXX is this useful for anything? */ |
| get_uleb128 (operand, program, end); |
| continue; |
| |
| default: |
| cfi_assert (false); |
| continue; |
| } |
| |
| /* We get here only for the cases that have just moved LOC. */ |
| cfi_assert (cie->initial_state != NULL); |
| if (find_pc >= loc) |
| /* This advance has not yet reached FIND_PC. */ |
| fs->start = loc; |
| else |
| { |
| /* We have just advanced past the address we're looking for. |
| The state currently described is what we want to see. */ |
| fs->end = loc; |
| break; |
| } |
| } |
| |
| /* "The end of the instruction stream can be thought of as a |
| DW_CFA_set_loc (initial_location + address_range) instruction." |
| (DWARF 3.0 Section 6.4.3) |
| |
| When we fall off the end of the program without an advance_loc/set_loc |
| that put us past FIND_PC, the final state left by the FDE program |
| applies to this address (the caller ensured it was inside the FDE). |
| This address (FDE->end) is already in FS->end as set by the caller. */ |
| |
| #undef register_rule |
| #undef cfi_assert |
| |
| out: |
| |
| /* Pop any remembered states left on the stack. */ |
| while (fs->prev != NULL) |
| { |
| Dwarf_Frame *prev = fs->prev; |
| fs->prev = prev->prev; |
| free (prev); |
| } |
| |
| if (likely (result == DWARF_E_NOERROR)) |
| *state = fs; |
| else |
| free (fs); |
| |
| return result; |
| } |
| |
| static int |
| cie_cache_initial_state (Dwarf_CFI *cache, struct dwarf_cie *cie) |
| { |
| int result = DWARF_E_NOERROR; |
| |
| if (likely (cie->initial_state != NULL)) |
| return result; |
| |
| /* This CIE has not been used before. Play out its initial |
| instructions and cache the initial state that results. |
| First we'll let the backend fill in the default initial |
| state for this machine's ABI. */ |
| |
| Dwarf_CIE abi_info = { DW_CIE_ID_64, NULL, NULL, 1, 1, -1, "", NULL, 0, 0 }; |
| |
| /* Make sure we have a backend handle cached. */ |
| if (unlikely (cache->ebl == NULL)) |
| { |
| cache->ebl = ebl_openbackend (cache->data->s->elf); |
| if (unlikely (cache->ebl == NULL)) |
| cache->ebl = (void *) -1l; |
| } |
| |
| /* Fetch the ABI's default CFI program. */ |
| if (likely (cache->ebl != (void *) -1l) |
| && unlikely (ebl_abi_cfi (cache->ebl, &abi_info) < 0)) |
| return DWARF_E_UNKNOWN_ERROR; |
| |
| Dwarf_Frame *cie_fs = calloc (1, sizeof (Dwarf_Frame)); |
| if (unlikely (cie_fs == NULL)) |
| return DWARF_E_NOMEM; |
| |
| /* If the default state of any register is not "undefined" |
| (i.e. call-clobbered), then the backend supplies instructions |
| for the standard initial state. */ |
| if (abi_info.initial_instructions_end > abi_info.initial_instructions) |
| { |
| /* Dummy CIE for backend's instructions. */ |
| struct dwarf_cie abi_cie = |
| { |
| .code_alignment_factor = abi_info.code_alignment_factor, |
| .data_alignment_factor = abi_info.data_alignment_factor, |
| }; |
| result = execute_cfi (cache, &abi_cie, &cie_fs, |
| abi_info.initial_instructions, |
| abi_info.initial_instructions_end, true, |
| 0, (Dwarf_Addr) -1l); |
| } |
| |
| /* Now run the CIE's initial instructions. */ |
| if (cie->initial_instructions_end > cie->initial_instructions |
| && likely (result == DWARF_E_NOERROR)) |
| result = execute_cfi (cache, cie, &cie_fs, |
| cie->initial_instructions, |
| cie->initial_instructions_end, false, |
| 0, (Dwarf_Addr) -1l); |
| |
| if (likely (result == DWARF_E_NOERROR)) |
| { |
| /* Now we have the initial state of things that all |
| FDEs using this CIE will start from. */ |
| cie_fs->cache = cache; |
| cie->initial_state = cie_fs; |
| } |
| |
| return result; |
| } |
| |
| int |
| internal_function |
| __libdw_frame_at_address (Dwarf_CFI *cache, struct dwarf_fde *fde, |
| Dwarf_Addr address, Dwarf_Frame **frame) |
| { |
| int result = cie_cache_initial_state (cache, fde->cie); |
| if (likely (result == DWARF_E_NOERROR)) |
| { |
| Dwarf_Frame *fs = duplicate_frame_state (fde->cie->initial_state, NULL); |
| if (unlikely (fs == NULL)) |
| return DWARF_E_NOMEM; |
| |
| fs->fde = fde; |
| fs->start = fde->start; |
| fs->end = fde->end; |
| |
| result = execute_cfi (cache, fde->cie, &fs, |
| fde->instructions, fde->instructions_end, false, |
| fde->start, address); |
| if (likely (result == DWARF_E_NOERROR)) |
| *frame = fs; |
| } |
| return result; |
| } |