blob: d5ef01a9cf962d04a7b57f76f606f2eeb887e2ab [file] [log] [blame]
/* Unaligned memory access functionality.
Copyright (C) 2000, 2001, 2002 Red Hat, Inc.
This file is part of Red Hat elfutils.
Written by Ulrich Drepper <drepper@redhat.com>, 2000.
Red Hat elfutils is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by the
Free Software Foundation; version 2 of the License.
Red Hat elfutils is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License along
with Red Hat elfutils; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA.
Red Hat elfutils is an included package of the Open Invention Network.
An included package of the Open Invention Network is a package for which
Open Invention Network licensees cross-license their patents. No patent
license is granted, either expressly or impliedly, by designation as an
included package. Should you wish to participate in the Open Invention
Network licensing program, please visit www.openinventionnetwork.com
<http://www.openinventionnetwork.com>. */
#ifndef _MEMORY_ACCESS_H
#define _MEMORY_ACCESS_H 1
#include <byteswap.h>
#include <stdint.h>
/* Number decoding macros. See 7.6 Variable Length Data. */
#define get_uleb128(var, addr) \
do { \
Dwarf_Small __b = *addr++; \
var = __b & 0x7f; \
if (__b & 0x80) \
{ \
__b = *addr++; \
var |= (__b & 0x7f) << 7; \
if (__b & 0x80) \
{ \
__b = *addr++; \
var |= (__b & 0x7f) << 14; \
if (__b & 0x80) \
{ \
__b = *addr++; \
var |= (__b & 0x7f) << 21; \
if (__b & 0x80) \
/* Other implementation set VALUE to UINT_MAX in this \
case. So we better do this as well. */ \
var = UINT_MAX; \
} \
} \
} \
} while (0)
/* The signed case is a big more complicated. */
#define get_sleb128(var, addr) \
do { \
Dwarf_Small __b = *addr++; \
int32_t __res = __b & 0x7f; \
if ((__b & 0x80) == 0) \
{ \
if (__b & 0x40) \
__res |= 0xffffff80; \
} \
else \
{ \
__b = *addr++; \
__res |= (__b & 0x7f) << 7; \
if ((__b & 0x80) == 0) \
{ \
if (__b & 0x40) \
__res |= 0xffffc000; \
} \
else \
{ \
__b = *addr++; \
__res |= (__b & 0x7f) << 14; \
if ((__b & 0x80) == 0) \
{ \
if (__b & 0x40) \
__res |= 0xffe00000; \
} \
else \
{ \
__b = *addr++; \
__res |= (__b & 0x7f) << 21; \
if ((__b & 0x80) == 0) \
{ \
if (__b & 0x40) \
__res |= 0xf0000000; \
} \
else \
/* Other implementation set VALUE to INT_MAX in this \
case. So we better do this as well. */ \
__res = INT_MAX; \
} \
} \
} \
var = __res; \
} while (0)
/* We use simple memory access functions in case the hardware allows it.
The caller has to make sure we don't have alias problems. */
#if ALLOW_UNALIGNED
# define read_2ubyte_unaligned(Dbg, Addr) \
((Dbg)->other_byte_order \
? bswap_16 (*((uint16_t *) (Addr))) \
: *((uint16_t *) (Addr)))
# define read_2sbyte_unaligned(Dbg, Addr) \
((Dbg)->other_byte_order \
? (int16_t) bswap_16 (*((int16_t *) (Addr))) \
: *((int16_t *) (Addr)))
# define read_4ubyte_unaligned_noncvt(Addr) \
*((uint32_t *) (Addr))
# define read_4ubyte_unaligned(Dbg, Addr) \
((Dbg)->other_byte_order \
? bswap_32 (*((uint32_t *) (Addr))) \
: *((uint32_t *) (Addr)))
# define read_4sbyte_unaligned(Dbg, Addr) \
((Dbg)->other_byte_order \
? (int32_t) bswap_32 (*((int32_t *) (Addr))) \
: *((int32_t *) (Addr)))
# define read_8ubyte_unaligned(Dbg, Addr) \
((Dbg)->other_byte_order \
? bswap_64 (*((uint64_t *) (Addr))) \
: *((uint64_t *) (Addr)))
# define read_8sbyte_unaligned(Dbg, Addr) \
((Dbg)->other_byte_order \
? (int64_t) bswap_64 (*((int64_t *) (Addr))) \
: *((int64_t *) (Addr)))
#else
# if __GNUC__
union unaligned
{
void *p;
uint16_t u2;
uint32_t u4;
uint64_t u8;
int16_t s2;
int32_t s4;
int64_t s8;
} __attribute__ ((packed));
static inline uint16_t
read_2ubyte_unaligned (Dwarf_Debug dbg, void *p)
{
union unaligned *up = p;
if (dbg->other_byte_order)
return bswap_16 (up->u2);
return up->u2;
}
static inline int16_t
read_2sbyte_unaligned (Dwarf_Debug dbg, void *p)
{
union unaligned *up = p;
if (dbg->other_byte_order)
return (int16_t) bswap_16 (up->u2);
return up->s2;
}
static inline uint32_t
read_4ubyte_unaligned_noncvt (void *p)
{
union unaligned *up = p;
return up->u4;
}
static inline uint32_t
read_4ubyte_unaligned (Dwarf_Debug dbg, void *p)
{
union unaligned *up = p;
if (dbg->other_byte_order)
return bswap_32 (up->u4);
return up->u4;
}
static inline int32_t
read_4sbyte_unaligned (Dwarf_Debug dbg, void *p)
{
union unaligned *up = p;
if (dbg->other_byte_order)
return (int32_t) bswap_32 (up->u4);
return up->s4;
}
static inline uint64_t
read_8ubyte_unaligned (Dwarf_Debug dbg, void *p)
{
union unaligned *up = p;
if (dbg->other_byte_order)
return bswap_64 (up->u8);
return up->u8;
}
static inline int64_t
read_8sbyte_unaligned (Dwarf_Debug dbg, void *p)
{
union unaligned *up = p;
if (dbg->other_byte_order)
return (int64_t) bswap_64 (up->u8);
return up->s8;
}
# else
# error "TODO"
# endif
#endif
#endif /* memory-access.h */