blob: 7700cbee346ce17cad98e2f63aee99d3fa3b7d1b [file] [log] [blame]
/*
* sff-common.c: Implements SFF-8024 Rev 4.0 i.e. Specifcation
* of pluggable I/O configuration
*
* Common utilities across SFF-8436/8636 and SFF-8472/8079
* are defined in this file
*
* Copyright 2010 Solarflare Communications Inc.
* Aurelien Guillaume <aurelien@iwi.me> (C) 2012
* Copyright (C) 2014 Cumulus networks Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Freeoftware Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* Vidya Sagar Ravipati <vidya@cumulusnetworks.com>
* This implementation is loosely based on current SFP parser
* and SFF-8024 Rev 4.0 spec (ftp://ftp.seagate.com/pub/sff/SFF-8024.PDF)
* by SFF Committee.
*/
#include <stdio.h>
#include <math.h>
#include "sff-common.h"
double convert_mw_to_dbm(double mw)
{
return (10. * log10(mw / 1000.)) + 30.;
}
void sff_show_value_with_unit(const __u8 *id, unsigned int reg,
const char *name, unsigned int mult,
const char *unit)
{
unsigned int val = id[reg];
printf("\t%-41s : %u%s\n", name, val * mult, unit);
}
void sff_show_ascii(const __u8 *id, unsigned int first_reg,
unsigned int last_reg, const char *name)
{
unsigned int reg, val;
printf("\t%-41s : ", name);
while (first_reg <= last_reg && id[last_reg] == ' ')
last_reg--;
for (reg = first_reg; reg <= last_reg; reg++) {
val = id[reg];
putchar(((val >= 32) && (val <= 126)) ? val : '_');
}
printf("\n");
}
void sff8024_show_oui(const __u8 *id, int id_offset)
{
printf("\t%-41s : %02x:%02x:%02x\n", "Vendor OUI",
id[id_offset], id[(id_offset) + 1],
id[(id_offset) + 2]);
}
void sff8024_show_identifier(const __u8 *id, int id_offset)
{
printf("\t%-41s : 0x%02x", "Identifier", id[id_offset]);
switch (id[id_offset]) {
case SFF8024_ID_UNKNOWN:
printf(" (no module present, unknown, or unspecified)\n");
break;
case SFF8024_ID_GBIC:
printf(" (GBIC)\n");
break;
case SFF8024_ID_SOLDERED_MODULE:
printf(" (module soldered to motherboard)\n");
break;
case SFF8024_ID_SFP:
printf(" (SFP)\n");
break;
case SFF8024_ID_300_PIN_XBI:
printf(" (300 pin XBI)\n");
break;
case SFF8024_ID_XENPAK:
printf(" (XENPAK)\n");
break;
case SFF8024_ID_XFP:
printf(" (XFP)\n");
break;
case SFF8024_ID_XFF:
printf(" (XFF)\n");
break;
case SFF8024_ID_XFP_E:
printf(" (XFP-E)\n");
break;
case SFF8024_ID_XPAK:
printf(" (XPAK)\n");
break;
case SFF8024_ID_X2:
printf(" (X2)\n");
break;
case SFF8024_ID_DWDM_SFP:
printf(" (DWDM-SFP)\n");
break;
case SFF8024_ID_QSFP:
printf(" (QSFP)\n");
break;
case SFF8024_ID_QSFP_PLUS:
printf(" (QSFP+)\n");
break;
case SFF8024_ID_CXP:
printf(" (CXP)\n");
break;
case SFF8024_ID_HD4X:
printf(" (Shielded Mini Multilane HD 4X)\n");
break;
case SFF8024_ID_HD8X:
printf(" (Shielded Mini Multilane HD 8X)\n");
break;
case SFF8024_ID_QSFP28:
printf(" (QSFP28)\n");
break;
case SFF8024_ID_CXP2:
printf(" (CXP2/CXP28)\n");
break;
case SFF8024_ID_CDFP:
printf(" (CDFP Style 1/Style 2)\n");
break;
case SFF8024_ID_HD4X_FANOUT:
printf(" (Shielded Mini Multilane HD 4X Fanout Cable)\n");
break;
case SFF8024_ID_HD8X_FANOUT:
printf(" (Shielded Mini Multilane HD 8X Fanout Cable)\n");
break;
case SFF8024_ID_CDFP_S3:
printf(" (CDFP Style 3)\n");
break;
case SFF8024_ID_MICRO_QSFP:
printf(" (microQSFP)\n");
break;
default:
printf(" (reserved or unknown)\n");
break;
}
}
void sff8024_show_connector(const __u8 *id, int ctor_offset)
{
printf("\t%-41s : 0x%02x", "Connector", id[ctor_offset]);
switch (id[ctor_offset]) {
case SFF8024_CTOR_UNKNOWN:
printf(" (unknown or unspecified)\n");
break;
case SFF8024_CTOR_SC:
printf(" (SC)\n");
break;
case SFF8024_CTOR_FC_STYLE_1:
printf(" (Fibre Channel Style 1 copper)\n");
break;
case SFF8024_CTOR_FC_STYLE_2:
printf(" (Fibre Channel Style 2 copper)\n");
break;
case SFF8024_CTOR_BNC_TNC:
printf(" (BNC/TNC)\n");
break;
case SFF8024_CTOR_FC_COAX:
printf(" (Fibre Channel coaxial headers)\n");
break;
case SFF8024_CTOR_FIBER_JACK:
printf(" (FibreJack)\n");
break;
case SFF8024_CTOR_LC:
printf(" (LC)\n");
break;
case SFF8024_CTOR_MT_RJ:
printf(" (MT-RJ)\n");
break;
case SFF8024_CTOR_MU:
printf(" (MU)\n");
break;
case SFF8024_CTOR_SG:
printf(" (SG)\n");
break;
case SFF8024_CTOR_OPT_PT:
printf(" (Optical pigtail)\n");
break;
case SFF8024_CTOR_MPO:
printf(" (MPO Parallel Optic)\n");
break;
case SFF8024_CTOR_MPO_2:
printf(" (MPO Parallel Optic - 2x16)\n");
break;
case SFF8024_CTOR_HSDC_II:
printf(" (HSSDC II)\n");
break;
case SFF8024_CTOR_COPPER_PT:
printf(" (Copper pigtail)\n");
break;
case SFF8024_CTOR_RJ45:
printf(" (RJ45)\n");
break;
case SFF8024_CTOR_NO_SEPARABLE:
printf(" (No separable connector)\n");
break;
case SFF8024_CTOR_MXC_2x16:
printf(" (MXC 2x16)\n");
break;
default:
printf(" (reserved or unknown)\n");
break;
}
}
void sff8024_show_encoding(const __u8 *id, int encoding_offset, int sff_type)
{
printf("\t%-41s : 0x%02x", "Encoding", id[encoding_offset]);
switch (id[encoding_offset]) {
case SFF8024_ENCODING_UNSPEC:
printf(" (unspecified)\n");
break;
case SFF8024_ENCODING_8B10B:
printf(" (8B/10B)\n");
break;
case SFF8024_ENCODING_4B5B:
printf(" (4B/5B)\n");
break;
case SFF8024_ENCODING_NRZ:
printf(" (NRZ)\n");
break;
case SFF8024_ENCODING_4h:
if (sff_type == ETH_MODULE_SFF_8472)
printf(" (Manchester)\n");
else if (sff_type == ETH_MODULE_SFF_8636)
printf(" (SONET Scrambled)\n");
break;
case SFF8024_ENCODING_5h:
if (sff_type == ETH_MODULE_SFF_8472)
printf(" (SONET Scrambled)\n");
else if (sff_type == ETH_MODULE_SFF_8636)
printf(" (64B/66B)\n");
break;
case SFF8024_ENCODING_6h:
if (sff_type == ETH_MODULE_SFF_8472)
printf(" (64B/66B)\n");
else if (sff_type == ETH_MODULE_SFF_8636)
printf(" (Manchester)\n");
break;
case SFF8024_ENCODING_256B:
printf(" ((256B/257B (transcoded FEC-enabled data))\n");
break;
case SFF8024_ENCODING_PAM4:
printf(" (PAM4)\n");
break;
default:
printf(" (reserved or unknown)\n");
break;
}
}
void sff_show_thresholds(struct sff_diags sd)
{
PRINT_BIAS("Laser bias current high alarm threshold",
sd.bias_cur[HALRM]);
PRINT_BIAS("Laser bias current low alarm threshold",
sd.bias_cur[LALRM]);
PRINT_BIAS("Laser bias current high warning threshold",
sd.bias_cur[HWARN]);
PRINT_BIAS("Laser bias current low warning threshold",
sd.bias_cur[LWARN]);
PRINT_xX_PWR("Laser output power high alarm threshold",
sd.tx_power[HALRM]);
PRINT_xX_PWR("Laser output power low alarm threshold",
sd.tx_power[LALRM]);
PRINT_xX_PWR("Laser output power high warning threshold",
sd.tx_power[HWARN]);
PRINT_xX_PWR("Laser output power low warning threshold",
sd.tx_power[LWARN]);
PRINT_TEMP("Module temperature high alarm threshold",
sd.sfp_temp[HALRM]);
PRINT_TEMP("Module temperature low alarm threshold",
sd.sfp_temp[LALRM]);
PRINT_TEMP("Module temperature high warning threshold",
sd.sfp_temp[HWARN]);
PRINT_TEMP("Module temperature low warning threshold",
sd.sfp_temp[LWARN]);
PRINT_VCC("Module voltage high alarm threshold",
sd.sfp_voltage[HALRM]);
PRINT_VCC("Module voltage low alarm threshold",
sd.sfp_voltage[LALRM]);
PRINT_VCC("Module voltage high warning threshold",
sd.sfp_voltage[HWARN]);
PRINT_VCC("Module voltage low warning threshold",
sd.sfp_voltage[LWARN]);
PRINT_xX_PWR("Laser rx power high alarm threshold",
sd.rx_power[HALRM]);
PRINT_xX_PWR("Laser rx power low alarm threshold",
sd.rx_power[LALRM]);
PRINT_xX_PWR("Laser rx power high warning threshold",
sd.rx_power[HWARN]);
PRINT_xX_PWR("Laser rx power low warning threshold",
sd.rx_power[LWARN]);
}